1
|
Ulrich N, Voigt K, Kudria A, Böhme A, Ebert RU. Prediction of the water solubility by a graph convolutional-based neural network on a highly curated dataset. J Cheminform 2025; 17:55. [PMID: 40259418 PMCID: PMC12012962 DOI: 10.1186/s13321-025-01000-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 03/30/2025] [Indexed: 04/23/2025] Open
Abstract
Water solubility is a relevant physico-chemcial property in environmental chemistry, toxicology, and drug design. Although the water solubility is besides the octanol-water partition coefficient, melting point, and boiling point a property with a large amount of available experimental data, there are still more compounds in the chemical universe for which information on their water solubility is lacking. Thus, prediction tools with a broad application domain are needed to fill the corresponding data gaps. To this end, we developed a graph convolutional neural network model (GNN) to predict the water solubility in the form of log Sw based on a highly curated dataset of 9800 chemicals. We started our model development with a curation workflow of the AqSolDB data, ending with 7605 data points. We added 2195 chemicals with experimental data, which we found in the literature, to our dataset. In the final dataset, log Sw values range from - 13.17 to 0.50. Higher values were excluded by a cut-off introduced to eliminate fully miscible chemicals. We developed a consensus GNN by a fivefold split of the corresponding training set (70% of the data) and validation set (20%) and used 10% as independent test set for the evaluation of the performance of the different splits and the consensus model. By doing so, we achieved an r2 of 0.901, a q2 of 0.896, and an rmse of 0.657 on our independently selected test set, which is close to the experimental error of 0.5 to 0.6 log units. We further provide the information on the application domain and compare our performance to other existing prediction tools.Scientific contribution Based on a highly curated dataset, we developed a neural network to predict the water solubility of chemicals for a broad application domain. Data curation was done by us in a step-wise procedure, where we identified various errors in the experimental data. Based on an independent test set, we compare our prediction results to those of the available prediction models.
Collapse
Affiliation(s)
- Nadin Ulrich
- Department of Exposure Science, Helmholtz Centre for Environmental Research-UFZ, Permoserstrasse 15, 04318, Leipzig, Germany.
- PAULY, Theresienstrasse 50, 04129, Leipzig, Germany.
| | | | - Anton Kudria
- Department of Exposure Science, Helmholtz Centre for Environmental Research-UFZ, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Alexander Böhme
- Department of Exposure Science, Helmholtz Centre for Environmental Research-UFZ, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Ralf-Uwe Ebert
- Department of Exposure Science, Helmholtz Centre for Environmental Research-UFZ, Permoserstrasse 15, 04318, Leipzig, Germany
| |
Collapse
|
2
|
Alvarenga DJ, de Toledo PJS, Filho JCH, Cândido JVDSN, Franco LL, Hawkes JA, Carvalho DT. Targeting Neglected Tropical Diseases and Malaria: The Therapeutic Promise of Mannich Bases. Chem Biodivers 2025:e202403111. [PMID: 40192348 DOI: 10.1002/cbdv.202403111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/24/2025] [Accepted: 04/06/2025] [Indexed: 04/19/2025]
Abstract
Neglected tropical diseases (NTDs) and malaria remain significant public health challenges, particularly in resource-limited regions. The search for novel therapeutic agents to combat these diseases is imperative due to emerging drug resistance and limited treatment options. Mannich bases, a class of organic compounds synthesised via the Mannich reaction, exhibit diverse pharmacological properties, including antimicrobial, antimalarial, antiviral, antimycobacterial, antiparasitic (leishmanicidal, trypanocidal, anthelmintic) and even anti-diabetic. Their structural versatility allows for modifications to enhance bioavailability, potency and selectivity against specific pathogens. Moreover, Mannich bases can target multiple biological pathways involved in the pathogenesis of NTDs and malaria, thereby offering a multifaceted approach to treatment. This review explores the pharmacological potential of Mannich bases in addressing NTDs and malaria.
Collapse
Affiliation(s)
| | | | | | | | - Lucas Lopardi Franco
- Faculdade de Ciências Farmacêuticas, Universidade Federal de Alfenas, Alfenas, Minas Gerais, Brazil
| | - Jamie Anthony Hawkes
- Faculdade de Ciências Farmacêuticas, Universidade Federal de Alfenas, Alfenas, Minas Gerais, Brazil
| | - Diogo Teixeira Carvalho
- Faculdade de Ciências Farmacêuticas, Universidade Federal de Alfenas, Alfenas, Minas Gerais, Brazil
| |
Collapse
|
3
|
Guo Y, Wang H, Zhu Q, Mao Y, Wen X, Zhang X, Mao S, Yuan H, Guan J. Exploration of enalapril-lacidipine co-amorphous system with superior dissolution, in vivo absorption and physical stability via incorporated into mesoporous silica. Eur J Pharm Sci 2025; 207:107033. [PMID: 39921148 DOI: 10.1016/j.ejps.2025.107033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/17/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
In the present study, enalapril (ENP) was taking as a potential co-former to fabricate co-amorphous system with lacidipine (LCDP). The ENP/LCDP co-amorphous system was firstly prepared with or without mesoporous SiO2 and characterized by DSC, XRD and SEM technologies. The potential molecular interactions were evaluated by FTIR spectrums. Furthermore, the dissolution and pharmacokinetics behavior of various formulations were also carried out. It was demonstrated that the completely co-amorphization was obtained at ENP/LCDP 2:1 molar ratio by the intermolecular interactions between ENP and LCDP. The ENP/LCDP co-amorphous system significantly improve the dissolution rate of LCDP and ENP respectively. Compared to the naked ENP/LCDP co-amorphous system, remarkable enhancement of dissolution rate and bioavailability of model drugs was observed by incorporated the co-amorphous system into mesoporous SiO2, and a superior physical stability was also observed after accelerated study. Raman mapping revealed that the less microstructure phase separation could be the main reason for the better stability in presence of mesoporous SiO2. In conclusion, ENP could be successfully used as a potential co-former to fabricate co-amorphous system with poorly water-soluble drugs and collaborates the co-amorphous with mesoporous SiO2 become a promising strategy to achieve stable amorphous formulation for further enhancement of dissolution rate and bioavailability.
Collapse
Affiliation(s)
- Yuhan Guo
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hanyu Wang
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qiang Zhu
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Ying Mao
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiangce Wen
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xin Zhang
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China
| | - Shirui Mao
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China
| | - Huiya Yuan
- Department of Forensic Analytical Toxicology, China Medical University School of Forensic Medicine, Shenyang 110112, China; Liaoning Province Key Laboratory of Forensic Bio-evidence Science, Shenyang 110112, China; China Medical University Center of Forensic Investigation, Shenyang 110112, China.
| | - Jian Guan
- School of Pharmacy, Shenyang Key Laboratory of Intelligent Mucosal Drug Delivery Systems, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China.
| |
Collapse
|
4
|
de Souza MM, Gini ALR, Moura JA, Scarim CB, Chin CM, dos Santos JL. Prodrug Approach as a Strategy to Enhance Drug Permeability. Pharmaceuticals (Basel) 2025; 18:297. [PMID: 40143076 PMCID: PMC11946379 DOI: 10.3390/ph18030297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/12/2025] [Accepted: 02/16/2025] [Indexed: 03/28/2025] Open
Abstract
Absorption and permeability are critical physicochemical parameters that must be balanced to achieve optimal drug uptake. These key factors are closely linked to the maximum absorbable dose required to provide appropriate plasma levels of drugs. Among the various strategies employed to enhance drug solubility and permeability, prodrug design stands out as a highly effective and versatile approach for improving physicochemical properties and enabling the optimization of biopharmaceutical and pharmacokinetic parameters while mitigating adverse effects. Prodrugs are compounds with reduced or no activity that, through bio-reversible chemical or enzymatic processes, release an active parental drug. The application of this technology has led to significant advancements in drug optimization during the design phase, and it offers broad potential for further development. Notably, approximately 13% of the drugs approved by the U.S. Food and Drug Administration (FDA) between 2012 and 2022 were prodrugs. In this review article, we will explore the application of prodrug strategies to enhance permeability, describing examples of market drugs. We also describe the use of the prodrug approach to optimize PROteolysis TArgeting Chimeras (PROTACs) permeability by using conjugation technologies. We will highlight some new technologies in prodrugs to enrich permeability properties, contributing to developing new effective and safe prodrugs.
Collapse
Affiliation(s)
- Mateus Mello de Souza
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (M.M.d.S.); (A.L.R.G.); (C.B.S.); (C.M.C.)
| | - Ana Luísa Rodriguez Gini
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (M.M.d.S.); (A.L.R.G.); (C.B.S.); (C.M.C.)
| | - Jhonnathan Alves Moura
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara 14800-900, SP, Brazil;
| | - Cauê Benito Scarim
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (M.M.d.S.); (A.L.R.G.); (C.B.S.); (C.M.C.)
| | - Chung Man Chin
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (M.M.d.S.); (A.L.R.G.); (C.B.S.); (C.M.C.)
- Union of the Colleges of the Great Lakes (UNILAGO), School of Medicine, Advanced Research Center in Medicine (CEPAM), Sao Jose do Rio Preto 15030-070, SP, Brazil
| | - Jean Leandro dos Santos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (M.M.d.S.); (A.L.R.G.); (C.B.S.); (C.M.C.)
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara 14800-900, SP, Brazil;
| |
Collapse
|
5
|
Xie B, Liu Y, Li X, Yang P, He W. Solubilization techniques used for poorly water-soluble drugs. Acta Pharm Sin B 2024; 14:4683-4716. [PMID: 39664427 PMCID: PMC11628819 DOI: 10.1016/j.apsb.2024.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/28/2024] [Accepted: 08/14/2024] [Indexed: 12/13/2024] Open
Abstract
About 40% of approved drugs and nearly 90% of drug candidates are poorly water-soluble drugs. Low solubility reduces the drugability. Effectively improving the solubility and bioavailability of poorly water-soluble drugs is a critical issue that needs to be urgently addressed in drug development and application. This review briefly introduces the conventional solubilization techniques such as solubilizers, hydrotropes, cosolvents, prodrugs, salt modification, micronization, cyclodextrin inclusion, solid dispersions, and details the crystallization strategies, ionic liquids, and polymer-based, lipid-based, and inorganic-based carriers in improving solubility and bioavailability. Some of the most commonly used approved carrier materials for solubilization techniques are presented. Several approved poorly water-soluble drugs using solubilization techniques are summarized. Furthermore, this review summarizes the solubilization mechanism of each solubilization technique, reviews the latest research advances and challenges, and evaluates the potential for clinical translation. This review could guide the selection of a solubilization approach, dosage form, and administration route for poorly water-soluble drugs. Moreover, we discuss several promising solubilization techniques attracting increasing attention worldwide.
Collapse
Affiliation(s)
- Bing Xie
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Yaping Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Xiaotong Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Pei Yang
- School of Science, China Pharmaceutical University, Nanjing 2111198, China
| | - Wei He
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| |
Collapse
|
6
|
Salem F, Nguyen D, Bush M, Moore KP, Mudunuru J, Stamatopoulos K, Thakkar N, Taskar KS. Development of a physiologically based pharmacokinetic model of fostemsavir and its pivotal application to support dosing in pregnancy. CPT Pharmacometrics Syst Pharmacol 2024; 13:1881-1892. [PMID: 38690782 DOI: 10.1002/psp4.13156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 05/03/2024] Open
Abstract
It is critical to understand the impact of significant physiological changes during pregnancy on the extent of maternal and fetal drug exposure. Fostemsavir (FTR) is a prodrug of temsavir (TMR) and is approved in combination with other antiretrovirals for multi-drug-resistant human immunodeficiency virus (HIV) infections. This physiologically based pharmacokinetic model (PBPK) study was used to estimate TMR PK in pregnant populations during each trimester of pregnancy to inform FTR dosing. A PBPK model was developed and validated for TMR using PK data collected following intravenous TMR and oral FTR dosing (immediate-release and extended-release tablets) in healthy volunteers. Predicted TMR concentration-time profiles accurately predicted the reported clinical data and variability in healthy (dense data) and pregnant (sparse data) populations. Predicted versus observed TMR geometric mean (CV%) clearance following intravenous administration was 18.01 (29) versus 17 (21) (L/h). Predicted versus observed TMR AUC0-inf (ng.h/mL) in healthy volunteers following FTR administration of the extended-release tablet were 9542 (66) versus 7339 (33). The validated TMR PBPK model was then applied to predict TMR PK in a population of pregnant individuals during each trimester. Simulations showed TMR AUC in pregnant individuals receiving FTR 600 mg twice daily was decreased by 25% and 38% in the second and third trimesters, respectively. However, TMR exposure remained within the range observed in nonpregnant adults with no need for dose adjustment. The current PBPK model can also be applied for the prediction of local tissue concentrations and drug-drug interactions in pregnancy.
Collapse
Affiliation(s)
- Farzaneh Salem
- Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, R&D, Stevenage, UK
| | - Dung Nguyen
- Drug Metabolism and Pharmacokinetics, GlaxoSmithKline R&D, Collegeville, Pennsylvania, USA
| | - Mark Bush
- Clinical Pharmacology, ViiV Research & Development, Triangle Park, North Carolina, USA
| | - Katy P Moore
- Clinical Pharmacology Modeling and Simulation, Allucent, Cary, North Carolina, USA
| | - Jennypher Mudunuru
- Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, R&D, Stevenage, UK
| | | | - Nilay Thakkar
- Clinical Pharmacology Modeling and Simulation, GlaxoSmithKline R&D, Collegeville, Pennsylvania, USA
| | - Kunal S Taskar
- Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, R&D, Stevenage, UK
| |
Collapse
|
7
|
Nazli A, Irshad Khan MZ, Rácz Á, Béni S. Acid-sensitive prodrugs; a promising approach for site-specific and targeted drug release. Eur J Med Chem 2024; 276:116699. [PMID: 39089000 DOI: 10.1016/j.ejmech.2024.116699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/02/2024] [Accepted: 07/18/2024] [Indexed: 08/03/2024]
Abstract
Drugs administered through conventional formulations are devoid of targeting and often spread to various undesired sites, leading to sub-lethal concentrations at the site of action and the emergence of undesired effects. Hence, therapeutic agents should be delivered in a controlled manner at target sites. Currently, stimuli-based drug delivery systems have demonstrated a remarkable potential for the site-specific delivery of therapeutic moieties. pH is one of the widely exploited stimuli for drug delivery as several pathogenic conditions such as tumor cells, infectious and inflammatory sites are characterized by a low pH environment. This review article aims to demonstrate various strategies employed in the design of acid-sensitive prodrugs, providing an overview of commercially available acid-sensitive prodrugs. Furthermore, we have compiled the progress made for the development of new acid-sensitive prodrugs currently undergoing clinical trials. These prodrugs include albumin-binding prodrugs (Aldoxorubicin and DK049), polymeric micelle (NC-6300), polymer conjugates (ProLindac™), and an immunoconjugate (IMMU-110). The article encompasses a broad spectrum of studies focused on the development of acid-sensitive prodrugs for anticancer, antibacterial, and anti-inflammatory agents. Finally, the challenges associated with the acid-sensitive prodrug strategy are discussed, along with future directions.
Collapse
Affiliation(s)
- Adila Nazli
- Department of Pharmacognosy, Semmelweis University, 1085, Budapest, Hungary.
| | | | - Ákos Rácz
- Department of Pharmacognosy, Semmelweis University, 1085, Budapest, Hungary.
| | - Szabolcs Béni
- Integrative Health and Environmental Analysis Research Laboratory, Department of Analytical Chemistry, Institute of Chemistry, Eötvös Loránd University, 1117, Budapest, Hungary.
| |
Collapse
|
8
|
Macedo LDO, Masiero JF, Bou-Chacra NA. Drug Nanocrystals in Oral Absorption: Factors That Influence Pharmacokinetics. Pharmaceutics 2024; 16:1141. [PMID: 39339178 PMCID: PMC11434809 DOI: 10.3390/pharmaceutics16091141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/17/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Despite the safety and convenience of oral administration, poorly water-soluble drugs compromise absorption and bioavailability. These drugs can exhibit low dissolution rates, variability between fed and fasted states, difficulty permeating the mucus layer, and P-glycoprotein efflux. Drug nanocrystals offer a promising strategy to address these challenges. This review focuses on the opportunities to develop orally administered nanocrystals based on pharmacokinetic outcomes. The impacts of the drug particle size, morphology, dissolution rate, crystalline state on oral bioavailability are discussed. The potential of the improved dissolution rate to eliminate food effects during absorption is also addressed. This review also explores whether permeation or dissolution drives nanocrystal absorption. Additionally, it addresses the functional roles of stabilizers. Drug nanocrystals may result in prolonged concentrations in the bloodstream in some cases. Therefore, nanocrystals represent a promising strategy to overcome the challenges of poorly water-soluble drugs, thus encouraging further investigation into unclear mechanisms during oral administration.
Collapse
Affiliation(s)
| | | | - Nádia Araci Bou-Chacra
- Faculty of Pharmaceutical Sciences, University of São Paulo, Sao Paulo 05508-000, SP, Brazil
| |
Collapse
|
9
|
Lou Z, Mu C, Corpstein CD, Li T. In vivo deposition of poorly soluble drugs. Adv Drug Deliv Rev 2024; 211:115358. [PMID: 38851590 DOI: 10.1016/j.addr.2024.115358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/12/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Administered drug molecules, whether dissolved or solubilized, have the potential to precipitate and accumulate as solid forms in tissues and cells within the body. This phase transition can significantly impact the pharmacokinetics of treatment. It is thus crucial to gain an understanding of how drug solubility/permeability, drug formulations and routes of administration affect in vivo behaviors of drug deposition. This review examines literature reports on the drug deposition in tissues and cells of poorly water-soluble drugs, as well as underlying physical mechanisms that lead to precipitation. Our work particularly highlights drug deposition in macrophages and the subcellular fate of precipitated drugs. We also propose a tissue permeability-based classification framework to evaluate precipitation potentials of poorly soluble drugs in major organs and tissues. The impact on pharmacokinetics is further discussed and needs to be considered in developing drug delivery systems. Finally, bioimaging techniques that are used to examine aggregated states and the intracellular trafficking of absorbed drugs are summarized.
Collapse
Affiliation(s)
- Zhaohuan Lou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou 310053, China; Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47906, USA
| | - Chaofeng Mu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Zhejiang, Hangzhou 310053, China
| | - Clairissa D Corpstein
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47906, USA
| | - Tonglei Li
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47906, USA.
| |
Collapse
|
10
|
Tu Y, Gong J, Mou J, Jiang H, Zhao H, Gao J. Strategies for the development of stimuli-responsive small molecule prodrugs for cancer treatment. Front Pharmacol 2024; 15:1434137. [PMID: 39144632 PMCID: PMC11322083 DOI: 10.3389/fphar.2024.1434137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024] Open
Abstract
Approved anticancer drugs typically face challenges due to their narrow therapeutic window, primarily because of high systemic toxicity and limited selectivity for tumors. Prodrugs are initially inactive drug molecules designed to undergo specific chemical modifications. These modifications render the drugs inactive until they encounter specific conditions or biomarkers in vivo, at which point they are converted into active drug molecules. This thoughtful design significantly improves the efficacy of anticancer drug delivery by enhancing tumor specificity and minimizing off-target effects. Recent advancements in prodrug design have focused on integrating these strategies with delivery systems like liposomes, micelles, and polymerosomes to further improve targeting and reduce side effects. This review outlines strategies for designing stimuli-responsive small molecule prodrugs focused on cancer treatment, emphasizing their chemical structures and the mechanisms controlling drug release. By providing a comprehensive overview, we aim to highlight the potential of these innovative approaches to revolutionize cancer therapy.
Collapse
Affiliation(s)
- Yuxuan Tu
- The Afffliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Jianbao Gong
- Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao Municipal Hospital, Qingdao, China
| | - Jing Mou
- Department of Neonatology, Qingdao Women and Children’s Hospital, Qingdao University, Qingdao, Shandong, China
| | - Hongfei Jiang
- The Afffliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Haibo Zhao
- The Afffliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Jiake Gao
- The Afffliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| |
Collapse
|
11
|
Wang S, Xu Q, Furuishi T, Fukuzawa K, Yonemochi E. Characterization and drug solubilization of arginine-based ionic liquids - Impact of counterions and stoichiometry. Int J Pharm 2024; 659:124228. [PMID: 38744415 DOI: 10.1016/j.ijpharm.2024.124228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/28/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
Ionic liquids (ILs) exhibit very diverse physicochemical properties, such as non-volatility, stability, and miscibility, which render them excellent candidate excipients for multi-purpose use. Six novel arginine (Arg)-based ILs were obtained using a one-step ultrasound method. Salt formation was confirmed by Fourier-transform infrared (FTIR), Raman, and nuclear magnetic resonance (NMR) spectroscopies. Moreover, the effects of anions and molar ratio on the molecular states and thermal properties of Arg-ILs were investigated. In addition, the solubilization of drugs with different pKa and LogP values was attempted using Arg-ILs consisting of asparagine, proline, octanoic acid, and malic acid, respectively, and a comparative study was performed. Furthermore, the interaction mode between the drugs and ILs was determined by FTIR and Raman spectroscopy. Presumably, partial interaction between the component of ILs and drugs such as ofloxacin and valsartan occurred, whereas flurbiprofen and isosorbide mononitrate were dispersed in the viscous IL. The development of strategies for the application of ILs as solubilizers or carriers of active pharmaceutical ingredients is an extremely promising and wide avenue of research.
Collapse
Affiliation(s)
- Siran Wang
- Department of Physical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Qihui Xu
- Department of Physical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Takayuki Furuishi
- Department of Physical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
| | - Kaori Fukuzawa
- Department of Physical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita 565-0871, Japan
| | - Etsuo Yonemochi
- Department of Physical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
| |
Collapse
|
12
|
Zheng H, Wu H, Wang D, Wang S, Ji D, Liu X, Gao G, Su X, Zhang Y, Ling Y. Research progress of prodrugs for the treatment of cerebral ischemia. Eur J Med Chem 2024; 272:116457. [PMID: 38704941 DOI: 10.1016/j.ejmech.2024.116457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/20/2024] [Accepted: 04/25/2024] [Indexed: 05/07/2024]
Abstract
It is well-known that pharmacotherapy plays a pivotal role in the treatment and prevention of cerebral ischemia. Nevertheless, existing drugs, including numerous natural products, encounter various challenges when applied in cerebral ischemia treatment. These challenges comprise poor brain absorption due to low blood-brain barrier (BBB) permeability, limited water solubility, inadequate bioavailability, poor stability, and rapid metabolism. To address these issues, researchers have turned to prodrug strategies, aiming to mitigate or eliminate the adverse properties of parent drug molecules. In vivo metabolism or enzymatic reactions convert prodrugs into active parent drugs, thereby augmenting BBB permeability, improving bioavailability and stability, and reducing toxicity to normal tissues, ultimately aiming to enhance treatment efficacy and safety. This comprehensive review delves into multiple effective prodrug strategies, providing a detailed description of representative prodrugs developed over the past two decades. It underscores the potential of prodrug approaches to improve the therapeutic outcomes of currently available drugs for cerebral ischemia. The publication of this review serves to enrich current research progress on prodrug strategies for the treatment and prevention of cerebral ischemia. Furthermore, it seeks to offer valuable insights for pharmaceutical chemists in this field, offer guidance for the development of drugs for cerebral ischemia, and provide patients with safer and more effective drug treatment options.
Collapse
Affiliation(s)
- Hongwei Zheng
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001, Nantong, Jiangsu, PR China
| | - Hongmei Wu
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001, Nantong, Jiangsu, PR China; Department of Neurosurgery, Affiliated Hospital of Nantong University, 226001, Nantong, Jiangsu, PR China
| | - Dezhi Wang
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001, Nantong, Jiangsu, PR China; Department of Neurosurgery, Affiliated Hospital of Nantong University, 226001, Nantong, Jiangsu, PR China
| | - Sijia Wang
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001, Nantong, Jiangsu, PR China; Department of Neurosurgery, Affiliated Hospital of Nantong University, 226001, Nantong, Jiangsu, PR China
| | - Dongliang Ji
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001, Nantong, Jiangsu, PR China; Department of Neurosurgery, Affiliated Hospital of Nantong University, 226001, Nantong, Jiangsu, PR China
| | - Xiao Liu
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001, Nantong, Jiangsu, PR China
| | - Ge Gao
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001, Nantong, Jiangsu, PR China
| | - Xing Su
- Department of Neurosurgery, Affiliated Hospital of Nantong University, 226001, Nantong, Jiangsu, PR China.
| | - Yanan Zhang
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001, Nantong, Jiangsu, PR China.
| | - Yong Ling
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, 226001, Nantong, Jiangsu, PR China.
| |
Collapse
|
13
|
Wang JS, Zhao KX, Zhang K, Pannecouque C, De Clercq E, Wang S, Chen FE. Structure-guided design of novel biphenyl-quinazoline derivatives as potent non-nucleoside reverse transcriptase inhibitors featuring improved anti-resistance, selectivity, and solubility. Bioorg Chem 2024; 147:107340. [PMID: 38593532 DOI: 10.1016/j.bioorg.2024.107340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024]
Abstract
In pursuit of enhancing the anti-resistance efficacy and solubility of our previously identified NNRTI 1, a series of biphenyl-quinazoline derivatives were synthesized employing a structure-based drug design strategy. Noteworthy advancements in anti-resistance efficacy were discerned among some of these analogs, prominently exemplified by compound 7ag, which exhibited a remarkable 1.37 to 602.41-fold increase in potency against mutant strains (Y181C, L100I, Y188L, F227L + V106A, and K103N + Y181C) in comparison to compound 1. Compound 7ag also demonstrated comparable anti-HIV activity against both WT HIV and K103N, albeit with a marginal reduction in activity against E138K. Of significance, this analog showed augmented selectivity index (SI > 5368) relative to compound 1 (SI > 37764), Nevirapine (SI > 158), Efavirenz (SI > 269), and Etravirine (SI > 1519). Moreover, it displayed a significant enhancement in water solubility, surpassing that of compound 1, Etravirine, and Rilpivirine. To elucidate the underlying molecular mechanisms, molecular docking studies were undertaken to probe the critical interactions between 7ag and both WT and mutant strains of HIV-1 RT. These findings furnish invaluable insights driving further advancements in the development of DAPYs for HIV therapy.
Collapse
Affiliation(s)
- Jin-Si Wang
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou 450001, China; Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Ke-Xin Zhao
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou 450001, China; Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Kun Zhang
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou 450001, China; Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| | | | - Erik De Clercq
- Rega Institute for Medical Research, KU Leuven, Herestraat 49 B-3000, Leuven, Belgium
| | - Shuai Wang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China.
| | - Fen-Er Chen
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou 450001, China; Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China.
| |
Collapse
|
14
|
Xu D, Song XJ, Chen X, Wang JW, Cui YL. Advances and future perspectives of intranasal drug delivery: A scientometric review. J Control Release 2024; 367:366-384. [PMID: 38286336 DOI: 10.1016/j.jconrel.2024.01.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 01/31/2024]
Abstract
Intranasal drug delivery is as a noninvasive and efficient approach extensively utilized for treating the local, central nervous system, and systemic diseases. Despite numerous reviews delving into the application of intranasal drug delivery across biomedical fields, a comprehensive analysis of advancements and future perspectives remains elusive. This review elucidates the research progress of intranasal drug delivery through a scientometric analysis. It scrutinizes several challenges to bolster research in this domain, encompassing a thorough exploration of entry and elimination mechanisms specific to intranasal delivery, the identification of drugs compatible with the nasal cavity, the selection of dosage forms to surmount limited drug-loading capacity and poor solubility, and the identification of diseases amenable to the intranasal delivery strategy. Overall, this review furnishes a perspective aimed at galvanizing future research and development concerning intranasal drug delivery.
Collapse
Affiliation(s)
- Dong Xu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi' an 710032, China
| | - Xu-Jiao Song
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China
| | - Xue Chen
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China
| | - Jing-Wen Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi' an 710032, China
| | - Yuan-Lu Cui
- State Key Laboratory of Component-based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
15
|
Wang H, Zhao P, Ma R, Jia J, Fu Q. Drug-drug co-amorphous systems: An emerging formulation strategy for poorly water-soluble drugs. Drug Discov Today 2024; 29:103883. [PMID: 38219970 DOI: 10.1016/j.drudis.2024.103883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/21/2023] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Overcoming the poor water solubility of small-molecule drugs is a major challenge in the development of clinical pharmaceuticals. Amorphization of crystalline drugs is a highly effective strategy to improve their aqueous solubility. However, amorphous drugs are thermodynamically unstable and likely to crystallize during manufacturing and storage. Recently, drug-drug co-amorphous systems have emerged as a novel strategy to not only enable enhanced dissolution and physical stability of the individual drugs within the system but also to provide a strategy for combination therapy of the same or different clinical indications. This review serves to highlight advances in the methods used to manufacture and characterize drug-drug co-amorphous systems, summarize drug-drug co-amorphous applications reported in recent decades, and provide an outlook on future possibilities and perspectives.
Collapse
Affiliation(s)
- Hongge Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Peixu Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Ruilong Ma
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Jirun Jia
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Qiang Fu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
16
|
Xu W, Zou X, Zha Y, Zhang J, Bian H, Shen Z. Novel Bis-Artemisinin-Phloroglucinol hybrid molecules with dual anticancer and immunomodulatory Activities: Synthesis and evaluation. Bioorg Chem 2023; 139:106705. [PMID: 37406517 DOI: 10.1016/j.bioorg.2023.106705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 07/07/2023]
Abstract
Bis-(10-deoxydihydroartemisinin)-phloroglucinol (9), has been synthesized in a one-step reaction and has demonstrated strong inhibition to cancer cell proliferation and immunosuppressive activity. The structure modification of the compound reduced its cytotoxicity, and among the analogs, bis-(10-deoxydihydroartemisinin)-phloroglucinol phenyl decanoate (16) showed significant reduction of ear swelling in a mouse model for DNFB-induced delayed-type hypersensitivity without observable toxicity in a dose-dependent manner.
Collapse
Affiliation(s)
- Wei Xu
- School of Medicine, Shanghai Jiao Tong University, 280 South Chongqing Road, Shanghai 200025, China
| | - Xiaosu Zou
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Road, Shanghai 201203, China
| | - Yufeng Zha
- Yunnan Baiyao Group Co. Ltd., 3686 Yunnan Baiyao Street, Kunming 650200, China
| | - Jinghua Zhang
- School of Medicine, Shanghai Jiao Tong University, 280 South Chongqing Road, Shanghai 200025, China
| | - Hongzhu Bian
- Yunnan Baiyao Group Co. Ltd., 3686 Yunnan Baiyao Street, Kunming 650200, China
| | - Zhengwu Shen
- School of Medicine, Shanghai Jiao Tong University, 280 South Chongqing Road, Shanghai 200025, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Road, Shanghai 201203, China.
| |
Collapse
|
17
|
Yuan D, Liu S, Li S, Liu R, Zhu X. Design, Synthesis and Biological Evaluation of 7-Substituted-1,3-diaminopyrrol[3,2-f]quinazolines as Potential Antibacterial Agents. ChemMedChem 2023; 18:e202300078. [PMID: 37017005 DOI: 10.1002/cmdc.202300078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 04/06/2023]
Abstract
The evolution of drug-resistant bacteria poses a serious threat to public health; hence, it is imperative to develop new and efficient antibiotics. Irresistin-16 (IRS-16) is a dual-target antibacterial candidate that affects folate biosynthesis and membrane integrity and exhibits potent lethality against various bacteria. In this study, a series of 1,3-diamino-7H-pyrrol[3,2-f]quinazoline (DAPQ) derivatives based on IRS-16 was designed and synthesized to identify outstanding antibacterial candidates. The most promising compound, 7-(4-(4-methylpiperazin-1-yl) benzyl)-7H-pyrrol[3,2-f] quinazoline-1,3-diamine (18 e), displayed excellent antibacterial activity against both gram-positive and gram-negative bacteria (minimum inhibitory concentrations=1-4 μg/mL), improved water solubility, poor hemolytic activity and low cytotoxicity. Compound 18 e exhibited rapid bactericidal properties and prevented bacterial resistance in laboratory simulations. These results provide a basis for the development of new DAPQ-based compounds to combat emerging bacterial resistance.
Collapse
Affiliation(s)
- Duo Yuan
- School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Shangde Liu
- School of Pharmacy, Tsinghua University, Beijing, 100084, China
| | - Shanshan Li
- School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Rongrong Liu
- School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiong Zhu
- School of Engineering, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
18
|
Cheng Y, Zhong C, Yan S, Chen C, Gao X. Structure modification: a successful tool for prodrug design. Future Med Chem 2023; 15:379-393. [PMID: 36946236 DOI: 10.4155/fmc-2022-0309] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Prodrug strategy is critical for innovative drug development. Structural modification is the most straightforward and effective method to develop prodrugs. Improving drug defects and optimizing the physical and chemical properties of a drug, such as lipophilicity and water solubility, changing the way of administration can be achieved through specific structural modification. Designing prodrugs by linking microenvironment-responsive groups to the prototype drugs is of great help in enhancing drug targeting. In the meantime, making connections between prodrugs and suitable drug delivery systems could realize drug loading increases, greater stability, bioavailability and drug release control. In this paper, lipidic, water-soluble, pH-responsive, redox-sensitive and enzyme-activatable prodrugs are reviewed on the basis of structural modification.
Collapse
Affiliation(s)
- Yuexuan Cheng
- College of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang, 830011, China
| | - Chunhong Zhong
- College of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang, 830011, China
| | - Shujing Yan
- College of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang, 830011, China
| | - Chunli Chen
- College of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang, 830011, China
- Engineering Research Center of Xinjiang & Central Asian Medicine Resources, Ministry of Education, Urumqi, Xinjiang, 830011, China
| | - Xiaoli Gao
- College of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang, 830011, China
- Engineering Research Center of Xinjiang & Central Asian Medicine Resources, Ministry of Education, Urumqi, Xinjiang, 830011, China
| |
Collapse
|
19
|
Komisarek D, Taskiran E, Vasylyeva V. Maleic Acid as a Co-Former for Pharmaceutically Active GABA Derivatives: Mechanochemistry or Solvent Crystallization? MATERIALS (BASEL, SWITZERLAND) 2023; 16:2242. [PMID: 36984121 PMCID: PMC10054091 DOI: 10.3390/ma16062242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/24/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
In this study, we compare the mechanochemical and classical solvent crystallization methods for forming maleates of GABA and its pharmaceutically active derivatives: Pregabalin, Gabapentin, Phenibut, and Baclofen. Common characterization techniques, like powder and single crystal X-ray diffraction, IR-spectroscopy, differential scanning calorimetry, thermogravimetric analysis and 1H-NMR spectroscopy, are used for the evaluation of structural and physicochemical properties. Our work shows that maleate formation is possible with all investigated target compounds. Large increases in solubility can be achieved, especially for Pregabalin, where up to twentyfold higher solubility in its maleate compared to the pure form can be reached. We furthermore compare the mechanochemical and solvent crystallization regarding quickness, reliability of phase production, and overall product quality. A synthetic route is shown to have an impact on certain properties such as melting point or solubility of the same obtained products, e.g., for Gabapentin and Pregabalin, or lead to the formation of hydrates vs. anhydrous forms. For the GABA and Baclofen maleates, the method of crystallization is not important, and similarly, good results can be obtained by either route. In contrast, Phenibut maleate cannot be obtained pure and single-phase by either method. Our work aims to elucidate promising candidates for the multicomponent crystal formation of blockbuster GABA pharmaceuticals and highlight the usefulness of mechanochemical production routes.
Collapse
|
20
|
Hao R, Wang C, Yang C, Chang J, Wang X, Yuan B, Xu H, Zhou S, Fan C, Li Z. Transdermal delivery of Protocatechuic aldehyde using hyaluronic acid/gelatin-based microneedles for the prevention and treatment of hypertrophic scars. Eur J Pharm Biopharm 2023; 184:202-213. [PMID: 36773724 DOI: 10.1016/j.ejpb.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/25/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
The formation of hypertrophic scar (HS) involves many pathological processes, such as reduced apoptosis in fibroblasts, excessive collagen deposition by fibroblasts, over-abundant angiogenesis, etc. The therapeutic effects of current treatments targeting one single pathological process are limited. Due to their diverse biological activities, natural products offer a potential solution to this issue. In this study reported herein, we investigated the effects of Protocatechuic aldehyde (PA) on both hypertrophic scar-derived fibroblasts (HSF) and vascular endothelial growth factor (VEGF)-stimulated human umbilical vein endothelial cells (HUVECs). Microneedles (MN) containing PA and hyaluronic acid (HA) or containing PA, HA, and gelatin were prepared by mixing PA stock solution with HA or HA/gelatin at a ratio of 1:10. The HS prevention and treatment outcomes of these HA-PA-MN and HA/gelatin-PA-MN were tested using a rabbit ear HS model. Our data indicate that PA induces apoptosis and reduces collagen deposition in HSF. In addition, PA attenuates VEGF-stimulated angiogenesis of HUVECs. Furthermore, HA-PA-MN or HA/gelatin-PA-MN are able to effectively penetrate the epidermis of the HS tissues and then quickly dissolve, enabling the fast release of PA directly into the dermis of the HS tissues. HA-PA-MN or HA/Gelatin-PA-MN have also been found to effectively prevent or alleviate HS in a rabbit ear HS model. In conclusion, this study demonstrates that PA can be used to prevent and treat HS by simultaneously regulating HSF and HUVECs, which offers a potential novel reagent for HS management.
Collapse
Affiliation(s)
- Ruiqi Hao
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Chun Wang
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Chen Yang
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Jiang Chang
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Xiqiao Wang
- Department of Burn, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Bo Yuan
- Department of Burn, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Haiting Xu
- Department of Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Sen Zhou
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Chen Fan
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China.
| | - Zhiming Li
- Joint Centre of Translational Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
21
|
Teli D, Balar P, Patel K, Sharma A, Chavda V, Vora L. Molnupiravir: A Versatile Prodrug against SARS-CoV-2 Variants. Metabolites 2023; 13:309. [PMID: 36837928 PMCID: PMC9962121 DOI: 10.3390/metabo13020309] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
The nucleoside analog β-D-N4-hydroxycytidine is the active metabolite of the prodrug molnupiravir and is accepted as an efficient drug against COVID-19. Molnupiravir targets the RNA-dependent RNA polymerase (RdRp) enzyme, which is responsible for replicating the viral genome during the replication process of certain types of viruses. It works by disrupting the normal function of the RdRp enzyme, causing it to make mistakes during the replication of the viral genome. These mistakes can prevent the viral RNA from being transcribed, converted into a complementary DNA template, translated, or converted into a functional protein. By disrupting these crucial steps in the viral replication process, molnupiravir can effectively inhibit the replication of the virus and reduce its ability to cause disease. This review article sheds light on the impact of molnupiravir and its metabolite on SARS-CoV-2 variants of concern, such as delta, omicron, and hybrid/recombinant variants. The detailed mechanism and molecular interactions using molecular docking and dynamics have also been covered. The safety and tolerability of molnupiravir in patients with comorbidities have also been emphasized.
Collapse
Affiliation(s)
- Divya Teli
- Department of Pharmaceutical Chemistry, L. M. College of Pharmacy, Ahmedabad 380009, India
| | - Pankti Balar
- Pharmacy Department, L. M. College of Pharmacy, Ahmedabad 380009, India
| | - Kishan Patel
- Department of Chemistry, University at Buffalo, Buffalo, NY 14260, USA
| | - Anu Sharma
- Department Pharmaceutical Sciences, University of Massachusetts, Boston, MA 02125, USA
| | - Vivek Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L. M. College of Pharmacy, Ahmedabad 380008, India
| | - Lalit Vora
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| |
Collapse
|
22
|
Zhang X, Guo H, Zhang X, Shi X, Yu P, Jia S, Cao C, Wang S, Chang J. Dual-prodrug cascade activation for chemo/chemodynamic mutually beneficial combination cancer therapy. Biomater Sci 2023; 11:1066-1074. [PMID: 36562486 DOI: 10.1039/d2bm01627c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The combination of chemodynamic therapy (CDT) and chemotherapy has shown promise for achieving improved cancer treatment outcomes. However, due to the lack of synergy rationale, a simple one-plus-one combination therapy remains suboptimal in overcoming the obstacles of each treatment approach. Herein, we report a nanoplatform consisting of a pH-sensitive ferrocene- and cinnamaldehyde-based polyprodrug and a hydrogen peroxide-responsive doxorubicin (DOX) prodrug. Under an acidic tumor environment, the cinnamaldehyde polyprodrug will be activated to release free cinnamaldehyde, which can increase the intracellular hydrogen peroxide level and enhance the Fenton reaction. Subsequently, due to the collapse of nanoparticle structures, the DOX prodrug will be released and activated under a hydrogen peroxide stimulus. Meanwhile, the quinone methide produced during DOX prodrug activation can consume glutathione, an important antioxidant, and thus in turn enhance the efficacy of CDT. This design of a nanoplatform with dual-prodrug cascade activation provides a promising mutually beneficial cooperation mode between chemotherapy and CDT for enhancing antitumor efficacy.
Collapse
Affiliation(s)
- Xu Zhang
- School of Life Sciences, Tianjin University, Tianjin 300072, China.
| | - Haizhen Guo
- School of Life Sciences, Tianjin University, Tianjin 300072, China.
| | - Xinlu Zhang
- School of Life Sciences, Tianjin University, Tianjin 300072, China.
| | - Xiaoen Shi
- School of Life Sciences, Tianjin University, Tianjin 300072, China.
| | - Peng Yu
- School of Life Sciences, Tianjin University, Tianjin 300072, China.
| | - Shitian Jia
- School of Life Sciences, Tianjin University, Tianjin 300072, China.
| | - Chen Cao
- School of Life Sciences, Tianjin University, Tianjin 300072, China.
| | - Sheng Wang
- School of Life Sciences, Tianjin University, Tianjin 300072, China.
| | - Jin Chang
- School of Life Sciences, Tianjin University, Tianjin 300072, China. .,Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin 300072, China
| |
Collapse
|
23
|
Chen W, Shao Y, Peng X, Liang B, Xu J, Xing D. Review of preclinical data of PF-07304814 and its active metabolite derivatives against SARS-CoV-2 infection. Front Pharmacol 2022; 13:1035969. [PMID: 36438815 PMCID: PMC9691842 DOI: 10.3389/fphar.2022.1035969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022] Open
Abstract
Main protease (Mpro) is a superior target for anti-SARS-COV-2 drugs. PF-07304814 is a phosphate ester prodrug of PF-00835231 that is rapidly metabolized into the active metabolite PF-00835231 by alkaline phosphatase (ALP) and then suppresses SARS-CoV-2 replication by inhibiting Mpro. PF-07304814 increased the bioavailability of PF-00835231 by enhancing plasma protein binding (PPB). P-glycoprotein (P-gp) inhibitors and cytochrome P450 3A (CYP3A) inhibitors increased the efficacy of PF-00835231 by suppressing its efflux from target cells and metabolism, respectively. The life cycle of SARS-CoV-2 is approximately 4 h. The mechanisms and efficacy outcomes of PF-00835231 occur simultaneously. PF-00835231 can inhibit not only cell infection (such as Vero E6, 293T, Huh-7.5, HeLa+angiotensin-converting enzyme 2 (ACE2), A549+ACE2, and MRC-5) but also the human respiratory epithelial organ model and animal model infection. PF-07304814 exhibits a short terminal elimination half-life and is cleared primarily through renal elimination. There were no significant adverse effects of PF-07304814 administration in rats. Therefore, PF-07304814 exhibits good tolerability, pharmacology, pharmacodynamics, pharmacokinetics, and safety in preclinical trials. However, the Phase 1 data of PF-07304814 were not released. The Phase 2/3 trial of PF-07304814 was also suspended. Interestingly, the antiviral activities of PF-00835231 derivatives (compounds 5–22) are higher than, similar to, or slightly weaker than those of PF-00835231. In particular, compound 22 exhibited the highest potency and had good safety and stability. However, the low solubility of compound 22 limits its clinical application. Prodrugs, nanotechnology and salt form drugs may solve this problem. In this review, we focus on the preclinical data of PF-07304814 and its active metabolite derivatives to hopefully provide knowledge for researchers to study SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Wujun Chen
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, China
| | - Yingchun Shao
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, China
| | - Xiaojin Peng
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, China
| | - Bing Liang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, China
| | - Jiazhen Xu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, China
- *Correspondence: Jiazhen Xu, ; Dongming Xing,
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, China
- School of Life Sciences, Tsinghua University, Beijing, China
- *Correspondence: Jiazhen Xu, ; Dongming Xing,
| |
Collapse
|
24
|
Alternative Methotrexate Oral Formulation: Enhanced Aqueous Solubility, Bioavailability, Photostability, and Permeability. Pharmaceutics 2022; 14:pharmaceutics14102073. [PMID: 36297508 PMCID: PMC9609692 DOI: 10.3390/pharmaceutics14102073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/21/2022] [Accepted: 09/24/2022] [Indexed: 11/17/2022] Open
Abstract
The poor aqueous solubility and/or permeability and thereby limited bioavailability largely restricts the pharmaco-therapeutic implications of potent anticancer drugs such as methotrexate (MTX). Furthermore, MTX’s inherently unstable nature makes it difficult to develop a viable oral formulation. In this study we developed the spray-dried amorphous inclusion complexes of MTX with native β-cyclodextrin (β-CD) and its derivatives, namely HP-β-CD, M-β-CD, and DM-β-CD to enhance the aqueous solubility, photostability, permeability, and oral bioavailability of MTX in rats. Our findings show that the 1:1 stoichiometry ratio of MTX and CDs improves the aqueous solubility, stability, and pharmacokinetic profiles of the drug, the better results being obtained particularly with DM-β-CD as a host, which has a higher complexation ability with the drug compared to other β-CDs. Specifically, the pharmacokinetic analysis demonstrated 2.20- and 3.29-fold increments in AUC and Cmax, respectively, in comparison to free MTX. Even though the absorptive permeability of MTX and MTX/DM-β-CD inclusion complexes was similar, the efflux of the absorbed MTX from ICs was significantly lower compared to the free MTX (4.6- vs. 8.0-fold). Furthermore, the physicochemical characterization employing SEM, DSC, and PXRD confirmed the transformation of crystalline MTX to its amorphous state. In solution, 1H NMR studies revealed that MTX embedded into the DM-β-CD cavity resulting in both H-3 and H-5 chemical shifts implied the presence of intermolecular interaction between the drug and CD moiety. It was, therefore, evident that an MTX IC could be a successful oral formulation technique, preventing MTX degradation and enhancing its pharmacologically relevant properties.
Collapse
|
25
|
Wang R, Xu J, Yan R, Liu H, Zhao J, Xie Y, Deng W, Liao W, Nie Y. Virtual screening and activity evaluation of multitargeting inhibitors for idiopathic pulmonary fibrosis. Front Pharmacol 2022; 13:998245. [PMID: 36160399 PMCID: PMC9493029 DOI: 10.3389/fphar.2022.998245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
Transforming growth factor β receptor (TGF-β1R) and receptor tyrosine kinases (RTKs), such as VEGFRs, PDGFRs and FGFRs are considered important therapeutic targets in blocking myofibroblast migration and activation of idiopathic pulmonary fibrosis (IPF). To screen and design innovative prodrug to simultaneously target these four classes of receptors, we proposed an approach based on network pharmacology combining virtual screening and machine learning activity prediction, followed by efficient in vitro and in vivo models to evaluate drug activity. We first constructed Collagen1A2-A549 cells with type I collagen as the main biomarker and evaluated the activity of compounds to inhibit collagen expression at the cellular level. The data from the first round of Collagen1A2-A549 cell screening were substituted into the machine learning model, and the model was optimized accordingly. As a result, the false positive rate of the model was reduced from 85.0% to 66.7%, and two prospective compounds, Z103080500 and Z104578368, were finally selected. Collagen levels were reduced effectively by both Z103080500 (67.88% reduction) and Z104578368 (69.54% reduction). Moreover, these two compounds showed low cellular cytotoxicity. Subsequently, the effect of Z103080500 and Z104578368 was evaluated in a bleomycin-induced C57BL/6 mouse IPF model. These results showed that 50 mg/kg Z103080500 and Z104578368 could effectively reduce the number of inflammatory cells and the expression level of α-SMA. Meanwhile, Z103080500 and Z104578368 reduced the expression of major markers and inflammatory factors of IPF, such as collagen, IFN-γ, IL-17 and HYP, indicating that these screened Z103080500 and Z104578368 effectively delayed lung tissue inflammation and had a potential therapeutic effect on IPF. Our findings demonstrate that a screening and evaluation model for prodrug against IPF has been successfully established. It is of great significance to further modify these compounds to enhance their potency and activity.
Collapse
Affiliation(s)
- Rui Wang
- Clinical Research Institute, The First People’s Hospital of Foshan, Foshan, China
| | - Jian Xu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Rong Yan
- Clinical Research Institute, The First People’s Hospital of Foshan, Foshan, China
| | - Huanbin Liu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Jingxin Zhao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Yuan Xie
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Wenbin Deng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Weiping Liao
- Foshan Fourth People’s Hospital, Foshan, China
- *Correspondence: Weiping Liao, ; Yichu Nie,
| | - Yichu Nie
- Clinical Research Institute, The First People’s Hospital of Foshan, Foshan, China
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- *Correspondence: Weiping Liao, ; Yichu Nie,
| |
Collapse
|
26
|
Kang D, Pan X, Song Y, Liu Y, Wang D, Zhu X, Wang J, Hu L. Discovery of a novel water-soluble, rapid-release triptolide prodrug with improved drug-like properties and high efficacy in human acute myeloid leukemia. Eur J Med Chem 2022; 243:114694. [PMID: 36115206 DOI: 10.1016/j.ejmech.2022.114694] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 11/04/2022]
Abstract
In this work, a series of water-soluble triptolide prodrugs were synthesized, and their triptolide release rate, pharmacokinetic characteristics and anti-tumor effect were measured. We found that inserting glycolic acid as a linker between triptolide and the cyclic amino acid accelerated the release of triptolide from prodrugs into the plasma while preserving its safety. Among them, prodrug TP-P1 was significantly better than Minnelide (the only water-soluble triptolide prodrug in clinical trials) in terms of release rate in plasma and synthetic yield. In mouse models of human acute myeloid leukemia (AML), TP-P1 was effective in reducing xenograft tumors at dose levels as low as 25 μg/kg, and eliminating tumors at dose 100 μg/kg. Furthermore, TP-P1 could significantly enhance the efficacy of FLT3 inhibitors in the treatment of AML. These experimental results showed the potential of TP-P1 as water-soluble prodrugs of triptolide.
Collapse
Affiliation(s)
- Di Kang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Xiang Pan
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Yi Song
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Yan Liu
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Dan Wang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Xuejun Zhu
- Jiangsu Provincial Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China
| | - Junwei Wang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| | - Lihong Hu
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| |
Collapse
|
27
|
Yamaguchi K, Mizoguchi R, Kawakami K, Miyazaki T. Influence of the crystallization tendencies of pharmaceutical glasses on the applicability of the Adam-Gibbs-Vogel and Vogel-Tammann-Fulcher equations in the prediction of their long-term physical stability. Int J Pharm 2022; 626:122158. [PMID: 36058407 DOI: 10.1016/j.ijpharm.2022.122158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/27/2022] [Accepted: 08/28/2022] [Indexed: 11/25/2022]
Abstract
Amorphization is a powerful approach for improving the aqueous solubility and bioavailability of poorly water-soluble compounds. However, it can cause chemical and physical instability, the latter of which can lead to crystallization during storage, diminishing the solubility advantage of the amorphous state. As there is no standard method for predicting the physical stability of amorphous materials, a long-term stability study is needed in drug development. This study investigated the correlation between the physical stability of amorphous compounds and molecular mobility based on the assumption that physical stability is governed by the diffusional motion of a molecule. Model compounds were evaluated for crystallization onset time, structural relaxation time, fragility, and fictive temperature. The crystallization onset time of acetaminophen glass correlated with its relaxation time calculated from the Adam-Gibbs-Vogel equation; however, that of felodipine glass correlated with the relaxation time calculated from the Vogel-Tammann-Fulcher equation. The different crystallization tendencies of these compounds can be explained by the differences in the rate limiting steps in their crystallization processes, indicating the importance of distinguishing the critical process associated with crystallization. These findings will be useful for more accurate prediction of long-term physical stability of amorphous materials.
Collapse
Affiliation(s)
- Katsutoshi Yamaguchi
- Pharmaceutical Science & Technology Labs., Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan.
| | - Ryo Mizoguchi
- Pharmaceutical Science & Technology Labs., Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Kohsaku Kawakami
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Tamaki Miyazaki
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| |
Collapse
|
28
|
Tasleem, Shanthi N, Mahato AK, Bahuguna R. Oral delivery of butoconazole nitrate nanoparticles for systemic treatment of chronic paracoccidioidomycosis: A future aspect. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Minhas MU, Khan KU, Sarfraz M, Badshah SF, Munir A, Barkat K, Basit A, Arafat M. Polyvinylpyrrolidone K-30-Based Crosslinked Fast Swelling Nanogels: An Impeccable Approach for Drug's Solubility Improvement. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5883239. [PMID: 36060130 PMCID: PMC9439932 DOI: 10.1155/2022/5883239] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/31/2022] [Accepted: 08/06/2022] [Indexed: 11/17/2022]
Abstract
Poor solubility is a global issue of copious pharmaceutical industries as large number of drugs in development stage as well as already marketed products are poorly soluble which results in low dissolution and ultimately dosage increase. Current study is aimed at developing a polyvinylpyrrolidone- (PVP-K30-) based nanogel delivery system for solubility enhancement of poorly soluble drug olanzapine (OLP), as solubilization enhancement is the most noteworthy application of nanosystems. Crosslinking polymerization with subsequent condensation technique was used for the synthesis of nanogels, a highly responsive polymeric networks in drug's solubility. Developed nanogels were characterized by percent entrapment efficiency, sol-gel, percent swelling, percent drug loaded content (%DLC), percent porosity, stability, solubility, in vitro dissolution studies, FTIR, XRD, and SEM analysis. Furthermore, cytotoxicity study was conducted on rabbits to check the biocompatibility of the system. Particle size of nanogels was found with 178.99 ± 15.32 nm, and in vitro dissolution study exhibited that drug release properties were considerably enhanced as compared to the marketed formulation OLANZIA. The solubility studies indicated that solubility of OLP was noticeably improved up to 36.7-fold in phosphate buffer of pH 6.8. In vivo cytotoxicity study indicated that prepared PVP-K30-based formulation was biocompatible. On the basis of results obtained, the developed PVP-K30-co-poly (AMPS) nanogel delivery system is expected to be safe, effective, and cost-effective for solubility improvement of poorly soluble drugs.
Collapse
Affiliation(s)
| | | | - Muhammad Sarfraz
- College of Pharmacy, Al Ain University, Al Ain Campus, Al Ain, UAE
| | | | - Abubakar Munir
- Faculty of Pharmacy, Superior University Lahore, Punjab, Pakistan
| | - Kashif Barkat
- Faculty of Pharmacy, University of Lahore, Punjab, Pakistan
| | - Abdul Basit
- Quaid-e-Azam College of Pharmacy, Sahiwal, Punjab, Pakistan
| | - Mosab Arafat
- College of Pharmacy, Al Ain University, Al Ain Campus, Al Ain, UAE
| |
Collapse
|
30
|
Bioavailability Enhancement Techniques for Poorly Aqueous Soluble Drugs and Therapeutics. Biomedicines 2022; 10:biomedicines10092055. [PMID: 36140156 PMCID: PMC9495787 DOI: 10.3390/biomedicines10092055] [Citation(s) in RCA: 165] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
The low water solubility of pharmacoactive molecules limits their pharmacological potential, but the solubility parameter cannot compromise, and so different approaches are employed to enhance their bioavailability. Pharmaceutically active molecules with low solubility convey a higher risk of failure for drug innovation and development. Pharmacokinetics, pharmacodynamics, and several other parameters, such as drug distribution, protein binding and absorption, are majorly affected by their solubility. Among all pharmaceutical dosage forms, oral dosage forms cover more than 50%, and the drug molecule should be water-soluble. For good therapeutic activity by the drug molecule on the target site, solubility and bioavailability are crucial factors. The pharmaceutical industry’s screening programs identified that around 40% of new chemical entities (NCEs) face various difficulties at the formulation and development stages. These pharmaceuticals demonstrate less solubility and bioavailability. Enhancement of the bioavailability and solubility of drugs is a significant challenge in the area of pharmaceutical formulations. According to the Classification of Biopharmaceutics, Class II and IV drugs (APIs) exhibit poor solubility, lower bioavailability, and less dissolution. Various technologies are discussed in this article to improve the solubility of poorly water-soluble drugs, for example, the complexation of active molecules, the utilization of emulsion formation, micelles, microemulsions, cosolvents, polymeric micelle preparation, particle size reduction technologies, pharmaceutical salts, prodrugs, the solid-state alternation technique, soft gel technology, drug nanocrystals, solid dispersion methods, crystal engineering techniques and nanomorph technology. This review mainly describes several other advanced methodologies for solubility and bioavailability enhancement, such as crystal engineering, micronization, solid dispersions, nano sizing, the use of cyclodextrins, solid lipid nanoparticles, colloidal drug delivery systems and drug conjugates, referring to a number of appropriate research reports.
Collapse
|
31
|
Qin X, Ma G, Liu L, Feng J, Zhou S, Han W, Zhou J, Liu Y, Zhang J. Microwave-assisted degradation of β-D-glucan from Ganoderma lucidum and the structural and immunoregulatory properties of oligosaccharide fractions. Int J Biol Macromol 2022; 220:1197-1211. [PMID: 36007700 DOI: 10.1016/j.ijbiomac.2022.08.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/25/2022]
Abstract
Microwave-assisted degradation of β-(1 → 3,1 → 6)-D-glucan from Ganoderma lucidum and correlated immunoregulatory activities were investigated in this study. The optimal temperature and degradation time for microwave hydrothermal hydrolysis were 140 °C and 40 min, respectively. Under these conditions, a high yield of degradation rate (98.4 %) and abundant β-oligosaccharide products (GLOS) with different degrees of polymerization (DP 2-24) were obtained. Four fractions including F1 (DP 2-8), F2 (DP 6-19), F3 (DP 8-24) and F4 (high DPs) with different average ratios of β-(1 → 3) to β-(1 → 6)-linked glucose units were isolated from GLOS. The structures of oligosaccharides with DP (2-6) in F1 were identified as linear β-(1 → 3)-linked glucooligosaccharides without or with β-(1 → 6)-linked glucose residues based on MS/MS analysis. The immunoregulation activity of β-glucooligosaccharides was correlated with their DPs and the average ratios of β-(1 → 3) to β-(1 → 6)-linked glucose units. F4 fraction with high DPs and ratio of 3.29:1 exhibited higher immunoenhancing activity on inducing NF-κB activation through binding to dectin-1. Surface plasmon resonance (SPR) analysis indicated that β-glucooligosaccharides could bind to Dectin-1 directly and the binding affinity increased with the increase of DPs and the ratios of β-(1 → 3)-linked glucose.
Collapse
Affiliation(s)
- Xiu Qin
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China; Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Guanhua Ma
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Liping Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Jie Feng
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Shuai Zhou
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China.
| | - Wei Han
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| | - Jing Zhou
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China; Shanghai Baixin Bio-Tech Co., Ltd., Shanghai 201403, China.
| | - Yanfang Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China.
| | - Jingsong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China.
| |
Collapse
|
32
|
Guizze F, Serra CHR, Giarolla J. PAMAM Dendrimers: A Review of Methodologies Employed in Biopharmaceutical Classification. J Pharm Sci 2022; 111:2662-2673. [PMID: 35850238 DOI: 10.1016/j.xphs.2022.07.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 11/08/2022]
Abstract
The oral route is the preferred way of drug administration for most drugs, whose treatment success is directly related to the compound intestinal absorption. This absorption process, in its turn, is influenced by several factors impacting the drug bioavailability, which is extremely dependent on the maximum solubility and permeability. However, optimizing these last two factors, without chemical structural modification, is challenging. Although poly(amidoamine) dendrimers (PAMAM) are an innovative and promising strategy as drug delivery compounds, there are few studies that determine the permeability and solubility of PAMAM-drugs derivatives. Considering this scenario, this paper aimed to carry out a literature review of the last five years concerning biopharmaceutical characterizations of dendrimer delivery systems. In vitro methodologies, such as the Parallel artificial membrane permeability assay (PAMPA) (non-cellular based model) and Caco-2 cells (cellular based model), used for the permeability evaluation in the early stages of drug discovery proved to be the most promising methodologies. As a result, we discussed, for instance, that through the usage of PAMPA it was possible to evaluate the higher capacity for transdermal delivery of DNA of TAT-conjugated PAMAM, when in comparison with unmodified PAMAM dendrimer with a P<0.05. We also presented the importance of choosing the best methods of biopharmaceutical characterization, which will be essential to guarantee the efficacy and safety of the drug candidate.
Collapse
Affiliation(s)
- Felipe Guizze
- School of Pharmaceutical Sciences, Department of Pharmacy, University of São Paulo, Avenida Professor Lineu Prestes, 580, 05508-000, São Paulo, Brazil
| | - Cristina Helena Reis Serra
- School of Pharmaceutical Sciences, Department of Pharmacy, University of São Paulo, Avenida Professor Lineu Prestes, 580, 05508-000, São Paulo, Brazil.
| | - Jeanine Giarolla
- School of Pharmaceutical Sciences, Department of Pharmacy, University of São Paulo, Avenida Professor Lineu Prestes, 580, 05508-000, São Paulo, Brazil.
| |
Collapse
|
33
|
Negrya SD, Jasko MV, Makarov DA, Karpenko IL, Solyev PN, Chekhov VO, Efremenkova OV, Vasilieva BF, Efimenko TA, Kochetkov SN, Alexandrova LA. Oligoglycol carbonate prodrugs of 5-modified 2'-deoxyuridines: synthesis and antibacterial activity. MENDELEEV COMMUNICATIONS 2022. [DOI: 10.1016/j.mencom.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
34
|
Yang S, Zhu G. 7,8-Dihydroxyflavone and Neuropsychiatric Disorders: A Translational Perspective from the Mechanism to Drug Development. Curr Neuropharmacol 2022; 20:1479-1497. [PMID: 34525922 PMCID: PMC9881092 DOI: 10.2174/1570159x19666210915122820] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/26/2021] [Accepted: 09/12/2021] [Indexed: 11/22/2022] Open
Abstract
7,8-Dihydroxyflavone (7,8-DHF) is a kind of natural flavonoid with the potential to cross the blood-brain barrier. 7,8-DHF effectively mimics the effect of brain-derived neurotrophic factor (BDNF) in the brain to selectively activate tyrosine kinase receptor B (TrkB) and downstream signaling pathways, thus playing a neuroprotective role. The preclinical effects of 7,8-DHF have been widely investigated in neuropsychiatric disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), depression, and memory impairment. Besides the effect on TrkB, 7,8-DHF could also function through fighting against oxidative stress, cooperating with estrogen receptors, or regulating intestinal flora. This review focuses on the recent experimental studies on depression, neurodegenerative diseases, and learning and memory functions. Additionally, the structural modification and preparation of 7,8-DHF were also concluded and proposed, hoping to provide a reference for the follow-up research and clinical drug development of 7,8-DHF in the field of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Shaojie Yang
- Key Laboratory of Xin’an Medicine, the Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
| | - Guoqi Zhu
- Key Laboratory of Xin’an Medicine, the Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China,Address correspondence to this author at the Anhui University of Chinese Medicine, Meishan Road 103, Hefei 230038, China; E-mail:
| |
Collapse
|
35
|
Van der Merwe CJ, Steyn JD, Hamman JH, Pheiffer W, Svitina H, Peterson B, Steenekamp JH. Effect of functional excipients on the dissolution and membrane permeation of furosemide formulated into multiple-unit pellet system (MUPS) tablets. Pharm Dev Technol 2022; 27:572-587. [PMID: 35699215 DOI: 10.1080/10837450.2022.2089898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The effect of functional excipients (i.e. chitosan, sodium lauryl sulphate, NaHCO3, and CaCO3) formulated in multiple-unit pellet system (MUPS) tablets has been investigated on the dissolution and permeability of furosemide, a BCS class IV compound. Spherical beads were produced and compressed into MUPS tablets. MUPS tablet formulations were evaluated for hardness, disintegration, mass variation, friability, and dissolution (pH 1.2, pH 4.6, and pH 7.4). Ex vivo permeability studies were conducted across excised pig tissues (pyloric antrum and duodenal region) on selected experimental MUPS tablet formulations. Histological analysis was conducted on the tissues after exposure to selected experimental MUPS tablet formulations. Dissolution results in the 0.1 M HCl (pH 1.2) showed the highest effect of the excipients on furosemide release. Dissolution parameters showed increased dissolution of furosemide for the MUPS tablet formulations containing functional excipients: a 4.5-10-fold increase in the AUC values, the %max showed a 60-70% increase and up to a 19-fold increase in DRi was seen. Permeability results revealed a 2.5-fold higher cumulative percentage transport for selected formulations. The results proved that functional excipients incorporated into beads, compressed into MUPS tablet formulations increased furosemide release as well as permeation across excised intestinal tissues.
Collapse
Affiliation(s)
- C J Van der Merwe
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - J D Steyn
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - J H Hamman
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - W Pheiffer
- DSI/NWU Preclinical Drug Development Platform, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - H Svitina
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - B Peterson
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - J H Steenekamp
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
36
|
Synthesis, physicochemical properties, and protective effects of a novel water-soluble tetrahydrocurcumin-diglutaric acid prodrug on ethanol-induced toxicity in HepG2 cells. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00576-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Dong X, Brahma RK, Fang C, Yao SQ. Stimulus-responsive self-assembled prodrugs in cancer therapy. Chem Sci 2022; 13:4239-4269. [PMID: 35509461 PMCID: PMC9006903 DOI: 10.1039/d2sc01003h] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/17/2022] [Indexed: 12/14/2022] Open
Abstract
Small-molecule prodrugs have become the main toolbox to improve the unfavorable physicochemical properties of potential therapeutic compounds in contemporary anti-cancer drug development. Many approved small-molecule prodrugs, however, still face key challenges in their pharmacokinetic (PK) and pharmacodynamic (PD) properties, thus severely restricting their further clinical applications. Self-assembled prodrugs thus emerged as they could take advantage of key benefits in both prodrug design and nanomedicine, so as to maximize drug loading, reduce premature leakage, and improve PK/PD parameters and targeting ability. Notably, temporally and spatially controlled release of drugs at cancerous sites could be achieved by encoding various activable linkers that are sensitive to chemical or biological stimuli in the tumor microenvironment (TME). In this review, we have comprehensively summarized the recent progress made in the development of single/multiple-stimulus-responsive self-assembled prodrugs for mono- and combinatorial therapy. A special focus was placed on various prodrug conjugation strategies (polymer-drug conjugates, drug-drug conjugates, etc.) that facilitated the engineering of self-assembled prodrugs, and various linker chemistries that enabled selective controlled release of active drugs at tumor sites. Furthermore, some polymeric nano-prodrugs that entered clinical trials have also been elaborated here. Finally, we have discussed the bottlenecks in the field of prodrug nanoassembly and offered potential solutions to overcome them. We believe that this review will provide a comprehensive reference for the rational design of effective prodrug nanoassemblies that have clinic translation potential.
Collapse
Affiliation(s)
- Xiao Dong
- Department of Pharmacy, School of Medicine, Shanghai University Shanghai 200444 China
| | - Rajeev K Brahma
- Department of Chemistry, National University of Singapore Singapore 117543 Singapore
| | - Chao Fang
- State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine Shanghai 200025 China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore Singapore 117543 Singapore
| |
Collapse
|
38
|
Succinylated isoniazid potential prodrug: Design of Experiments (DoE) for synthesis optimization and computational study of the reaction mechanism by DFT calculations. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Santos SS, Gonzaga RV, Scarim CB, Giarolla J, Primi MC, Chin CM, Ferreira EI. Drug/Lead Compound Hydroxymethylation as a Simple Approach to Enhance Pharmacodynamic and Pharmacokinetic Properties. Front Chem 2022; 9:734983. [PMID: 35237565 PMCID: PMC8883432 DOI: 10.3389/fchem.2021.734983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/20/2021] [Indexed: 11/17/2022] Open
Abstract
Hydroxymethylation is a simple chemical reaction, in which the introduction of the hydroxymethyl group can lead to physical–chemical property changes and offer several therapeutic advantages, contributing to the improved biological activity of drugs. There are many examples in the literature of the pharmaceutical, pharmacokinetic, and pharmacodynamic benefits, which the hydroxymethyl group can confer to drugs, prodrugs, drug metabolites, and other therapeutic compounds. It is worth noting that this group can enhance the drug’s interaction with the active site, and it can be employed as an intermediary in synthesizing other therapeutic agents. In addition, the hydroxymethyl derivative can result in more active compounds than the parent drug as well as increase the water solubility of poorly soluble drugs. Taking this into consideration, this review aims to discuss different applications of hydroxymethyl derived from biological agents and its influence on the pharmacological effects of drugs, prodrugs, active metabolites, and compounds of natural origin. Finally, we report a successful compound synthesized by our research group and used for the treatment of neglected diseases, which is created from the hydroxymethylation of its parent drug.
Collapse
Affiliation(s)
- Soraya S. Santos
- Laboratório de Planejamento e Síntese de Quimioterápicos Potencialmente Ativos Em Doenças Negligenciadas (LAPEN), Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo – USP, São Paulo, Brazil
| | - Rodrigo V. Gonzaga
- Laboratório de Planejamento e Síntese de Quimioterápicos Potencialmente Ativos Em Doenças Negligenciadas (LAPEN), Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo – USP, São Paulo, Brazil
| | - Cauê B. Scarim
- Laboratório de Pesquisa e Desenvolvimento de Fármacos (LAPDESF), Departamento de Fármacos e Medicamentos, Faculdade de Ciências Farmacêuticas, Universidade Estadual de São Paulo “Júlio de Mesquita Filho” (UNESP), Araraquara, Brazil
| | - Jeanine Giarolla
- Laboratório de Planejamento e Síntese de Quimioterápicos Potencialmente Ativos Em Doenças Negligenciadas (LAPEN), Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo – USP, São Paulo, Brazil
| | | | - Chung M. Chin
- Laboratório de Pesquisa e Desenvolvimento de Fármacos (LAPDESF), Departamento de Fármacos e Medicamentos, Faculdade de Ciências Farmacêuticas, Universidade Estadual de São Paulo “Júlio de Mesquita Filho” (UNESP), Araraquara, Brazil
- Centro de Pesquisa Avançada Em Medicina (CEPAM), Faculdade de Medicina, União Das Faculdades Dos Grande Lagos (UNILAGO), São José Do Rio Preto, Brazil
| | - Elizabeth I. Ferreira
- Laboratório de Planejamento e Síntese de Quimioterápicos Potencialmente Ativos Em Doenças Negligenciadas (LAPEN), Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo – USP, São Paulo, Brazil
- *Correspondence: Elizabeth I. Ferreira,
| |
Collapse
|
40
|
Khan KU, Minhas MU, Badshah SF, Suhail M, Ahmad A, Ijaz S. Overview of nanoparticulate strategies for solubility enhancement of poorly soluble drugs. Life Sci 2022; 291:120301. [PMID: 34999114 DOI: 10.1016/j.lfs.2022.120301] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/27/2021] [Accepted: 01/01/2022] [Indexed: 12/20/2022]
Abstract
Poor aqueous solubility and poor bioavailability are major issues with many pharmaceutical industries. By some estimation, 70-90% drug candidates in development stage while up-to 40% of the marketed products are poorly soluble which leads to low bioavailability, reduced therapeutic effects and dosage escalation. That's why solubility is an important factor to consider during design and manufacturing of the pharmaceutical products. To-date, various strategies have been explored to tackle the issue of poor solubility. This review article focuses the updated overview of commonly used macro and nano drug delivery systems and techniques such as micronization, solid dispersion (SD), supercritical fluid (SCF), hydrotropy, co-solvency, micellar solubilization, cryogenic technique, inclusion complex formation-based techniques, nanosuspension, solid lipid nanoparticles, and nanogels/nanomatrices explored for solubility enhancement of poorly soluble drugs. Among various techniques, nanomatrices were found a promising and impeccable strategy for solubility enhancement of poorly soluble drugs. This article also describes the mechanism of action of each technique used in solubilization enhancement.
Collapse
Affiliation(s)
- Kifayat Ullah Khan
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100, Punjab, Pakistan; Quaid-e-Azam College of Pharmacy, Sahiwal, Punjab, Pakistan
| | - Muhammad Usman Minhas
- College of Pharmacy, University of Sargodha, University Road, Sargodha City, Punjab, Pakistan.
| | - Syed Faisal Badshah
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100, Punjab, Pakistan
| | - Muhammad Suhail
- School of Pharmacy, Kaohsiung Medical University, 100 Shih-Chuan Ist Road, Kaohsiung City 807, Taiwan, ROC
| | - Aousaf Ahmad
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100, Punjab, Pakistan; Quaid-e-Azam College of Pharmacy, Sahiwal, Punjab, Pakistan
| | - Shakeel Ijaz
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100, Punjab, Pakistan; Quaid-e-Azam College of Pharmacy, Sahiwal, Punjab, Pakistan
| |
Collapse
|
41
|
Chaudhary B, Kumar P, Arya P, Singla D, Kumar V, Kumar D, S R, Wadhwa S, Gulati M, Singh SK, Dua K, Gupta G, Gupta MM. Recent Developments in the Study of the Microenvironment of Cancer and Drug Delivery. Curr Drug Metab 2022; 23:1027-1053. [PMID: 36627789 DOI: 10.2174/1389200224666230110145513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/20/2022] [Accepted: 11/29/2022] [Indexed: 01/12/2023]
Abstract
Cancer is characterized by disrupted molecular variables caused by cells that deviate from regular signal transduction. The uncontrolled segment of such cancerous cells annihilates most of the tissues that contact them. Gene therapy, immunotherapy, and nanotechnology advancements have resulted in novel strategies for anticancer drug delivery. Furthermore, diverse dispersion of nanoparticles in normal stroma cells adversely affects the healthy cells and disrupts the crosstalk of tumour stroma. It can contribute to cancer cell progression inhibition and, conversely, to acquired resistance, enabling cancer cell metastasis and proliferation. The tumour's microenvironment is critical in controlling the dispersion and physiological activities of nano-chemotherapeutics which is one of the targeted drug therapy. As it is one of the methods of treating cancer that involves the use of medications or other substances to specifically target and kill off certain subsets of malignant cells. A targeted therapy may be administered alone or in addition to more conventional methods of care like surgery, chemotherapy, or radiation treatment. The tumour microenvironment, stromatogenesis, barriers and advancement in the drug delivery system across tumour tissue are summarised in this review.
Collapse
Affiliation(s)
- Benu Chaudhary
- Department of Pharmacology, Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana, India
| | - Parveen Kumar
- Department of Life Science, Shri Ram College of Pharmacy, Karnal, Haryana, India
| | - Preeti Arya
- Department of Pharmacology, Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana, India
| | - Deepak Singla
- Department of Pharmacology, Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana, India
| | - Virender Kumar
- Department of Pharmacology, Swami Dayanand Post Graduate Institute of Pharmaceutical Sciences, Rohtak, Haryana, India
| | - Davinder Kumar
- Department of Pharmacology, Swami Dayanand Post Graduate Institute of Pharmaceutical Sciences, Rohtak, Haryana, India
| | - Roshan S
- Department of Pharmacology, Deccan School of Pharmacy, Hyderabad, India
| | - Sheetu Wadhwa
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Madan Mohan Gupta
- Faculty of Medical Sciences, School of Pharmacy, The University of the West Indies, St. Augustine, Trinidad & Tobago, West Indies
| |
Collapse
|
42
|
Structural modification aimed for improving solubility of lead compounds in early phase drug discovery. Bioorg Med Chem 2022; 56:116614. [DOI: 10.1016/j.bmc.2022.116614] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/15/2021] [Accepted: 01/06/2022] [Indexed: 12/19/2022]
|
43
|
Bhilare NV, Marulkar VS, Shirote PJ, Dombe SA, Pise VJ, Salve PL, Biradar SM, Yadav VD, Jadhav PD, Bodhe AA, Borkar SP, Ghadge PM, Shelar PA, Jadhav AV, Godse KC. Mannich Bases: Centrality in Cytotoxic Drug Design. Med Chem 2021; 18:735-756. [PMID: 34931967 DOI: 10.2174/1573406418666211220124119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/04/2021] [Accepted: 10/18/2021] [Indexed: 11/22/2022]
Abstract
Mannich bases identified by Professor Carl Mannich have been the most extensively explored scaffolds for more than 100 years now. The versatile biological roles that they play have promoted their applications in many clinical conditions. The present review highlights the application of Mannich bases as cytotoxic agents, categorizing them into synthetic, semisynthetic and prodrugs classes and gives an exhaustive account of the work reported in the last two decades. The methods of synthesis of these cytotoxic agents, their anti-cancer potential in various cell lines and promising leads for future drug development have also been discussed. Structure-activity relationships along with the targets on which these cytotoxic Mannich bases act have been included as well.
Collapse
Affiliation(s)
- Neha V Bhilare
- Department of Pharmaceutical Chemistry, Arvind Gavali College of Pharmacy, Satara-415004, Maharashtra, India
| | - Vinayak S Marulkar
- Department of Pharmaceutical Chemistry, Arvind Gavali College of Pharmacy, Satara-415004, Maharashtra, India
| | - Pramodkumar J Shirote
- Department of Pharmaceutical Chemistry, Arvind Gavali College of Pharmacy, Satara-415004, Maharashtra, India
| | - Shailaja A Dombe
- Department of Pharmaceutics, Arvind Gavali College of Pharmacy, Satara-415004, Maharashtra, India
| | - Vilas J Pise
- Department of Pharmaceutical Chemistry, Arvind Gavali College of Pharmacy, Satara-415004, Maharashtra, India
| | - Pallavi L Salve
- Department of Pharmaceutical Chemistry, Arvind Gavali College of Pharmacy, Satara-415004, Maharashtra, India
| | - Shantakumar M Biradar
- Department of Pharmaceutical Chemistry, Arvind Gavali College of Pharmacy, Satara-415004, Maharashtra, India
| | - Vishal D Yadav
- Department of Pharmaceutics, Arvind Gavali College of Pharmacy, Satara-415004, Maharashtra, India
| | - Prakash D Jadhav
- Department of Pharmaceutics, Arvind Gavali College of Pharmacy, Satara-415004, Maharashtra, India
| | - Anjali A Bodhe
- Department of Pharmaceutics, Arvind Gavali College of Pharmacy, Satara-415004, Maharashtra, India
| | - Smita P Borkar
- Department of Pharmaceutics, Arvind Gavali College of Pharmacy, Satara-415004, Maharashtra, India
| | - Prachi M Ghadge
- Department of Pharmacology, Arvind Gavali College of Pharmacy, Satara-415004, Maharashtra, India
| | - Pournima A Shelar
- Department of Pharmaceutics, Arvind Gavali College of Pharmacy, Satara-415004, Maharashtra, India
| | - Apurva V Jadhav
- Department of Pharmaceutics, Arvind Gavali College of Pharmacy, Satara-415004, Maharashtra, India
| | - Kirti C Godse
- Department of Pharmacology, Arvind Gavali College of Pharmacy, Satara-415004, Maharashtra, India
| |
Collapse
|
44
|
Wang Z, Yang L. Broad-spectrum prodrugs with anti-SARS-CoV-2 activities: Strategies, benefits, and challenges. J Med Virol 2021; 94:1373-1390. [PMID: 34897729 DOI: 10.1002/jmv.27517] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 01/18/2023]
Abstract
In this era, broad-spectrum prodrugs with anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) activities are gaining considerable attention owing to their potential clinical benefits and role in combating the fast-spreading coronavirus disease 2019 (COVID-19) pandemic. The last 2 years have seen a surge of reports on various broad-spectrum prodrugs against SARS-CoV-2, and in in vitro studies, animal models, and clinical practice. Currently, only remdesivir (with many controversies and limitations) has been approved by the U.S. FDA for the treatment of SARS-CoV-2 infection, and additional potent anti-SARS-CoV-2 drugs are urgently required to enrich the defense arsenals. The world has ubiquitously grappled with the COVID-19 pandemic, and the availability of broad-spectrum prodrugs provides great hope for us to subdue this global threat. This article reviews promising treatment strategies, antiviral mechanisms, potential benefits, and daunting clinical challenges of anti-SARS-CoV-2 agents to provide some important guidance for future clinical treatment.
Collapse
Affiliation(s)
- Zhonglei Wang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, P. R. China.,Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Tsinghua University, Beijing, P. R. China
| | - Liyan Yang
- Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, School of Physics and Physical Engineering, Qufu Normal University, Qufu, Shandong, P. R. China
| |
Collapse
|
45
|
Romanucci V, Giordano M, Pagano R, Zimbone S, Giuffrida ML, Milardi D, Zarrelli A, Di Fabio G. Investigation on the solid-phase synthesis of silybin prodrugs and their timed-release. Bioorg Med Chem 2021; 50:116478. [PMID: 34695708 DOI: 10.1016/j.bmc.2021.116478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022]
Abstract
Prodrugs are ingenious derivatives of therapeutic agents designed to improve the pharmacokinetic profile of the drug. Here, we report an efficient and regioselective solid phase approach for obtaining new prodrugs of 9″-silybins conjugated with 3'-ribonucleotide units (uridine and adenosine) as pro-moieties. Uridine and adenosine conjugates were obtained in good yields (41-50%), beginning with silibinin and its diastereomers (silybin A and silybin B), using a NovaSyn® support functionalized with an ad hoc linker, which allowed selective detachment of only the desired products. As expected, the solubility of both uridine and adenosine conjugates was higher than that of the parental natural product (5 mg/mL and 3 mg/mL for uridine and adenosine, respectively). Our investigations revealed that uridine conjugates were quickly cleaved by RNase A, releasing silybin drugs, even at low enzyme concentrations. No toxic effects were found for any ribonucleotide conjugate on differentiated neuroblastoma SH-SY5Y cells when tested at increasing concentrations. All results strongly encourage further investigations of uridine-silybin prodrugs as potential therapeutic agents for both oral and intravenous administration. The present synthetic approach represents a valuable strategy to the future design of new prodrugs with modified nucleoside pro-moieties to modulate the pharmacokinetics of silybins or different natural products with strong pharmacological activities but poor bioavailability.
Collapse
Affiliation(s)
- Valeria Romanucci
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, I-80126 Napoli, Italy
| | - Maddalena Giordano
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, I-80126 Napoli, Italy
| | - Rita Pagano
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, I-80126 Napoli, Italy
| | - Stefania Zimbone
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Sede Secondaria di Catania, Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Maria Laura Giuffrida
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Sede Secondaria di Catania, Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Danilo Milardi
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Sede Secondaria di Catania, Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Armando Zarrelli
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, I-80126 Napoli, Italy
| | - Giovanni Di Fabio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, I-80126 Napoli, Italy.
| |
Collapse
|
46
|
Volarić J, Szymanski W, Simeth NA, Feringa BL. Molecular photoswitches in aqueous environments. Chem Soc Rev 2021; 50:12377-12449. [PMID: 34590636 PMCID: PMC8591629 DOI: 10.1039/d0cs00547a] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Indexed: 12/17/2022]
Abstract
Molecular photoswitches enable dynamic control of processes with high spatiotemporal precision, using light as external stimulus, and hence are ideal tools for different research areas spanning from chemical biology to smart materials. Photoswitches are typically organic molecules that feature extended aromatic systems to make them responsive to (visible) light. However, this renders them inherently lipophilic, while water-solubility is of crucial importance to apply photoswitchable organic molecules in biological systems, like in the rapidly emerging field of photopharmacology. Several strategies for solubilizing organic molecules in water are known, but there are not yet clear rules for applying them to photoswitchable molecules. Importantly, rendering photoswitches water-soluble has a serious impact on both their photophysical and biological properties, which must be taken into consideration when designing new systems. Altogether, these aspects pose considerable challenges for successfully applying molecular photoswitches in aqueous systems, and in particular in biologically relevant media. In this review, we focus on fully water-soluble photoswitches, such as those used in biological environments, in both in vitro and in vivo studies. We discuss the design principles and prospects for water-soluble photoswitches to inspire and enable their future applications.
Collapse
Affiliation(s)
- Jana Volarić
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | - Wiktor Szymanski
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
- Department of Radiology, Medical Imaging Center, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Nadja A Simeth
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
- Institute for Organic and Biomolecular Chemistry, University of Göttingen, Tammannstr. 2, 37077 Göttingen, Germany
| | - Ben L Feringa
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| |
Collapse
|
47
|
Enhanced topical corticosteroids delivery to the eye: A trade-off in strategy choice. J Control Release 2021; 339:91-113. [PMID: 34560157 DOI: 10.1016/j.jconrel.2021.09.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 12/19/2022]
Abstract
Topical corticosteroids are the primary treatment of ocular inflammation caused by surgery, injury, or other conditions. Drug pre-corneal residence time, drug water solubility, and drug corneal permeability coefficient are the major factors that determine the ocular drug bioavailability after topical administration. Although growing research successfully enhanced local delivery of corticosteroids utilizing various strategies, rational and dynamic approaches to strategy selection are still lacking. Within this review, an overview of the various strategies as well as their performance in retention, solubility, and permeability coefficient of corticosteroids are provided. On this basis, the tradeoff of strategy selection is discussed, which may shed light on the rational choice and application of ophthalmic delivery enhancement strategies.
Collapse
|
48
|
Muthiah G, Jaiswal A. Can the Union of Prodrug Therapy and Nanomedicine Lead to Better Cancer Management? ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Giredhar Muthiah
- School of Basic Sciences Indian Institute of Technology Mandi Kamand Mandi Himachal Pradesh 175075 India
| | - Amit Jaiswal
- School of Basic Sciences Indian Institute of Technology Mandi Kamand Mandi Himachal Pradesh 175075 India
| |
Collapse
|
49
|
Voight EA, Greszler SN, Kym PR. Fueling the Pipeline via Innovations in Organic Synthesis. ACS Med Chem Lett 2021; 12:1365-1373. [PMID: 34531945 DOI: 10.1021/acsmedchemlett.1c00351] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/16/2021] [Indexed: 11/29/2022] Open
Abstract
The paramount importance of synthetic organic chemistry in the pharmaceutical industry arises from the necessity to physically prepare all designed molecules to obtain key data to feed the design-synthesis-data cycle, with the medicinal chemist at the center of this cycle. Synthesis specialists accelerate the cycle of medicinal chemistry innovation by rapidly identifying and executing impactful synthetic methods and strategies to accomplish project goals, addressing the synthetic accessibility bottleneck that often plagues discovery efforts. At AbbVie, Discovery Synthesis Groups (DSGs) such as Centralized Organic Synthesis (COS) have been deployed as embedded members of medicinal chemistry teams, filling the gap between discovery and process chemistry. COS chemists provide synthetic tools, scaffolds, and lead compounds to fuel the pipeline. Examples of project contributions from neuroscience, cystic fibrosis, and virology illustrate the impact of the DSG approach. In the first ten years of innovative science in pursuit of excellence in synthesis, several advanced drug candidates, including ABBV-2222 (galicaftor) for cystic fibrosis and foslevodopa/foscarbidopa for Parkinson's disease, have emerged with key contributions from COS.
Collapse
Affiliation(s)
- Eric A. Voight
- Drug Discovery Science & Technology, AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064-1802, United States
| | - Stephen N. Greszler
- Drug Discovery Science & Technology, AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064-1802, United States
| | - Philip R. Kym
- Drug Discovery Science & Technology, AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064-1802, United States
| |
Collapse
|
50
|
Anamika J, Nikhar V, Laxmikant G, Priya S, Sonal V, Vyas SP. Nanobiotechnological modules as molecular target tracker for the treatment and prevention of malaria: options and opportunity. Drug Deliv Transl Res 2021; 10:1095-1110. [PMID: 32378173 PMCID: PMC7223109 DOI: 10.1007/s13346-020-00770-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Malaria is one of the major infectious diseases that remains a constant challenge to human being mainly due to the emergence of drug-resistant strains of parasite and also the availability of drugs, which are non-specific for their pharmacodynamic activity and known to be associated with multiple side effects. The disease has acquired endemic proportions in tropical countries where the hygienic conditions are not satisfactory while the environmental conditions favor the proliferation of parasite and its transmission, particularly through the female anopheles. It is obvious that to square up the problems, there is a need for designing and development of more effective drugs, which can combat the drug-resistant strains of the parasite. Molecular biology of the parasite and its homing into host cellular tropics provide multiple drug targets that could judiciously be considered for engineering and designing of new generation antimalarial drugs and also drug delivery systems. Though the recent reports document that against malaria parasite the vaccine could be developed, nevertheless, due to smart mutational change overs by the parasite, it is able to bypass the immune surveillance. The developed vaccine therefore failed to assure absolute protection against the malarial infection. In the conventional mode of treatment antimalarial drugs, the dose and dosage regimen that is followed at large crops up the contraindicative manifestations, and hence compromising the effective treatment. The emerging trends and new updates in contemporary biological sciences, material sciences, and drug delivery domain have enabled us with the availability of a multitude of mode and modules which could plunge upon the nanotechnology in particular to treat this challenging infection. The nanotechnology-based option may be tuned or customized as per the requirements to mark and target i.e. the infected RBCs, for targeted drug delivery. Graphical abstract ![]()
Collapse
Affiliation(s)
- Jain Anamika
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. H. S. Gour Vishwavidyalaya, Sagar, M.P., 470003, India
| | - Vishwakarma Nikhar
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. H. S. Gour Vishwavidyalaya, Sagar, M.P., 470003, India
| | - Gautam Laxmikant
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. H. S. Gour Vishwavidyalaya, Sagar, M.P., 470003, India
| | - Shrivastava Priya
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. H. S. Gour Vishwavidyalaya, Sagar, M.P., 470003, India
| | - Vyas Sonal
- Department of Pathology, Index Medical College, Hospital & Research Centre, Indore, M.P., India
| | - S P Vyas
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. H. S. Gour Vishwavidyalaya, Sagar, M.P., 470003, India.
| |
Collapse
|