1
|
Gazzaniga A, Moutaharrik S, Cerea M, Maroni A. What is the future potential of microbially degradable systems in oral drug delivery to the colon? Expert Opin Drug Deliv 2025:1-4. [PMID: 39886915 DOI: 10.1080/17425247.2025.2462166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/26/2025] [Accepted: 01/30/2025] [Indexed: 02/01/2025]
Affiliation(s)
- Andrea Gazzaniga
- Dipartimento di Scienze Farmaceutiche, Sezione di Tecnologia e Legislazione Farmaceutiche 'Maria Edvige Sangalli', GazzaLab, Università degli Studi di Milano, Milano, Italy
| | - Saliha Moutaharrik
- Dipartimento di Scienze Farmaceutiche, Sezione di Tecnologia e Legislazione Farmaceutiche 'Maria Edvige Sangalli', GazzaLab, Università degli Studi di Milano, Milano, Italy
| | - Matteo Cerea
- Dipartimento di Scienze Farmaceutiche, Sezione di Tecnologia e Legislazione Farmaceutiche 'Maria Edvige Sangalli', GazzaLab, Università degli Studi di Milano, Milano, Italy
| | - Alessandra Maroni
- Dipartimento di Scienze Farmaceutiche, Sezione di Tecnologia e Legislazione Farmaceutiche 'Maria Edvige Sangalli', GazzaLab, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
2
|
Shendge RS, Zalte TS, Khade SB. Polymeric microspheres redefining the landscape of colon-targeted delivery: A contemporary update. EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY REPORTS 2024; 11:100156. [DOI: 10.1016/j.ejmcr.2024.100156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
3
|
Grimm M, Großmann L, Senekowitsch S, Rump A, Polli JE, Dressman J, Weitschies W. Enteric-Coated Capsules Providing Reliable Site-Specific Drug Delivery to the Distal Ileum. Mol Pharm 2024; 21:2828-2837. [PMID: 38723178 DOI: 10.1021/acs.molpharmaceut.3c01241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Nefecon, a targeted-release capsule formulation of budesonide approved for the reduction of proteinuria in adults with primary immunoglobulin A nephropathy, targets overproduction of galactose-deficient immunoglobulin A type 1 in the Peyer's patches at the gut mucosal level. To investigate whether the commercial formulation of Nefecon capsules reliably releases budesonide to the distal ileum, a human study was conducted with test capsules reproducing the delayed-release function of Nefecon capsules. Caffeine was included in the test capsules as a marker for capsule opening in the gut since it appears rapidly in saliva after release from orally administered dosage forms. Magnetic resonance imaging with black iron oxide was used to determine the capsule's position in the gut at the time caffeine was first measured in saliva and additionally to directly visualize dispersion of the capsule contents in the gut. In vitro dissolution results confirmed that the test capsules had the same delayed-release characteristics as Nefecon capsules. In 10 of 12 human volunteers, the capsule was demonstrated to open in the distal ileum; in the other two subjects, it opened just past the ileocecal junction. These results compared favorably with the high degree of variability seen in other published imaging studies of delayed-release formulations targeting the gut. The test capsules were shown to reliably deliver their contents to the distal ileum, the region with the highest concentration of Peyer's patches.
Collapse
Affiliation(s)
- Michael Grimm
- Institute of Pharmacy, University of Greifswald, Greifswald 17487, Germany
| | - Linus Großmann
- Institute of Pharmacy, University of Greifswald, Greifswald 17487, Germany
| | | | - Adrian Rump
- Institute of Pharmacy, University of Greifswald, Greifswald 17487, Germany
| | - James E Polli
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| | - Jennifer Dressman
- Fraunhofer Institute of Translational Medicine and Pharmacology, Frankfurt am Main 60596, Germany
| | - Werner Weitschies
- Institute of Pharmacy, University of Greifswald, Greifswald 17487, Germany
| |
Collapse
|
4
|
Luo D, Yan L, Wang Z, Ji X, Pei N, Jia J, Luo Y, Ouyang H, Yang S, Feng Y. Pulchinenoside B4 ameliorates oral ulcers in rats by modulating gut microbiota and metabolites. Appl Microbiol Biotechnol 2024; 108:292. [PMID: 38592514 PMCID: PMC11003895 DOI: 10.1007/s00253-024-13099-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 04/10/2024]
Abstract
Pulchinenoside B4, a natural saponin monomer from the Pulsatilla plant, plays an important role as an immunomodulator in the treatment of acute inflammation. Oral ulcer (OU) is a common ulcerative injury disease that occurs in the oral mucosa, including mucosal ulceration and abnormalities of lips and tongue. A close correlation exists between gut microbiota and circulating metabolites in patients with OU. However, the correlation between gut microbiota and serum metabolomics is not clear. Therefore, this study aimed to explore the changes in gut microbiota and metabolites in OU. The 16S ribosomal RNA (16S rRNA) gene sequencing was used to detect the changes in the composition of gut microbiota in OU rat model. Moreover, the endogenous small metabolites were explored by collecting the non-targeted serum metabolomics data. A total of 34 OU-related biomarkers were identified, mainly related to fatty acid metabolism and inflammatory pathways. The administration of B4 effectively reduced the occurrence of OU and restored the levels of multiple endogenous biomarkers and key gut microbial species to the normal level. This study demonstrated that the gut microbiota and metabolites were altered in the OU rat model, which were significantly restored to the normal level by B4, thereby showing good application prospects in the treatment of OU. KEY POINTS: • The first investigating the correlation between OU and gut microbiota. • A close correlation between metabolites and gut microbiota in OU disease was successfully identified. • Pulchinenoside B4 ameliorates oral ulcers in rats by modulating gut microbiota and metabolites.
Collapse
Affiliation(s)
- Dewei Luo
- Jiangxi University of Traditional Chinese Medicine, No. 818 Yunwan Road, Nanchang, 330002, People's Republic of China
| | - Li Yan
- Jiangxi University of Traditional Chinese Medicine, No. 818 Yunwan Road, Nanchang, 330002, People's Republic of China
| | - Zhujun Wang
- Jiangxi University of Traditional Chinese Medicine, No. 818 Yunwan Road, Nanchang, 330002, People's Republic of China
| | - Xiaofan Ji
- Jiangxi University of Traditional Chinese Medicine, No. 818 Yunwan Road, Nanchang, 330002, People's Republic of China
| | - Na Pei
- Xinyu University, No. 2666 Yangguang Road, Xinyu, 338004, People's Republic of China
| | - Jing Jia
- Jiangxi University of Traditional Chinese Medicine, No. 818 Yunwan Road, Nanchang, 330002, People's Republic of China
| | - Yingying Luo
- Jiangxi University of Traditional Chinese Medicine, No. 818 Yunwan Road, Nanchang, 330002, People's Republic of China.
| | - Hui Ouyang
- Jiangxi University of Traditional Chinese Medicine, No. 818 Yunwan Road, Nanchang, 330002, People's Republic of China.
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Traditional Chinese Medicine, No. 818 Yunwan Road, Nanchang, 338004, People's Republic of China.
| | - Shilin Yang
- Jiangxi University of Traditional Chinese Medicine, No. 818 Yunwan Road, Nanchang, 330002, People's Republic of China
| | - Yulin Feng
- Jiangxi University of Traditional Chinese Medicine, No. 818 Yunwan Road, Nanchang, 330002, People's Republic of China.
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, No. 56 Yangming Road, Nanchang, 330006, People's Republic of China.
| |
Collapse
|
5
|
Soltani F, Kamali H, Akhgari A, Afrasiabi Garekani H, Nokhodchi A, Sadeghi F. Formulation and optimization of a single-layer coat for targeting budesonide pellets to the descending Colon. Pharm Dev Technol 2024; 29:212-220. [PMID: 38392961 DOI: 10.1080/10837450.2024.2321250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 02/16/2024] [Indexed: 02/25/2024]
Abstract
The current budesonide formulations are inadequate for addressing left-sided colitis, and patients might hesitate to use an enema for a prolonged time. This study focuses on developing a single-layer coating for budesonide pellets targeting the descending colon. Pellets containing budesonide (1.5%w/w), PVP K30 (5%w/w), lactose monohydrate (25%w/w) and Avicel pH 102 (68.5%w/w) were prepared using extrusion spheronization technique. Coating formulations were designed using response surface methodology with pH and time-dependent Eudragits. Dissolution tests were conducted at different pH levels (1.2, 6.5, 6.8, and 7.2). Optimal coating formulation, considering coating level and the Eudragit (S + L) ratio to the total coating weight, was determined. Budesonide pellets were coated with the optimized composition and subjected to continuous dissolution testing simulating the gastrointestinal tract. The coating, with 48% S, 12% L, and 40% RS at a 10% coating level, demonstrated superior budesonide delivery to the descending colon. Coated pellets had a spherical shape with a uniform 30 µm thickness coating, exhibiting pH and time-dependent release. Notably, zero-order release kinetics was observed for the last 9 h in colonic conditions. The study suggests that an optimized single-layer coating, incorporating pH and time-dependent polymers, holds promise for consistently delivering budesonide to the descending colon.
Collapse
Affiliation(s)
- Fatemeh Soltani
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Kamali
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Akhgari
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadi Afrasiabi Garekani
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Nokhodchi
- Pharmaceutics Research Laboratory, Arundel Building, School of Life Sciences, University of Sussex, Brighton, UK
- Lupin Pharmaceutical Research Inc, Coral Springs, Florida, USA
| | - Fatemeh Sadeghi
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Moutaharrik S, Meroni G, Soggiu A, Foppoli A, Cerea M, Palugan L, Caloni F, Martino PA, Gazzaniga A, Maroni A. Guar gum as a microbially degradable component for an oral colon delivery system based on a combination strategy: formulation and in vitro evaluation. Drug Deliv Transl Res 2024; 14:826-838. [PMID: 37824039 DOI: 10.1007/s13346-023-01439-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2023] [Indexed: 10/13/2023]
Abstract
Oral colon delivery has widely been pursued exploiting naturally occurring polysaccharides degraded by the resident microbiota. However, their hydrophilicity may hinder the targeting performance. The aim of the present study was to manufacture and evaluate a double-coated delivery system leveraging intestinal microbiota, pH, and transit time for reliable colonic release. This system comprised a tablet core, a hydroxypropyl methylcellulose (HPMC) inner layer and an outer coating based on Eudragit® S and guar gum. The tablets were loaded with paracetamol, selected as a tracer drug because of the well-known analytical profile and lack of major effects on bacterial viability. The HPMC and Eudragit® S layers were applied by film-coating. Tested for in vitro release, the double-coated systems showed gastroresistance in 0.1 N HCl followed by lag phases of consistent duration in phosphate buffer pH 7.4, imparted by the HPMC layer and synergistically extended by the Eudragit® S/guar gum one. In simulated colonic fluid with fecal bacteria from an inflammatory bowel disease patient, release was faster than in the presence of β-mannanase and in control culture medium. The bacteria-containing fluid was obtained by an experimental procedure making multiple tests possible from a single sampling and processing run. Thus, the study conducted proved the feasibility of the delivery system and ability of guar gum to trigger release in the presence of colon bacteria without impairing the barrier properties of the coating. Finally, it allowed an advantageous simulated colonic fluid preparation procedure to be set up, reducing the time, costs, and complexity of testing and enhancing replicability.
Collapse
Affiliation(s)
- Saliha Moutaharrik
- Dipartimento di Scienze Farmaceutiche, Sezione di Tecnologia e Legislazione Farmaceutiche "M.E. Sangalli", Università degli Studi di Milano, Via G. Colombo 71, 20133, Milan, Italy
| | - Gabriele Meroni
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, One Health Unit, Università degli Studi di Milano, Via Pascal 36, 20133, Milan, Italy
| | - Alessio Soggiu
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, One Health Unit, Università degli Studi di Milano, Via Pascal 36, 20133, Milan, Italy
| | - Anastasia Foppoli
- Dipartimento di Scienze Farmaceutiche, Sezione di Tecnologia e Legislazione Farmaceutiche "M.E. Sangalli", Università degli Studi di Milano, Via G. Colombo 71, 20133, Milan, Italy
| | - Matteo Cerea
- Dipartimento di Scienze Farmaceutiche, Sezione di Tecnologia e Legislazione Farmaceutiche "M.E. Sangalli", Università degli Studi di Milano, Via G. Colombo 71, 20133, Milan, Italy
| | - Luca Palugan
- Dipartimento di Scienze Farmaceutiche, Sezione di Tecnologia e Legislazione Farmaceutiche "M.E. Sangalli", Università degli Studi di Milano, Via G. Colombo 71, 20133, Milan, Italy
| | - Francesca Caloni
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Via Celoria 10, 20133, Milan, Italy
| | - Piera Anna Martino
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, One Health Unit, Università degli Studi di Milano, Via Pascal 36, 20133, Milan, Italy.
| | - Andrea Gazzaniga
- Dipartimento di Scienze Farmaceutiche, Sezione di Tecnologia e Legislazione Farmaceutiche "M.E. Sangalli", Università degli Studi di Milano, Via G. Colombo 71, 20133, Milan, Italy
| | - Alessandra Maroni
- Dipartimento di Scienze Farmaceutiche, Sezione di Tecnologia e Legislazione Farmaceutiche "M.E. Sangalli", Università degli Studi di Milano, Via G. Colombo 71, 20133, Milan, Italy
| |
Collapse
|
7
|
Kassem AM, Almukainzi M, Faris TM, Ibrahim AH, Anwar W, Elbahwy IA, El-Gamal FR, Zidan MF, Akl MA, Abd-ElGawad AM, Elshamy AI, Elmowafy M. A pH-sensitive silica nanoparticles for colon-specific delivery and controlled release of catechin: Optimization of loading efficiency and in vitro release kinetics. Eur J Pharm Sci 2024; 192:106652. [PMID: 38008226 DOI: 10.1016/j.ejps.2023.106652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 11/28/2023]
Abstract
Catechin is a naturally occurring flavonoid of the flavan-3-ol subclass with numerous biological functions; however, these benefits are diminished due to several factors, including low water solubility and degradation in the stomach's harsh environment. So, this study aimed to develop an intelligent catechin colon-targeting delivery system with a high loading capacity. This was done by coating surface-decorated mesoporous silica nanoparticles with a pH-responsive enteric polymer called Eudragit®-S100. The pristine wormlike mesoporous silica nanoparticles (< 100 nm) with high surface area and large total pore volume were effectively synthesized and modified with the NH2 group using the post-grafting strategy. Various parameters, including solvent polarity, catechin-carrier mass ratio, and adsorption time, were studied to improve the loading of catechin into the aminated silica nanoparticles. Next, the negatively charged Eudragit®-S100 was electrostatically coated onto the positively charged aminated nanocarriers to shield the loaded catechin from the acidic environment of the stomach (pH 1.9) and to facilitate site-specific delivery in the acidic environment of the colon (pH 7.4). The prepared nanomaterials were evaluated using several methods, including The Brauner-Emmett-Teller, surface area analyzer, zeta sizer, Field Emission Scanning Electron Microscope, Powder X-Ray Diffraction, Fourier Transform Infrared Spectroscopy, Energy-Dispersive X-ray Spectroscopy, and Differential Scanning Calorimetry. In vitro dissolution studies revealed that Eudragit®-S100-coated aminated nanomaterials prevented the burst release of the loaded catechin in the acidic environment, with approximately 90% of the catechin only being released at colonic pH (pH > 7) with a supercase II transport mechanism. As a result, silica nanoparticles coated with Eudragit®-S100 would provide an innovative and promising approach in targeted nanomedicine for the oral delivery of catechin and related medicines for treating diseases related to the colon, such as colorectal cancer and irritable bowel syndrome.
Collapse
Affiliation(s)
- Abdulsalam M Kassem
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11751, Cairo, Egypt
| | - May Almukainzi
- Department of Pharmaceutical Science, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Tarek M Faris
- Department of Pharmaceutical Science, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Ahmed H Ibrahim
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11751, Cairo, Egypt
| | - Walid Anwar
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11751, Cairo, Egypt
| | - Ibrahim A Elbahwy
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11751, Cairo, Egypt
| | - Farid R El-Gamal
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11751, Cairo, Egypt
| | - Mohamed F Zidan
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11751, Cairo, Egypt
| | - Mohamed A Akl
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11751, Cairo, Egypt; Department of Pharmaceutics, College of Pharmacy, The Islamic University, Najaf 54001, Iraq
| | - Ahmed M Abd-ElGawad
- Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Abdelsamed I Elshamy
- Chemistry of Natural Compounds Department, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt
| | - Mohammed Elmowafy
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11751, Cairo, Egypt; Department of Pharmaceutics, College of Pharmacy, Jouf University, P.O. Box 2014, Sakaka, Saudi Arabia
| |
Collapse
|
8
|
Bosch B, Moutaharrik S, Gazzaniga A, Hiippala K, Santos HA, Maroni A, Satokari R. Development of a time-dependent oral colon delivery system of anaerobic Odoribacter splanchnicus for bacteriotherapy. Eur J Pharm Biopharm 2023; 190:73-80. [PMID: 37479064 DOI: 10.1016/j.ejpb.2023.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/05/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
Odoribacter (O.) splanchnicus is an anaerobic member of the human intestinal microbiota. Its decrease in abundance has been associated with inflammatory bowel disease (IBD), non-alcoholic fatty liver, and cystic fibrosis. Considering the anti-inflammatory properties of O. splanchnicus and its possible use for IBD, intestinal isolate O. splanchnicus 57 was here formulated for oral colonic release based on a time-dependent strategy. Freeze-drying protocol was determined to ensure O. splanchnicus 57 viability during the process. Disintegrating tablets, containing the freeze-dried O. splanchnicus 57, were manufactured by direct compression and coated by powder-layering technique with hydroxypropyl methylcellulose (Methocel™ E50) in a tangential-spray fluid bed. Eudragit® L was then applied by spray-coating in a top-spray fluid bed. Double-coated tablets were tested for release, showing gastric resistance properties and, as desired, lag phases of reproducible duration prior to release in phosphate buffer pH 6.8. The cell viability and anti-inflammatory activity of the strain were assessed after the main manufacturing steps. While freeze-drying did not affect bacterial viability, the tableting and coating processes were more stressful. Nonetheless, O. splanchnicus 57 cells survived manufacturing and the final formulations had 106-107 CFU/g of viable cells. The strain kept its anti-inflammatory properties after tableting and coating, reducing Escherichia coli lipopolysaccharide-induced interleukin-8 cytokine release from HT-29 cells. Overall, O. splanchnicus 57 strain was formulated successfully for oral colon delivery, opening new ways to formulate pure cultures of single anaerobic strains or mixtures for oral delivery.
Collapse
Affiliation(s)
- Berta Bosch
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Saliha Moutaharrik
- Sez. di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy.
| | - Andrea Gazzaniga
- Sez. di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy
| | - Kaisa Hiippala
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland; Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen 9713 AV, The Netherlands; W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen 9713 AV, The Netherlands
| | - Alessandra Maroni
- Sez. di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy
| | - Reetta Satokari
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
9
|
Moutaharrik S, Maroni A, Neut C, Dubuquoy C, Dubuquoy L, Foppoli A, Cerea M, Palugan L, Siepmann F, Siepmann J, Gazzaniga A. In vitro and in vivo evaluation of a pH-, microbiota- and time-based oral delivery platform for colonic release. Eur J Pharm Biopharm 2023; 183:13-23. [PMID: 36563887 DOI: 10.1016/j.ejpb.2022.12.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/10/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Several formulation strategies have been proposed for oral colon delivery, particularly for the therapy of inflammatory bowel disease (IBD). However, targeting the large intestine remains a challenging goal. The aim of this study was to develop and evaluate a novel type of drug delivery system, which is based on multiple drug release triggers for reliable performance. The system consists of: (i) a drug core, (ii) an inner swellable low-viscosity hydroxypropyl methylcellulose (HPMC) layer, and (iii) an outer film coating based on a Eudragit® S:high-methoxyl (HM) pectin (7:3 w/w) blend, optionally containing chitosan. Convex immediate release tablets (2 or 4 mm in diameter) containing paracetamol or 5-aminosalicylic acid (5-ASA) were coated in a fluid bed. The double-coated tablets exhibited pulsatile release profiles when changing the release medium from 0.1 N HCl to phosphate buffer pH 7.4. Also, drug release was faster in simulated colonic fluid (SCF) in the presence of fecal bacteria from IBD patients compared to control culture medium from tablets with outer Eudragit® S: HM pectin: chitosan coatings. The latter systems showed promising results in the control of the progression of colitis and alteration of the microbiota in a preliminary rat study.
Collapse
Affiliation(s)
- S Moutaharrik
- Università degli Studi di Milano, Dipartimento di Scienze Farmaceutiche (DISFARM), Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", 20133 Milan, Italy.
| | - A Maroni
- Università degli Studi di Milano, Dipartimento di Scienze Farmaceutiche (DISFARM), Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", 20133 Milan, Italy.
| | - C Neut
- University of Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France.
| | - C Dubuquoy
- University of Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France.
| | - L Dubuquoy
- University of Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France.
| | - A Foppoli
- Università degli Studi di Milano, Dipartimento di Scienze Farmaceutiche (DISFARM), Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", 20133 Milan, Italy.
| | - M Cerea
- Università degli Studi di Milano, Dipartimento di Scienze Farmaceutiche (DISFARM), Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", 20133 Milan, Italy.
| | - L Palugan
- Università degli Studi di Milano, Dipartimento di Scienze Farmaceutiche (DISFARM), Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", 20133 Milan, Italy.
| | - F Siepmann
- University of Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France.
| | - J Siepmann
- University of Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France.
| | - A Gazzaniga
- Università degli Studi di Milano, Dipartimento di Scienze Farmaceutiche (DISFARM), Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", 20133 Milan, Italy.
| |
Collapse
|
10
|
Doggwiler V, Lanz M, Paredes V, Lipps G, Imanidis G. Tablet formulation with dual control concept for efficient colonic drug delivery. Int J Pharm 2023; 631:122499. [PMID: 36529358 DOI: 10.1016/j.ijpharm.2022.122499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Aim of this study was to develop a tablet formulation for targeted colonic drug release by implementing two control mechanisms: A pH-sensitive coating layer based on Eudragit® FS 30 D to prevent drug release in the upper gastrointestinal tract, combined with a matrix based on plant-derived polysaccharide xyloglucan to inhibit drug release after coating removal in the small intestine and to allow microbiome triggered drug release in the colon. In vitro dissolution tests simulated the passage through the entire gastrointestinal tract with a four-stage protocol, including microbial xyloglucanase addition in physiologically relevant concentrations as microbiome surrogate to the colonic dissolution medium. Matrix erosion was monitored in parallel to drug release by measurement of reducing sugar equivalents resulting from xyloglucan hydrolysis. Limited drug release in gastric and small intestinal test stages and predominant release in the colonic stage was achieved. The xyloglucan matrix controlled drug release after dissolution of the enteric coating through the formation of a gummy polysaccharide layer at the tablet surface. Matrix degradation was dependent on enzyme concentration in the colonic medium and significantly accelerated drug release resulting in erosion-controlled release process. Drug release at physiologically relevant enzyme concentration was completed within the bounds of colonic transit time. The dual control concept was applicable to two drug substances with different solubility, providing similar release rates in colonic environment containing xyloglucanase. Drug solubility mechanistically affected release, with diffusion of caffeine, but not of 5-ASA, contributing to the overall release rate out of the matrix tablet.
Collapse
Affiliation(s)
- Viviane Doggwiler
- School of Life Sciences, University of Applied Sciences Northwestern Switzerland, Hofackerstrasse 30, 4132 Muttenz, Switzerland; Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Michael Lanz
- School of Life Sciences, University of Applied Sciences Northwestern Switzerland, Hofackerstrasse 30, 4132 Muttenz, Switzerland
| | - Valeria Paredes
- School of Life Sciences, University of Applied Sciences Northwestern Switzerland, Hofackerstrasse 30, 4132 Muttenz, Switzerland
| | - Georg Lipps
- School of Life Sciences, University of Applied Sciences Northwestern Switzerland, Hofackerstrasse 30, 4132 Muttenz, Switzerland
| | - Georgios Imanidis
- School of Life Sciences, University of Applied Sciences Northwestern Switzerland, Hofackerstrasse 30, 4132 Muttenz, Switzerland; Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| |
Collapse
|
11
|
McCoubrey LE, Favaron A, Awad A, Orlu M, Gaisford S, Basit AW. Colonic drug delivery: Formulating the next generation of colon-targeted therapeutics. J Control Release 2023; 353:1107-1126. [PMID: 36528195 DOI: 10.1016/j.jconrel.2022.12.029] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 12/26/2022]
Abstract
Colonic drug delivery can facilitate access to unique therapeutic targets and has the potential to enhance drug bioavailability whilst reducing off-target effects. Delivering drugs to the colon requires considered formulation development, as both oral and rectal dosage forms can encounter challenges if the colon's distinct physiological environment is not appreciated. As the therapeutic opportunities surrounding colonic drug delivery multiply, the success of novel pharmaceuticals lies in their design. This review provides a modern insight into the key parameters determining the effective design and development of colon-targeted medicines. Influential physiological features governing the release, dissolution, stability, and absorption of drugs in the colon are first discussed, followed by an overview of the most reliable colon-targeted formulation strategies. Finally, the most appropriate in vitro, in vivo, and in silico preclinical investigations are presented, with the goal of inspiring strategic development of new colon-targeted therapeutics.
Collapse
Affiliation(s)
- Laura E McCoubrey
- 29 - 39 Brunswick Square, UCL School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Alessia Favaron
- 29 - 39 Brunswick Square, UCL School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Atheer Awad
- 29 - 39 Brunswick Square, UCL School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Mine Orlu
- 29 - 39 Brunswick Square, UCL School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Simon Gaisford
- 29 - 39 Brunswick Square, UCL School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Abdul W Basit
- 29 - 39 Brunswick Square, UCL School of Pharmacy, University College London, London, WC1N 1AX, UK.
| |
Collapse
|
12
|
Braccia DJ, Minabou Ndjite G, Weiss A, Levy S, Abeysinghe S, Jiang X, Pop M, Hall B. Gut Microbiome-Wide Search for Bacterial Azoreductases Reveals Potentially Uncharacterized Azoreductases Encoded in the Human Gut Microbiome. Drug Metab Dispos 2023; 51:142-153. [PMID: 36116790 PMCID: PMC11022935 DOI: 10.1124/dmd.122.000898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/02/2022] [Accepted: 08/18/2022] [Indexed: 01/03/2023] Open
Abstract
The human gut is home to trillions of microorganisms that are responsible for the modification of many orally administered drugs, leading to a wide range of therapeutic outcomes. Prodrugs bearing an azo bond are designed to treat inflammatory bowel disease and colorectal cancer via microbial azo reduction, allowing for topical application of therapeutic moieties to the diseased tissue in the intestines. Despite the inextricable link between microbial azo reduction and the efficacy of azo prodrugs, the prevalence, abundance, and distribution of azoreductases have not been systematically examined across the gut microbiome. Here, we curated and clustered amino acid sequences of experimentally confirmed bacterial azoreductases and conducted a hidden Markov model-driven homolog search for these enzymes across 4644 genome sequences present in the representative Unified Human Gastrointestinal Genomes collection. We identified 1958 putative azo-reducing species, corroborating previous findings that azo reduction appears to be a ubiquitous function of the gut microbiome. However, through a systematic comparison of predicted and confirmed azo-reducing strains, we hypothesize the presence of uncharacterized azoreductases in 25 prominent strains of the human gut microbiome. Finally, we confirmed the azo reduction of Acid Orange 7 by multiple strains of Fusobacterium nucleatum, Bacteroides fragilis, and Clostridium clostridioforme Together, these results suggest the presence and activity of many uncharacterized azoreductases in the human gut microbiome and motivate future studies aimed at characterizing azoreductase genes in prominent members of the human gut microbiome. SIGNIFICANCE STATEMENT: This work systematically examined the prevalence, abundance, and distribution of azoreductases across the healthy and inflammatory bowel disease human gut microbiome, revealing potentially uncharacterized azoreductase genes. It also confirmed the reduction of Acid Orange 7 by strains of Fusobacterium nucleatum, Bacteroides fragilis, and Clostridium clostridioforme.
Collapse
Affiliation(s)
- Domenick J Braccia
- Center for Bioinformatics and Computational Biology (D.B., M.P., B.H.) and Departments of Cell Biology and Molecular Genetics (G.M.N., A.W., S.L., S.A., B.H.) and Computer Science (M.P.), University of Maryland, College Park, Maryland; and National Library of Medicine, National Institutes of Health, Bethesda, Maryland (X.J.)
| | - Glory Minabou Ndjite
- Center for Bioinformatics and Computational Biology (D.B., M.P., B.H.) and Departments of Cell Biology and Molecular Genetics (G.M.N., A.W., S.L., S.A., B.H.) and Computer Science (M.P.), University of Maryland, College Park, Maryland; and National Library of Medicine, National Institutes of Health, Bethesda, Maryland (X.J.)
| | - Ashley Weiss
- Center for Bioinformatics and Computational Biology (D.B., M.P., B.H.) and Departments of Cell Biology and Molecular Genetics (G.M.N., A.W., S.L., S.A., B.H.) and Computer Science (M.P.), University of Maryland, College Park, Maryland; and National Library of Medicine, National Institutes of Health, Bethesda, Maryland (X.J.)
| | - Sophia Levy
- Center for Bioinformatics and Computational Biology (D.B., M.P., B.H.) and Departments of Cell Biology and Molecular Genetics (G.M.N., A.W., S.L., S.A., B.H.) and Computer Science (M.P.), University of Maryland, College Park, Maryland; and National Library of Medicine, National Institutes of Health, Bethesda, Maryland (X.J.)
| | - Stephenie Abeysinghe
- Center for Bioinformatics and Computational Biology (D.B., M.P., B.H.) and Departments of Cell Biology and Molecular Genetics (G.M.N., A.W., S.L., S.A., B.H.) and Computer Science (M.P.), University of Maryland, College Park, Maryland; and National Library of Medicine, National Institutes of Health, Bethesda, Maryland (X.J.)
| | - Xiaofang Jiang
- Center for Bioinformatics and Computational Biology (D.B., M.P., B.H.) and Departments of Cell Biology and Molecular Genetics (G.M.N., A.W., S.L., S.A., B.H.) and Computer Science (M.P.), University of Maryland, College Park, Maryland; and National Library of Medicine, National Institutes of Health, Bethesda, Maryland (X.J.)
| | - Mihai Pop
- Center for Bioinformatics and Computational Biology (D.B., M.P., B.H.) and Departments of Cell Biology and Molecular Genetics (G.M.N., A.W., S.L., S.A., B.H.) and Computer Science (M.P.), University of Maryland, College Park, Maryland; and National Library of Medicine, National Institutes of Health, Bethesda, Maryland (X.J.)
| | - Brantley Hall
- Center for Bioinformatics and Computational Biology (D.B., M.P., B.H.) and Departments of Cell Biology and Molecular Genetics (G.M.N., A.W., S.L., S.A., B.H.) and Computer Science (M.P.), University of Maryland, College Park, Maryland; and National Library of Medicine, National Institutes of Health, Bethesda, Maryland (X.J.)
| |
Collapse
|
13
|
Lima IBC, Moreno LCGAI, Peres AV, Santana ACG, Carvalho A, Chaves MH, Lima L, Sousa RW, Dittz D, Rolim HML, Nunes LCC. Nanoparticles Obtained from Zein for Encapsulation of Mesalazine. Pharmaceutics 2022; 14:2830. [PMID: 36559323 PMCID: PMC9784488 DOI: 10.3390/pharmaceutics14122830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/01/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
We encapsulated MSZ in zein nanoparticles (NP-ZN) using a desolvation method followed by drying in a mini spray dryer. These nanoparticles exhibited a size of 266.6 ± 52 nm, IPD of 0.14 ± 1.1 and zeta potential of -36.4 ± 1.5 mV, suggesting colloidal stability. Quantification using HPLC showed a drug-loaded of 43.8 µg/mg. SEM demonstrated a spherical morphology with a size variation from 220 to 400 nm. A FTIR analysis did not show drug spectra in the NPs in relation to the physical mixture, which suggests drug encapsulation without changing its chemical structure. A TGA analysis showed thermal stability up to 300 °C. In vitro release studies demonstrated gastroresistance and a sustained drug release at pH 7.4 (97.67 ± 0.32%) in 120 h. The kinetic model used for the release of MSZ from the NP-ZN in a pH 1.2 medium was the Fickian diffusion, in a pH 6.8 medium it was the Peppas-Sahlin model with the polymeric relaxation mechanism and in a pH 7.4 medium it was the Korsmeyer-Peppas model with the Fickian release mechanism, or "Case I". An in vitro cytotoxicity study in the CT26.WT cell line showed no basal cytotoxicity up to 500 μg/mL. The NP-ZN showed to be a promising vector for the sustained release of MSZ in the colon by oral route.
Collapse
Affiliation(s)
- Izabela Borges C. Lima
- Laboratory of Technological Innovation, Entrepreneurship, Medicines and Related (LITE), Nucleus of Pharmaceutical Technology, Federal University of Piauí, Teresina 64049-550, PI, Brazil
| | - Lina Clara G. A. I. Moreno
- Pharmaceutical Nanosystems Laboratory (NANOSFAR), Nucleus of Pharmaceutical Technology, Federal University of Piauí, Teresina 64049-550, PI, Brazil
| | - Ana Victória Peres
- Laboratory of Technological Innovation, Entrepreneurship, Medicines and Related (LITE), Nucleus of Pharmaceutical Technology, Federal University of Piauí, Teresina 64049-550, PI, Brazil
- Pharmaceutical Nanosystems Laboratory (NANOSFAR), Nucleus of Pharmaceutical Technology, Federal University of Piauí, Teresina 64049-550, PI, Brazil
| | - Ana Cristina Gramoza Santana
- Laboratory of Technological Innovation, Entrepreneurship, Medicines and Related (LITE), Nucleus of Pharmaceutical Technology, Federal University of Piauí, Teresina 64049-550, PI, Brazil
| | - Adonias Carvalho
- Natural Products Laboratory (LPN), Department of Chemistry, Federal University of Piauí, Teresina 64049-550, PI, Brazil
| | - Mariana H. Chaves
- Natural Products Laboratory (LPN), Department of Chemistry, Federal University of Piauí, Teresina 64049-550, PI, Brazil
| | - Lorena Lima
- Laboratory of Technological Innovation, Entrepreneurship, Medicines and Related (LITE), Nucleus of Pharmaceutical Technology, Federal University of Piauí, Teresina 64049-550, PI, Brazil
- Pharmaceutical Nanosystems Laboratory (NANOSFAR), Nucleus of Pharmaceutical Technology, Federal University of Piauí, Teresina 64049-550, PI, Brazil
| | - Rayran Walter Sousa
- Laboratory of Experimental Cancerology (LabCâncer), Nucleus of Pharmaceutical Technology, Federal University of Piauí, Teresina 64049-550, PI, Brazil
| | - Dalton Dittz
- Laboratory of Experimental Cancerology (LabCâncer), Nucleus of Pharmaceutical Technology, Federal University of Piauí, Teresina 64049-550, PI, Brazil
| | - Hercília M. L. Rolim
- Pharmaceutical Nanosystems Laboratory (NANOSFAR), Nucleus of Pharmaceutical Technology, Federal University of Piauí, Teresina 64049-550, PI, Brazil
| | - Lívio César Cunha Nunes
- Laboratory of Technological Innovation, Entrepreneurship, Medicines and Related (LITE), Nucleus of Pharmaceutical Technology, Federal University of Piauí, Teresina 64049-550, PI, Brazil
| |
Collapse
|
14
|
Gazzaniga A, Moutaharrik S, Filippin I, Foppoli A, Palugan L, Maroni A, Cerea M. Time-Based Formulation Strategies for Colon Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14122762. [PMID: 36559256 PMCID: PMC9783935 DOI: 10.3390/pharmaceutics14122762] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Despite poor absorption properties, delivery to the colon of bioactive compounds administered by the oral route has become a focus of pharmaceutical research over the last few decades. In particular, the high prevalence of Inflammatory Bowel Disease has driven interest because of the need for improved pharmacological treatments, which may provide high local drug concentrations and low systemic exposure. Colonic release has also been explored to deliver orally biologics having gut stability and permeability issues. For colon delivery, various technologies have been proposed, among which time-dependent systems rely on relatively constant small intestine transit time. Drug delivery platforms exploiting this physiological feature provide a lag time programmed to cover the entire small intestine transit and control the onset of release. Functional polymer coatings or capsule plugs are mainly used for this purpose, working through different mechanisms, such as swelling, dissolution/erosion, rupturing and/or increasing permeability, all activated by aqueous fluids. In addition, enteric coating is generally required to protect time-controlled formulations during their stay in the stomach and rule out the influence of variable gastric emptying. In this review, the rationale and main delivery technologies for oral colon delivery based on the time-dependent strategy are presented and discussed.
Collapse
|
15
|
Lima I, Moreno L, Dias S, Silva D, Oliveira AC, Soares L, Sousa R, Dittz D, Rolim H, Nunes L. Acetylated cashew gum nanoparticles for mesalazine delivery. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
|
16
|
Varum F, Thorne H, Bravo R, Gilgen D, Hartig C, Nicolas G, Wild D, Liakoni E, Haschke M. Targeted colonic release formulations of mesalazine – A clinical pharmaco-scintigraphic proof-of-concept study in healthy subjects and patients with mildly active ulcerative colitis. Int J Pharm 2022; 625:122055. [DOI: 10.1016/j.ijpharm.2022.122055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 01/13/2023]
|
17
|
Administration strategies and smart devices for drug release in specific sites of the upper GI tract. J Control Release 2022; 348:537-552. [PMID: 35690278 DOI: 10.1016/j.jconrel.2022.06.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 10/18/2022]
Abstract
Targeting the release of drugs in specific sites of the upper GI tract would meet local therapeutic goals, improve the bioavailability of specific drugs and help overcoming compliance-related limitations, especially in chronic illnesses of great social/economic impact and involving polytherapies (e.g. Parkinson's and Alzeimer's disease, tubercolosis, malaria, HIV, HCV). It has been traditionally pursued using gastroretentive (GR) systems, i.e. low-density, high-density, magnetic, adhesive and expandable devices. More recently, the interest towards oral administration of biologics has prompted the development of novel drug delivery systems (DDSs) provided with needles and able to inject different formulations in the mucosa of the upper GI tract and particularly of esophagus, stomach or small intestine. Besides comprehensive literature analysis, DDSs identified as smart devices in view of their high degree of complexity in terms of design, working mechanism, materials employed and manufacturing steps were discussed making use of graphic tools.
Collapse
|
18
|
Singh P, Waghambare P, Khan T, Omri A. Colorectal cancer management: Strategies in drug delivery. Expert Opin Drug Deliv 2022; 19:653-670. [PMID: 35656670 DOI: 10.1080/17425247.2022.2084531] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Colorectal cancer (CRC) is the third most common cancer leading to death worldwide following breast and lung cancer with the incidence rate of 10%. The treatment comprises of surgery, radiation, and ablation therapy depending upon the stage of cancer. AREAS COVERED The review focuses on various drug delivery strategies explored to circumvent the major constraints associated with the conventional drug delivery systems- poor bioavailability, intra- and inter individual variability, exposure of normal cells to antineoplastic agents, and presence of efflux pump. All these attributes impact the effective delivery of chemotherapeutic agents at the tumor site. The various target specific drug delivery systems developed for colorectal cancer include pH dependent, microbiologically triggered, time dependent, magnetically driven, pressure dependent, prodrug/polysaccharide based, osmotic and ligand mediated systems. This review enumerates novel target specific approaches developed and investigated for potential utility in CRC therapeutics. EXPERT OPINION The limitations of conventional delivery systems can be overcome by development of colon-specific targeted drug delivery systems that overcome the obstacles of nonspecific biodistribution, drug resistance and unwanted adverse effects of conventional drug delivery systems. In addition, nanotechnology approaches help to increase drug solubility, bioavailability, reduce side effects and provide superior drug response in CRC.
Collapse
Affiliation(s)
- Prabha Singh
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, India
| | - Pramita Waghambare
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, India
| | - Tabassum Khan
- Department of Pharmaceutical Chemistry, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, India
| | - Abdelwahab Omri
- The Novel Drug & Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, Canada
| |
Collapse
|
19
|
Awad A, Madla CM, McCoubrey LE, Ferraro F, Gavins FK, Buanz A, Gaisford S, Orlu M, Siepmann F, Siepmann J, Basit AW. Clinical translation of advanced colonic drug delivery technologies. Adv Drug Deliv Rev 2022; 181:114076. [PMID: 34890739 DOI: 10.1016/j.addr.2021.114076] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/26/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022]
Abstract
Targeted drug delivery to the colon offers a myriad of benefits, including treatment of local diseases, direct access to unique therapeutic targets and the potential for increasing systemic drug bioavailability and efficacy. Although a range of traditional colonic delivery technologies are available, these systems exhibit inconsistent drug release due to physiological variability between and within individuals, which may be further exacerbated by underlying disease states. In recent years, significant translational and commercial advances have been made with the introduction of new technologies that incorporate independent multi-stimuli release mechanisms (pH and/or microbiota-dependent release). Harnessing these advanced technologies offers new possibilities for drug delivery via the colon, including the delivery of biopharmaceuticals, vaccines, nutrients, and microbiome therapeutics for the treatment of both local and systemic diseases. This review details the latest advances in colonic drug delivery, with an emphasis on emerging therapeutic opportunities and clinical technology translation.
Collapse
|
20
|
Oral colon delivery platform based on a novel combination approach: Design concept and preliminary evaluation. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Shahdadi Sardou H, Akhgari A, Mohammadpour AH, Beheshti Namdar A, Kamali H, Jafarian AH, Afrasiabi Garekani H, Sadeghi F. Optimization study of combined enteric and time-dependent polymethacrylates as a coating for colon targeted delivery of 5-ASA pellets in rats with ulcerative colitis. Eur J Pharm Sci 2021; 168:106072. [PMID: 34774715 DOI: 10.1016/j.ejps.2021.106072] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/07/2021] [Accepted: 11/08/2021] [Indexed: 01/15/2023]
Abstract
Formulation design for colon-specific delivery of 5-aminosalicylic acid (5-ASA) could bring some therapeutic benefits in the treatment of ulcerative colitis (UC). In the current study, a 32 full factorial design was used to predict optimum coating composed of two enteric (poly methacrylic acid, methyl methacrylates 1:2 and 1:1) and time-dependent (poly ethyl acrylate, methyl methacrylate, trimethylammonio ethyl methacrylate chloride 1:2:0.1) polymethacrylates for colon-specific delivery of 5-ASA pellets. A unique coating composition and coating level predicted by the model was applied onto either inulin-free 5-ASA pellets or inulin-bearing 5-ASA pellets and the coated pellets were examined by dissolution test in-vitro. The coated pellets were also tested in a rat model of UC and compared with the a commercially available colonic delivery system of 5-ASA. The ratio of the two enteric polymethacrylates and time-dependet polymethacrylate of 16:64:20 w/w at a coating level of 15% was discovered as the optimum coating for delivery of 5-ASA pellets to the colon. In general, the coated pellets offered a better therapeutic outcome compared to commercially available colonic delivery system of 5-ASA and uncoated pellets in terms of colitis activity index and the colon's tissue enzymes of MDA and GSH. It seems that the coating composed of enteric and pH-dependent polymethacrylates could tune up the rate of drug release from 5-ASA-coated pellets and trigger drug release based on pH and time.
Collapse
Affiliation(s)
- Hossein Shahdadi Sardou
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Akhgari
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Hooshang Mohammadpour
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Beheshti Namdar
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Kamali
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Hossein Jafarian
- Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadi Afrasiabi Garekani
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Fatemeh Sadeghi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
22
|
Cellulase as an "active" excipient in prolonged-release HPMC matrices: A novel strategy towards zero-order release kinetics. Int J Pharm 2021; 607:121005. [PMID: 34391855 DOI: 10.1016/j.ijpharm.2021.121005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 11/21/2022]
Abstract
Hydrophilic matrices are of utmost interest for oral prolonged release of drugs. However, they show decreasing release rate over time, mainly due to lengthening of the diffusional pathway across the gel formed upon glass-rubber transition of the polymer. Therefore, achievement of zero-order release kinetics, which could reflect in constant drug plasma levels, is still an open issue. With the aim of improving the release performance of hydroxypropyl methylcellulose (HPMC) systems, the use of cellulolytic enzymes was proposed to aid erosion of the swollen matrix, thereby counteracting the release rate decrease particularly toward the end of the process. The effectiveness of this strategy was evaluated by studying the mass loss and drug tracer release from tableted matrices consisting of high-viscosity HPMC (Methocel® K4M), Acetaminophen and increasing amounts (0.5-10% on HPMC) of a cellulolytic product (Sternzym® C13030). A faster erosion and progressive shift to linearity of the overall release profiles were observed as a function of the enzyme concentration. Release was markedly linear from matrices containing 5 and 10% Sternzym® C13030. In partially coated matrices with these cellulase concentrations, such results were in agreement with data of erosion and swelling front movement, which exhibited early and long-lasting synchronization.
Collapse
|
23
|
Melocchi A, Uboldi M, Cerea M, Foppoli A, Maroni A, Moutaharrik S, Palugan L, Zema L, Gazzaniga A. Shape memory materials and 4D printing in pharmaceutics. Adv Drug Deliv Rev 2021; 173:216-237. [PMID: 33774118 DOI: 10.1016/j.addr.2021.03.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/09/2021] [Accepted: 03/18/2021] [Indexed: 12/18/2022]
Abstract
Shape memory materials (SMMs), including alloys and polymers, can be programmed into a temporary configuration and then recover the original shape in which they were processed in response to a triggering external stimulus (e.g. change in temperature or pH, contact with water). For this behavior, SMMs are currently raising a lot of attention in the pharmaceutical field where they could bring about important innovations in the current treatments. 4D printing involves processing of SMMs by 3D printing, thus adding shape evolution over time to the already numerous customization possibilities of this new manufacturing technology. SMM-based drug delivery systems (DDSs) proposed in the scientific literature were here reviewed and classified according to the target pursued through the shape recovery process. Administration route, therapeutic goal, temporary and original shape, triggering stimulus, main innovation features and possible room for improvement of the DDSs were especially highlighted.
Collapse
|
24
|
Tran PHL, Tran TTD. Current Film Coating Designs for Colon-Targeted Oral Delivery. Curr Med Chem 2021; 28:1957-1969. [PMID: 32496984 DOI: 10.2174/0929867327666200604170048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/02/2020] [Accepted: 05/03/2020] [Indexed: 11/22/2022]
Abstract
Colon-targeted oral delivery has recently attracted a substantial number of studies on both systemic and local treatments. Among approaches for colonic delivery, film coatings have been demonstrated as effective elements of the drug delivery systems because they can integrate multiple release strategies, such as pH-controlled release, time-controlled release and enzyme-triggered release. Moreover, coating layer modulations, natural film materials and nanoparticle coatings have been vigorously investigated with promising applications. This review aims to describe the primary approaches for improving drug delivery to the colon in the last decade. The outstanding importance of current developments in film coatings will advance dosage form designs and lead to the development of efficient colon-targeted oral delivery systems.
Collapse
Affiliation(s)
| | - Thao T D Tran
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
25
|
Melocchi A, Uboldi M, Briatico-Vangosa F, Moutaharrik S, Cerea M, Foppoli A, Maroni A, Palugan L, Zema L, Gazzaniga A. The Chronotopic™ System for Pulsatile and Colonic Delivery of Active Molecules in the Era of Precision Medicine: Feasibility by 3D Printing via Fused Deposition Modeling (FDM). Pharmaceutics 2021; 13:pharmaceutics13050759. [PMID: 34065414 PMCID: PMC8161275 DOI: 10.3390/pharmaceutics13050759] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/15/2022] Open
Abstract
The pulsatile-release Chronotopic™ system was conceived of as a drug-containing core surrounded by a coat made of swellable/soluble hydrophilic polymers, the latter being able to provide a programmable lag phase prior to drug liberation. This system was also proposed in a colon-targeting configuration, entailing a gastroresistant film to prevent early interaction of the inner coat with gastric fluids and enabling the attainment of a lag phase matching the small intestinal transit time. Over the years, various multiple-step manufacturing processes have been tested for the fabrication of the Chronotopic™ system in both its configurations. This work focused on the evaluation of 3D printing by fused deposition modeling in view of its potential towards product personalization, on demand one-step manufacturing and efficient scale down of batches. The feasibility of each part of the Chronotopic™ system was independently investigated starting from in-house made filaments, characterizing the resulting specimens for physico-technological and performance characteristics. The printing parameters identified as suitable during the set-up phase were then used to fabricate prototypes either in a single step for the pulsatile configuration or following two different fabrication approaches for the colon-targeting one.
Collapse
Affiliation(s)
- Alice Melocchi
- Sezione di Tecnologia e Legislazione Farmaceutiche “M. E. Sangalli”, Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, 20133 Milan, Italy; (A.M.); (M.U.); (S.M.); (M.C.); (A.F.); (A.M.); (L.P.); (A.G.)
| | - Marco Uboldi
- Sezione di Tecnologia e Legislazione Farmaceutiche “M. E. Sangalli”, Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, 20133 Milan, Italy; (A.M.); (M.U.); (S.M.); (M.C.); (A.F.); (A.M.); (L.P.); (A.G.)
| | - Francesco Briatico-Vangosa
- Dipartimento di Chimica, Materiali e Ingegneria Chimica “G. Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy;
| | - Saliha Moutaharrik
- Sezione di Tecnologia e Legislazione Farmaceutiche “M. E. Sangalli”, Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, 20133 Milan, Italy; (A.M.); (M.U.); (S.M.); (M.C.); (A.F.); (A.M.); (L.P.); (A.G.)
| | - Matteo Cerea
- Sezione di Tecnologia e Legislazione Farmaceutiche “M. E. Sangalli”, Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, 20133 Milan, Italy; (A.M.); (M.U.); (S.M.); (M.C.); (A.F.); (A.M.); (L.P.); (A.G.)
| | - Anastasia Foppoli
- Sezione di Tecnologia e Legislazione Farmaceutiche “M. E. Sangalli”, Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, 20133 Milan, Italy; (A.M.); (M.U.); (S.M.); (M.C.); (A.F.); (A.M.); (L.P.); (A.G.)
| | - Alessandra Maroni
- Sezione di Tecnologia e Legislazione Farmaceutiche “M. E. Sangalli”, Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, 20133 Milan, Italy; (A.M.); (M.U.); (S.M.); (M.C.); (A.F.); (A.M.); (L.P.); (A.G.)
| | - Luca Palugan
- Sezione di Tecnologia e Legislazione Farmaceutiche “M. E. Sangalli”, Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, 20133 Milan, Italy; (A.M.); (M.U.); (S.M.); (M.C.); (A.F.); (A.M.); (L.P.); (A.G.)
| | - Lucia Zema
- Sezione di Tecnologia e Legislazione Farmaceutiche “M. E. Sangalli”, Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, 20133 Milan, Italy; (A.M.); (M.U.); (S.M.); (M.C.); (A.F.); (A.M.); (L.P.); (A.G.)
- Correspondence: ; Tel.: +39-025-032-4654
| | - Andrea Gazzaniga
- Sezione di Tecnologia e Legislazione Farmaceutiche “M. E. Sangalli”, Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, 20133 Milan, Italy; (A.M.); (M.U.); (S.M.); (M.C.); (A.F.); (A.M.); (L.P.); (A.G.)
| |
Collapse
|
26
|
Preisig D, Varum F, Bravo R, Hartig C, Spleiss J, Abbes S, Caobelli F, Wild D, Puchkov M, Huwyler J, Haschke M. Colonic delivery of metronidazole-loaded capsules for local treatment of bacterial infections: A clinical pharmacoscintigraphy study. Eur J Pharm Biopharm 2021; 165:22-30. [PMID: 33971274 DOI: 10.1016/j.ejpb.2021.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/27/2021] [Accepted: 05/01/2021] [Indexed: 12/12/2022]
Abstract
Drug delivery to the colon offers great promise for local treatment of colonic diseases as it allows bypassing systemic absorption in the small intestine, thereby increasing luminal drug concentrations in the colon. The primary objective of this in vivo pharmaco-scintigraphy study was to assess the colon drug targeting accuracy of a metronidazole benzoate colonic drug delivery system intended for local treatment of Clostridioides difficile infections. Additionally, it was assessed if the concept of mucoadhesion would increase colonic residence time and promote higher drug bioavailability. Two different capsule formulations were designed and tested in healthy human subjects. Capsules contained either non-mucoadhesive (NM) or mucoadhesive (M) microgranules, both loaded with 100 mg metronidazole benzoate (antibiotic prodrug) and 5 mg samarium oxide (scintigraphy tracer). Filled capsules were coated with a colonic-targeting technology consisting of two functional layers, which allow for accelerated drug release mediated by the intestinal pH in combination with colonic bacteria. Coated capsules were neutron-activated to yield the radioisotope 153Sm prior to administration to 18 healthy subjects. Gamma-scintigraphy imaging was combined with the measurement of drug plasma levels. Formulation NM showed high colon-targeting accuracy. Initial capsule disintegration within the targeted ileocolonic region was observed in 8 out of 9 subjects (89%) with colonic arrival times in the range of 3.5-12 h and reduced systemic exposure. In contrast, the mucoadhesive formulation M showed some inconsistency regarding the site of initial capsule disintegration (targeting accuracy 56%). Variability of drug release was attributed to self-adhesion and agglomeration of the mucoadhesive microparticles within the capsule. Accurate ileocolonic delivery of metronidazole-loaded microgranules was achieved following oral administration of colonic-targeted capsules. Delayed drug release from NM microparticles in the colon leads to a reduced systemic exposure compared to immediate-release data from literature and presumably elevated drug concentrations in the colonic lumen. This approach offers promising options for the local treatment of colonic diseases.
Collapse
Affiliation(s)
- Daniel Preisig
- Department of Pharmaceutical Technology, University of Basel, Basel, Switzerland
| | | | | | | | | | - Sonia Abbes
- Tillotts Pharma AG, Rheinfelden, Switzerland
| | - Federico Caobelli
- Division of Nuclear Medicine, University Hospital Basel, Basel, Switzerland
| | - Damian Wild
- Division of Nuclear Medicine, University Hospital Basel, Basel, Switzerland
| | - Maxim Puchkov
- Department of Pharmaceutical Technology, University of Basel, Basel, Switzerland
| | - Jörg Huwyler
- Department of Pharmaceutical Technology, University of Basel, Basel, Switzerland.
| | - Manuel Haschke
- Clinical Pharmacology & Toxicology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
27
|
Tran PHL, Tran TTD. Mucoadhesive Formulation Designs for Oral Controlled Drug Release at the Colon. Curr Pharm Des 2021; 27:540-547. [PMID: 32940169 DOI: 10.2174/1381612826666200917143816] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 07/17/2020] [Indexed: 11/22/2022]
Abstract
Mucoadhesive formulations have been demonstrated to result in efficient drug delivery systems with advantages over existing systems such as increased local retention and sustained drug release via adhesiveness to mucosal tissues. The controlled release of colon-targeted, orally administered drugs has recently attracted a number of studies investigating mucoadhesive systems. Consequently, substantial designs, from mucoadhesive cores to shells of particles, have been studied with promising applications. This review will provide an overview of specific strategies for developing mucoadhesive systems for colon-targeted oral delivery with controlled drug release, including mucoadhesive matrices, cross-linked mucoadhesive microparticles, coatings and mucoadhesive nanoparticles. The understanding of the basic principle of these designs and advanced formulations throughout will lead to the development of products with efficient drug delivery at the colon for therapies for different diseases.
Collapse
Affiliation(s)
- Phuong H L Tran
- Deakin University, School of Medicine, IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Geelong, Australia
| | - Thao T D Tran
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
28
|
Pinto LA, Corá LA, Rodrigues GS, Prospero AG, Soares GA, de Andreis U, de Arruda Miranda JR. Pharmacomagnetography to evaluate the performance of magnetic enteric-coated tablets in the human gastrointestinal tract. Eur J Pharm Biopharm 2021; 161:50-55. [PMID: 33592280 DOI: 10.1016/j.ejpb.2021.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/30/2022]
Abstract
A magnetic enteric-coated tablet containing diclofenac sodium was produced, and its performance under physiological and disturbed gastrointestinal motility was assessed through pharmacomagnetography analysis. In vitro studies were performed using conventional methods and in vivo studies were conducted on healthy volunteers before (control) and after domperidone administration. The magnetic tablet's gastrointestinal (GI) transit and disintegration process were monitored using the Alternating Current Biosusceptometry sensors combined with drug plasmatic concentration. The Gastric Residence Time, Colon Arrival Time, Small Bowel Transit Time, Disintegration Time and the pharmacokinetics parameters were calculated. The pH-dependent polymers used to coat the magnetic tablets were able to avoid the premature drug release on gastric or small intestine simulated medium. Gastric Residence Time was accelerated compared with the control group (p < 0.01). No significant differences were found regarding small bowel transit, colon arrival, disintegration process, or pharmacokinetics parameters. A strong correlation between magnetic monitoring and pharmacokinetics parameters analysis was determinant to evaluate the efficiency in the drug delivery at a specific site in the human gastrointestinal tract. In addition, a tablet with a damaged coating was used as a proof of concept to show the suitability of our methodology to evaluate the tablet. Our study showed that pharmacomagnetography is a multi-instrumental approach towards assessing drug delivery and bioavailability.
Collapse
Affiliation(s)
- Leonardo Antonio Pinto
- São Paulo State University - UNESP, Department of Biophysics and Pharmacology, Institute of Biosciences, Botucatu, São Paulo 18618-689, Brazil.
| | - Luciana Aparecida Corá
- Alagoas State University of Health Sciences- UNCISAL, Center of Integrative Sciences, Maceio, Alagoas 57010-382, Brazil.
| | - Gustavo Serafim Rodrigues
- São Paulo State University - UNESP, Department of Biophysics and Pharmacology, Institute of Biosciences, Botucatu, São Paulo 18618-689, Brazil.
| | - Andre Gonçalves Prospero
- São Paulo State University - UNESP, Department of Biophysics and Pharmacology, Institute of Biosciences, Botucatu, São Paulo 18618-689, Brazil.
| | - Guilherme Augusto Soares
- São Paulo State University - UNESP, Department of Biophysics and Pharmacology, Institute of Biosciences, Botucatu, São Paulo 18618-689, Brazil.
| | - Uilian de Andreis
- São Paulo State University - UNESP, Department of Biophysics and Pharmacology, Institute of Biosciences, Botucatu, São Paulo 18618-689, Brazil
| | - José Ricardo de Arruda Miranda
- São Paulo State University - UNESP, Department of Biophysics and Pharmacology, Institute of Biosciences, Botucatu, São Paulo 18618-689, Brazil.
| |
Collapse
|
29
|
Shahdadi Sardou H, Akhgari A, Mohammadpour AH, Kamali H, Jafarian AH, Afrasiabi Garekani H, Sadeghi F. Application of inulin/Eudragit RS in 5-ASA pellet coating with tuned, sustained-release feature in an animal model of ulcerative colitis. Int J Pharm 2021; 597:120347. [PMID: 33545282 DOI: 10.1016/j.ijpharm.2021.120347] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/27/2021] [Accepted: 01/30/2021] [Indexed: 12/12/2022]
Abstract
A tunable release of 5-aminosalicylic acid (5-ASA) could bring therapeutic benefits in the treatment of inflammatory bowel disease (IBD). A 32 factorial design was used to achieve a tuned delivery of 5-ASA pellets in the small and large intestine using a coating composed of inulin/Eudragit RS (RS). The ratio of inulin/RS and coating level were independent variables while the dependent variables were the percent of drug release at pH 1.2 in 2 h and total release of drug in 10 h at pH 6.8. 5-ASA release from pellets was examined at different pH levels and the therapeutic efficacy of the optimum pellets was compared to 5-ASA pellets of Pentasa in rats with ulcerative colitis. The inulin/RS of 18/82 at a coating level of 16% was found to be the optimum for delivery of the drug to the small and large intestine. The coated pellets offered a superior therapeutic outcome compared to uncoated pellets and Pentasa in terms of colitis activity index (CAI), and the colon's tissue enzymes of GSH and MDA. The optimum coating composed of inulin and RS could offer a tuned sustained release of 5-ASA throughout the small and large intestine with the sensitivity of drug release to microbial degradation.
Collapse
Affiliation(s)
- Hossein Shahdadi Sardou
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Akhgari
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Hooshang Mohammadpour
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Kamali
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Hossein Jafarian
- Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadi Afrasiabi Garekani
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Fatemeh Sadeghi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
30
|
Tavares Junior AG, de Araújo JTC, Meneguin AB, Chorilli M. Characteristics, Properties and Analytical/Bioanalytical Methods of 5-Aminosalicylic Acid: A Review. Crit Rev Anal Chem 2020; 52:1000-1014. [PMID: 33258695 DOI: 10.1080/10408347.2020.1848516] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Five-aminosalicylic acid (5-ASA) is an anti-inflammatory drug indicated in the treatment of inflammatory bowel diseases such as ulcerative colitis and Crohn's disease. Among the analytical methods of quantification of 5-ASA described in the literature, the High Efficiency Liquid Chromatography stands out, a sensitive technique but with a high cost. In recent years, alternative methods have been developed, presenting efficiency and reduced cost, such as UV/visible spectrophotometric, spectrofluorescent, and electrochemical methods, techniques recommended for the application in quality control and quantification of 5-ASA in pharmaceutical forms and biological fluids. This article aims to review the physicochemical characteristics, pharmacokinetics, mechanisms of action, controlled release systems, and the different analytical and bioanalytical methods for the quantification of 5-ASA.
Collapse
Affiliation(s)
| | | | | | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
31
|
3D printed tacrolimus suppositories for the treatment of ulcerative colitis. Asian J Pharm Sci 2020; 16:110-119. [PMID: 33613734 PMCID: PMC7878453 DOI: 10.1016/j.ajps.2020.06.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/26/2020] [Accepted: 06/12/2020] [Indexed: 12/12/2022] Open
Abstract
Ulcerative colitis is a global health problem, affecting millions of individuals worldwide. As an inflammatory condition localised in the large intestine, rectal delivery of immunosuppressive therapies such as tacrolimus is a promising strategy to maximise drug concentration at the site of action whilst minimising systemic side effects. Here, for the first time, self-supporting 3D-printed tacrolimus suppositories were prepared without the aid of moulds using a pharmaceutical semi-solid extrusion (SSE) 3D printer. The suppositories were printed vertically in three different sizes using combinations of two lipid pharmaceutical excipients (Gelucire 44/14 or Gelucire 48/16) and coconut oil. Although both suppository formulations had the appropriate viscosity characteristics for printing, the Gel 44 formulation required less energy and force for extrusion compared to the Gel 48 system. The Gel 44 disintegrated more rapidly but released tacrolimus more slowly than the Gel 48 suppositories. Although the tacrolimus release profiles were significantly different, both suppository systems released more than 80% drug within 120 min. DSC and XRD analysis was inconclusive in determining the solid-state properties of the drug in the suppositories. In summary, this article reports on the fabrication of 3D printed self-supporting suppositories to deliver personalised doses of a narrow therapeutic index drug, with potential benefits for patients with ulcerative colitis.
Collapse
|
32
|
Foppoli A, Cerea M, Palugan L, Zema L, Melocchi A, Maroni A, Gazzaniga A. Evaluation of powder-layering vs. spray-coating techniques in the manufacturing of a swellable/erodible pulsatile delivery system. Drug Dev Ind Pharm 2020; 46:1230-1237. [PMID: 32597251 DOI: 10.1080/03639045.2020.1788060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A swellable/erodible system for oral time-dependent release, demonstrated to provide consistent pulsatile and colonic delivery performance, has been manufactured through a range of coating techniques to achieve the functional hydroxypropyl methylcellulose (HPMC) layer. Although aqueous spray-coating has long been preferred, the processing times and yields still represent open issues, especially in view of the considerable amount of polymer required to give in vivo lag phases of proper duration. To make manufacturing of the delivery system more cost-efficient, different coating modes were thus evaluated, namely top and tangential spray-coating as well as powder-layering, using a fluid bed equipment. To this aim, disintegrating tablets of 5 mm in diameter, containing a tracer drug, were coated up to 50% weight gain with low-viscosity HPMC, either as a water solution or as a powder formulation. In all cases, process feasibility was assessed following setup of the operating conditions. Irrespective of the technique employed, the resulting dosage forms exhibited uniform coating layers able to defer the onset of release as a function of the amount of polymer applied. The structure and thickness of such layers differed depending on the deposition modes. With respect to top spray-, both tangential spray-coating and powder-layering were shown to remarkably ameliorate the process time, which was reduced to approximately 1/3 and 1/6, and to enhance the yield by almost 20 and 30%, respectively. Clear advantages associated with such techniques were thus highlighted, particularly with respect to powder-layering here newly proposed for application of a swellable hydrophilic cellulose derivative.
Collapse
Affiliation(s)
- Anastasia Foppoli
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Italy
| | - Matteo Cerea
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Italy
| | - Luca Palugan
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Italy
| | - Lucia Zema
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Italy
| | - Alice Melocchi
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Italy
| | - Alessandra Maroni
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Italy
| | - Andrea Gazzaniga
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Italy
| |
Collapse
|
33
|
Foppoli A, Maroni A, Palugan L, Zema L, Moutaharrik S, Melocchi A, Cerea M, Gazzaniga A. Erodible coatings based on HPMC and cellulase for oral time-controlled release of drugs. Int J Pharm 2020; 585:119425. [PMID: 32473374 DOI: 10.1016/j.ijpharm.2020.119425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 12/19/2022]
Abstract
Oral drug delivery systems for time-controlled release, intended for chronotherapy or colon targeting, are often in the form of coated dosage forms provided with swellable/soluble hydrophilic polymer coatings. These are responsible for programmable lag phases prior to release, due to their progressive hydration in the biological fluids. When based on high-viscosity polymers and/or manufactured by press-coating, the performance of functional hydroxypropyl methylcellulose (HPMC) layers was not fully satisfactory. Particularly, it encompassed an initial phase of slow release because of outward diffusion of the drug through a persistent gel barrier surrounding the core. To promote erosion of such a barrier, the use of a cellulolytic product (Sternzym® C13030) was here explored. For this purpose, the mass loss behavior of tableted matrices based on various HPMC grades, containing increasing percentages of Sternzym® C13030, was preliminarily studied, highlighting a clear and concentration-dependent effect of the enzyme especially with high-viscosity polymers. Subsequently, Sternzym® C13030-containing systems, wherein the cellulolytic product was either incorporated into a high-viscosity HPMC coating or formed a separate underlying layer, were manufactured. Evaluated for release, such systems gave rise to more reproducible profiles, with shortened lag phases and reduced diffusional release, as compared to the reference formulation devoid of enzyme.
Collapse
Affiliation(s)
- Anastasia Foppoli
- Università degli Studi di Milano, Dipartimento di Scienze Farmaceutiche, Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", via G. Colombo 71, 20133 Milano, Italy
| | - Alessandra Maroni
- Università degli Studi di Milano, Dipartimento di Scienze Farmaceutiche, Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", via G. Colombo 71, 20133 Milano, Italy.
| | - Luca Palugan
- Università degli Studi di Milano, Dipartimento di Scienze Farmaceutiche, Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", via G. Colombo 71, 20133 Milano, Italy
| | - Lucia Zema
- Università degli Studi di Milano, Dipartimento di Scienze Farmaceutiche, Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", via G. Colombo 71, 20133 Milano, Italy
| | - Saliha Moutaharrik
- Università degli Studi di Milano, Dipartimento di Scienze Farmaceutiche, Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", via G. Colombo 71, 20133 Milano, Italy
| | - Alice Melocchi
- Università degli Studi di Milano, Dipartimento di Scienze Farmaceutiche, Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", via G. Colombo 71, 20133 Milano, Italy
| | - Matteo Cerea
- Università degli Studi di Milano, Dipartimento di Scienze Farmaceutiche, Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", via G. Colombo 71, 20133 Milano, Italy
| | - Andrea Gazzaniga
- Università degli Studi di Milano, Dipartimento di Scienze Farmaceutiche, Sezione di Tecnologia e Legislazione Farmaceutiche "Maria Edvige Sangalli", via G. Colombo 71, 20133 Milano, Italy
| |
Collapse
|
34
|
3D printing by fused deposition modeling of single- and multi-compartment hollow systems for oral delivery – A review. Int J Pharm 2020; 579:119155. [DOI: 10.1016/j.ijpharm.2020.119155] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/11/2020] [Accepted: 02/15/2020] [Indexed: 02/08/2023]
|
35
|
Casati F, Melocchi A, Moutaharrik S, Uboldi M, Foppoli A, Maroni A, Zema L, Neut C, Siepmann F, Siepmann J, Gazzaniga A. Injection Molded Capsules for Colon Delivery Combining Time-Controlled and Enzyme-Triggered Approaches. Int J Mol Sci 2020; 21:ijms21061917. [PMID: 32168895 PMCID: PMC7139580 DOI: 10.3390/ijms21061917] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 12/23/2022] Open
Abstract
A new type of colon targeting system is presented, combining time-controlled and enzyme-triggered approaches. Empty capsule shells were prepared by injection molding of blends of a high-amylose starch and hydroxypropyl methylcellulose (HPMC) of different chain lengths. The dissolution/erosion of the HPMC network assures a time-controlled drug release, i.e., drug release starts upon sufficient shell swelling/dissolution/erosion. In addition, the presence of high-amylose starch ensures enzyme-triggered drug release. Once the colon is reached, the local highly concentrated bacterial enzymes effectively degrade this polysaccharide, resulting in accelerated drug release. Importantly, the concentration of bacterial enzymes is much lower in the upper gastrointestinal tract, thus enabling site-specific drug delivery. The proposed capsules were filled with acetaminophen and exposed to several aqueous media, simulating the contents of the gastrointestinal tract using different experimental setups. Importantly, drug release was pulsatile and occurred much faster in the presence of fecal samples from patients. The respective lag times were reduced and the release rates increased once the drug started to be released. It can be expected that variations in the device design (e.g., polymer blend ratio, capsule shell geometry and thickness) allow for a large variety of possible colon targeting release profiles.
Collapse
Affiliation(s)
- Federica Casati
- Sezione di Tecnologia e Legislazione Farmaceutiche “Maria Edvige Sangalli”, Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, 20133 Milano, Italy; (F.C.); (A.M.); (S.M.); (M.U.); (A.F.); (A.M.); (A.G.)
- IMA S.p.a., Ozzana dell’Emilia, 40064 Bologna, Italy
| | - Alice Melocchi
- Sezione di Tecnologia e Legislazione Farmaceutiche “Maria Edvige Sangalli”, Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, 20133 Milano, Italy; (F.C.); (A.M.); (S.M.); (M.U.); (A.F.); (A.M.); (A.G.)
| | - Saliha Moutaharrik
- Sezione di Tecnologia e Legislazione Farmaceutiche “Maria Edvige Sangalli”, Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, 20133 Milano, Italy; (F.C.); (A.M.); (S.M.); (M.U.); (A.F.); (A.M.); (A.G.)
| | - Marco Uboldi
- Sezione di Tecnologia e Legislazione Farmaceutiche “Maria Edvige Sangalli”, Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, 20133 Milano, Italy; (F.C.); (A.M.); (S.M.); (M.U.); (A.F.); (A.M.); (A.G.)
| | - Anastasia Foppoli
- Sezione di Tecnologia e Legislazione Farmaceutiche “Maria Edvige Sangalli”, Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, 20133 Milano, Italy; (F.C.); (A.M.); (S.M.); (M.U.); (A.F.); (A.M.); (A.G.)
| | - Alessandra Maroni
- Sezione di Tecnologia e Legislazione Farmaceutiche “Maria Edvige Sangalli”, Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, 20133 Milano, Italy; (F.C.); (A.M.); (S.M.); (M.U.); (A.F.); (A.M.); (A.G.)
| | - Lucia Zema
- Sezione di Tecnologia e Legislazione Farmaceutiche “Maria Edvige Sangalli”, Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, 20133 Milano, Italy; (F.C.); (A.M.); (S.M.); (M.U.); (A.F.); (A.M.); (A.G.)
- Correspondence: ; Tel.: +39-02-5032-4654
| | - Christel Neut
- University of Lille, Inserm, CHU Lille, UMR1286, F-59000 Lille, France;
| | - Florence Siepmann
- Université of Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France; (F.S.); (J.S.)
| | - Juergen Siepmann
- Université of Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France; (F.S.); (J.S.)
| | - Andrea Gazzaniga
- Sezione di Tecnologia e Legislazione Farmaceutiche “Maria Edvige Sangalli”, Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, 20133 Milano, Italy; (F.C.); (A.M.); (S.M.); (M.U.); (A.F.); (A.M.); (A.G.)
| |
Collapse
|
36
|
Strategic Approaches for Colon Targeted Drug Delivery: An Overview of Recent Advancements. Pharmaceutics 2020; 12:pharmaceutics12010068. [PMID: 31952340 PMCID: PMC7022598 DOI: 10.3390/pharmaceutics12010068] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/05/2020] [Accepted: 01/10/2020] [Indexed: 12/17/2022] Open
Abstract
Colon targeted drug delivery systems have gained a great deal of attention as potential carriers for the local treatment of colonic diseases with reduced systemic side effects and also for the enhanced oral delivery of various therapeutics vulnerable to acidic and enzymatic degradation in the upper gastrointestinal tract. In recent years, the global pharmaceutical market for biologics has grown, and increasing demand for a more patient-friendly drug administration system highlights the importance of colonic drug delivery as a noninvasive delivery approach for macromolecules. Colon-targeted drug delivery systems for macromolecules can provide therapeutic benefits including better patient compliance (because they are pain-free and can be self-administered) and lower costs. Therefore, to achieve more efficient colonic drug delivery for local or systemic drug effects, various strategies have been explored including pH-dependent systems, enzyme-triggered systems, receptor-mediated systems, and magnetically-driven systems. In this review, recent advancements in various approaches for designing colon targeted drug delivery systems and their pharmaceutical applications are covered with a particular emphasis on formulation technologies.
Collapse
|