1
|
Sharma A, Nagar A, Hawthorne S, Singh M. In-silico and In-vitro Evaluation of Novel Carboxamide Analogue on the Metastasis of Triple Negative Breast Cancer Cells Utilizing Novel PCPTC-loaded PEGylated-PLGA Nanocarriers. Appl Biochem Biotechnol 2025; 197:2216-2239. [PMID: 39714559 DOI: 10.1007/s12010-024-05135-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/19/2024] [Indexed: 12/24/2024]
Abstract
This study aimed to determine the effects of novel N-{3-[(pyridin-4-yl)carbamoyl] phenyl} thiophene-2-carboxamide or PCPTC chemical moiety loaded Poly(lactic-co-glycolic acid)-Poly (Ethylene glycol) or (PLGA-PEGylated) NP as an anti-metastatic Ran GTPase therapeutic agent on MDA-MB231 triple-negative human breast cancer cells. Molecular docking and MD simulation was done to determine the binding potential of novel carboxamide PCPTC with Ran GTPase. PLGA and PLGA-PEG based NP encapsulating PCPTC were fabricated using the Modified Double Emulsion Solvent Evaporation Technique and characterized for size, zeta potential, polydispersity and morphology. In vitro evaluation of loaded nanoparticles such as cellular localization study, cell proliferation, cell migration, cell invasion and Ran Pull Down assay were carried out on MDA-MB231 breast cancer cells. Ran downregulation was determined by pull down assay. PCPTC with Ran GTPase exhibited strong structural stability based on in silico analysis. The average sizes of PCPTC loaded NP ranged between 166.3 nm to 257.5 nm and were all negatively charged. Scanning electron microscopy data showed that loaded NP were smooth and spherical. Fluorescence microscopy data confirmed the intracellular localization of loaded nanoparticles inside the MDA-MB231 cells. Cell proliferation assay (MTT assay) confirmed the cytotoxic effect of the loaded-NP when compared to blank nanoparticles. PCPTC-loaded NP inhibited metastasis and invasion of MDA-MB231 cells. This anti-metastatic and the anti-invasive effect was due to the Ran GTPase cycle blockage, which was confirmed by performing Ran Pull down assay. we propose that PCPTC is a promising compound to inhibit Ran GTPase and may act as a potential therapeutic agent against breast cancer. PCPTC-loaded NP successfully stopped the metastasis of MDA-MB231 cells by disrupting the Ran cycle.
Collapse
Affiliation(s)
- Ankur Sharma
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Cromore Road, Coleraine, Co. Londonderry, BT52 1SA, UK.
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Cathedral Street, Glasgow, G4 0RE, Scotland.
| | - Amka Nagar
- Department of Life Science, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, U.P, 201310, India
| | - Susan Hawthorne
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Cromore Road, Coleraine, Co. Londonderry, BT52 1SA, UK
| | - Mohini Singh
- Department of Life Science, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, U.P, 201310, India
| |
Collapse
|
2
|
Michaelides K, Al Tahan MA, Zhou Y, Trindade GF, Cant DJH, Pei Y, Dulal P, Al-Khattawi A. New Insights on the Burst Release Kinetics of Spray-Dried PLGA Microspheres. Mol Pharm 2024; 21:6245-6256. [PMID: 39454183 PMCID: PMC11615953 DOI: 10.1021/acs.molpharmaceut.4c00686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/16/2024] [Accepted: 10/16/2024] [Indexed: 10/27/2024]
Abstract
Spray drying is one of the leading manufacturing methods for active pharmaceutical ingredients (APIs) owing to its rapid, single-step, and cost-effective nature. It also has the capacity to generate microspheres capable of controlled release of APIs including biomolecules and vaccines. However, one of the key challenges of spray-dried formulations especially with poly(lactic-co-glycolic acid) (PLGA)-based controlled-release injectables is burst release, where a significant fraction of the API is released prematurely within a short period of time following administration, leading to detrimental impact on the performance and quality of end products. This study uses a model API, bovine serum albumin (BSA) protein, to identify the sources of burst release that may affect the kinetics and performance of long-acting injectable microsphere formulations. Spray-dried microspheres with various formulations (i.e., variable BSA/PLGA ratios) were characterized in terms of their morphology, particle size, surface area, thermal properties, moisture content, as well as chemical compositions and their distributions to investigate the impact of spray drying on the burst release phenomenon. The results suggest that a relatively high initial release (85%) observed is mainly attributed to the protein distribution close to the particle surface. Morphology analysis provided evidence that the microspheres retained their spherical structure during the burst release phase. X-ray photoelectron spectroscopy, hard X-ray photoelectron spectroscopy, and argon cluster sputtering-assisted time-of-flight secondary ion mass spectrometry analysis suggest an enrichment of PLGA on particle surfaces with buried BSA protein. The statistically significant difference in particle size and surface area between three different formulations may be responsible for an initial variation in release but did not seem to alter the overall burst release profile. Considering the suggested source of burst release, the two-fluid spray-drying method, characterized by a single liquid feed delivering a preprepared emulsion, generated matrix-type microspheres with a surface layer of PLGA, as evidenced by surface analysis. The PLGA surface layer proved to be prone to degradation and pore formation, allowing for faster diffusion of BSA out of the microspheres, resulting in a burst release. Increasing the polymer concentration did not seem to halt this process.
Collapse
Affiliation(s)
| | | | - Yundong Zhou
- Chemical
and Biological Sciences Department, National
Physical Laboratory, Hampton Road, Teddington TW11 0LW, U.K.
| | - Gustavo F. Trindade
- Chemical
and Biological Sciences Department, National
Physical Laboratory, Hampton Road, Teddington TW11 0LW, U.K.
| | - David J. H. Cant
- Chemical
and Biological Sciences Department, National
Physical Laboratory, Hampton Road, Teddington TW11 0LW, U.K.
| | - Yiwen Pei
- Chemical
and Biological Sciences Department, National
Physical Laboratory, Hampton Road, Teddington TW11 0LW, U.K.
| | - Pawan Dulal
- aVaxziPen
Limited, Milton Park, Abingdon, Oxfordshire OX14 4SA, U.K.
| | - Ali Al-Khattawi
- School
of Pharmacy, Aston University, Birmingham B4 7ET, U.K.
| |
Collapse
|
3
|
Seegobin N, McCoubrey LE, Vignal C, Waxin C, Abdalla Y, Fan Y, Awad A, Murdan S, Basit AW. Dual action tofacitinib-loaded PLGA nanoparticles alleviate colitis in an IBD mouse model. Drug Deliv Transl Res 2024:10.1007/s13346-024-01736-1. [PMID: 39527394 DOI: 10.1007/s13346-024-01736-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Inflammatory bowel disease (IBD) affects over 7 million people worldwide and significant side effects are associated with current therapies such as tofacitinib citrate (TFC), which is linked to increased risks of malignancy and congestive heart issues. To mitigate these systemic adverse effects, localised drug delivery via nano-sized carriers to inflamed gut tissues represents a promising approach. Herein, we aimed to optimise the synthesis of nanoparticles (NPs) using a low molecular weight grade of Poly(lactic-co-glycolic acid) (PLGA) 50:50 loaded with TFC. This approach leverages the dual anti-inflammatory action of TFC and the local production of anti-inflammatory short-chain fatty acids from the degradation of PLGA by colonic gut microbiota. NPs were produced by nanoprecipitation and characterised for their drug release profile in vitro. The efficacy of the enhanced PLGA-TFC NPs was then tested in a C57BL/6 DSS colitis mouse model. The release profile of TFC from the enhanced PLGA NPs showed a 40% burst release within the first hour, followed by up to 80% drug release in the colonic environment. Notably, the degradation of PLGA by colonic gut microbiota did not significantly influence TFC release. In the mouse model, neither PLGA NPs alone nor TFC alone showed significant effects on weight loss compared to the TFC-loaded PLGA NPs, emphasising the enhanced efficacy potential of the combined formulation. Altogether, these results suggest a promising role of NP delivery systems in enhancing TFC efficacy, marking a significant step towards reducing dosage and associated side effects in IBD treatment. This study underscores the potential of PLGA-TFC NPs in providing targeted and effective therapy for IBD.
Collapse
Affiliation(s)
- Nidhi Seegobin
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, WC1N 1AX, 29-39 Brunswick Square, London, UK
| | - Laura E McCoubrey
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, WC1N 1AX, 29-39 Brunswick Square, London, UK
- Drug Product Development, GSK R&D, Ware, SG12 0GX, UK
| | - Cécile Vignal
- Univ. Lille, Inserm, CHU Lille, UMR1286 - INFINITE - Institute for Translational Research in Inflammation, 59000, Lille, France
| | - Christophe Waxin
- Univ. Lille, Inserm, CHU Lille, UMR1286 - INFINITE - Institute for Translational Research in Inflammation, 59000, Lille, France
| | - Youssef Abdalla
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, WC1N 1AX, 29-39 Brunswick Square, London, UK
| | - Yue Fan
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, WC1N 1AX, 29-39 Brunswick Square, London, UK
| | - Atheer Awad
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, WC1N 1AX, 29-39 Brunswick Square, London, UK
- Department of Clinical, Pharmaceutical and Biological Sciences, University of Hertfordshire, College Lane, Hatfield, AL10 9AB, UK
| | - Sudaxshina Murdan
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, WC1N 1AX, 29-39 Brunswick Square, London, UK
| | - Abdul W Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, WC1N 1AX, 29-39 Brunswick Square, London, UK.
| |
Collapse
|
4
|
Shi F, Gong M, Adu-Frimpong M, Jiang X, Wang X, Hua Q, Li T, Li J, Yu J, Toreniyazov E, Cao X, Wang Q, Xu X. Isolation, Purification of Phenolic Glycoside 1 from Moringa oleifera Seeds and Formulation of Its Liposome Delivery System. AAPS PharmSciTech 2024; 25:196. [PMID: 39174848 DOI: 10.1208/s12249-024-02911-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/31/2024] [Indexed: 08/24/2024] Open
Abstract
In this study, N, N '-bis {4- [(α-L- rhamnosyloxy) benzyl]} thiourea (PG-1), a phenolic glycoside compound was purified from Moringa seed. The PG-1 has attracted extensive attention due to its anti-cancer, antioxidant, anti-inflammatory and hypoglycemic properties. However, some of its physicochemical properties such as oral bioavailability has not been studied. Herein, a highly purified PG-1 was extracted and incorporated in multiple layered liposomes (PG-1-L) to avoid its burst release and enhance oral bioavailability. After appropriate characterization, it was discovered that the obtained PG-1-L was stable, homogeneous and well dispersed with the average particle size being 89.26 ± 0.23 nm. Importantly, the in vitro release and in vivo oral bioavailability of PG-1-L were significantly improved compared with PG-1. In addition, MTT results showed that compared with the free PG-1, PG-1-L displayed obvious inhibitory effect on the HepG2 cells, while the inhibitory effect on healthy non-malignant 3T6 and LO-2 cells was not significant, indicating that PG-1-L had high safety. In conclusion, PG-1-L can be used as a promising delivery system and an ideal novel approach to improve the oral bioavailability and anticancer activity of PG-1.
Collapse
Affiliation(s)
- Feng Shi
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Mingjie Gong
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Michael Adu-Frimpong
- Department of Biochemistry and Forensic Sciences, School Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), UK 0215-5321, Navrongo, Ghana
| | - Xia Jiang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiaowen Wang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qinyang Hua
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Tingyuan Li
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jiaying Li
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | | | - Xia Cao
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China.
| | - Qilong Wang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China.
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
5
|
La Manna S, Cugudda A, Mercurio FA, Leone M, Fortuna S, Di Natale C, Lagreca E, Netti PA, Panzetta V, Marasco D. PEGylated SOCS3 Mimetics Encapsulated into PLGA-NPs as Selective Inhibitors of JAK/STAT Pathway in TNBC Cells. Int J Nanomedicine 2024; 19:7237-7251. [PMID: 39050870 PMCID: PMC11268778 DOI: 10.2147/ijn.s441205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 05/28/2024] [Indexed: 07/27/2024] Open
Abstract
Introduction SOCS3 (suppressor of cytokine signaling 3) protein is a crucial regulator of cytokine-induced inflammation, and its administration has been shown to have therapeutic effects. Recently, we designed a chimeric proteomimetic of SOCS3, mimicking the interfacing regions of a ternary complex composed of SOCS3, JAK2 (Janus kinase 2) and gp130 (glycoprotein 130) proteins. The derived chimeric peptide, KIRCONG chim, demonstrated limited mimetic function owing to its poor water solubility. Methods We report investigations concerning a PEGylated variant of KIRCONG mimetic, named KIRCONG chim, bearing a PEG (Polyethylene glycol) moiety as a linker of noncontiguous SOCS3 regions. Its ability to bind to the catalytic domain of JAK2 was evaluated through MST (MicroScale Thermophoresis), as well as its stability in biological serum assays. The structural features of the cyclic compounds were investigated by CD (circular dichroism), nuclear magnetic resonance (NMR), and molecular dynamic (MD) studies. To evaluate the cellular effects, we employed a PLGA-nanoparticle as a delivery system after characterization using DLS and SEM techniques. Results KIRCONG chim PEG-revealed selective penetration into triple-negative breast cancer (TNBC) MDA-MB-231 cells with respect to the human breast epithelial cell line (MCF10A), acting as a potent inhibitor of STAT3 phosphorylation. Discussion Overall, the data indicated that miniaturization of the SOCS3 protein is a promising therapeutic approach for aberrant dysregulation of JAK/STAT during cancer progression.
Collapse
Affiliation(s)
- Sara La Manna
- Department of Pharmacy, CIRPEB: Research Center on Bioactive Peptides- University of Naples Federico II, Naples, 80131, Italy
| | - Alessia Cugudda
- Department of Pharmacy, CIRPEB: Research Center on Bioactive Peptides- University of Naples Federico II, Naples, 80131, Italy
| | | | - Marilisa Leone
- Institute of Biostructures and Bioimaging (CNR), Naples, 80131, Italy
| | - Sara Fortuna
- Italian Institute of Technology (IIT), Genova, 16152, Italy
| | - Concetta Di Natale
- Department of Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University of Naples Federico II, Naples, 80125, Italy
| | - Elena Lagreca
- Department of Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University of Naples Federico II, Naples, 80125, Italy
| | - Paolo Antonio Netti
- Department of Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University of Naples Federico II, Naples, 80125, Italy
| | - Valeria Panzetta
- Department of Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University of Naples Federico II, Naples, 80125, Italy
| | - Daniela Marasco
- Department of Pharmacy, CIRPEB: Research Center on Bioactive Peptides- University of Naples Federico II, Naples, 80131, Italy
| |
Collapse
|
6
|
Zumaya ALV, Pavlíčková VS, Rimpelová S, Štějdířová M, Fulem M, Křížová I, Ulbrich P, Řezanka P, Hassouna F. PLGA-based nanocarriers for combined delivery of colchicine and purpurin 18 in cancer therapy: Multimodal approach employing cancer cell spheroids. Int J Pharm 2024; 657:124170. [PMID: 38679244 DOI: 10.1016/j.ijpharm.2024.124170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/09/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Improving the anticancer efficacy of chemotherapeutic drugs and photosensitizers requires innovative multifunctional nanoplatforms. This study introduces a chemo- and phototherapeutic drug delivery system (DDS) based on poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs), both PEGylated and non-PEGylated, with a mean size of 200 ± 75 nm. Colchicine (Colch) and purpurin18 (P18) were co-encapsulated into these NPs, and their in vitro drug release profiles were investigated. The anticancer potential of these systems was evaluated across various cell lines (i.e., CaCo-2, PC-3, MCF-7, and MRC-5 cells), demonstrating enhanced NP uptake by cancer cells compared to free drugs. Co-administration of Colch and P18 in 2D and 3D cell line models exhibited a synergistic effect, harnessing both chemotherapeutic and photodynamic effects, leading to higher cancer cell elimination efficacy. This newly developed multifunctional DDS presents a promising platform for combined chemo- and photodynamic therapy in cancer treatment.
Collapse
Affiliation(s)
- Alma Lucia Villela Zumaya
- Faculty of Chemical Engineering, University of Chemistry and Technology Prague, 166 28 Prague 6, Czech Republic
| | - Vladimíra Svobodová Pavlíčková
- Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, 166 28 Prague 6, Czech Republic
| | - Silvie Rimpelová
- Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, 166 28 Prague 6, Czech Republic.
| | - Markéta Štějdířová
- Faculty of Chemical Engineering, University of Chemistry and Technology Prague, 166 28 Prague 6, Czech Republic
| | - Michal Fulem
- Faculty of Chemical Engineering, University of Chemistry and Technology Prague, 166 28 Prague 6, Czech Republic
| | - Ivana Křížová
- Faculty of Biotechnology, University of Chemistry and Technology Prague, 166 28 Prague 6, Czech Republic
| | - Pavel Ulbrich
- Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, 166 28 Prague 6, Czech Republic
| | - Pavel Řezanka
- Faculty of Chemical Engineering, University of Chemistry and Technology Prague, 166 28 Prague 6, Czech Republic
| | - Fatima Hassouna
- Faculty of Chemical Engineering, University of Chemistry and Technology Prague, 166 28 Prague 6, Czech Republic.
| |
Collapse
|
7
|
Nijhawan HP, Prabhakar B, Yadav KS. Central composite design augmented quality-by-design-based systematic formulation of erlotinib hydrochloride-loaded chitosan-poly (lactic-co-glycolic acid) nanoparticles. Ther Deliv 2024; 15:427-447. [PMID: 38722230 DOI: 10.1080/20415990.2024.2342771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/21/2024] [Indexed: 06/19/2024] Open
Abstract
Aim: This study aimed to formulate erlotinib hydrochloride (ERT-HCL)-loaded chitosan (CS) and poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) using Quality-by-Design (QbD) to optimize critical quality attributes (CQAs). Materials & methods: Quality target product profile (QTPP) and CQAs were initially established. Based on L8-Taguchi screening and risk assessments, central composite design (CCD) design was used to optimize NPs. Results: ERT-HCL-loaded CS-PLGA NPs had a mean particle diameter, zeta potential and entrapment efficiency of 226.50 ± 1.62 d.nm, 27.66 ± 0.64 mV and 78.93 ± 1.94 %w/w, respectively. The NPs exhibited homogenous spherical morphology and sustained release for 72 h. Conclusion: Using systematic QbD approach, ERT-HCL was encapsulated in CS-PLGA NPs, optimizing CQAs. These findings propel future research for improved NSCLC treatment.
Collapse
Affiliation(s)
- Harsh P Nijhawan
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS (Deemed to be University), Mumbai, India
| | - Bala Prabhakar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS (Deemed to be University), Mumbai, India
| | - Khushwant S Yadav
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS (Deemed to be University), Mumbai, India
| |
Collapse
|
8
|
Lima-Sousa R, Melo BL, Mendonça AG, Correia IJ, de Melo-Diogo D. Hyaluronic acid-functionalized graphene-based nanohybrids for targeted breast cancer chemo-photothermal therapy. Int J Pharm 2024; 651:123763. [PMID: 38176478 DOI: 10.1016/j.ijpharm.2023.123763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/28/2023] [Accepted: 12/30/2023] [Indexed: 01/06/2024]
Abstract
Nanomaterials' application in cancer therapy has been driven by their ability to encapsulate chemotherapeutic drugs as well as to reach the tumor site. Nevertheless, nanomedicines' translation has been limited due to their lack of specificity towards cancer cells. Although the nanomaterials' surface can be coated with targeting ligands, such has been mostly achieved through non-covalent functionalization strategies that are prone to premature detachment. Notwithstanding, cancer cells often establish resistance mechanisms that impair the effect of the loaded drugs. This bottleneck may be addressed by using near-infrared (NIR)-light responsive nanomaterials. The NIR-light triggered hyperthermic effect generated by these nanomaterials can cause irreversible damage to cancer cells or sensitize them to chemotherapeutics' action. Herein, a novel covalently functionalized targeted NIR-absorbing nanomaterial for cancer chemo-photothermal therapy was developed. For such, dopamine-reduced graphene oxide nanomaterials were covalently bonded with hyaluronic acid, and then loaded with doxorubicin (DOX/HA-DOPA-rGO). The produced nanomaterials showed suitable physicochemical properties, high encapsulation efficiency, and photothermal capacity. The in vitro studies revealed that the nanomaterials are cytocompatible and that display an improved uptake by the CD44-overexpressing breast cancer cells. Importantly, the combination of DOX/HA-DOPA-rGO with NIR light reduced breast cancer cells' viability to just 23 %, showcasing their potential chemo-photothermal therapy.
Collapse
Affiliation(s)
- Rita Lima-Sousa
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| | - Bruna L Melo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| | - António G Mendonça
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal; Departamento de Química, Universidade da Beira Interior, 6201-001 Covilhã, Portugal
| | - Ilídio J Correia
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal; CIEPQPF - Departamento de Engenharia Química, Universidade de Coimbra, 3030-790 Coimbra, Portugal.
| | - Duarte de Melo-Diogo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| |
Collapse
|
9
|
Jackman MJ, Li W, Smith A, Workman D, Treacher KE, Corrigan A, Abdulrazzaq F, Sonzini S, Nazir Z, Lawrence MJ, Mahmoudi N, Cant D, Counsell J, Cairns J, Ferguson D, Lenz E, Baquain S, Madla CM, van Pelt S, Moss J, Peter A, Puri S, Ashford M, Mazza M. Impact of the physical-chemical properties of poly(lactic acid)-poly(ethylene glycol) polymeric nanoparticles on biodistribution. J Control Release 2024; 365:491-506. [PMID: 38030083 DOI: 10.1016/j.jconrel.2023.11.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
Nanoparticle (NP) formulations are inherently polydisperse making their structural characterization and justification of specifications complex. It is essential, however, to gain an understanding of the physico-chemical properties that drive performance in vivo. To elucidate these properties, drug-containing poly(lactic acid) (PLA)-poly(ethylene glycol) (PEG) block polymeric NP formulations (or PNPs) were sub-divided into discrete size fractions and analyzed using a combination of advanced techniques, namely cryogenic transmission electron microscopy, small-angle neutron and X-ray scattering, nuclear magnetic resonance, and hard-energy X-ray photoelectron spectroscopy. Together, these techniques revealed a uniquely detailed picture of PNP size, surface structure, internal molecular architecture and the preferred site(s) of incorporation of the hydrophobic drug, AZD5991, properties which cannot be accessed via conventional characterization methodologies. Within the PNP size distribution, it was shown that the smallest PNPs contained significantly less drug than their larger sized counterparts, reducing overall drug loading, while PNP molecular architecture was critical in understanding the nature of in vitro drug release. The effect of PNP size and structure on drug biodistribution was determined by administrating selected PNP size fractions to mice, with the smaller sized NP fractions increasing the total drug-plasma concentration area under the curve and reducing drug concentrations in liver and spleen, due to greater avoidance of the reticuloendothelial system. In contrast, administration of unfractionated PNPs, containing a large population of NPs with extremely low drug load, did not significantly impact the drug's pharmacokinetic behavior - a significant result for nanomedicine development where a uniform formulation is usually an important driver. We also demonstrate how, in this study, it is not practicable to validate the bioanalytical methodology for drug released in vivo due to the NP formulation properties, a process which is applicable for most small molecule-releasing nanomedicines. In conclusion, this work details a strategy for determining the effect of formulation variability on in vivo performance, thereby informing the translation of PNPs, and other NPs, from the laboratory to the clinic.
Collapse
Affiliation(s)
- Mark J Jackman
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK.
| | - Weimin Li
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Aaron Smith
- DMPK, Oncology R&D, AstraZeneca, Cambridge, UK
| | - David Workman
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Kevin E Treacher
- New Modalities & Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - Adam Corrigan
- Data Sciences and Quantitative Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Fadi Abdulrazzaq
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Silvia Sonzini
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Zahid Nazir
- New Modalities & Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - M Jayne Lawrence
- Division of Pharmacy & Optometry and the North West Centre for Advanced Drug Delivery (NoWCADD), School of Health Sciences, University of Manchester, Manchester, UK
| | - Najet Mahmoudi
- ISIS Pulsed Neutron and Muon Source, Rutherford Appleton Laboratory, Chilton, Didcot, UK
| | - David Cant
- National Physical Laboratory, Teddington, UK
| | | | - Jonathan Cairns
- Data Sciences and Quantitative Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Doug Ferguson
- Drug Metabolism and Pharmacokinetics, Early Oncology Research and Development, AstraZeneca, Waltham, MA, USA
| | - Eva Lenz
- Medicinal Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Saif Baquain
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Christine M Madla
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Sally van Pelt
- Business, Planning & Operations, AstraZeneca, Cambridge, UK
| | - Jennifer Moss
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Alison Peter
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Sanyogitta Puri
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Marianne Ashford
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield, UK
| | - Mariarosa Mazza
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, UK.
| |
Collapse
|
10
|
Ghanim R, Kaushik A, Park J, Abramson A. Communication Protocols Integrating Wearables, Ingestibles, and Implantables for Closed-Loop Therapies. DEVICE 2023; 1:100092. [PMID: 38465200 PMCID: PMC10923538 DOI: 10.1016/j.device.2023.100092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Body-conformal sensors and tissue interfacing robotic therapeutics enable the real-time monitoring and treatment of diabetes, wound healing, and other critical conditions. By integrating sensors and drug delivery devices, scientists and engineers have developed closed-loop drug delivery systems with on-demand therapeutic capabilities to provide just-in-time treatments that correspond to chemical, electrical, and physical signals of a target morbidity. To enable closed-loop functionality in vivo, engineers utilize various low-power means of communication that reduce the size of implants by orders of magnitude, increase device lifetime from hours to months, and ensure the secure high-speed transfer of data. In this review, we highlight how communication protocols used to integrate sensors and drug delivery devices, such as radio frequency communication (e.g., Bluetooth, near-field communication), in-body communication, and ultrasound, enable improved treatment outcomes.
Collapse
Affiliation(s)
- Ramy Ghanim
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Anika Kaushik
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Jihoon Park
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Alex Abramson
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
11
|
Sagoe PNK, Velázquez EJM, Espiritusanto YM, Gilbert A, Orado T, Wang Q, Jain E. Fabrication of PEG-PLGA Microparticles with Tunable Sizes for Controlled Drug Release Application. Molecules 2023; 28:6679. [PMID: 37764454 PMCID: PMC10534673 DOI: 10.3390/molecules28186679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Polymeric microparticles of polyethyleneglycol-polylactic acid-co-glycolic acid (PEG-PLGA) are widely used as drug carriers for a variety of applications due to their unique characteristics. Although existing techniques for producing polymeric drug carriers offer the possibility of achieving greater production yield across a wide range of sizes, these methods are improbable to precisely tune particle size while upholding uniformity of particle size and morphology, ensuring consistent production yield, maintaining batch-to-batch reproducibility, and improving drug loading capacity. Herein, we developed a novel scalable method for the synthesis of tunable-sized microparticles with improved monodispersity and batch-to-batch reproducibility via the coaxial flow-phase separation technique. The study evaluated the effect of various process parameters on microparticle size and polydispersity, including polymer concentration, stirring rate, surfactant concentration, and the organic/aqueous phase flow rate and volume ratio. The results demonstrated that stirring rate and polymer concentration had the most significant impact on the mean particle size and distribution, whereas surfactant concentration had the most substantial impact on the morphology of particles. In addition to synthesizing microparticles of spherical morphology yielding particle sizes in the range of 5-50 µm across different formulations, we were able to also synthesize several microparticles exhibiting different morphologies and particle concentrations as a demonstration of the tunability and scalability of this method. Notably, by adjusting key determining process parameters, it was possible to achieve microparticle sizes in a comparable range (5-7 µm) for different formulations despite varying the concentration of polymer and volume of polymer solution in the organic phase by an order of magnitude. Finally, by the incorporation of fluorescent dyes as model hydrophilic and hydrophobic drugs, we further demonstrated how polymer amount influences drug loading capacity, encapsulation efficiency, and release kinetics of these microparticles of comparable sizes. Our study provides a framework for fabricating both hydrophobic and hydrophilic drug-loaded microparticles and elucidates the interplay between fabrication parameters and the physicochemical properties of microparticles, thereby offering an itinerary for expanding the applicability of this method for producing polymeric microparticles with desirable characteristics for specific drug delivery applications.
Collapse
Affiliation(s)
- Paul Nana Kwame Sagoe
- Department of Biomedical and Chemical Engineering, Bioinspired Syracuse: Institute for Material and Living System, Syracuse University, Syracuse, NY 13244, USA; (P.N.K.S.); (Y.M.E.); (T.O.)
| | | | - Yohely Maria Espiritusanto
- Department of Biomedical and Chemical Engineering, Bioinspired Syracuse: Institute for Material and Living System, Syracuse University, Syracuse, NY 13244, USA; (P.N.K.S.); (Y.M.E.); (T.O.)
| | - Amelia Gilbert
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA;
| | - Thalma Orado
- Department of Biomedical and Chemical Engineering, Bioinspired Syracuse: Institute for Material and Living System, Syracuse University, Syracuse, NY 13244, USA; (P.N.K.S.); (Y.M.E.); (T.O.)
| | - Qiu Wang
- School of Education, Syracuse University, Syracuse, NY 13244, USA;
| | - Era Jain
- Department of Biomedical and Chemical Engineering, Bioinspired Syracuse: Institute for Material and Living System, Syracuse University, Syracuse, NY 13244, USA; (P.N.K.S.); (Y.M.E.); (T.O.)
| |
Collapse
|
12
|
Junyaprasert VB, Thummarati P. Innovative Design of Targeted Nanoparticles: Polymer-Drug Conjugates for Enhanced Cancer Therapy. Pharmaceutics 2023; 15:2216. [PMID: 37765185 PMCID: PMC10537251 DOI: 10.3390/pharmaceutics15092216] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/10/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Polymer-drug conjugates (PDCs) have shown great promise in enhancing the efficacy and safety of cancer therapy. These conjugates combine the advantageous properties of both polymers and drugs, leading to improved pharmacokinetics, controlled drug release, and targeted delivery to tumor tissues. This review provides a comprehensive overview of recent developments in PDCs for cancer therapy. First, various types of polymers used in these conjugates are discussed, including synthetic polymers, such as poly(↋-caprolactone) (PCL), D-α-tocopheryl polyethylene glycol (TPGS), and polyethylene glycol (PEG), as well as natural polymers such as hyaluronic acid (HA). The choice of polymer is crucial to achieving desired properties, such as stability, biocompatibility, and controlled drug release. Subsequently, the strategies for conjugating drugs to polymers are explored, including covalent bonding, which enables a stable linkage between the polymer and the drug, ensuring controlled release and minimizing premature drug release. The use of polymers can extend the circulation time of the drug, facilitating enhanced accumulation within tumor tissues through the enhanced permeability and retention (EPR) effect. This, in turn, results in improved drug efficacy and reduced systemic toxicity. Moreover, the importance of tumor-targeting ligands in PDCs is highlighted. Various ligands, such as antibodies, peptides, aptamers, folic acid, herceptin, and HA, can be incorporated into conjugates to selectively deliver the drug to tumor cells, reducing off-target effects and improving therapeutic outcomes. In conclusion, PDCs have emerged as a versatile and effective approach to cancer therapy. Their ability to combine the advantages of polymers and drugs offers enhanced drug delivery, controlled release, and targeted treatment, thereby improving the overall efficacy and safety of cancer therapies. Further research and development in this field has great potential to advance personalized cancer treatment options.
Collapse
|
13
|
Lacinski RA, Markel JE, Pratt HG, Reinbeau RM, Stewart A, Santiago SP, Lindsey BA. Optimizing the synthesis of interleukin-12-loaded PLGA nanospheres (rmIL-12ns) via ultrasonication for treatment of metastatic osteosarcoma. J Orthop Res 2023; 41:1565-1581. [PMID: 36453532 PMCID: PMC10232680 DOI: 10.1002/jor.25491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/24/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
Clinical trials exploring bolus intravenous delivery of interleukin-12 (IL-12) for treatment of solid tumors ultimately failed due to lack of clinical response and severe dose-limiting toxicities. The present study was conducted to evaluate whether recombinant murine IL-12 (rmIL-12) could be successfully encapsulated within Poly (D, l-lactide-co-glycolide) (PLGA) nanospheres (rmIL-12ns) for safe and effective systemic delivery at pharmacologic scale. Optimal fabrication of rmIL-12ns occurs with dichloromethane as the organic solvent and emulsion formation via ultrasonication at 50% power (250 W sonicator) for 10 s (50W10s). We then determined whether utilization of synthesis modifiers including fetal bovine serum (FBS), magnesium hydroxide [Mg(OH)2 ], trehalose, or the surfactants polysorbate 80 and Span 60 alone or in combination could increase the encapsulation efficiency (EE) and/or modify the burst elution profile characteristic of the 50W10s rmIL-12ns formulation. The greatest EEs compared to the unmodified formulation were measured with modifications containing the surfactants polysorbate 80 and Span 60 (surfactant: 28.3 ± 6.10%, p = 0.29 and Surf/FBS: 85.4 ± 2.19%, p = 0.039). The Surf/FBS formulation was further modified for in vivo murine injection by substituting FBS with mouse serum albumin (MSA). The resulting Surf/MSA rmIL-12ns were then characterized before delivery at three doses (0.1, 1, and 10 mg rmIL-12ns) in our established murine model of metastatic osteosarcoma to assess efficacy. Preliminary results suggested no evidence of disease with delivery of the 0.1 mg dose in 75% of mice (3 of 4) versus a nontreated historical control (2 of 34).
Collapse
Affiliation(s)
- Ryan A. Lacinski
- Department of Orthopaedics, West Virginia University, Morgantown, WV
| | - Justin E. Markel
- Department of Orthopaedics, West Virginia University, Morgantown, WV
| | | | - Ryan M. Reinbeau
- Department of Orthopaedics, West Virginia University, Morgantown, WV
| | - Amanda Stewart
- Department of Orthopaedics, West Virginia University, Morgantown, WV
| | | | - Brock A. Lindsey
- Department of Orthopaedics, West Virginia University, Morgantown, WV
- WVU Cancer Institute, West Virginia University, Morgantown, WV
| |
Collapse
|
14
|
Deng J, Ye Z, Zheng W, Chen J, Gao H, Wu Z, Chan G, Wang Y, Cao D, Wang Y, Lee SMY, Ouyang D. Machine learning in accelerating microsphere formulation development. Drug Deliv Transl Res 2023; 13:966-982. [PMID: 36454434 DOI: 10.1007/s13346-022-01253-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2022] [Indexed: 12/03/2022]
Abstract
Microspheres have gained much attention from pharmaceutical and medical industry due to the excellent biodegradable and long controlled-release characteristics. However, the drug release behavior of microspheres is influenced by complicated formulation and manufacturing factors. The traditional formulation development of microspheres is intractable and inefficient by the experimentally trial-and-error methods. This research aims to build a prediction model to accelerate microspheres product development for small-molecule drugs by machine learning (ML) techniques. Two hundred eighty-six microsphere formulations with small-molecule drugs were collected from the publications and pharmaceutical company, including the dissolution temperature at both 37 ℃ and 45 ℃. After the comparison of fourteen ML approaches, the consensus model achieved accurate predictions for the validation set at 37 ℃ and 45 ℃ (R2 = 0.880 vs. R2 = 0.958), indicating the good performance to predict the in vitro drug release profiles at both 37 ℃ and 45 ℃. Meanwhile, the models revealed the feature importance of formulations, which offered meaningful insights to the microspheres development. Experiments of microsphere formulations further validated the accuracy of the consensus model. Furthermore, molecular dynamics (MD) simulation provided a microscopic view of the preparation process of microspheres. In conclusion, the prediction model of microsphere formulations for small-molecule drugs was successfully built with high accuracy, which is able to accelerate microspheres product development and promote the quality control of microspheres for the pharmaceutical industry.
Collapse
Affiliation(s)
- Jiayin Deng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China
| | - Zhuyifan Ye
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China
| | - Wenwen Zheng
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jian Chen
- Zhuhai Livzon Microsphere Technology Co., Ltd, Zhuhai, China
| | - Haoshi Gao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, China
| | - Zheng Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China
| | - Ging Chan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Yongjun Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Dongsheng Cao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Yanqing Wang
- Zhuhai Livzon Microsphere Technology Co., Ltd, Zhuhai, China.
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China.
- Faculty of Health Sciences, University of Macau, Macau, China.
| | - Defang Ouyang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China.
- Faculty of Health Sciences, University of Macau, Macau, China.
| |
Collapse
|
15
|
Stiepel RT, Pena ES, Ehrenzeller SA, Gallovic MD, Lifshits LM, Genito CJ, Bachelder EM, Ainslie KM. A predictive mechanistic model of drug release from surface eroding polymeric nanoparticles. J Control Release 2022; 351:883-895. [PMID: 36208792 PMCID: PMC10407653 DOI: 10.1016/j.jconrel.2022.09.067] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/16/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022]
Abstract
Effective drug delivery requires ample dosing at the target tissue while minimizing negative side effects. Drug delivery vehicles such as polymeric nanoparticles (NPs) are often employed to accomplish this challenge. In this work, drug release of numerous drugs from surface eroding polymeric NPs was evaluated in vitro in physiologically relevant pH 5 and neutral buffers. NPs were loaded with paclitaxel, rapamycin, resiquimod, or doxorubicin and made from an FDA approved polyanhydride or from acetalated dextran (Ace-DEX), which has tunable degradation rates based on cyclic acetal coverage (CAC). By varying encapsulate, pH condition, and polymer, a range of distinct drug release profiles were achieved. To model the obtained drug release curves, a mechanistic mathematical model was constructed based on drug diffusion and polymer degradation. The resulting diffusion-erosion model accurately described drug release from the variety of surface eroding NPs. For drug release from varied CAC Ace-DEX NPs, the goodness of fit of the developed diffusion-erosion model was compared to several conventional drug release models. The diffusion-erosion model maintained optimal fit compared to conventional models across a range of conditions. Machine learning was then employed to estimate effective diffusion coefficients for the diffusion-erosion model, resulting in accurate prediction of in vitro release of dexamethasone and 3'3'-cyclic guanosine monophosphate-adenosine monophosphate from Ace-DEX NPs. This predictive modeling has potential to aid in the design of future Ace-DEX formulations where optimized drug release kinetics can lead to a desired therapeutic effect.
Collapse
Affiliation(s)
- Rebeca T Stiepel
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
| | - Erik S Pena
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, USA
| | - Stephen A Ehrenzeller
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
| | | | - Liubov M Lifshits
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
| | - Christopher J Genito
- Department of Microbiology & Immunology, UNC School of Medicine, University of North Carolina, Chapel Hill, USA
| | - Eric M Bachelder
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
| | - Kristy M Ainslie
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA; Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, USA; Department of Microbiology & Immunology, UNC School of Medicine, University of North Carolina, Chapel Hill, USA.
| |
Collapse
|
16
|
Optimization of Curcumin Loaded Niosomes for Drug Delivery Applications. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Allahyari M. PLGA Nanoparticles as an Efficient Platform in Protein Vaccines Against Toxoplasma gondii. Acta Parasitol 2022; 67:582-591. [PMID: 35013939 DOI: 10.1007/s11686-021-00499-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 11/22/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Toxoplasma gondii (T. gondii) as an obligatory intracellular is widespread all over the world and causes considerable concerns in immunocompromised patients by developing toxoplasmic encephalitis and in pregnancy because of serious consequences in the fetus. Although vaccination is the only approach to overcome toxoplasmosis, there is no commercially available human vaccine against T. gondii. PURPOSE The remarkable features of poly (lactic-co-glycolic acid) (PLGA) particles have brought up the application of PLGA as a promising vaccine delivery vehicle against T. gondii and other intracellular parasites. This review focuses on the application of the PLGA delivery system in the development of preventive vaccines against T. gondii. METHODS In this study, all required data were collected from articles indexed in English databases, including Scopus, PubMed, Web of Science, Science Direct, and Google Scholar. RESULT Immunity against T. gondii, characteristics of PLGA particles as a delivery vehicle, and all researches on particulate PLGA vaccines with different T. gondii antigens and DNA against were discussed and their efficacies in conferring protection against a lethal challenge based on increased survival or reduced brain cyst loads have been shown. CONCLUSION Although various levels of protection against lethal challenge have been achieved through PLGA-based vaccinations, there is still no complete protection against T. gondii infection. Surprisingly, the application of surface modifications of PLGA particles by mucoadhesive polymers, cationic agents, DCs (dendritic cells) targeting receptors, specialized membranous epithelial cells (M-cells), and co-delivery of the desired antigen along with toll-like receptor ligands would be a revolutionized vaccine strategy against T. gondii.
Collapse
Affiliation(s)
- Mojgan Allahyari
- Recombinant Protein Production Department, Production and Research Complex, Pasteur Institute of Iran, Karaj, Iran.
| |
Collapse
|
18
|
Synthesis, Characterization, and In Vivo Cytokinome Profile of IL-12-Loaded PLGA Nanospheres. J Immunol Res 2022; 2022:6993187. [PMID: 35465347 PMCID: PMC9023212 DOI: 10.1155/2022/6993187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/23/2022] [Indexed: 01/19/2023] Open
Abstract
We report the successful encapsulation and elution of recombinant murine IL-12 (rmIL-12) from poly(lactide-co-glycolic) acid (PLGA) nanospheres (IL-12-NS) synthesized using the double emulsion/solvent evaporation (DESE) technique with microsphere depletion through ultracentrifugation. Images obtained with scanning electron microscopy (SEM) showcased a characteristic spherical shape with a mean particle diameter of 138.1 ± 10.8 nm and zeta potential of −15.1 ± 1.249 mV. These values suggest minimal flocculation when in solution, which was reflected in an in vivo biodistribution study that reported no observed morbidity/mortality. Encapsulation efficiency (EE) was determined to be 0.101 ± 0.009% with average particle concentration obtained per batch of 1.66 × 109 ± 4.45 × 108 particles/mL. Disparate zeta (ζ) potentials obtained from both protein-loaded and protein-unloaded batches suggested surface adsorption of protein, and confocal microscopy of BSA-FITC-loaded nanospheres confirmed the presence of protein within the polymeric shell. Furthermore, elution of rmIL-12 from IL-12-NS at a concentration of 500 million particles/mL was characterized using enzyme-linked immunosorbent assay (ELISA). When IL-12-NS was administered in vivo to female BALB/c mice through retroorbital injection, IL-12-NS produced a favorable systemic cytokine profile for tumoricidal activity within the peripheral blood. Whereas IFN-γ nadir occurred at 72 hours, levels recovered quickly and displayed positive correlations postburst out to 25 days postinjection. IL-12-NS administration induced proinflammatory changes while prompting minimal counterregulatory increases in anti-inflammatory IL-10 and IL-4 cytokine levels. Further, while IL-6 levels increased to 30 folds of the baseline during the burst phase, they normalized by 72 hours and trended negatively throughout the sill phase. Similar trends were observed with IL-1β and CXCL-1, suggesting a decreased likelihood of progression to a systemic inflammatory response syndrome-like state. As IL-12-NS delivers logarithmically lower amounts of IL-12 than previously administered during human clinical trials, our data reflect the importance of IL-12-NS which safely create a systemic immunostimulatory environment.
Collapse
|
19
|
Hermida-Merino C, Cabaleiro D, Lugo L, Valcarcel J, Vázquez JA, Bravo I, Longo A, Salloum-Abou-Jaoude G, Solano E, Gracia-Fernández C, Piñeiro MM, Hermida-Merino D. Characterization of Tuna Gelatin-Based Hydrogels as a Matrix for Drug Delivery. Gels 2022; 8:gels8040237. [PMID: 35448138 PMCID: PMC9026235 DOI: 10.3390/gels8040237] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/23/2022] [Accepted: 04/01/2022] [Indexed: 12/27/2022] Open
Abstract
The skin of yellowfin tuna is one of the fishery industry solid residues with the greatest potential to add extra value to its circular economy that remains yet unexploited. Particularly, the high collagen content of fish skin allows generating gelatin by hydrolysis, which is ideal for forming hydrogels due to its biocompatibility and gelling capability. Hydrogels have been used as drug carriers for local administration due to their mechanical properties and drug loading capacity. Herein, novel tuna gelatin hydrogels were designed as drug vehicles with two structurally different antitumoral model compounds such as Doxorubicin and Crocin to be administrated locally in tissues with complex human anatomies after surgical resection. The characterization by gel permeation chromatography (GPC) of purified gelatin confirmed their heterogeneity composition, exhibiting three major bands that correspond to the β and α chains along with high molecular weight species. In addition, the Fourier Transform Infrared (FT-IR) spectra of gelatin probed the secondary structure of the gelatin showing the simultaneous existence of α helix, β sheet, and random coil structures. Morphological studies at different length scales were performed by a multi-technique approach using SAXS/WAXS, AFM and cryo-SEM that revealed the porous network formed by the interaction of gelatin planar aggregates. In addition, the sol-gel transition, as well as the gelation point and the hydrogel strength, were studied using dynamic rheology and differential scanning calorimetry. Likewise, the loading and release profiles followed by UV-visible spectroscopy indicated that the novel gelatin hydrogels improve the drug release of Doxorubicin and Crocin in a sustained fashion, indicating the structure-function importance in the material composition.
Collapse
Affiliation(s)
- Carolina Hermida-Merino
- Departamento de Física Aplicada, CINBIO, Universidade de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain; (D.C.); (L.L.); (M.M.P.)
- Correspondence: (C.H.-M.); (D.H.-M.)
| | - David Cabaleiro
- Departamento de Física Aplicada, CINBIO, Universidade de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain; (D.C.); (L.L.); (M.M.P.)
| | - Luis Lugo
- Departamento de Física Aplicada, CINBIO, Universidade de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain; (D.C.); (L.L.); (M.M.P.)
| | - Jesus Valcarcel
- Grupo de Reciclado y Valorización de Materiales Residuales (REVAL), Instituto de Investigaciones Marinas (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain; (J.V.); (J.A.V.)
| | - Jose Antonio Vázquez
- Grupo de Reciclado y Valorización de Materiales Residuales (REVAL), Instituto de Investigaciones Marinas (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain; (J.V.); (J.A.V.)
| | - Ivan Bravo
- Departamento de Química Física, Facultad de Farmacia, UCLM, 02071 Albacete, Spain;
| | - Alessandro Longo
- ID20, European Synchrotron Radiation Facility (ESRF), 71 Avenue des Martyrs, 38000 Grenoble, France;
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN)-CNR, UOS Palermo, Via Ugo La Malfa, 153, 90146 Palermo, Italy
| | - Georges Salloum-Abou-Jaoude
- Constellium C-TEC Technology Center, Parc Economique Centr’alp, 725 rue Aristide Bergès, 38341 Voreppe, France;
| | - Eduardo Solano
- ALBA Synchrotron Light Source, NCD-SWEET Beamline, 08290 Cerdanyola del Valles, Spain;
| | | | - Manuel M. Piñeiro
- Departamento de Física Aplicada, CINBIO, Universidade de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain; (D.C.); (L.L.); (M.M.P.)
| | - Daniel Hermida-Merino
- Departamento de Física Aplicada, CINBIO, Universidade de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain; (D.C.); (L.L.); (M.M.P.)
- Netherlands Organisation for Scientific Research (NWO), c/o ESRF BP 220, DUBBLE CRG/ESRF, CEDEX, 38043 Grenoble, France
- Correspondence: (C.H.-M.); (D.H.-M.)
| |
Collapse
|
20
|
Tran HT, Vong LB, Nishikawa Y, Nagasaki Y. Sorafenib-loaded silica-containing redox nanoparticles for oral anti-liver fibrosis therapy. J Control Release 2022; 345:880-891. [PMID: 35395328 DOI: 10.1016/j.jconrel.2022.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 11/17/2022]
Abstract
Liver fibrosis is a chronic disease resulting from repetitive or prolonged liver injury with limited treatment options. Sorafenib has been reported to be a potential antifibrotic agent; however, its therapeutic effect is restricted because of its low bioavailability and severe adverse effects in the gastrointestinal (GI) tract. In this study, we developed sorafenib-loaded silica-containing redox nanoparticles (sora@siRNP) as an oral nanomedicine to treat liver fibrosis. The designed siRNP were prepared by self-assembly of amphiphilic block copolymers, which possess antioxidant nitroxide radicals as a side chain of the hydrophobic segment and porous silica particles in the nanoparticle core. The silica moieties in the core formed a crosslink between the self-assembling block copolymers to afford stable drug absorption, which could be useful in harsh GI conditions after oral drug administration. Based on in vitro evaluation, sora@siRNP exerted antiproliferative and antifibrotic effects against hepatic stellate cells (HSCs) and low toxicity against normal endothelial cells. A pharmacokinetic study showed that siRNP significantly improved the bioavailability and distribution of sorafenib in the liver. In an in vivo study using a mouse model of CCl4-induced liver fibrosis, oral administration of sora@siRNP significantly suppressed the fibrotic area in comparison to free sorafenib administration. In mice with CCl4-induced fibrosis, free sorafenib administration did not suppress the expression of α-smooth muscle actin; however, mice treated with sora@siRNP showed significantly suppressed expression of α-smooth muscle actin, indicating the inhibition of HSC activation, which was confirmed by in vitro experiments. Moreover, oral administration of free sorafenib induced severe intestinal damage and increased leakage into the gut, which can be attributed to the generation of reactive oxygen species (ROS). Our antioxidant nanocarriers, siRNP, reduced the adverse effects of local ROS scavenging in the GI tract. Our results suggest that sora@siRNP could serve as a promising oral nanomedicine for liver fibrosis.
Collapse
Affiliation(s)
- Hao Thi Tran
- Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| | - Long Binh Vong
- Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan; School of Biomedical Engineering, International University, Ho Chi Minh 703000, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh 703000, Viet Nam
| | - Yuji Nishikawa
- Division of Tumor Pathology, Department of Pathology, Asahikawa Medical University, Asahikawa 079-8501, Japan
| | - Yukio Nagasaki
- Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan; Department of Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan; Center for Research in Isotopes and Environmental Dynamics (CRiED), University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8573, Japan.
| |
Collapse
|
21
|
Sheffey VV, Siew EB, Tanner EEL, Eniola‐Adefeso O. PLGA's Plight and the Role of Stealth Surface Modification Strategies in Its Use for Intravenous Particulate Drug Delivery. Adv Healthc Mater 2022; 11:e2101536. [PMID: 35032406 PMCID: PMC9035064 DOI: 10.1002/adhm.202101536] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/31/2021] [Indexed: 12/17/2022]
Abstract
Numerous human disorders can benefit from targeted, intravenous (IV) drug delivery. Polymeric nanoparticles have been designed to undergo systemic circulation and deliver their therapeutic cargo to target sites in a controlled manner. Poly(lactic-co-glycolic) acid (PLGA) is a particularly promising biomaterial for designing intravenous drug carriers due to its biocompatibility, biodegradability, and history of clinical success across other routes of administration. Despite these merits, PLGA remains markedly absent in clinically approved IV drug delivery formulations. A prominent factor in PLGA particles' inability to succeed intravenously may lie in the hydrophobic character of the polyester, leading to the adsorption of serum proteins (i.e., opsonization) and a cascade of events that end in their premature clearance from the bloodstream. PEGylation, or surface-attached polyethylene glycol chains, is a common strategy for shielding particles from opsonization. Polyethylene glycol (PEG) continues to be regarded as the ultimate "stealth" solution despite the lack of clinical progress of PEGylated PLGA carriers. This review reflects on some of the reasons for the clinical failure of PLGA, particularly the drawbacks of PEGylation, and highlights alternative surface coatings on PLGA particles. Ultimately, a new approach will be needed to harness the potential of PLGA nanoparticles and allow their widespread clinical adoption.
Collapse
Affiliation(s)
- Violet V. Sheffey
- Macromolecular Science and Engineering Program University of Michigan Ann Arbor NCRC Building 28, 2800 Plymouth Rd. Ann Arbor MI 48109 USA
| | - Emily B. Siew
- Department of Chemical Engineering University of Michigan Ann Arbor NCRC 28, 2800 Plymouth Rd. Ann Arbor MI 48109 USA
| | - Eden E. L. Tanner
- Department of Chemistry and Biochemistry University of Mississippi 179 Coulter Hall University MS 38677 USA
| | - Omolola Eniola‐Adefeso
- Macromolecular Science and Engineering Program University of Michigan Ann Arbor NCRC Building 28, 2800 Plymouth Rd. Ann Arbor MI 48109 USA
- Department of Chemical Engineering University of Michigan Ann Arbor NCRC 28, 2800 Plymouth Rd. Ann Arbor MI 48109 USA
| |
Collapse
|
22
|
CeO2 nanoparticles incorporated MIL-100(Fe) composites for loading of an anticancer drug: Effects of HF in composite synthesis and drug loading capacity. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2021.120784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Hughes KR, Saunders MN, Landers JJ, Janczak KW, Turkistani H, Rad LM, Miller SD, Podojil JR, Shea LD, O'Konek JJ. Masked Delivery of Allergen in Nanoparticles Safely Attenuates Anaphylactic Response in Murine Models of Peanut Allergy. FRONTIERS IN ALLERGY 2022; 3:829605. [PMID: 35386645 PMCID: PMC8974743 DOI: 10.3389/falgy.2022.829605] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/12/2022] [Indexed: 11/24/2022] Open
Abstract
Food allergy is a growing health concern worldwide. Current allergen-specific immunotherapy (AIT) approaches require frequent dosing over extended periods of time and may induce anaphylaxis due to allergen-effector cell interactions. A critical need remains to develop novel approaches that refine AIT for the treatment of food allergies. Previous studies show that poly(lactide-co-glycolide) (PLG) nanoscale particles (NP) effectively suppress Th1- and Th17-driven immune pathologies. However, their ability to suppress the distinct Th2-polarized immune responses driving food allergy are unknown. Herein, we describe the safety and efficacy of NPs containing encapsulated peanut allergen in desensitizing murine models of peanut allergy. Peanut extract encapsulation allowed for the safe intravenous delivery of allergen relative to non-encapsulated approaches. Application of 2–3 doses, without the need for dose escalation, was sufficient to achieve prophylactic and therapeutic efficacy, which correlated with suppression of Th2-mediated disease and reduced mast cell degranulation. Efficacy was associated with strong reductions in a broad panel of Th1, Th2, and Th17 cytokines. These results demonstrate the ability of PLG NPs to suppress allergen-specific immune responses to induce a more tolerogenic phenotype, conferring protection from intragastric allergen challenge. These promising studies represent a step forward in the development of improved immunotherapies for food allergy.
Collapse
Affiliation(s)
- Kevin R. Hughes
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Michael N. Saunders
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, United States
| | - Jeffrey J. Landers
- Mary H. Weiser Food Allergy Center, Michigan Medicine, Ann Arbor, MI, United States
| | - Katarzyna W. Janczak
- Mary H. Weiser Food Allergy Center, Michigan Medicine, Ann Arbor, MI, United States
| | - Hamza Turkistani
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Laila M. Rad
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Stephen D. Miller
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Joseph R. Podojil
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- COUR Pharmaceuticals Development Co, Inc., Northbrook, IL, United States
| | - Lonnie D. Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, United States
- Department of Surgery, University of Michigan, Ann Arbor, MI, United States
- Lonnie D. Shea
| | - Jessica J. O'Konek
- Mary H. Weiser Food Allergy Center, Michigan Medicine, Ann Arbor, MI, United States
- *Correspondence: Jessica J. O'Konek
| |
Collapse
|
24
|
Applications of choline-based ionic liquids in drug delivery. Int J Pharm 2022; 612:121366. [PMID: 34896216 DOI: 10.1016/j.ijpharm.2021.121366] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/26/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022]
Abstract
Ionic liquids (ILs) usually refer to kinds of salts with melting point below 100 °C and are composed of definite anions and cations. In recent years, in addition to the field of material engineering, the applications of ILs have been extended to biomedical application. As a solubilizer, skin penetration enhancer, antibacterial agent, and macromolecular stabilizer of poorly soluble active pharmaceutical ingredients, ILs have attracted great attention in the field of pharmaceutical research. Among them, choline-based ILs are very popular in the field of drug delivery due to their biocompatibility, biodegradability, low toxicity or non-toxicity and other characteristics. This article mainly reviews the applications of choline-based ILs formed by choline and organic acid and choline-based ionic liquids-pharmaceutical active ingredients in transdermal delivery, topical delivery and oral delivery.
Collapse
|
25
|
Lombardo SM, Günday Türeli N, Koch M, Schneider M, Türeli AE. Reliable release testing for nanoparticles with the NanoDis System, an innovative sample and separate technique. Int J Pharm 2021; 609:121215. [PMID: 34687815 PMCID: PMC8593552 DOI: 10.1016/j.ijpharm.2021.121215] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/30/2021] [Accepted: 10/16/2021] [Indexed: 11/30/2022]
Abstract
One of the critical quality attributes of nanoparticle formulations is drug release. Their release properties should therefore be well characterized with predictive and discriminative methods. However, there is presently still no standard method for the release testing of extended release nanoformulations. Dialysis techniques are widely used in the literature but suffer from severe drawbacks. Burst release of formulations can be masked by slow permeation kinetics of the free drug through the dialysis membrane, saturation in the membrane, and absence of agitation in the membrane. In this study, the release profile of poly(lactic co-glycolic) (PLGA) nanocapsules loaded with all-trans retinoic acid was characterized using an innovative sample and separate set-up, the NanoDis System, and compared to the release profile measured with a dialysis technique. The NanoDis System showed clear superiority over the dialysis method and was able to accurately characterize the burst release from the capsules and furthermore discriminate between different all-trans retinoic acid nanoparticle formulations.
Collapse
Affiliation(s)
- Sonia M Lombardo
- MyBiotech GmbH, Industriestraße 1B, 66802 Überherrn, Germany; Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Campus C4 1, 66123 Saarbrücken, Germany
| | | | - Marcus Koch
- INM-Leibniz-Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | - Marc Schneider
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Campus C4 1, 66123 Saarbrücken, Germany
| | - Akif E Türeli
- MyBiotech GmbH, Industriestraße 1B, 66802 Überherrn, Germany.
| |
Collapse
|
26
|
Zhou Y, Dong H, Gu Z, Yang S, Ouyang M, Qing Z, Ma X, Hu S, Li J, Yang R. Self-Immolative Dye-Doped Polymeric Probe for Precisely Imaging Hydroxyl Radicals by Avoiding Leakage. Anal Chem 2021; 93:12944-12953. [PMID: 34523923 DOI: 10.1021/acs.analchem.1c02412] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
For sensing low abundance of biomarkers, utilizing nanocarriers to load dyes is an efficient method to amplify the detected signal. However, the non-specific leak of the internal dyes in this approach is accompanied by false positive signals, resulting in inaccurate signal acquirement. To address this issue, in this work, we reported a novel signal amplification strategy with dye as a scaffold to construct a self-immolative dye-doped polymeric probe (SDPP). In our proposed approach, the dyes were covalently integrated into the main chain of a polymer, which can avoid the non-specific leak of the dye when used in a rigorous biological environment, thus evading the false positive signal. As a prototype of this concept, a SDPP, which responds to hydroxyl radicals (•OH), was rationally fabricated. Upon being activated by •OH, SDPP will liberate the dye through a self-immolative reaction to bind with protein for amplifying the fluorescence signal. Compared with a dye-loaded nanoprobe, SDPP can precisely track intracellular basal •OH levels and visualize the •OH associated with myocarditis in vivo. More importantly, the attempt in this work not only provides an effective molecular tool to investigate the role of •OH in cardiopathy, but also puts forward a new direction to current signal-amplifying strategies for precisely and reliably acquiring the intracellular molecular information.
Collapse
Affiliation(s)
- Yibo Zhou
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Hao Dong
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Zhengxuan Gu
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Sheng Yang
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China.,Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Minzhi Ouyang
- Department of Ultrasound Diagnosis, Second Xiangya Hospital, Central South University, Changsha 410011, P. R. China
| | - Zhihe Qing
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Xiaofei Ma
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Shan Hu
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - JunBin Li
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Ronghua Yang
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China.,Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| |
Collapse
|
27
|
Cao Z, Tang X, Zhang Y, Yin T, Gou J, Wang Y, He H. Novel injectable progesterone-loaded nanoparticles embedded in SAIB-PLGA in situ depot system for sustained drug release. Int J Pharm 2021; 607:121021. [PMID: 34416333 DOI: 10.1016/j.ijpharm.2021.121021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/11/2021] [Accepted: 08/15/2021] [Indexed: 12/18/2022]
Abstract
Poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) have attracted considerable interest in the medical community as a sustained-release drug delivery system for localized treatment. However, it is currently a grand challenge to simultaneously achieve low-dose drugs, stable and prolonged drug release, and long-term retention circumventing uptake by macrophages. Here, we construct a solvent-exchange in-situ depot system by incorporating progesterone (PRG) loaded PLGA NPs into a sucrose acetate isobutyrate (SAIB) and PLGA matrix for the long term treatment of Assisted Reproductive Technology (ART). The results showed that different solvent and PLGA contents could affect the drug release rate of PRG NPs-SAIB-PLGA in-situ depot system (PSPIDS). When DMSO was used as solvent with the addition of 8% PLGA to the depot, PSPIDS could achieve a constant drug release with no burst for 2 weeks in vitro. After a single intramuscular injection, such PSPIDS showed higher drug concentration and AUC (6773.0 ± 348.8 μg/L·h) over the entire 7-day testing period compared with the commercial multiple-day-dosing intramuscular PRG-oil solution (1914.5 ± 180.7 μg/L·h) in vivo. Importantly, PSPIDS could be administered at a dose of 3.65 mg/kg, which was one fourth of dose required for PRG-oil solution. The results demonstrate that PRG NPs could successfully achieve both reduced administered dosage and burst release, and therefore that PSPIDS is a promising long-acting composite system for hydrophobic drugs.
Collapse
Affiliation(s)
- Zhijun Cao
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xing Tang
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yu Zhang
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tian Yin
- Department of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jingxin Gou
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yanjiao Wang
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Haibing He
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
28
|
Oseltamivir phosphate loaded pegylated-Eudragit nanoparticles for lung cancer therapy: Characterization, prolonged release, cytotoxicity profile, apoptosis pathways and in vivo anti-angiogenic effect by using CAM assay. Microvasc Res 2021; 139:104251. [PMID: 34520775 DOI: 10.1016/j.mvr.2021.104251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/12/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022]
Abstract
The target of the current investigation was the delivery of oseltamivir phosphate (OSE) into the lung adenocarcinoma tissues by means of designing nanosized, non-toxic and biocompatible pegylated Eudragit based NPs and investigating their anticancer and antiangiogenic activity. The rationale for this strategy is to provide a novel perspective to cancer treatment with OSE loaded pegylated ERS NPs under favor of smaller particle size, biocompatible feature, cationic characteristic, examining their selective effectiveness on lung cell lines (A549 lung cancer cell line and CCD-19Lu normal cell line) and examining antiangiogenic activity by in vivo CAM analysis. For this purpose, OSE encapsulated pegylated ERS based NPs were developed and investigated for zeta potential, particle size, encapsulation efficiency, morphology, DSC, FT-IR, 1H NMR analyses. In vitro release, cytotoxicity, determination apoptotic pathways and in vivo CAM assay were carried out. Considering characterizations, NPs showed smaller particle size, cationic zeta potential, relatively higher EE%, nearly spherical shape, amorphous matrix formation and prolonged release pattern (Peppas-Sahlin and Weibull model with Fickian and non-Fickian release mechanisms). Flow cytometry was used to assess the apoptotic pathways using the Annexin V-FITC/PI staining assay, FITC Active Caspase-3 staining assay, and mitochondrial membrane potential detection tests. Activations on caspase-3 pathways made us think that OSE loaded pegylated ERS NPs triggered to apoptosis using intrinsic pathway. As regards to the in vivo studies, OSE loaded pegylated ERS based NPs demonstrated strong and moderate antiangiogenic activity for ERS-OSE 2 and ERS-OSE 3, respectively. With its cationic character, smaller particle size, relative superior EE%, homogenous amorphous polymeric matrix constitution indicated using solid state tests, prolonged release manner, highly selective to the human lung adenocarcinoma cell lines, could trigger apoptosis intrinsically and effectively, possess good in vivo antiangiogenic activity, ERS-OSE 2 formulation is chosen as a promising candidate and a potent drug delivery system to treat lung cancer.
Collapse
|
29
|
|
30
|
Practical quality attributes of polymeric microparticles with current understanding and future perspectives. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
31
|
Mazlan MKN, Mohd Tazizi MHD, Ahmad R, Noh MAA, Bakhtiar A, Wahab HA, Mohd Gazzali A. Antituberculosis Targeted Drug Delivery as a Potential Future Treatment Approach. Antibiotics (Basel) 2021; 10:antibiotics10080908. [PMID: 34438958 PMCID: PMC8388690 DOI: 10.3390/antibiotics10080908] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 01/17/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is the microorganism that causes tuberculosis. This infectious disease has been around for centuries, with the earliest record of Mtb around three million years ago. The discovery of the antituberculosis agents in the 20th century has managed to improve the recovery rate and reduce the death rate tremendously. However, the conventional antituberculosis therapy is complicated by the development of resistant strains and adverse drug reactions experienced by the patients. Research has been conducted continuously to discover new, safe, and effective antituberculosis drugs. In the last 50 years, only two molecules were approved despite laborious work and costly research. The repurposing of drugs is also being done with few drugs; antibiotics, particularly, were found to have antituberculosis activity. Besides the discovery work, enhancing the delivery of currently available antituberculosis drugs is also being researched. Targeted drug delivery may be a potentially useful approach to be developed into clinically accepted treatment modalities. Active targeting utilizes a specifically designed targeting agent to deliver a chemically conjugated drug(s) towards Mtb. Passive targeting is very widely explored, with the development of multiple types of nanoparticles from organic and inorganic materials. The nanoparticles will be engulfed by macrophages and this will eliminate the Mtb that is present in the macrophages, or the encapsulated drug may be released at the sites of infections that may be in the form of intra- and extrapulmonary tuberculosis. This article provided an overview on the history of tuberculosis and the currently available treatment options, followed by discussions on the discovery of new antituberculosis drugs and active and passive targeting approaches against Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Mohd Khairul Nizam Mazlan
- CHEST, School of Pharmaceutical Sciences, Sains@USM, Universiti Sains Malaysia, Bayan Lepas 11900, Malaysia; (M.K.N.M.); (R.A.)
| | | | - Rosliza Ahmad
- CHEST, School of Pharmaceutical Sciences, Sains@USM, Universiti Sains Malaysia, Bayan Lepas 11900, Malaysia; (M.K.N.M.); (R.A.)
| | - Muhammad Amirul Asyraf Noh
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800, Malaysia; (M.H.D.M.T.); (M.A.A.N.)
| | - Athirah Bakhtiar
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia;
| | - Habibah A. Wahab
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800, Malaysia; (M.H.D.M.T.); (M.A.A.N.)
- Correspondence: (H.A.W.); (A.M.G.)
| | - Amirah Mohd Gazzali
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800, Malaysia; (M.H.D.M.T.); (M.A.A.N.)
- Correspondence: (H.A.W.); (A.M.G.)
| |
Collapse
|
32
|
Karp F, Satler FS, Busatto CA, Luna JA, Estenoz DA, Turino LN. Modulating drug release from poly(lactic‐co‐glycolic) acid microparticles by the addition of alginate and pectin. J Appl Polym Sci 2021. [DOI: 10.1002/app.50293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Federico Karp
- Instituto de Desarrollo Tecnológico para la Industria Química INTEC (Universidad Nacional del Litoral and CONICET) Santa Fe Argentina
| | - Florencia S. Satler
- Instituto de Desarrollo Tecnológico para la Industria Química INTEC (Universidad Nacional del Litoral and CONICET) Santa Fe Argentina
| | - Carlos A. Busatto
- Instituto de Desarrollo Tecnológico para la Industria Química INTEC (Universidad Nacional del Litoral and CONICET) Santa Fe Argentina
| | - Julio A. Luna
- Instituto de Desarrollo Tecnológico para la Industria Química INTEC (Universidad Nacional del Litoral and CONICET) Santa Fe Argentina
| | - Diana A. Estenoz
- Instituto de Desarrollo Tecnológico para la Industria Química INTEC (Universidad Nacional del Litoral and CONICET) Santa Fe Argentina
| | - Ludmila N. Turino
- Instituto de Desarrollo Tecnológico para la Industria Química INTEC (Universidad Nacional del Litoral and CONICET) Santa Fe Argentina
| |
Collapse
|
33
|
Zare P, Pezeshki-Modaress M, Davachi SM, Zare P, Yazdian F, Simorgh S, Ghanbari H, Rashedi H, Bagher Z. Alginate sulfate-based hydrogel/nanofiber composite scaffold with controlled Kartogenin delivery for tissue engineering. Carbohydr Polym 2021; 266:118123. [PMID: 34044939 DOI: 10.1016/j.carbpol.2021.118123] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/15/2021] [Accepted: 04/25/2021] [Indexed: 11/27/2022]
Abstract
In this study, we fabricated two different arrangements of laminated composite scaffolds based on Alginate:Alginate sulfate hydrogel, PCL:Gelatin electrospun mat, and Kartogenin-PLGA nanoparticles (KGN-NPs). The optimized composite scaffold revealed a range of advantages such as improved mechanical features as well as less potential of damage (less dissipated energy), interconnected pores of hydrogel and fiber with adequate pore size, excellent swelling ratio, and controlled biodegradability. Furthermore, the synthesized KGN-NPs with spherical morphology were incorporated into the composite scaffold and exhibited a linear and sustained release of KGN within 30 days with desirable initial burst reduction (12% vs. 20%). Additionally, the cytotoxicity impact of the composite was evaluated. Resazurin assay and Live/Dead staining revealed that the optimized composite scaffold has no cytotoxic effect and could improve cell growth. Overall, according to the enhanced mechanical features, suitable environment for cellular growth, and sustained drug release, the optimized scaffold would be a good candidate for tissue regeneration.
Collapse
Affiliation(s)
- Pariya Zare
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | | | - Seyed Mohammad Davachi
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA.
| | - Pouria Zare
- Department of Civil & Environmental Engineering, Amirkabir University of Technology, Tehran, Iran.
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Science and Technology, University of Tehran, Iran.
| | - Sara Simorgh
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Hadi Ghanbari
- ENT and Head & Neck Research Center and Department, Hazrat Rasoul Akram Hospital, The Five Senses Health Institute, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Hamid Rashedi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | - Zohreh Bagher
- ENT and Head & Neck Research Center and Department, Hazrat Rasoul Akram Hospital, The Five Senses Health Institute, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
34
|
The biomedical significance of multifunctional nanobiomaterials: The key components for site-specific delivery of therapeutics. Life Sci 2021; 277:119400. [PMID: 33794255 DOI: 10.1016/j.lfs.2021.119400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/08/2021] [Accepted: 03/13/2021] [Indexed: 01/07/2023]
Abstract
The emergence of nanotechnology has provided the possibilities to overcome the potential problems associated with the development of pharmaceuticals including the low solubility, non-specific cellular uptake or action, and rapid clearance. Regarding the biomaterials (BMs), huge efforts have been made for improving their multi-functionalities via incorporation of various nanomaterials (NMs). Nanocomposite hydrogels with suitable properties could exhibit a variety of beneficial effects in biomedicine particularly in the delivery of therapeutics or tissue engineering. NMs including the silica- or carbon-based ones are capable of integration into various BMs that might be due to their special compositions or properties such as the hydrophilicity, hydrophobicity, magnetic or electrical characteristics, and responsiveness to various stimuli. This might provide multi-functional nanobiomaterials against a wide variety of disorders. Meanwhile, inappropriate distribution or penetration into the cells or tissues, bio-nano interface complexity, targeting ability loss, or any other unpredicted phenomena are the serious challenging issues. Computational simulations and models enable development of NMs with optimal characteristics and provide a deeper knowledge of NM interaction with biosystems. This review highlights the biomedical significance of the multifunctional NMs particularly those applied for the development of 2-D or 3-D BMs for a variety of applications including the site-specific delivery of therapeutics. The powerful impacts of the computational techniques on the design process of NMs, quantitation and prediction of protein corona formation, risk assessment, and individualized therapy for improved therapeutic outcomes have also been discussed.
Collapse
|
35
|
Liu F, Niko Y, Bouchaala R, Mercier L, Lefebvre O, Andreiuk B, Vandamme T, Goetz JG, Anton N, Klymchenko A. Drug‐Sponge Lipid Nanocarrier for in Situ Cargo Loading and Release Using Dynamic Covalent Chemistry. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/anie.202014259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Fei Liu
- Université de Strasbourg Laboratoire de Bioimagerie et Pathologies UMR 7021 CNRS 74 route du Rhin 67401 Illkirch France
- INSERM UMR 1260, Regenerative Nanomedicine (RNM), FMTS, CNRS 7199, CAMB Université de Strasbourg 67000 Strasbourg France
| | - Yosuke Niko
- Université de Strasbourg Laboratoire de Bioimagerie et Pathologies UMR 7021 CNRS 74 route du Rhin 67401 Illkirch France
- Research and Education Faculty, Multidisciplinary Science Cluster Interdisciplinary Science Unit Kochi University 2-5-1, Akebono-cho, Kochi-shi Kochi 780-8520 Japan
| | - Redouane Bouchaala
- Université de Strasbourg Laboratoire de Bioimagerie et Pathologies UMR 7021 CNRS 74 route du Rhin 67401 Illkirch France
| | - Luc Mercier
- Inserm U1109, Tumor Biomechanics, Fédération de Médecine Translationnelle de Strasbourg (FMTS) University of Strasbourg 67200 Strasbourg France
- Current address: Interdisciplinary Institute for Neuroscience University of Bordeaux, CNRS UMR 5297 33077 Bordeaux France
| | - Olivier Lefebvre
- Inserm U1109, Tumor Biomechanics, Fédération de Médecine Translationnelle de Strasbourg (FMTS) University of Strasbourg 67200 Strasbourg France
| | - Bohdan Andreiuk
- Université de Strasbourg Laboratoire de Bioimagerie et Pathologies UMR 7021 CNRS 74 route du Rhin 67401 Illkirch France
| | - Thierry Vandamme
- INSERM UMR 1260, Regenerative Nanomedicine (RNM), FMTS, CNRS 7199, CAMB Université de Strasbourg 67000 Strasbourg France
| | - Jacky G. Goetz
- Inserm U1109, Tumor Biomechanics, Fédération de Médecine Translationnelle de Strasbourg (FMTS) University of Strasbourg 67200 Strasbourg France
| | - Nicolas Anton
- INSERM UMR 1260, Regenerative Nanomedicine (RNM), FMTS, CNRS 7199, CAMB Université de Strasbourg 67000 Strasbourg France
| | - Andrey Klymchenko
- Université de Strasbourg Laboratoire de Bioimagerie et Pathologies UMR 7021 CNRS 74 route du Rhin 67401 Illkirch France
| |
Collapse
|
36
|
Exploring the Interplay between Drug Release and Targeting of Lipid-Like Polymer Nanoparticles Loaded with Doxorubicin. Molecules 2021; 26:molecules26040831. [PMID: 33562687 PMCID: PMC7915178 DOI: 10.3390/molecules26040831] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/22/2022] Open
Abstract
Targeted delivery of doxorubicin still poses a challenge with regards to the quantities reaching the target site as well as the specificity of the uptake. In the present approach, two colloidal nanocarrier systems, NanoCore-6.4 and NanoCore-7.4, loaded with doxorubicin and characterized by different drug release behaviors were evaluated in vitro and in vivo. The nanoparticles utilize a specific surface design to modulate the lipid corona by attracting blood-borne apolipoproteins involved in the endogenous transport of chylomicrons across the blood–brain barrier. When applying this strategy, the fine balance between drug release and carrier accumulation is responsible for targeted delivery. Drug release experiments in an aqueous medium resulted in a difference in drug release of approximately 20%, while a 10% difference was found in human serum. This difference affected the partitioning of doxorubicin in human blood and was reflected by the outcome of the pharmacokinetic study in rats. For the fast-releasing formulation NanoCore-6.4, the AUC0→1h was significantly lower (2999.1 ng × h/mL) than the one of NanoCore-7.4 (3589.5 ng × h/mL). A compartmental analysis using the physiologically-based nanocarrier biopharmaceutics model indicated a significant difference in the release behavior and targeting capability. A fraction of approximately 7.310–7.615% of NanoCore-7.4 was available for drug targeting, while for NanoCore-6.4 only 5.740–6.057% of the injected doxorubicin was accumulated. Although the targeting capabilities indicate bioequivalent behavior, they provide evidence for the quality-by-design approach followed in formulation development.
Collapse
|
37
|
Liu F, Niko Y, Bouchaala R, Mercier L, Lefebvre O, Andreiuk B, Vandamme T, Goetz JG, Anton N, Klymchenko A. Drug‐Sponge Lipid Nanocarrier for in Situ Cargo Loading and Release Using Dynamic Covalent Chemistry. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Fei Liu
- Université de Strasbourg Laboratoire de Bioimagerie et Pathologies UMR 7021 CNRS 74 route du Rhin 67401 Illkirch France
- INSERM UMR 1260, Regenerative Nanomedicine (RNM), FMTS, CNRS 7199, CAMB Université de Strasbourg 67000 Strasbourg France
| | - Yosuke Niko
- Université de Strasbourg Laboratoire de Bioimagerie et Pathologies UMR 7021 CNRS 74 route du Rhin 67401 Illkirch France
- Research and Education Faculty, Multidisciplinary Science Cluster Interdisciplinary Science Unit Kochi University 2-5-1, Akebono-cho, Kochi-shi Kochi 780-8520 Japan
| | - Redouane Bouchaala
- Université de Strasbourg Laboratoire de Bioimagerie et Pathologies UMR 7021 CNRS 74 route du Rhin 67401 Illkirch France
| | - Luc Mercier
- Inserm U1109, Tumor Biomechanics, Fédération de Médecine Translationnelle de Strasbourg (FMTS) University of Strasbourg 67200 Strasbourg France
- Current address: Interdisciplinary Institute for Neuroscience University of Bordeaux, CNRS UMR 5297 33077 Bordeaux France
| | - Olivier Lefebvre
- Inserm U1109, Tumor Biomechanics, Fédération de Médecine Translationnelle de Strasbourg (FMTS) University of Strasbourg 67200 Strasbourg France
| | - Bohdan Andreiuk
- Université de Strasbourg Laboratoire de Bioimagerie et Pathologies UMR 7021 CNRS 74 route du Rhin 67401 Illkirch France
| | - Thierry Vandamme
- INSERM UMR 1260, Regenerative Nanomedicine (RNM), FMTS, CNRS 7199, CAMB Université de Strasbourg 67000 Strasbourg France
| | - Jacky G. Goetz
- Inserm U1109, Tumor Biomechanics, Fédération de Médecine Translationnelle de Strasbourg (FMTS) University of Strasbourg 67200 Strasbourg France
| | - Nicolas Anton
- INSERM UMR 1260, Regenerative Nanomedicine (RNM), FMTS, CNRS 7199, CAMB Université de Strasbourg 67000 Strasbourg France
| | - Andrey Klymchenko
- Université de Strasbourg Laboratoire de Bioimagerie et Pathologies UMR 7021 CNRS 74 route du Rhin 67401 Illkirch France
| |
Collapse
|
38
|
Yurtdaş-Kırımlıoğlu G, Görgülü Ş. Surface modification of PLGA nanoparticles with chitosan or Eudragit® RS 100: Characterization, prolonged release, cytotoxicity, and enhanced antimicrobial activity. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102145] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
39
|
Antonov EN, Bogorodsky SE, Dunaev AG, Krotova LI, Mariyanats AO, Syachina MA, Popov VK. Development of Components of Prolonged Action Antibacterial Dosage Forms Using SCF Technologies. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2021. [DOI: 10.1134/s1990793120070027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
40
|
Saygili E, Kaya E, Ilhan-Ayisigi E, Saglam-Metiner P, Alarcin E, Kazan A, Girgic E, Kim YW, Gunes K, Eren-Ozcan GG, Akakin D, Sun JY, Yesil-Celiktas O. An alginate-poly(acrylamide) hydrogel with TGF-β3 loaded nanoparticles for cartilage repair: Biodegradability, biocompatibility and protein adsorption. Int J Biol Macromol 2021; 172:381-393. [PMID: 33476613 DOI: 10.1016/j.ijbiomac.2021.01.069] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/27/2020] [Accepted: 01/12/2021] [Indexed: 02/04/2023]
Abstract
Current implantable materials are limited in terms of function as native tissue, and there is still no effective clinical treatment to restore articular impairments. Hereby, a functionalized polyacrylamide (PAAm)-alginate (Alg) Double Network (DN) hydrogel acting as an articular-like tissue is developed. These hydrogels sustain their mechanical stability under different temperature (+4 °C, 25 °C, 40 °C) and humidity conditions (60% and 75%) over 3 months. As for the functionalization, transforming growth factor beta-3 (TGF-β3) encapsulated (NPTGF-β3) and empty poly(lactide-co-glycolide) (PLGA) nanoparticles (PLGA NPs) are synthesized by using microfluidic platform, wherein the mean particle sizes are determined as 81.44 ± 9.2 nm and 126 ± 4.52 nm with very low polydispersity indexes (PDI) of 0.194 and 0.137, respectively. Functionalization process of PAAm-Alg hydrogels with ester-end PLGA NPs is confirmed by FTIR analysis, and higher viscoelasticity is obtained for functionalized hydrogels. Moreover, cartilage regeneration capability of these hydrogels is evaluated with in vitro and in vivo experiments. Compared with the PAAm-Alg hydrogels, functionalized formulations exhibit a better cell viability. Histological staining, and score distribution confirmed that proposed hydrogels significantly enhance regeneration of cartilage in rats due to stable hydrogel matrix and controlled release of TGF-β3. These findings demonstrated that PAAm-Alg hydrogels showed potential for cartilage repair and clinical application.
Collapse
Affiliation(s)
- Ecem Saygili
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Izmir, Turkey
| | - Elif Kaya
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Izmir, Turkey
| | - Esra Ilhan-Ayisigi
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Izmir, Turkey
| | - Pelin Saglam-Metiner
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Izmir, Turkey
| | - Emine Alarcin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Marmara University, 34668 Istanbul, Turkey
| | - Aslihan Kazan
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Izmir, Turkey; Department of Bioengineering, Faculty of Engineering and Natural Sciences, Bursa Technical University, 16310 Bursa, Turkey
| | - Ezgi Girgic
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Izmir, Turkey
| | - Yong-Woo Kim
- Department of Materials Science and Engineering, Seoul National University, 08826 Seoul, Republic of Korea; Research Institute of Advanced Materials (RIAM), Seoul National University, 08826 Seoul, Republic of Korea
| | - Kasim Gunes
- School of Medicine, Department of Histology and Embryology, Marmara University, 34854, Istanbul, Turkey
| | | | - Dilek Akakin
- School of Medicine, Department of Histology and Embryology, Marmara University, 34854, Istanbul, Turkey
| | - Jeong-Yun Sun
- Department of Materials Science and Engineering, Seoul National University, 08826 Seoul, Republic of Korea; Research Institute of Advanced Materials (RIAM), Seoul National University, 08826 Seoul, Republic of Korea
| | - Ozlem Yesil-Celiktas
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Izmir, Turkey.
| |
Collapse
|
41
|
Understanding the burst release phenomenon: toward designing effective nanoparticulate drug-delivery systems. Ther Deliv 2020; 12:21-36. [PMID: 33353422 DOI: 10.4155/tde-2020-0099] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Burst release of encapsulated drug with release of a significant fraction of payload into release medium within a short period, both in vitro and in vivo, remains a challenge for translation. Such unpredictable and uncontrolled release is often undesirable, especially from the perspective of developing sustained-release formulations. Moreover, a brisk release of the payload upsets optimal release kinetics. This account strives toward understanding burst release noticed in nanocarriers and investigates its causes. Various mathematical models to explain such untimely release were also examined, including their strengths and weaknesses. Finally, the account revisits current techniques of limiting burst release from nanocarriers and prioritizes future directions that harbor potential of fruitful translation by reducing such occurrences.
Collapse
|
42
|
Abstract
Alzheimer's disease (AD) is a form of dementia with high impact worldwide, accounting with more than 46 million cases. It is estimated that the number of patients will be four times higher in 2050. The initial symptoms of AD are almost imperceptible and typically involve lapses of memory in recent events. However, the available medicines still focus on controlling the symptoms and do not cure the disease. Regarding the advances in the discovery of new treatments for this devastating disease, natural compounds are gaining increasing relevance in the treatment of AD. Nevertheless, they present some limiting characteristics such as the low bioavailability and the low ability to cross the blood-brain barrier (BBB) that hinder the development of effective therapies. To overcome these issues, the delivery of natural products by targeting nanocarriers has aroused a great interest, improving the therapeutic activity of these molecules. In this article, a review of the research progress on drug delivery systems (DDS) to improve the therapeutic activity of natural compounds with neuroprotective effects for AD is presented. Graphical abstract.
Collapse
|
43
|
Karp F, Turino LN, Helbling IM, Islan GA, Luna JA, Estenoz DA. In situ Formed Implants, Based on PLGA and Eudragit Blends, for Novel Florfenicol Controlled Release Formulations. J Pharm Sci 2020; 110:1270-1278. [PMID: 33217426 DOI: 10.1016/j.xphs.2020.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 11/09/2020] [Indexed: 12/25/2022]
Abstract
Drug controlled release technologies (DCRTs) represent an opportunity for designing new therapies. Main objectives are dose number optimization and secondary effects reduction to improve the level of patient/client acceptance. The present work studies DCRTs based in blended polymeric implants for single dose and long-term therapies of florfenicol (FF), a broad spectrum antibiotic. Polymers used were PLGA and Eudragit E100/S100 types. Eudragit/PLGA and FF/PLGA ratios were the main studied factors in terms of encapsulation efficiencies (EEs) and drug release profiles. In addition, morphological and physicochemical characterization were carried out. EEs were of 50-100% depending on formulation composition, and the FF releasing rate was increased or diminished when E100 or S100 were added, respectively. PLGA hydrolytic cleavage products possibly affect Eudragit solubility and matrix stability. Different mathematical models were used for better understanding and simulating release processes. Implants maintained the antimicrobial activity against Pseudomonas aeruginosa up to 12 days on agar plates. The developed DCRTs represents a suitable alternative for florfenicol long-term therapies.
Collapse
Affiliation(s)
- Federico Karp
- Instituto de Desarrollo Tecnológico para la Industria Química, INTEC (Universidad Nacional del Litoral and CONICET), Güemes 3450, Santa Fe 3000, Argentina
| | - Ludmila N Turino
- Instituto de Desarrollo Tecnológico para la Industria Química, INTEC (Universidad Nacional del Litoral and CONICET), Güemes 3450, Santa Fe 3000, Argentina
| | - Ignacio M Helbling
- Instituto de Desarrollo Tecnológico para la Industria Química, INTEC (Universidad Nacional del Litoral and CONICET), Güemes 3450, Santa Fe 3000, Argentina
| | - German A Islan
- Laboratorio de Nanobiomateriales, CINDEFI, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata and CONICET, Calle 47 y 115, La Plata 1900, Argentina
| | - Julio A Luna
- Instituto de Desarrollo Tecnológico para la Industria Química, INTEC (Universidad Nacional del Litoral and CONICET), Güemes 3450, Santa Fe 3000, Argentina
| | - Diana A Estenoz
- Instituto de Desarrollo Tecnológico para la Industria Química, INTEC (Universidad Nacional del Litoral and CONICET), Güemes 3450, Santa Fe 3000, Argentina.
| |
Collapse
|
44
|
Farinha S, Moura C, Afonso MD, Henriques J. Production of Lysozyme-PLGA-Loaded Microparticles for Controlled Release Using Hot-Melt Extrusion. AAPS PharmSciTech 2020; 21:274. [PMID: 33033873 DOI: 10.1208/s12249-020-01816-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/08/2020] [Indexed: 01/03/2023] Open
Abstract
Biopharmaceuticals are usually administered intravenously with frequent dosing regimens which may decrease patient compliance. Controlled-release formulations allow to reduce the frequency of injections while providing a constant dosing of the biopharmaceutical over extended periods. These formulations are typically produced by emulsions, requiring high amounts of organic solvents and have limited productivity. Hot-melt extrusion (HME) is an alternative technology to produce controlled drug delivery systems. It is a continuous solvent-free process, leading to a small ecological footprint and higher productivity. However, it may induce thermolabile compounds' degradation. In this work, the impact of the formulation and extrusion temperature on lysozyme's bioactivity and release profile of poly(lactic-co-glycolic acid) (PLGA)-based extended release formulations were evaluated using a design-of-experiments (DoE) approach. The lysozyme-loaded PLGA microparticles were produced by HME followed by milling. It was observed that the in vitro release (IVR) profile was mainly affected by the drug load; higher drug load led to higher burst and total lysozyme release after 14 days. HME temperature seemed to decrease lysozyme's activity although this correlation was not statistically significant (p value = 0.0490). Adding polyethylene glycol 400 (PEG 400) as a plasticizer to the formulation had no significant impact on the lysozyme release profile. The burst release was effectively mitigated with the inclusion of a washing step. Washing the microparticles with water reduced the burst release by 80% whereas washing them with a poly(vinyl alcohol) (PVA) aqueous solution eliminated it. In conclusion, HME is demonstrated to be suitable in producing controlled-release microparticles of small biopharmaceuticals. Graphical abstract.
Collapse
|
45
|
Thompson HM, Lim D, Banks C, Grayson JW, Ayinala S, Cho D, Woodworth BA. Antibiotic eluting sinus stents. Laryngoscope Investig Otolaryngol 2020; 5:598-607. [PMID: 32864430 PMCID: PMC7444760 DOI: 10.1002/lio2.423] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/29/2020] [Accepted: 06/12/2020] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES Chronic rhinosinusitis (CRS) is a multifactorial disease affecting up to 16% of the United States population and disproportionately affecting the cystic fibrosis (CF) patient population. Despite treating the underlying infection, the use of systemic antibiotics has shown little efficacy in alleviation of symptom burden. This review seeks to discuss recent research on novel antibiotic eluting stent therapy in vitro and within animal models as well as the factors that contribute to its efficacy. DATA SOURCES PubMed literature review. REVIEW METHODS A review of all published literature related to antibiotic eluting sinus stents was conducted to integrate and summarize this innovative approach to chronic sinus infections. RESULTS Placement of the ciprofloxacin sinus stent (CSS) and ciprofloxacin-ivacaftor sinus stent (CISS) exhibited improvement in endoscopic and radiographic findings in rabbit CRS models. While the CSS showed an overall trend toward improvement in microscopic findings and a reduction in biofilm mass, there remained a significant quantity of planktonic bacteria due to antibiotic depletion from an initial burst release in the first 48 hours of stent placement. The CISS and ciprofloxacin-azithromycin sinus stents (CASSs) exhibited controlled antibiotic release over the study period leading to greatly reduced planktonic bacterial load and biofilm mass. In vitro studies indicate that CASS may be just as efficacious at reducing biofilm mass. CONCLUSION Antibiotic eluting sinus stents show significant promise as a novel therapeutic strategy for CRS. The CISS may have particular promise for the CF patient population by addressing both the infectious and genetic components of disease. Animal studies demonstrate significant promise for translation into human studies. Human clinical trials are warranted to determine the efficacy of antibiotic sinus stents in human patients. LEVEL OF EVIDENCE NA.
Collapse
Affiliation(s)
- Harrison M. Thompson
- Department of Otolaryngology Head and Neck SurgeryUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Dong‐Jin Lim
- Department of Otolaryngology Head and Neck SurgeryUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Catherine Banks
- Prince of Wales and Sydney HospitalsUniversity of New South WalesSydneyNew South WalesAustralia
| | - Jessica W. Grayson
- Department of Otolaryngology Head and Neck SurgeryUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Samrath Ayinala
- Department of Otolaryngology Head and Neck SurgeryUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Do‐Yeon Cho
- Department of Otolaryngology Head and Neck SurgeryUniversity of Alabama at BirminghamBirminghamAlabamaUSA
- Gregory Fleming James Cystic Fibrosis Research CenterBirminghamAlabamaUSA
| | - Bradford A. Woodworth
- Department of Otolaryngology Head and Neck SurgeryUniversity of Alabama at BirminghamBirminghamAlabamaUSA
- Gregory Fleming James Cystic Fibrosis Research CenterBirminghamAlabamaUSA
| |
Collapse
|
46
|
Radaic A, Martins-de-Souza D. The state of the art of nanopsychiatry for schizophrenia diagnostics and treatment. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 28:102222. [DOI: 10.1016/j.nano.2020.102222] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/18/2020] [Accepted: 05/02/2020] [Indexed: 02/07/2023]
|
47
|
Saeedi Garakani S, Davachi SM, Bagher Z, Heraji Esfahani A, Jenabi N, Atoufi Z, Khanmohammadi M, Abbaspourrad A, Rashedi H, Jalessi M. Fabrication of chitosan/polyvinylpyrrolidone hydrogel scaffolds containing PLGA microparticles loaded with dexamethasone for biomedical applications. Int J Biol Macromol 2020; 164:356-370. [PMID: 32682976 DOI: 10.1016/j.ijbiomac.2020.07.138] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/29/2020] [Accepted: 07/11/2020] [Indexed: 02/06/2023]
Abstract
One of the most effective approaches for treatment of chronic rhinosinusitis is the use of hydrogel scaffolds with the sustained release of a given required drug. With this in mind, first, we synthesized and characterized poly (lactide-co-glycolide) (PLGA) micro and nano particles loaded with dexamethasone (DEX). We observed a 7-day release of DEX from nanoparticles, while the microparticles showed a 22-day release profile. Due to their slower rate of release, the PLGA microparticles loaded with DEX (PLGADEX microparticles) were specifically chosen for this study. As a second step, chitosan/polyvinylpyrrolidone (PVP) based hydrogels were prepared in various weight ratios and the PLGADEX microparticles were optimized in their structure based on variable gelation times. The morphological studies showed PLGADEX microparticles homogenously dispersed in the hydrogels. Moreover, the effect of weight ratio in the presence and absence of optimum percentage of PLGADEX microparticles was studied. The resultant hydrogels demonstrated a range of advantages, including good mechanical strength, porous morphology, amorphous structure, high swelling ratio, controlled biodegradability rate, and antibacterial activity. Additionally, a cytotoxicity analysis confirmed that the hydrogel scaffolds do not have adverse effects on the cells; our release studies in the hydrogel with the highest PVP content also showed 80% release after 30 days. Based on these results we were able to predict and control some of the mechanical properties, including the microstructure of the scaffolds, as well as the drug release, by optimizing the polymers - microparticle concentration, plus their resulting interactions. This optimized hydrogel can become part of a suitable alternative for treatment of allergic rhinitis and chronic sinusitis.
Collapse
Affiliation(s)
- Sadaf Saeedi Garakani
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Seyed Mohammad Davachi
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Zohreh Bagher
- ENT and Head & Neck Research Center and Department, The Five Senses Institute, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | | | - Niki Jenabi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Zhaleh Atoufi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mehdi Khanmohammadi
- Skull Base Research Center, The Five Senses Institute, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Alireza Abbaspourrad
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Hamid Rashedi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | - Maryam Jalessi
- Skull Base Research Center, The Five Senses Institute, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
48
|
Shah SR, Prajapati HR, Sheth DB, Gondaliya EM, Vyas AJ, Soniwala MM, Chavda JR. Pharmacokinetics and in vivo distribution of optimized PLGA nanoparticles for pulmonary delivery of levofloxacin. ACTA ACUST UNITED AC 2020; 72:1026-1037. [PMID: 32337714 DOI: 10.1111/jphp.13275] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 03/21/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVES The aim of this study was to develop and optimize levofloxacin loaded PLGA nanoparticles (LN) for pulmonary delivery employing screening and experimental design and evaluate their in-vitro and in-vivo performance. The objective was to achieve Mass Median Aerodynamic Diameter (MMAD) of LN of less than 5μm, sustain the drug release up to 120 h and a higher AUC/MIC at the site of action. METHODS LN were prepared by modified emulsion solvent evaporation technique employing high speed homogenization, probe sonication and subsequent lyophilization. KEY FINDINGS The Pareto chart from Placket Burman screening design revealed that homogenization speed and amount of PLGA were found to be significant (P < 0.05). Further analysis by 3 full-factorial design revealed that F-ratio was found to be far greater than the theoretical value (P < 0.05) for each regression model. CONCLUSION The optimized formulation with desirability value 0.9612 showed mean particle size of 146 nm, MMAD of 4.40 μm and sustained the drug release up to 120 h in simulated lung fluid. Augmentation in Cmax (1.71-fold), AUC 0-∞ (5.46-fold), Mean Residence Time (6.64-fold) and AUC/MIC (6.21-fold) of LN through pulmonary route was found to significantly higher (P < 0.05) than levofloxacin (p. o.).
Collapse
Affiliation(s)
- Sunny R Shah
- Bhagvanlal Kapoorchand Mody Government Pharmacy College, Rajkot, India
| | - Hani R Prajapati
- Bhagvanlal Kapoorchand Mody Government Pharmacy College, Rajkot, India
| | - Devang B Sheth
- Bhagvanlal Kapoorchand Mody Government Pharmacy College, Rajkot, India
| | - Ekta M Gondaliya
- Bhagvanlal Kapoorchand Mody Government Pharmacy College, Rajkot, India
| | - Amit J Vyas
- Bhagvanlal Kapoorchand Mody Government Pharmacy College, Rajkot, India
| | | | - Jayant R Chavda
- Bhagvanlal Kapoorchand Mody Government Pharmacy College, Rajkot, India
| |
Collapse
|
49
|
Öztürk AA, Yenilmez E, Şenel B, Kıyan HT, Güven UM. Effect of different molecular weight PLGA on flurbiprofen nanoparticles: formulation, characterization, cytotoxicity, and in vivo anti-inflammatory effect by using HET-CAM assay. Drug Dev Ind Pharm 2020; 46:682-695. [DOI: 10.1080/03639045.2020.1755304] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- A. Alper Öztürk
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Evrim Yenilmez
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Behiye Şenel
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Hülya Tuba Kıyan
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Umay Merve Güven
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Çukurova University, Adana, Turkey
| |
Collapse
|
50
|
Molavi F, Barzegar-Jalali M, Hamishehkar H. Polyester based polymeric nano and microparticles for pharmaceutical purposes: A review on formulation approaches. J Control Release 2020; 320:265-282. [DOI: 10.1016/j.jconrel.2020.01.028] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 12/18/2022]
|