1
|
Li P, Liao H, Lv Y, Liang S, Zhong J, Su W. Ca 2+ crosslinked gelatin-sodium alginate film loaded with berberine hydrochloride that can effectively promote wound healing of MRSA infection. Int J Biol Macromol 2025; 310:143273. [PMID: 40250645 DOI: 10.1016/j.ijbiomac.2025.143273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 04/10/2025] [Accepted: 04/16/2025] [Indexed: 04/20/2025]
Abstract
Wound infections are a primary cause of delayed wound healing, and film dressings have garnered significant attention in wound management. However, the development of biologically sourced and green-synthesized film dressings with rapid antimicrobial functionality remains an urgent technological breakthrough. In this study, we successfully developed gelatin sodium alginate/sea sheath molecularly modified berberine hydrochloride film (GS/CB). The incorporation of sea sheath powder significantly enhances the mechanical properties of the gelatin‑sodium alginate film.The calcium ions (Ca2+) provided by the sea sheath create a cross-linking effect within the sodium alginate-gelatin network, resulting in tensile properties of the GS/CB films that are 2.6 times greater than those of the control films. This enhancement allows the films to meet the requirements for wound applications. In in vitro antimicrobial experiments, the films incorporated with sodium oleate-modified berberine hydrochloride showed good antimicrobial effects, with an inhibition rate of 97.79 % against Staphylococcus aureus (S. aureus) and 98.57 % against methicillin-resistant Staphylococcus aureus (MRSA). In in vivo wound healing experiments, the film effectively eliminated MRSA from the wound, achieving a bacterial clearance rate of 98.5 %. Compared to transparent film dressings, the GS/CB film demonstrated superior wound care efficacy and significantly accelerated wound healing. Furthermore, both in vivo and in vitro tests indicated that the film possesses excellent biocompatibility. Therefore, the GS/CB film holds great potential and application value as a new wound dressing for the treatment of infectious wounds.
Collapse
Affiliation(s)
- Peiyuan Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China.
| | - Huan Liao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Yingbin Lv
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Siyan Liang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Jingwen Zhong
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Wei Su
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China.
| |
Collapse
|
2
|
Tachai K, Deenu A, Pisutpiched S, Kamthai S. Optimization and addition of bagasse Dialdehyde Carboxymethyl cellulose (DCMC) as a crosslinking agent for improving the ternary biopolymer blended films: Rice starch, chitosan, and Sericin properties. Int J Biol Macromol 2025; 309:142980. [PMID: 40216139 DOI: 10.1016/j.ijbiomac.2025.142980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/21/2025] [Accepted: 04/07/2025] [Indexed: 04/14/2025]
Abstract
The development of a ternary biopolymer blended films incorporating rice starch (RS), chitosan (CH), and sericin (SC) crosslinked with dialdehyde carboxymethyl cellulose (DCMC) from bagasse was investigated. The biopolymer films were prepared through a solution casting method, with varying DCMC concentrations (0-0.2 % (w/v)). The physical, mechanical, and thermal properties of the films were evaluated, including thickness, color difference, moisture absorption, solubility, tensile strength, elongation at break, and heat-sealing strength. The results informed that increasing of DCMC content improved the tensile strength and reduced elongation at break, indicating enhanced crosslinking between polysaccharide based and protein-based biopolymers. The film with 0.2 % (w/v) DCMC exhibited the highest tensile strength (3.36 MPa) and lowest (w/v) DCMC. Fourier-transform infrared spectroscopy (FTIR) confirmed the formation of Schiff's base between DCMC and the biopolymers, contributing to the improved mechanical properties. Thermogravimetric analysis (TGA) demonstrated enhanced thermal stability with higher DCMC content. The study concludes that DCMC is an effective crosslinking agent for enhancing the properties of RS/CH/SC biopolymer films, making them suitable for sustainable food packaging applications.
Collapse
Affiliation(s)
- Kamonwan Tachai
- Division of Packaging Technology, School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| | - Aree Deenu
- Division of Food Science and Technology, School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| | - Sawitree Pisutpiched
- Department of Forest Products, Faculty of Forestry, Kasetsart University, Bangkok, Thailand
| | - Suthaphat Kamthai
- Division of Packaging Technology, School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand; Lanna Rice Research Center, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
3
|
Kamthai S, Wiriyacharee P, Naruenartwongsakul S, Khaw-on P, Deenu A, Chaipoot S, Phongphisutthinant R, Tachai K, Orpool S. Influence of Honey Bee Brood Protein on the Hydrophilic, Mechanical, and Thermal Properties of Polysaccharide Gel Films. Gels 2025; 11:236. [PMID: 40277672 PMCID: PMC12026552 DOI: 10.3390/gels11040236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 04/26/2025] Open
Abstract
Growing concerns over the environmental impact of plastic packaging have driven interest in sustainable alternatives, particularly biopolymer-based films. This study developed ternary-blended polysaccharide gel films composed of carboxymethyl starch (CMS), chitosan (CS), and pectin (PT), with dialdehyde carboxymethyl cellulose (DCMC) as a crosslinker, and investigated the effects of honey bee brood protein (BBP) (0-0.4% w/v) on their mechanical, barrier, and thermal properties. A completely randomized design (CRD) was employed to evaluate the impact of BBP concentration on film characteristics. Results demonstrated that adding 0.4% BBP enhanced water vapor barrier properties and thermal stability while reducing hydrophilicity. The optimal formulation was observed at 0.1% BBP, providing the highest tensile strength (7.73 MPa), elongation at break (32.23%), and water-absorption capacity (369.01%). The improvements in thermal stability and hydrophilicity were attributed to BBP's hydrophobic amino acids, which interacted with DCMC to form a denser polymer network, enhancing structural integrity and moisture resistance. Additionally, BBP incorporation contributed to the biodegradability of polysaccharide gel films, improving their environmental sustainability compared to conventional biopolymers. The findings suggest that BBP can serve as a functional additive in polysaccharide-based films, balancing performance and eco-friendliness for applications in biodegradable food and medical packaging.
Collapse
Affiliation(s)
- Suthaphat Kamthai
- Division of Packaging Technology, School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
- Lanna Rice Research Center, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Pairote Wiriyacharee
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; (S.C.); (R.P.)
- Processing and Product Development Factory, The Royal Project Foundation, Chiang Mai 50100, Thailand
| | - Srisuwan Naruenartwongsakul
- Division of Food Engineering, School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Patompong Khaw-on
- School of Nursing, Faculty of Nursing, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Aree Deenu
- Division of Food Science and Technology, School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (A.D.); (S.O.)
| | - Supakit Chaipoot
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; (S.C.); (R.P.)
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Rewat Phongphisutthinant
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; (S.C.); (R.P.)
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kamonwan Tachai
- Division of Packaging Technology, School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Sawichaya Orpool
- Division of Food Science and Technology, School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (A.D.); (S.O.)
| |
Collapse
|
4
|
Maghsoudi MAF, Asbagh RA, Tafti SMA, Aghdam RM, Najjari A, Pirayvatlou PS, Foroutani L, Fazeli AR. Alginate-gelatin composite hydrogels loading zeolitic imidazolate framework-8 (ZIF-8) nanoparticles on gauze for burn wound healing: In vitro and in vivo studies. Int J Biol Macromol 2025; 295:139348. [PMID: 39743056 DOI: 10.1016/j.ijbiomac.2024.139348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/18/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
This study addresses the limitations of traditional antibiotic treatments for burn wound dressings, which often lead to microbial resistance. It explores the development of innovative burn wound dressings by incorporating Zeolitic Imidazolate Framework-8 (ZIF-8) into alginate-gelatin (Al-Gl) hydrogels on gauze. Al-Gl patches with 0 %, 1 %, and 4 % ZIF-8 were fabricated and characterized using XRD, FTIR, FESEM, and EDX. Swelling, degradation, antibacterial activity, and biocompatibility were also evaluated, alongside in vivo wound healing using a Wistar rat model. FESEM confirmed ZIF-8 nanoparticles with hexagonal morphology (170-220 nm). The swelling ratio decreased from 600 % (Al-Gl 0 %) to 130 % (Al-Gl 4 %) over 10 h, and degradation rates increased from 50 % to over 70 %. Al-Gl 4 % patches demonstrated 99 % antibacterial efficacy against E. coli and S. aureus, compared to <5 % in Al-Gl 0 %. Biocompatibility was confirmed with over 90 % cell viability in MTT assays. In vivo studies showed Al-Gl 4 % achieved 89.40 % ± 3.21 % wound closure, significantly outperforming controls. Histological analyses confirmed enhanced tissue regeneration. These findings demonstrate that ZIF-8 significantly boosts antibacterial properties and wound healing, positioning ZIF-8 hydrogels as promising candidates for advanced burn wound care.
Collapse
Affiliation(s)
| | - Reza Akbari Asbagh
- Colorectal Research Center, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran; Department of Cardiovascular Surgery, Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohsen Ahmadi Tafti
- Colorectal Research Center, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran; Division of Colorectal Surgery, Department of Surgery, Tehran University of medical sciences, Tehran, Iran.
| | | | - Aryan Najjari
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States of America
| | | | - Laleh Foroutani
- Department of Surgery, University of California, San Francisco, United States of America
| | - Amir Reza Fazeli
- Division of Colorectal Surgery, Department of Surgery, Tehran University of medical sciences, Tehran, Iran
| |
Collapse
|
5
|
Halder T, Barot H, Kumar B, Kaushik V, Patel H, Bhut H, Saha B, Poddar S, Acharya N. An Insight into Biodegradable Polymers and their Biomedical Applications for Wound Healing. Curr Pharm Des 2024; 30:2425-2444. [PMID: 38982925 DOI: 10.2174/0113816128295935240425101509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/31/2024] [Indexed: 07/11/2024]
Abstract
Biodegradable polymers, encompassing both natural and synthetic polymers, have demonstrated efficacy as carriers for synthetic drugs, natural bioactive molecules, and inorganic metals. This is due to their ability to control the release of these substances. As a result, various advanced materials, such as nanoparticle- loaded hydrogels, nanofibrous scaffolds, and nanocomposites, have been developed. These materials have shown promise in enhancing processes, such as cell proliferation, vascular angiogenesis, hair growth, and wound healing management. Natural polymers, including hyaluronic acid, collagen, chitosan, gelatin, and alginate, as well as synthetic polymers like polylactic acid, polyglycolic acid, polylactic co-glycolic acid, and PCA, have significant potential for promoting wound healing. This study examines the advancements in biodegradable polymers for wound healing, specifically focusing on each polymer and its distinctive formulations. It also discusses the in vitro experiments conducted using different cell lines, as well as the in vivo studies that explore the numerous uses of these polymers in wound healing. The discussion also included the exploration of modifications or combinations of several polymers, as well as surface changes, in order to produce synergistic effects and address the limitations of individual polymers. The goal was to expedite the healing process of different chronic wounds. Due to this, there have been notable advancements in the technological use of polymeric mixes, including biodegradable polymer-based scaffolds, which have accelerated the process of wound healing.
Collapse
Affiliation(s)
- Tripti Halder
- Faculty of Pharmacy, DIT University, Dehradun, Uttarakhand, 248009, India
- Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
| | - Harshit Barot
- Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
| | - Bhavna Kumar
- Faculty of Pharmacy, DIT University, Dehradun, Uttarakhand, 248009, India
| | - Vishakha Kaushik
- Department of Physics, School of Physical Sciences, DIT University, Dehradun, Uttarakhand, 248009, India
| | - Hiren Patel
- Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
| | - Hastik Bhut
- Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
| | - Bijit Saha
- Jodas Expoim Pvt Ltd, Kukatpally, Telangana, Hyderabad 500072, India
| | - Sibani Poddar
- Faculty of Pharmacy, DIT University, Dehradun, Uttarakhand, 248009, India
| | - Niyati Acharya
- Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
| |
Collapse
|
6
|
Lúcio M, Giannino N, Barreira S, Catita J, Gonçalves H, Ribeiro A, Fernandes E, Carvalho I, Pinho H, Cerqueira F, Biondi M, Lopes CM. Nanostructured Lipid Carriers Enriched Hydrogels for Skin Topical Administration of Quercetin and Omega-3 Fatty Acid. Pharmaceutics 2023; 15:2078. [PMID: 37631292 PMCID: PMC10459668 DOI: 10.3390/pharmaceutics15082078] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Chronic skin exposure to external hostile agents (e.g., UV radiation, microorganisms, and oxidizing chemicals) may increase oxidative stress, causing skin damage and aging. Because of their well-known skincare and protective benefits, quercetin (Q) and omega-3 fatty acids (ω3) have attracted the attention of the dermocosmetic and pharmaceutical sectors. However, both bioactives have inherent properties that limit their efficient skin delivery. Therefore, nanostructured lipid carriers (NLCs) and enriched PFC® hydrogels (HGs) have been developed as a dual-approach vehicle for Q and/or ω3 skin topical administration to improve bioactives' stability and skin permeation. Two NLC formulations were prepared with the same lipid composition but differing in surfactant composition (NLC1-soy lecithin and poloxamer 407; NLC2-Tween® 80 and dioctyl sodium sulfosuccinate (DOSS)), which have an impact on physicochemical properties and pharmaceutical and therapeutic performance. Despite both NLCs presenting high Q loading capacity, NLC2's physicochemical properties make them more suitable for topical skin administration and ensure longer colloidal stability. Additionally, NLC2 demonstrated a more sustained Q release, indicating higher bioactive storage while improving permeability. The occlusive effect of NLCs-enriched HGs also has a positive impact on skin permeability. Q-loaded NLC2, with or without ω3, -enriched HGs demonstrated efficacy as antioxidant and photoprotective formulations as well as effective reduction in S. aureus growth, indicating that they constitute a promising approach for topical skin administration to prevent skin aging and other damaging cutaneous processes.
Collapse
Affiliation(s)
- Marlene Lúcio
- CF-UM-UP, Centro de Física das Universidades do Minho e Porto, Departamento de Física, Universidade do Minho, 4710-057 Braga, Portugal;
- CBMA, Centro de Biologia Molecular e Ambiental, Departamento de Biologia, Universidade do Minho, 4710-057 Braga, Portugal
| | - Nicole Giannino
- Instituto de Investigação, Inovação e Desenvolvimento (FP-I3ID), Biomedical and Health Sciences Research Unit (FP-BHS), Faculdade Ciências da Saúde, Universidade Fernando Pessoa, 4200-150 Porto, Portugal; (N.G.); (S.B.); (J.C.); (H.P.); (F.C.)
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy;
| | - Sérgio Barreira
- Instituto de Investigação, Inovação e Desenvolvimento (FP-I3ID), Biomedical and Health Sciences Research Unit (FP-BHS), Faculdade Ciências da Saúde, Universidade Fernando Pessoa, 4200-150 Porto, Portugal; (N.G.); (S.B.); (J.C.); (H.P.); (F.C.)
| | - José Catita
- Instituto de Investigação, Inovação e Desenvolvimento (FP-I3ID), Biomedical and Health Sciences Research Unit (FP-BHS), Faculdade Ciências da Saúde, Universidade Fernando Pessoa, 4200-150 Porto, Portugal; (N.G.); (S.B.); (J.C.); (H.P.); (F.C.)
- Paralab, SA, 4420-392 Valbom, Portugal;
| | | | - Artur Ribeiro
- CEB, Centro de Engenharia Biológica, Universidade do Minho, 4710-057 Braga, Portugal; (A.R.); (I.C.)
- LABBELS, Associate Laboratory, Braga/Guimarães, Portugal
| | - Eduarda Fernandes
- CF-UM-UP, Centro de Física das Universidades do Minho e Porto, Departamento de Física, Universidade do Minho, 4710-057 Braga, Portugal;
| | - Isabel Carvalho
- CEB, Centro de Engenharia Biológica, Universidade do Minho, 4710-057 Braga, Portugal; (A.R.); (I.C.)
- LABBELS, Associate Laboratory, Braga/Guimarães, Portugal
- LIBRO—Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Hugo Pinho
- Instituto de Investigação, Inovação e Desenvolvimento (FP-I3ID), Biomedical and Health Sciences Research Unit (FP-BHS), Faculdade Ciências da Saúde, Universidade Fernando Pessoa, 4200-150 Porto, Portugal; (N.G.); (S.B.); (J.C.); (H.P.); (F.C.)
| | - Fátima Cerqueira
- Instituto de Investigação, Inovação e Desenvolvimento (FP-I3ID), Biomedical and Health Sciences Research Unit (FP-BHS), Faculdade Ciências da Saúde, Universidade Fernando Pessoa, 4200-150 Porto, Portugal; (N.G.); (S.B.); (J.C.); (H.P.); (F.C.)
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
| | - Marco Biondi
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy;
| | - Carla M. Lopes
- Instituto de Investigação, Inovação e Desenvolvimento (FP-I3ID), Biomedical and Health Sciences Research Unit (FP-BHS), Faculdade Ciências da Saúde, Universidade Fernando Pessoa, 4200-150 Porto, Portugal; (N.G.); (S.B.); (J.C.); (H.P.); (F.C.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
7
|
Garcia-Orue I, Santos-Vizcaino E, Uranga J, de la Caba K, Guerrero P, Igartua M, Hernandez RM. Agar/gelatin hydro-film containing EGF and Aloe vera for effective wound healing. J Mater Chem B 2023; 11:6896-6910. [PMID: 37377169 DOI: 10.1039/d2tb02796h] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
In the current study, we produced a hydro-film dressing for the treatment of chronic wounds. The hydro-film structure was composed of gelatin cross-linked with citric acid, agar and Aloe vera extract (AV); additionally epidermal growth factor (EGF) was loaded to promote wound healing. Due to the excellent hydrogel-forming ability of gelatin, the obtained hydro-film was able to swell 884 ± 36% of its dry weight, which could help controlling wound moisture. To improve gelatin mechanical properties, polymer chains were cross-linked with citric acid and agar, reaching an ultimate tensile strength that was in the highest range of human skin. In addition, it showed a slow degradation profile that resulted in a remaining weight of 28 ± 8% at day 28. Regarding, biological activity, the addition of AV and citric acid provided the ability to reduce human macrophage activation, which could help reverse the permanent inflammatory state of chronic wounds. Moreover, loaded EGF, together with the structural AV of the hydro-film, promoted human keratinocyte and fibroblast migration, respectively. Furthermore, the hydro-films presented excellent fibroblast adhesiveness, so they could be useful as provisional matrices for cell migration. Accordingly, these hydro-films showed suitable physicochemical characteristics and biological activity for chronic wound healing applications.
Collapse
Affiliation(s)
- Itxaso Garcia-Orue
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Vitoria-Gasteiz, Spain.
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Institute of Health Carlos III, Madrid, Spain
- Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Edorta Santos-Vizcaino
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Vitoria-Gasteiz, Spain.
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Institute of Health Carlos III, Madrid, Spain
- Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Jone Uranga
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain.
| | - Koro de la Caba
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain.
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940, Leioa, Spain
| | - Pedro Guerrero
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain.
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940, Leioa, Spain
- Proteinmat materials SL, Avenida de Tolosa 72, 20018 Donostia-San Sebastian, Spain
| | - Manoli Igartua
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Vitoria-Gasteiz, Spain.
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Institute of Health Carlos III, Madrid, Spain
- Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Rosa Maria Hernandez
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Vitoria-Gasteiz, Spain.
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Institute of Health Carlos III, Madrid, Spain
- Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| |
Collapse
|
8
|
Singh PN, Byram PK, Das L, Chakravorty N. Natural Polymer-Based Thin Film Strategies for Skin Regeneration in Lieu of Regenerative Dentistry. Tissue Eng Part C Methods 2023; 29:242-256. [PMID: 37171125 DOI: 10.1089/ten.tec.2023.0070] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023] Open
Abstract
Wound healing (WH) is a complex and dynamic process that comprises of a series of molecular and cellular events that occur after tissue injury. The injuries of the maxillofacial and oral region caused by trauma or surgery result in undesirable WH such as delayed wound closure and formation of scar tissue. Skin tissue engineering (TE)/regeneration is an emerging approach toward faster, superior, and more effective resolution of clinically significant wounds effectively. A multitude of TE principles approaches are being put to action for the fabrication of hydrogels, electrospun sheets, 3D scaffolds, and thin films that can be used as wound dressings materials, sutures, or skin substitutes. Thin films are advantageous over other materials owing to their flexibility, ability to provide a barrier against external contamination, easy gaseous exchange, and easy monitoring of wounds. This review focuses on wound-dressing films and their significance and discusses various fabrication techniques. In addition, we explore various natural biopolymers that can be used for fabrication of skin TE materials. Impact Statement In this review article, critical evaluations of natural polymers used in skin regeneration were discussed. Further, the fabrication technology of the 2D and 3D material in wound healing were discussed.
Collapse
Affiliation(s)
| | | | - Lopamudra Das
- School of Medical Science and Technology, IIT Kharagpur, Kharagpur, India
| | | |
Collapse
|
9
|
Abstract
For each kilogram of food protein wasted, between 15 and 750 kg of CO2 end up in the atmosphere. With this alarming carbon footprint, food protein waste not only contributes to climate change but also significantly impacts other environmental boundaries, such as nitrogen and phosphorus cycles, global freshwater use, change in land composition, chemical pollution, and biodiversity loss. This contrasts sharply with both the high nutritional value of proteins, as well as their unique chemical and physical versatility, which enable their use in new materials and innovative technologies. In this review, we discuss how food protein waste can be efficiently valorized not only by reintroduction into the food chain supply but also as a template for the development of sustainable technologies by allowing it to exit the food-value chain, thus alleviating some of the most urgent global challenges. We showcase three technologies of immediate significance and environmental impact: biodegradable plastics, water purification, and renewable energy. We discuss, by carefully reviewing the current state of the art, how proteins extracted from food waste can be valorized into key players to facilitate these technologies. We furthermore support analysis of the extant literature by original life cycle assessment (LCA) examples run ad hoc on both plant and animal waste proteins in the context of the technologies considered, and against realistic benchmarks, to quantitatively demonstrate their efficacy and potential. We finally conclude the review with an outlook on how such a comprehensive management of food protein waste is anticipated to transform its carbon footprint from positive to negative and, more generally, have a favorable impact on several other important planetary boundaries.
Collapse
Affiliation(s)
- Mohammad Peydayesh
- ETH
Zurich, Department of Health
Sciences and Technology, 8092 Zurich, Switzerland
| | - Massimo Bagnani
- ETH
Zurich, Department of Health
Sciences and Technology, 8092 Zurich, Switzerland
| | - Wei Long Soon
- ETH
Zurich, Department of Health
Sciences and Technology, 8092 Zurich, Switzerland
- Center
for Sustainable Materials (SusMat), School of Materials Science and
Engineering, Nanyang Technological University, 639798 Singapore
| | - Raffaele Mezzenga
- ETH
Zurich, Department of Health
Sciences and Technology, 8092 Zurich, Switzerland
- Department
of Materials, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
10
|
Etxabide A, Akbarinejad A, Chan EW, Guerrero P, de la Caba K, Travas-Sejdic J, Kilmartin PA. Effect of gelatin concentration, ribose and glycerol additions on the electrospinning process and physicochemical properties of gelatin nanofibers. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Piola B, Sabbatini M, Gino S, Invernizzi M, Renò F. 3D Bioprinting of Gelatin-Xanthan Gum Composite Hydrogels for Growth of Human Skin Cells. Int J Mol Sci 2022; 23:539. [PMID: 35008965 PMCID: PMC8745252 DOI: 10.3390/ijms23010539] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/22/2021] [Accepted: 12/30/2021] [Indexed: 12/20/2022] Open
Abstract
In recent years, bioprinting has attracted much attention as a potential tool for generating complex 3D biological constructs capable of mimicking the native tissue microenvironment and promoting physiologically relevant cell-cell and cell-matrix interactions. The aim of the present study was to develop a crosslinked 3D printable hydrogel based on biocompatible natural polymers, gelatin and xanthan gum at different percentages to be used both as a scaffold for cell growth and as a wound dressing. The CellInk Inkredible 3D printer was used for the 3D printing of hydrogels, and a glutaraldehyde solution was tested for the crosslinking process. We were able to obtain two kinds of printable hydrogels with different porosity, swelling and degradation time. Subsequently, the printed hydrogels were characterized from the point of view of biocompatibility. Our results showed that gelatin/xanthan-gum bioprinted hydrogels were biocompatible materials, as they allowed both human keratinocyte and fibroblast in vitro growth for 14 days. These two bioprintable hydrogels could be also used as a helpful dressing material.
Collapse
Affiliation(s)
- Beatrice Piola
- Innovative Research Laboratory for Wound Healing, Health Sciences Department, Medical School, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy; (B.P.); (S.G.)
| | - Maurizio Sabbatini
- Department of Sciences and Technological Innovation, Università del Piemonte Orientale, Via T. Michel 11, 15121 Alessandria, Italy;
| | - Sarah Gino
- Innovative Research Laboratory for Wound Healing, Health Sciences Department, Medical School, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy; (B.P.); (S.G.)
| | - Marco Invernizzi
- Health Science Department, Physical Medicine and Rehabilitation Division, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy;
- Department of Integrated Research and Innovation, Translational Medicine Unit (DAIRI), Hospital “S.S. Antonio e Biagio e Cesare Arrigo”, 15121 Alessandria, Italy
| | - Filippo Renò
- Innovative Research Laboratory for Wound Healing, Health Sciences Department, Medical School, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy; (B.P.); (S.G.)
| |
Collapse
|
12
|
Kang JH, Turabee MH, Lee DS, Kwon YJ, Ko YT. Temperature and pH-responsive in situ hydrogels of gelatin derivatives to prevent the reoccurrence of brain tumor. Biomed Pharmacother 2021; 143:112144. [PMID: 34509823 DOI: 10.1016/j.biopha.2021.112144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a grade IV malignant brain tumor with a median survival time of approximately 12-16 months. Because of its highly aggressive and heterogeneous nature it is very difficult to remove by surgical resection. Herein we have reported dual stimuli-responsive and biodegradable in situ hydrogels of oligosulfamethazine-grafted gelatin and loaded with anticancer drug paclitaxel (PTX) for preventing the progress of Glioblastoma. The oligosulfamethazine (OSM) introduced to the gelatin backbone for the formation of definite and stable in situ hydrogel. The hydrogels transformed from a sol to a gel state upon changes in stimuli. pH and temperature and retained a distinct shape after subcutaneous administration in BALB/c mice. The viscosity of the sol state hydrogels was tuned by varying the feed molar ratio between gelatin and OSM. The porosity of the hydrogels was confirmed to be lower in higher degree OSM by SEM. Sustained release of PTX from hydrogels in physiological environments (pH 7.4) was further retarded up to 63% in 9th days in tumor environments (pH 6.5). While the empty hydrogels were non-toxic in cultured cells, the hydrogels loaded with PTX showed antitumor efficacy in orthotopic-GBM xenograft mice. Collectively, the gelatin-OSM formed porous hydrogels and released the cargo in a sustained manner in tumor environments efficiently suppressing the progress of GBM. Thus, gelatin-OSM hydrogels are a potential candidate for the direct delivery of therapeutics to the local areas in brain diseases.
Collapse
Affiliation(s)
- Ji Hee Kang
- College of Pharmacy, Gachon Institute of Pharmaceutical Science, Gachon University, 21936 Incheon, South Korea
| | - Md Hasan Turabee
- College of Pharmacy, Gachon Institute of Pharmaceutical Science, Gachon University, 21936 Incheon, South Korea
| | - Doo Sung Lee
- School of Chemical Engineering, Theranostic Macromolecules Research Center, Sungkyunkwan University, 16419 Suwon, South Korea
| | - Young Jik Kwon
- Department of Chemical Engineering and Materials Science, University of California, 92697 Irvine, CA, United States; Department of Molecular Biology and Biochemistry, University of California, 92697 Irvine, CA, United States; Department of Pharmaceutical Sciences, University of California, 92697 Irvine, CA, United States; Department of Biomedical Engineering, University of California, 92697 Irvine, CA, United States
| | - Young Tag Ko
- College of Pharmacy, Gachon Institute of Pharmaceutical Science, Gachon University, 21936 Incheon, South Korea.
| |
Collapse
|
13
|
Omega-3- and Resveratrol-Loaded Lipid Nanosystems for Potential Use as Topical Formulations in Autoimmune, Inflammatory, and Cancerous Skin Diseases. Pharmaceutics 2021; 13:pharmaceutics13081202. [PMID: 34452163 PMCID: PMC8401194 DOI: 10.3390/pharmaceutics13081202] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/19/2021] [Accepted: 07/30/2021] [Indexed: 01/09/2023] Open
Abstract
Resveratrol (RSV) and omega 3 (ω3), because of their biological favorable properties, have become subjects of interest for researchers in dermocosmetic and pharmaceutical industries; however, these bioactives present technological limitations that hinder their effective delivery to the target skin layer. To overcome the stability and skin permeation limitations of free bioactives, this work proposes a combined strategy involving two different lipid nanosystems (liposomes and lipid nanoparticles) that include ω3 in their lipid matrix. Additionaly, RSV is only encapsulated in liposomes that provid an adequate amphiphilic environment. Each formulation is thoroughly characterized regarding their physical–chemical properties. Subsequently, the therapeutic performance of the lipid nanosystems is evaluated based on their protective roles against lipid peroxidation, as well as inhibition of cicloxygenase (COX) and nitric oxid (NO) production in the RWA264.7 cell line. Finally, the lipid nanosystems are incorporated in hydrogel to allow their topical administration, then rheology, occlusion, and RSV release–diffusion assays are performed. Lipid nanoparticles provide occlusive effects at the skin surface. Liposomes provide sustained RSV release and their flexibility conferred by edge activator components enhances RSV diffusion, which is required to reach NO production cells and COX cell membrane enzymes. Overall, the inclusion of both lipid nanosystems in the same semisolid base constitutes a promising strategy for autoimmune, inflammatory, and cancerous skin diseases.
Collapse
|
14
|
Hasan N, Cao J, Lee J, Kim H, Yoo JW. Development of clindamycin-loaded alginate/pectin/hyaluronic acid composite hydrogel film for the treatment of MRSA-infected wounds. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-021-00541-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Sánchez-Cid P, Jiménez‑Rosado M, Perez-Puyana V, Guerrero A, Romero A. Rheological and Microstructural Evaluation of Collagen-Based Scaffolds Crosslinked with Fructose. Polymers (Basel) 2021; 13:632. [PMID: 33672532 PMCID: PMC7923766 DOI: 10.3390/polym13040632] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/09/2021] [Accepted: 02/17/2021] [Indexed: 01/08/2023] Open
Abstract
In recent years, tissue engineering research has led to the development of this field by designing scaffolds with better properties that can fulfill its purpose of better and faster tissue regeneration, consequently improving people's quality of life. Scaffolds are matrices, predominantly composed of polymeric materials, whose main function is to offer support for cell adhesion and subsequent growth, leading to the regeneration of the damaged tissue. The widely used biopolymer in tissue engineering is collagen, which is the most abundant protein in animals. Its use is due to its structure, biocompatibility, ease of modification, and processability. In this work, collagen-based scaffolds were developed with different concentrations and processing techniques, by obtaining hydrogels and aerogels that were characterized with an emphasis on their morphology and mechanical properties. Moreover, fructose was added in some cases as a chemical crosslinking agent to study its influence on the scaffolds' properties. The obtained results revealed that the scaffolds with higher collagen concentrations were more rigid and deformable. Comparing both systems, the aerogels were more rigid, although the hydrogels were more deformable and had higher pore size homogeneity. Fructose addition produced a slight increase in the critical strain, together with an increase in the elastic modulus.
Collapse
Affiliation(s)
- Pablo Sánchez-Cid
- Department of Chemical Engineering, Facultad de Química, 41012 Sevilla, Spain; (P.S.-C.); (A.R.)
| | - Mercedes Jiménez‑Rosado
- Department of Chemical Engineering, Escuela Politécnica Superior, 41011 Sevilla, Spain; (M.J.-R.); (A.G.)
| | - Victor Perez-Puyana
- Department of Chemical Engineering, Facultad de Química, 41012 Sevilla, Spain; (P.S.-C.); (A.R.)
| | - Antonio Guerrero
- Department of Chemical Engineering, Escuela Politécnica Superior, 41011 Sevilla, Spain; (M.J.-R.); (A.G.)
| | - Alberto Romero
- Department of Chemical Engineering, Facultad de Química, 41012 Sevilla, Spain; (P.S.-C.); (A.R.)
| |
Collapse
|
16
|
Kwak HW, Park J, Yun H, Jeon K, Kang DW. Effect of crosslinkable sugar molecules on the physico-chemical and antioxidant properties of fish gelatin nanofibers. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106259] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Guerrero P, Garrido T, Garcia-Orue I, Santos-Vizcaino E, Igartua M, Hernandez RM, de la Caba K. Characterization of Bio-Inspired Electro-Conductive Soy Protein Films. Polymers (Basel) 2021; 13:polym13030416. [PMID: 33525478 PMCID: PMC7866128 DOI: 10.3390/polym13030416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 12/26/2022] Open
Abstract
Protein-based conductive materials are gaining attention as alternative components of electronic devices for value-added applications. In this regard, soy protein isolate (SPI) was processed by extrusion in order to obtain SPI pellets, subsequently molded into SPI films by hot pressing, resulting in homogeneous and transparent films, as shown by scanning electron microscopy and UV-vis spectroscopy analyses, respectively. During processing, SPI denatured and refolded through intermolecular interactions with glycerol, causing a major exposition of tryptophan residues and fluorescence emission, affecting charge distribution and electron transport properties. Regarding electrical conductivity, the value found (9.889 × 10−4 S/m) is characteristic of electrical semiconductors, such as silicon, and higher than that found for other natural polymers. Additionally, the behavior of the films in contact with water was analyzed, indicating a controlled swelling and a hydrolytic surface, which is of great relevance for cell adhesion and spreading. In fact, cytotoxicity studies showed that the developed SPI films were biocompatible, according to the guidelines for the biological evaluation of medical devices. Therefore, these SPI films are uniquely suited as bioelectronics because they conduct both ionic and electronic currents, which is not accessible for the traditional metallic conductors.
Collapse
Affiliation(s)
- Pedro Guerrero
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain;
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
- Correspondence: (P.G.); (K.d.l.C.); Tel.: +34-943-018-535 (P.G.); +34-943-017-188 (K.d.l.C.)
| | - Tania Garrido
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain;
| | - Itxaso Garcia-Orue
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (I.G.-O.); (E.S.-V.); (M.I.); (R.M.H.)
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
| | - Edorta Santos-Vizcaino
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (I.G.-O.); (E.S.-V.); (M.I.); (R.M.H.)
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
| | - Manoli Igartua
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (I.G.-O.); (E.S.-V.); (M.I.); (R.M.H.)
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
| | - Rosa Maria Hernandez
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (I.G.-O.); (E.S.-V.); (M.I.); (R.M.H.)
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
| | - Koro de la Caba
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain;
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
- Correspondence: (P.G.); (K.d.l.C.); Tel.: +34-943-018-535 (P.G.); +34-943-017-188 (K.d.l.C.)
| |
Collapse
|
18
|
Catanzano O, Quaglia F, Boateng JS. Wound dressings as growth factor delivery platforms for chronic wound healing. Expert Opin Drug Deliv 2021; 18:737-759. [PMID: 33338386 DOI: 10.1080/17425247.2021.1867096] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Years of tissue engineering research have clearly demonstrated the potential of integrating growth factors (GFs) into scaffolds for tissue regeneration, a concept that has recently been applied to wound dressings. The old concept of wound dressings that only take a passive role in wound healing has now been overtaken, and advanced dressings which can take an active part in wound healing, are of current research interest.Areas covered: In this review we will focus on the recent strategies for the delivery of GFs to wound sites with an emphasis on the different approaches used to achieve fine tuning of spatial and temporal concentrations to achieve therapeutic efficacy.Expert opinion: The use of GFs to accelerate wound healing and reduce scar formation is now considered a feasible therapeutic approach in patients with a high risk of infections and complications. The integration of micro - and nanotechnologies into wound dressings could be the key to overcome the inherent instability of GFs and offer adequate control over the release rate. Many investigations have led to encouraging outcomes in various in vitro and in vivo wound models, and it is expected that some of these technologies will satisfy clinical needs and will enter commercialization.
Collapse
Affiliation(s)
- Ovidio Catanzano
- Institute for Polymers Composites and Biomaterials (IPCB) - CNR, Pozzuoli, Italy
| | - Fabiana Quaglia
- Drug Delivery Laboratory, Department of Pharmacy, University of Napoli Federico II, Naples, Italy
| | - Joshua S Boateng
- School of Science, Faculty of Engineering and Science, University of Greenwich, Medway, Central Avenue, Chatham Maritime, Kent, UK
| |
Collapse
|
19
|
Liu B, Huang W, Yang G, An Y, Yin Y, Wang N, Jiang B. Preparation of gelatin/poly (γ-glutamic acid) hydrogels with stimulated response by hot-pressing preassembly and radiation crosslinking. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111259. [DOI: 10.1016/j.msec.2020.111259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 01/03/2023]
|
20
|
Selvarajah J, Mh Busra MF, Bin Saim A, Bt Hj Idrus R, Lokanathan Y. Development and physicochemical analysis of genipin-crosslinked gelatine sponge as a potential resorbable nasal pack. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:1722-1740. [PMID: 32458725 DOI: 10.1080/09205063.2020.1774841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Nasal injury following nasal surgery is an adverse consequence, and prompt treatment should be initiated. Nasal packing, either non-absorbable or absorbable, are commonly used after nasal surgery to prevent bleeding and promote wound healing. In the current study, a novel gelatine sponge crosslinked with genipin was evaluated for suitability to be used as nasal packing and compared to one of the frequently used commercial nasal packing made up of polyurethane. Gelatine at 7% and 10% (w/v) concentration were crosslinked with varying concentrations of genipin, 0.5%, 0.25%, and 0.2% (v/v). The gelatine sponges were further characterised by its water uptake ability, biodegradation, water vapour transmission rate, porosity, contact angle, chemical composition, crosslinking degree, and mechanical properties. The gelatine sponges absorbed five times more water than their dry weight and were degraded within five days. The water vapour transmission rate of the gelatine sponges was 1187.7 ± 430.2 g/(m-2 day) for 7% gelatine and 779.4 ± 375.5 g/(m-2 day) for 10% gelatine. Crosslinking of gelatine with genipin resulted in lower porosity and did not affect the wettability of gelatine sponge (contact angle: 95.3 ± 12.1° for 7% gelatine and 88.4 ± 7.2° for 10% gelatine). In terms of biodegradability, the gelatine sponges took 24-48 h to degrade completely. Genipin crosslinking improved the degradation resistance and mechanical strength of gelatine sponge. The physical and chemical properties of the gelatine sponge, i.e. biodegradability and mechanical durability, support its potential as nasal packing.
Collapse
Affiliation(s)
- Jegadevswari Selvarajah
- Tissue Engineering Centre, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Mohd Fauzi Mh Busra
- Tissue Engineering Centre, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Aminuddin Bin Saim
- Ear, Nose & Throat Consultant Clinic, Ampang Puteri Specialist Hospital, Ampang, Selangor, Malaysia
| | - Ruszymah Bt Hj Idrus
- Tissue Engineering Centre, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia.,Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Yogeswaran Lokanathan
- Tissue Engineering Centre, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
21
|
Andonegi M, Heras KL, Santos-Vizcaíno E, Igartua M, Hernandez RM, de la Caba K, Guerrero P. Structure-properties relationship of chitosan/collagen films with potential for biomedical applications. Carbohydr Polym 2020; 237:116159. [PMID: 32241409 DOI: 10.1016/j.carbpol.2020.116159] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/09/2020] [Accepted: 03/09/2020] [Indexed: 01/22/2023]
Abstract
Chitosan/collagen films were developed and characterized in order to assess the suitability of these films for biomedical applications. Hence, physicochemical, thermal, barrier and mechanical properties were analyzed and related to the film structure, which showed the prevalence of the triple helix of native collagen after the addition of chitosan. Furthermore, collagen fiber diameter changed from 3.9 ± 0.6 μm, for collagen films without chitosan, to 1.8 ± 0.5 μm, for collagen films with low molecular weight chitosan. These results suggested interactions between collagen and chitosan molecules, as observed by Fourier transform infrared (FTIR) analysis. Regarding film barrier properties, chitosan/collagen films showed a water vapor transmission rate around 1174 g m-2 day-1, suitable for biomedical applications such as wound healing. Additionally, biological tests confirmed that the chitosan/collagen films developed are suitable for biomedical applications.
Collapse
Affiliation(s)
- Mireia Andonegi
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018, Donostia-San Sebastián, Spain
| | - Kevin Las Heras
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
| | - Edorta Santos-Vizcaíno
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Manoli Igartua
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Rosa Maria Hernandez
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Koro de la Caba
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018, Donostia-San Sebastián, Spain.
| | - Pedro Guerrero
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018, Donostia-San Sebastián, Spain.
| |
Collapse
|
22
|
Uranga J, Etxabide A, Cabezudo S, de la Caba K, Guerrero P. Valorization of marine-derived biowaste to develop chitin/fish gelatin products as bioactive carriers and moisture scavengers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 706:135747. [PMID: 31806316 DOI: 10.1016/j.scitotenv.2019.135747] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 11/23/2019] [Accepted: 11/23/2019] [Indexed: 06/10/2023]
Abstract
Marine-derived biowaste was valorized to develop chitin/fish gelatin porous materials with the aim of being used as moisture scavengers and bioactive carriers. Chitin was extracted from squid pens, abundant and available biowastes from fishery industry, through a sustainable process and the environmental assessment was carried out. Besides the valorization of biowaste, it is worth noting that the use of this specific biowaste allows the avoidance of discoloration and demineralization processes to extract chitin and, thus, a lower consumption of resources, both chemicals and energy, in comparison to the conventional chitin extraction from crustacean shells. Consequently, this alternative source of chitin brings economic and environmental benefits. In addition to the reduction of food waste disposal, the incorporation of squid pen-extracted chitin into fish gelatin formulations led to the conversion of a biowaste into a value-added product. In this regard, chitin was employed as a reinforcing agent in order to improve the mechanical behavior of fish gelatin materials. It is worth noting that good compatibility between gelatin and chitin was achieved since no chitin aggregation was observed. Furthermore, more defined pores were obtained after chitin addition. Additionally, tetrahydrocurcumin was incorporated into the formulation as a bioactive and its release was analyzed during three days. It was observed that samples prepared with chitin and THC showed potential as active porous materials for bioactive delivery.
Collapse
Affiliation(s)
- Jone Uranga
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Department of Chemical and Environmental Engineering, Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain
| | - Alaitz Etxabide
- ALITEC, Public University of Navarra, Department of Agronomy, Biotechnology and Food, Campus Arrosadia s/n, 31006 Pamplona, Spain
| | - Sara Cabezudo
- BIOMAT research group, University of the Basque Country (UPV/EHU), Department of Business Management, Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain
| | - Koro de la Caba
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Department of Chemical and Environmental Engineering, Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain
| | - Pedro Guerrero
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Department of Chemical and Environmental Engineering, Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain.
| |
Collapse
|
23
|
Santos GDSD, Santos NRRD, Pereira ICS, Andrade Júnior AJD, Lima EMB, Minguita AP, Rosado LHG, Moreira APD, Middea A, Prudencio ER, Luchese RH, Oliveira RN. Layered cryogels laden with Brazilian honey intended for wound care. POLIMEROS 2020. [DOI: 10.1590/0104-1428.06820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Costa T, Ribeiro A, Machado R, Ribeiro C, Lanceros-Mendez S, Cavaco-Paulo A, Almeida A, das Neves J, Lúcio M, Viseu T. Polymeric Electrospun Fibrous Dressings for Topical Co-delivery of Acyclovir and Omega-3 Fatty Acids. Front Bioeng Biotechnol 2019; 7:390. [PMID: 31850337 PMCID: PMC6901623 DOI: 10.3389/fbioe.2019.00390] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 11/19/2019] [Indexed: 12/31/2022] Open
Abstract
Herpetic infections caused by Herpes simplex virus (HSV) are among the most common human infections, affecting more than two quarters of the world's population. The standard treatment for orofacial herpes is the administration of antiviral drugs, mainly acyclovir (ACV). However, current products are mostly based on semisolid formulations that have limited ability to promote drug skin penetration and tend to leak from the application site, thus showing reduced ability to sustain local drug residence. This work reports on the production of poly (ε-caprolactone) (PCL) fibrous matrices with ACV and omega-3 fatty acids (ω3) for application as dressings to the topical treatment of orofacial herpes. PCL fibrous matrices with the co-incorporated bioactive compounds were obtained by electrospinning and characterized regarding their morphology, chemical, physical, and mechanical properties. The potential use of the developed polymeric fibrous matrices for topical applications was evaluated by: (i) the release kinetics of the bioactive compounds; (ii) the occlusive factor of the fibrous mat; (iii) ACV skin permeation capacity; and (iv) the cytotoxicity in a keratinocyte cell line. PCL fibrous matrices loaded with the bioactive compounds presented a smooth morphology and a good balance between flexibility and hardness essential to be durable for handling, while having a desirable texture to be used comfortably. The fibrous mat also provided a sustained release of ACV during 96 h and improved the skin permeability of this drug (Kp = 0.00928 ± 0.000867 cm/h) presenting also high porosity (74%) and a water vapor transmission rate (WVTR) of 881 ± 91 g/m2day, essential to maintain moist and oxygen for faster healing of herpes lesions. Furthermore, cytotoxicity studies suggest that the fibrous mat are safe for topical application. Overall, the PCL based electrospun fibrous matrices with ACV and ω3 hereby described have the potential to be used as therapeutic bandage systems for the treatment of orofacial herpes.
Collapse
Affiliation(s)
- Tiago Costa
- Centre of Physics of Universities of Minho and Porto (CF-UM-UP), University of Minho, Braga, Portugal
| | - Artur Ribeiro
- Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
| | - Raul Machado
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, Braga, Portugal.,Institute of Science and Innovation for Sustainability (IB-S), University of Minho, Braga, Portugal
| | - Clarisse Ribeiro
- Centre of Physics of Universities of Minho and Porto (CF-UM-UP), University of Minho, Braga, Portugal.,Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
| | - Senentxu Lanceros-Mendez
- Centre of Physics of Universities of Minho and Porto (CF-UM-UP), University of Minho, Braga, Portugal.,Basque Center for Materials, Applications and Nanostructures (BCMaterials), UPV/EHU Science Park, Leioa, Spain.,Basque Foundation for Science (Ikerbasque), Bilbao, Spain
| | - Artur Cavaco-Paulo
- Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
| | - Andreia Almeida
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Institute of Biomedical Engineering (INEB), University of Porto, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - José das Neves
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Institute of Biomedical Engineering (INEB), University of Porto, Porto, Portugal
| | - Marlene Lúcio
- Centre of Physics of Universities of Minho and Porto (CF-UM-UP), University of Minho, Braga, Portugal.,Centre of Molecular and Environmental Biology (CBMA), University of Minho, Braga, Portugal
| | - Teresa Viseu
- Centre of Physics of Universities of Minho and Porto (CF-UM-UP), University of Minho, Braga, Portugal
| |
Collapse
|
25
|
Kchaou H, Benbettaieb N, Jridi M, Nasri M, Debeaufort F. Influence of Maillard reaction and temperature on functional, structure and bioactive properties of fish gelatin films. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.105196] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
26
|
Stevenson M, Long J, Guerrero P, Caba KDL, Seyfoddin A, Etxabide A. Development and characterization of ribose-crosslinked gelatin products prepared by indirect 3D printing. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.05.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
27
|
Gaspar-Pintiliescu A, Stanciuc AM, Craciunescu O. Natural composite dressings based on collagen, gelatin and plant bioactive compounds for wound healing: A review. Int J Biol Macromol 2019; 138:854-865. [PMID: 31351963 DOI: 10.1016/j.ijbiomac.2019.07.155] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/24/2019] [Accepted: 07/24/2019] [Indexed: 12/15/2022]
Abstract
Skin wound dressings are commonly used to stimulate and enhance skin tissue repair. Even if wounds seem easy to repair for clinicians and to replicate in an in vitro set-up for scientists, chronic wounds remain currently an open challenge in skin tissue engineering for patients with complementary diseases. The seemingly simple process of skin healing hides a heterogenous sequence of events, specific timing, and high level of organization and coordination among the involved cell types. Taken together, all these aspects make wound healing a unique process, but we are not yet able to completely repair the chronic wounds or to reproduce them in vitro with high fidelity. This review highlights the main characteristics and properties of a natural polymer, which is widely used as biomaterial, namely collagen and of its denatured form, gelatin. Available wound dressings based on collagen/gelatin and proposed variants loaded with bioactive compounds derived from plants are presented. Applications of these composite biomaterials are discussed with emphasis on skin wound healing. A perspective on current issues is given in the light of future research. The emerging technologies support the development of innovative dressings based exclusively on natural constituents, either polymeric or bioactive compounds.
Collapse
Affiliation(s)
| | | | - Oana Craciunescu
- National Institute of R&D for Biological Sciences, Bucharest, Romania
| |
Collapse
|
28
|
Garcia-Orue I, Santos-Vizcaino E, Etxabide A, Uranga J, Bayat A, Guerrero P, Igartua M, de la Caba K, Hernandez RM. Development of Bioinspired Gelatin and Gelatin/Chitosan Bilayer Hydrofilms for Wound Healing. Pharmaceutics 2019; 11:E314. [PMID: 31277455 PMCID: PMC6680716 DOI: 10.3390/pharmaceutics11070314] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/17/2019] [Accepted: 07/01/2019] [Indexed: 12/22/2022] Open
Abstract
In the current study, we developed a novel gelatin-based bilayer wound dressing. We used different crosslinking agents to confer unique properties to each layer, obtaining a bioinspired multifunctional hydrofilm suitable for wound healing. First, we produced a resistant and non-degradable upper layer by lactose-mediated crosslinking of gelatin, which provided mechanical support and protection to overall design. For the lower layer, we crosslinked gelatin with citric acid, resulting in a porous matrix with a great swelling ability. In addition, we incorporated chitosan into the lower layer to harness its wound healing ability. FTIR and SEM analyses showed that lactose addition changed the secondary structure of gelatin, leading to a more compact and smoother structure than that obtained with citric acid. The hydrofilm was able to swell 384.2 ± 57.2% of its dry weight while maintaining mechanical integrity. Besides, its water vapour transmission rate was in the range of commercial dressings (1381.5 ± 108.6 g/m2·day). In vitro, cytotoxicity assays revealed excellent biocompatibility. Finally, the hydrofilm was analysed through an ex vivo wound healing assay in human skin. It achieved similar results to the control in terms of biocompatibility and wound healing, showing suitable characteristics to be used as a wound dressing.
Collapse
Affiliation(s)
- Itxaso Garcia-Orue
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
| | - Edorta Santos-Vizcaino
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
| | - Alaitz Etxabide
- BIOMAT Research Group, Chemical and Environmental Engineering Department, Engineering College of Gipuzkoa, University of the Basque Country (UPV/EHU), Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain
| | - Jone Uranga
- BIOMAT Research Group, Chemical and Environmental Engineering Department, Engineering College of Gipuzkoa, University of the Basque Country (UPV/EHU), Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain
| | - Ardeshir Bayat
- Plastic & Reconstructive Surgery Research, Division of Musculoskeletal & Dermatological Sciences, School of Biological Sciences, University of Manchester, M13 9PL Manchester, UK.
| | - Pedro Guerrero
- BIOMAT Research Group, Chemical and Environmental Engineering Department, Engineering College of Gipuzkoa, University of the Basque Country (UPV/EHU), Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain
| | - Manoli Igartua
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain
| | - Koro de la Caba
- BIOMAT Research Group, Chemical and Environmental Engineering Department, Engineering College of Gipuzkoa, University of the Basque Country (UPV/EHU), Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain
| | - Rosa Maria Hernandez
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain.
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain.
| |
Collapse
|
29
|
Cross-linking of dialdehyde carboxymethyl cellulose with silk sericin to reinforce sericin film for potential biomedical application. Carbohydr Polym 2019; 212:403-411. [DOI: 10.1016/j.carbpol.2019.02.069] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 02/17/2019] [Accepted: 02/17/2019] [Indexed: 01/03/2023]
|
30
|
Etxabide A, Long J, Guerrero P, de la Caba K, Seyfoddin A. 3D printed lactose-crosslinked gelatin scaffolds as a drug delivery system for dexamethasone. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.02.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
31
|
Extraction and incorporation of bioactives into protein formulations for food and biomedical applications. Int J Biol Macromol 2018; 120:2094-2105. [DOI: 10.1016/j.ijbiomac.2018.09.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 08/26/2018] [Accepted: 09/05/2018] [Indexed: 12/15/2022]
|
32
|
Kchaou H, Benbettaïeb N, Jridi M, Abdelhedi O, Karbowiak T, Brachais CH, Léonard ML, Debeaufort F, Nasri M. Enhancement of structural, functional and antioxidant properties of fish gelatin films using Maillard reactions. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.05.011] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Etxabide A, Ribeiro RDC, Guerrero P, Ferreira AM, Stafford GP, Dalgarno K, de la Caba K, Gentile P. Lactose-crosslinked fish gelatin-based porous scaffolds embedded with tetrahydrocurcumin for cartilage regeneration. Int J Biol Macromol 2018; 117:199-208. [PMID: 29800660 DOI: 10.1016/j.ijbiomac.2018.05.154] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 01/09/2023]
Abstract
Tetrahydrocurcumin (THC) is one of the major colourless metabolites of curcumin and shows even greater pharmacological and physiological benefits. The aim of this work was the manufacturing of porous scaffolds as a carrier of THC under physiological conditions. Fish-derived gelatin scaffolds were prepared by freeze-drying by two solutions concentrations (2.5% and 4% w/v), cross-linked via addition of lactose and heat-treated at 105 °C. This cross-linking reaction resulted in more water resistant scaffolds with a water uptake capacity higher than 800%. Along with the cross-linking reaction, the gelatin concentration affected the scaffold morphology, as observed by scanning electron microscopy images, by obtaining a reduced porosity but larger pores sizes when the initial gelatin concentration was increased. These morphological changes led to a scaffold's strength enhancement from 0.92 ± 0.22 MPa to 2.04 ± 0.18 MPa when gelatin concentration was increased. THC release slowed down when gelatin concentration increased from 2.5 to 4% w/v, showing a controlled profile within 96 h. Preliminary in vitro test with chondrocytes on scaffolds with 4% w/v gelatin offered higher metabolic activities and cell survival up to 14 days of incubation. Finally the addition of THC did not influence significantly the cytocompatibility and potential antibacterial properties were demonstrated successfully against Staphylococcus aureus.
Collapse
Affiliation(s)
- A Etxabide
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain
| | - R D C Ribeiro
- School of Engineering, Newcastle University, Claremont Road, Newcastle Upon Tyne NE1 7RU, United Kingdom
| | - P Guerrero
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain
| | - A M Ferreira
- School of Engineering, Newcastle University, Claremont Road, Newcastle Upon Tyne NE1 7RU, United Kingdom
| | - G P Stafford
- School of Clinical Dentistry, University of Sheffield, 19 Claremont Crescent, Sheffield S10 2TA, United Kingdom
| | - K Dalgarno
- School of Engineering, Newcastle University, Claremont Road, Newcastle Upon Tyne NE1 7RU, United Kingdom
| | - K de la Caba
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain
| | - P Gentile
- School of Engineering, Newcastle University, Claremont Road, Newcastle Upon Tyne NE1 7RU, United Kingdom.
| |
Collapse
|