1
|
Russell GG, Wilkinson V, Pefanis S, Thompson A, Peck S, Dann A, Pye RJ, Carver S, Flies AS. Sarcoptic Mange in a Tasmanian Devil (Sarcophilus harrisii) and Bennett's Wallaby (Notamacropus rufogriseus). J Wildl Dis 2024; 60:980-984. [PMID: 39136118 DOI: 10.7589/jwd-d-23-00192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 06/10/2024] [Indexed: 10/09/2024]
Abstract
Sarcoptes scabiei mites and skin lesions consistent with severe sarcoptic mange were identified in a Tasmanian devil (Sarcophilus harrisii) and Bennett's wallaby (Notamacropus rufogriseus) from Tasmania, Australia. The devil and wallaby both had severe hyperkeratotic skin lesions. All stages of mite development were identified in the devil, suggesting parasite reproduction on the host. The devil was also affected by devil facial tumor disease and several other parasites. This expands the global host range of species susceptible to this panzootic mange disease.
Collapse
Affiliation(s)
- Grace G Russell
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, 17 Liverpool Street, Hobart, Tasmania 7000, Australia
- These authors contributed equally to this study
| | - Vicky Wilkinson
- School of Natural Sciences, University of Tasmania, Life Sciences Building, College Road, Sandy Bay, Hobart, Tasmania 7005, Australia
- These authors contributed equally to this study
| | - Stephen Pefanis
- Animal Health Laboratory, Tasmanian Department of Natural Resources and Environment, 165 Westbury Road, Prospect, Tasmania 7250, Australia
| | - Andrew Thompson
- Animal Health Laboratory, Tasmanian Department of Natural Resources and Environment, 165 Westbury Road, Prospect, Tasmania 7250, Australia
| | - Sarah Peck
- Save the Tasmanian Devil Program, Department of Natural Resources and Environment Tasmania, GPO Box 44, Hobart, Tasmania 7001, Australia
| | - Alison Dann
- Molecular Laboratory, Plant Diagnostic Services, Department of Natural Resources and Environment, 13 St. Johns Avenue, New Town, Tasmania 7008, Australia
| | - Ruth J Pye
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, 17 Liverpool Street, Hobart, Tasmania 7000, Australia
| | - Scott Carver
- School of Natural Sciences, University of Tasmania, Life Sciences Building, College Road, Sandy Bay, Hobart, Tasmania 7005, Australia
- Center for the Ecology of Infectious Diseases, University of Georgia, 203 D. W. Brooks Drive, Athens, Georgia 30602, USA
- Odum School of Ecology, University of Georgia, 140 E Green Street, Athens, Georgia 30602, USA
- These authors contributed equally to this study
| | - Andrew S Flies
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, 17 Liverpool Street, Hobart, Tasmania 7000, Australia
- These authors contributed equally to this study
| |
Collapse
|
2
|
Wilkinson V, Richards SA, Burgess L, Næsborg-Nielsen C, Gutwein K, Vermaak Y, Mounsey K, Carver S. Adaptive interventions for advancing in situ wildlife disease management. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e3019. [PMID: 39103912 DOI: 10.1002/eap.3019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/24/2024] [Accepted: 05/23/2024] [Indexed: 08/07/2024]
Abstract
There is a critical need for advancements in disease management strategies for wildlife, but free-living animals pose numerous challenges that can hinder progress. Most disease management attempts involve fixed interventions accompanied by post hoc outcome assessments focused on success or failure. Though these approaches have led to valuable management advances, there are limitations to both the rate of advancement and amount of information that can be gained. As such, strategies that support more rapid progress are required. Sarcoptic mange, caused by epidermal infection with Sarcoptes scabiei mites, is a globally emerging and re-emerging panzootic that exemplifies this problem. The bare-nosed wombat (Vombatus ursinus), a marsupial endemic to southeastern Australia, is impacted by sarcoptic mange throughout its geographic range and enhanced disease management capabilities are needed to improve upon existing in situ methods. We sought to advance in situ wildlife disease management for sarcoptic mange in free-living bare-nosed wombats, implementing an adaptive approach using fluralaner (Bravecto, MSD Animal Health) and a structured process of learning and method-optimisation. By using surveillance of treated wombats to inform real-time management changes, we have demonstrated the efficacy of topically administered fluralaner at 45 and 85 mg/kg against sarcoptic mange. Importantly, we observed variation in the effects of 45 mg/kg doses, but through our adaptive approach found that 85 mg/kg doses consistently reduced mange severity. Through modifying our surveillance program, we also identified individual-level variation in wombat observability and used this to quantify the level of surveillance needed to assess long-term management success. Our adaptive intervention represents the first report of sarcoptic mange management with fluralaner in free-living wildlife and evaluation of its efficacy in situ. This study illustrates how adapting interventions in real time can advance wildlife disease management and may be applicable to accelerating in situ improvements for other host-pathogen systems.
Collapse
Affiliation(s)
- Vicky Wilkinson
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Shane A Richards
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Leah Burgess
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | | | - Katja Gutwein
- Mange Management Inc., St Andrews, Victoria, Australia
| | - Yolandi Vermaak
- Wombat Support & Rescue NSW/ACT Inc., Canberra, Australian Capital Territory, Australia
| | - Kate Mounsey
- School of Health, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Scott Carver
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
- Odum School of Ecology, Center for the Ecology of Infectious Diseases, University of Georgia, Athena, USA
| |
Collapse
|
3
|
Linley GD, Geary WL, Jolly CJ, Spencer EE, Ashman KR, Michael DR, Westaway DM, Nimmo DG. Wombat burrows are hotspots for small vertebrates in a landscape subject to gigafire. J Mammal 2024; 105:752-764. [PMID: 39081267 PMCID: PMC11285166 DOI: 10.1093/jmammal/gyae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 03/20/2024] [Indexed: 08/02/2024] Open
Abstract
Ecosystem engineers modify their environment and influence the availability of resources for other organisms. Burrowing species, a subset of allogenic engineers, are gaining recognition as ecological facilitators. Burrows created by these species provide habitat for a diverse array of other organisms. Following disturbances, burrows could also serve as ecological refuges, thereby enhancing ecological resistance to disturbance events. We explored the ecological role of Common Wombat (Vombatus ursinus) burrows using camera traps in forests of southeastern Australia. We compared animal activity at paired sites with and without burrows, from the same fire severity class and habitat. We examined how animal activity at Common Wombat burrows was affected by the 2019-20 Black Summer bushfires in Australia. We predicted that burrows would serve as hotspots for animal activity and as refuges in burned areas. The activity of several species including Bush Rat (Rattus fuscipes), Agile Antechinus (Antechinus agilis), Lace Monitor (Varanus varius), Painted Button-quail (Turnix varius), and Grey Shrike-thrush (Colluricincla harmonica) increased at sites where Common Wombat burrows were present, while other species avoided burrows. Species that were more active at burrows tended to be smaller mammal and bird species that are vulnerable to predation, whereas species that avoided burrows tended to be larger mammals that might compete with Common Wombat for resources. Species composition differed between sites with and without burrows, and burrow sites had higher native mammal species richness. The association of several species with burrows persisted or strengthened in areas that burned during the 2019-20 Black Summer bushfires, suggesting that Common Wombat burrows may act as ecological refuges for animals following severe wildfire. Our findings have relevance for understanding how animals survive, persist, and recover following extreme wildfire events.
Collapse
Affiliation(s)
- Grant D Linley
- Gulbali Institute for Agriculture, Water and Environment, Charles Sturt University, Thurgoona, NSW 2640, Australia
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Thurgoona, NSW 2640, Australia
| | - William L Geary
- Biodiversity Strategy and Planning Branch, Biodiversity Division, Department of Environment, Land, Water and Planning, East Melbourne, VIC 3002, Australia
- School of Life and Environmental Sciences, Deakin University, Burwood, VIC 3125, Australia
- School of Agriculture, Food and Ecosystem Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Chris J Jolly
- Gulbali Institute for Agriculture, Water and Environment, Charles Sturt University, Thurgoona, NSW 2640, Australia
- School of Natural Sciences, Macquarie University, Macquarie Park, NSW 2109, Australia
| | - Emma E Spencer
- WWF-Australia, Suite 3.01, Level 3/45 Clarence Street, Sydney, NSW 2000, Australia
| | - Kita R Ashman
- Gulbali Institute for Agriculture, Water and Environment, Charles Sturt University, Thurgoona, NSW 2640, Australia
- WWF-Australia, Suite 3.01, Level 3/45 Clarence Street, Sydney, NSW 2000, Australia
| | - Damian R Michael
- Gulbali Institute for Agriculture, Water and Environment, Charles Sturt University, Thurgoona, NSW 2640, Australia
| | - Dylan M Westaway
- Gulbali Institute for Agriculture, Water and Environment, Charles Sturt University, Thurgoona, NSW 2640, Australia
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Thurgoona, NSW 2640, Australia
| | - Dale G Nimmo
- Gulbali Institute for Agriculture, Water and Environment, Charles Sturt University, Thurgoona, NSW 2640, Australia
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Thurgoona, NSW 2640, Australia
| |
Collapse
|
4
|
Wails CN, Helmke CC, Black KM, Ramirez-Barrios R, Karpanty SM, Catlin DH, Fraser JD. Epidemiology of sarcoptic mange in a geographically constrained insular red fox population. Parasit Vectors 2024; 17:248. [PMID: 38844973 PMCID: PMC11157703 DOI: 10.1186/s13071-024-06330-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Sarcoptic mange is a skin disease caused by the contagious ectoparasite Sarcoptes scabiei, capable of suppressing and extirpating wild canid populations. Starting in 2015, we observed a multi-year epizootic of sarcoptic mange affecting a red fox (Vulpes vulpes) population on Fire Island, NY, USA. We explored the ecological factors that contributed to the spread of sarcoptic mange and characterized the epizootic in a landscape where red foxes are geographically constrained. METHODS We tested for the presence of S. scabiei DNA in skin samples collected from deceased red foxes with lesions visibly consistent with sarcoptic mange disease. We deployed 96-100 remote trail camera stations each year to capture red fox occurrences and used generalized linear mixed-effects models to assess the affects of red fox ecology, human and other wildlife activity, and island geography on the frequency of detecting diseased red foxes. We rated the extent of visual lesions in diseased individuals and mapped the severity and variability of the sarcoptic mange disease. RESULTS Skin samples that we analyzed demonstrated 99.8% similarity to S. scabiei sequences in GenBank. Our top-ranked model (weight = 0.94) showed that diseased red foxes were detected more frequently close to roadways, close to territories of other diseased red foxes, away from human shelters, and in areas with more mammal activity. There was no evidence that detection rates in humans and their dogs or distance to the nearest red fox den explained the detection rates of diseased red foxes. Although detected infrequently, we observed the most severe signs of sarcoptic mange at the periphery of residential villages. The spread of visual signs of the disease was approximately 7.3 ha/week in 2015 and 12.1 ha/week in 2017. CONCLUSIONS We quantified two separate outbreaks of sarcoptic mange disease that occurred > 40 km apart and were separated by a year. Sarcoptic mange revealed an unfettered spread across the red fox population. The transmission of S. scabiei mites in this system was likely driven by red fox behaviors and contact between individuals, in line with previous studies. Sarcoptic mange is likely an important contributor to red fox population dynamics within barrier island systems.
Collapse
Affiliation(s)
- Christy N Wails
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, USA.
| | - Claire C Helmke
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, USA
| | - Kathleen M Black
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, USA
| | - Roger Ramirez-Barrios
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, USA
| | - Sarah M Karpanty
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, USA
| | - Daniel H Catlin
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, USA
| | - James D Fraser
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
5
|
Pérez JM, Jesser EN, Werdin JO, Berry C, Gebely MA, Crespo-Ginés R, Granados JE, López-Montoya AJ. In vitro acaricidal activity of several natural products against ibex-derived Sarcoptes scabiei. Vet Parasitol 2024; 328:110189. [PMID: 38714065 DOI: 10.1016/j.vetpar.2024.110189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/09/2024]
Abstract
In this study we analysed the effect of the temperature, diverse strains of Bacillus thuringiensis, Lysinibacillus sphaericus and nanoformulations with essential plant oils (EONP) on the survival of Sarcoptes scabiei mites derived from naturally-infested Iberian ibex (Capra pyrenaica). In general, mites maintained at 12ºC survived more than those maintained at 35ºC (40.7 hr and 31.2 hr, respectively). Mites with no treatment survived 27.6 h on average. Mites treated with B. thuringiensis serovar. konkukian and geranium EONP showed significant reduction in their survival. Despite the fact that these agents seem to be promising candidates for controlling sarcoptic mange in the field, further research is still needed to get stable, efficient and eco-friendly acaricides.
Collapse
Affiliation(s)
- Jesús M Pérez
- Departamento de Biología Animal, Vegetal y Ecología, Universidad de Jaén, Campus Las Lagunillas, s.n., Jaén E-23071, Spain.
| | - Emiliano N Jesser
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670, Bahía Blanca B 8000CPB, Argentina
| | - Jorge O Werdin
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670, Bahía Blanca B 8000CPB, Argentina
| | - Colin Berry
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - Mohamed A Gebely
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK; Department of Parasitology and Animal Diseases, Veterinary Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| | - Raquel Crespo-Ginés
- Departamento de Biología Animal, Vegetal y Ecología, Universidad de Jaén, Campus Las Lagunillas, s.n., Jaén E-23071, Spain; Instituto de Investigación en Recursos Cinegéticos (IREC-CSIC, UCLM, JCCM), Ronda de Toledo 12, Ciudad Real E-13071, Spain
| | - José E Granados
- Centro Administrativo Parque Nacional y Parque Natural Sierra Nevada, Carretera Antigua Sierra Nevada, Km 7, E-18071, Pinos Genil, Granada, Spain
| | - Antonio J López-Montoya
- Department of Statistics and Operational Research, Jaén University, Campus Las Lagunillas, s.n., Jaén E-23071, Spain
| |
Collapse
|
6
|
Hindle IJ, Forbes LK, Walters SJ, Carver S. The effects of spatially-constrained treatment regions upon a model of wombat mange. J Math Biol 2024; 88:53. [PMID: 38565734 PMCID: PMC10987376 DOI: 10.1007/s00285-024-02078-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 03/02/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024]
Abstract
The use of therapeutic agents is a critical option to manage wildlife disease, but their implementation is usually spatially constrained. We seek to expand knowledge around the effectiveness of management of environmentally-transmitted Sarcoptes scabiei on a host population, by studying the effect of a spatially constrained treatment regime on disease dynamics in the bare-nosed wombat Vombatus ursinus. A host population of wombats is modelled using a system of non-linear partial differential equations, a spatially-varying treatment regime is applied to this population and the dynamics are studied over a period of several years. Treatment could result in mite decrease within the treatment region, extending to a lesser degree outside, with significant increases in wombat population. However, the benefits of targeted treatment regions within an environment are shown to be dependent on conditions at the start (endemic vs. disease free), as well as on the locations of these special regions (centre of the wombat population or against a geographical boundary). This research demonstrates the importance of understanding the state of the environment and populations before treatment commences, the effects of re-treatment schedules within the treatment region, and the transient large-scale changes in mite numbers that can be brought about by sudden changes to the environment. It also demonstrates that, with good knowledge of the host-pathogen dynamics and the spatial terrain, it is possible to achieve substantial reduction in mite numbers within the target region, with increases in wombat numbers throughout the environment.
Collapse
Affiliation(s)
- Ivy J Hindle
- Department of Life Sciences, University of Tasmania, Hobart, TAS, 7001, Australia
| | - Lawrence K Forbes
- Department of Mathematics and Physics, University of Tasmania, Hobart, TAS, 7001, Australia.
| | - Stephen J Walters
- Department of Mathematics and Physics, University of Tasmania, Hobart, TAS, 7001, Australia
| | - Scott Carver
- Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
7
|
Tiffin HS, Brown JD, Ternent M, Snavely B, Carrollo E, Kibe E, Buderman FE, Mullinax JM, Machtinger ET. Resolution of Clinical Signs of Sarcoptic Mange in American Black Bears (Ursus americanus), in Ivermectin-Treated and Nontreated Individuals. J Wildl Dis 2024; 60:434-447. [PMID: 38305090 DOI: 10.7589/jwd-d-23-00134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/31/2023] [Indexed: 02/03/2024]
Abstract
The parasitic mite Sarcoptes scabiei causes mange in nearly 150 species of mammals by burrowing under the skin, triggering hypersensitivity responses that can alter animals' behavior and result in extreme weight loss, secondary infections, and even death. Since the 1990s, sarcoptic mange has increased in incidence and geographic distribution in Pennsylvania black bear (Ursus americanus) populations, including expansion into other states. Recovery from mange in free-ranging wildlife has rarely been evaluated. Following the Pennsylvania Game Commission's standard operating procedures at the time of the study, treatment consisted of one subcutaneous injection of ivermectin. To evaluate black bear survival and recovery from mange, from 2018 to 2020 we fitted 61 bears, including 43 with mange, with GPS collars to track their movements and recovery. Bears were collared in triplicates according to sex and habitat, consisting of one bear without mange (healthy control), one scabietic bear treated with ivermectin when collared, and one untreated scabietic bear. Bears were reevaluated for signs of mange during annual den visits, if recaptured during the study period, and after mortality events. Disease status and recovery from mange was determined based on outward gross appearance and presence of S. scabiei mites from skin scrapes. Of the 36 scabietic bears with known recovery status, 81% fully recovered regardless of treatment, with 88% recovered with treatment and 74% recovered without treatment. All bears with no, low, or moderate mite burdens (<16 mites on skin scrapes) fully recovered from mange (n=20), and nearly half of bears with severe mite burden (≥16 mites) fully recovered (n=5, 42%). However, nonrecovered status did not indicate mortality, and mange-related mortality was infrequent. Most bears were able to recover from mange irrespective of treatment, potentially indicating a need for reevaluation of the mange wildlife management paradigm.
Collapse
Affiliation(s)
- Hannah S Tiffin
- Department of Entomology, Pennsylvania State University, 4 Chemical Ecology Laboratory, University Park, Pennsylvania 16802, USA
| | - Justin D Brown
- Department of Veterinary & Biomedical Sciences, Pennsylvania State University, 108D AVBS Building, Shortlidge Rd., University Park, Pennsylvania 16802, USA
| | - Mark Ternent
- Pennsylvania Game Commission, 2001 Elmerton Ave., Harrisburg, Pennsylvania 17110, USA
| | - Brandon Snavely
- Pennsylvania Game Commission, 2001 Elmerton Ave., Harrisburg, Pennsylvania 17110, USA
| | - Emily Carrollo
- Pennsylvania Game Commission, 2001 Elmerton Ave., Harrisburg, Pennsylvania 17110, USA
| | - Ethan Kibe
- Pennsylvania Game Commission, 2001 Elmerton Ave., Harrisburg, Pennsylvania 17110, USA
| | - Frances E Buderman
- Department of Ecosystem Science & Management, Pennsylvania State University, 401 Forest Resources Building, University Park, Pennsylvania 16802, USA
| | - Jennifer M Mullinax
- Department of Environmental Science & Technology, University of Maryland, 1433 Animal Science Building, 8127 Regents Dr., College Park, Maryland 20742, USA
| | - Erika T Machtinger
- Department of Entomology, Pennsylvania State University, 4 Chemical Ecology Laboratory, University Park, Pennsylvania 16802, USA
| |
Collapse
|
8
|
Barroso P, Palencia P. Camera traps reveal a high prevalence of sarcoptic mange in red foxes from northern Spain. Res Vet Sci 2024; 166:105098. [PMID: 38029489 DOI: 10.1016/j.rvsc.2023.105098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/15/2023] [Accepted: 11/19/2023] [Indexed: 12/01/2023]
Abstract
The mite Sarcoptes scabiei affects numerous mammal species causing the sarcoptic mange, a widespread disease with relevance for wildlife conservation, welfare, and management. The red fox (Vulpes vulpes) could become infested by direct and indirect routes leading to external skin lesions potentially recognizable by devices such as camera traps (CTs). In the present study, 86 randomly placed CTs were used to investigate the apparent prevalence and severity of S. scabiei in a red fox population from northern Spain. Their potential environmental and population-related drivers were also assessed. A total of 341 independent encounters were examined to visually identify mange-compatible lesions. The apparent prevalence was 19.16% (confidence interval (CI) 95%: 15.08-23.80) of which 82.81% (CI95%: 71.33-91.10) were severe. Our results revealed that habitat attributes such as lower altitudes, higher coverage of water-linked habitats and woodland predominance, were significant predictors of the apparent risk of mange. The models also suggested that the apparent prevalence of mange was associated with poor body condition and elevated frequencies of spatial coincidence among fox encounters, which facilitates indirect transmission. Interestingly, we did not observe mange-compatible lesions in other sympatric wild species (>15,000 encounters examined). This could be explained by the mite's host specificity and the low probability that these other potential hosts use sites where transmission among foxes usually occurs, such as dens. This study illustrates how camera trapping can be used as an interesting tool for the surveillance of wildlife diseases, thus overcoming the logistic constraints derived from direct sampling and allowing the early detection and better management of pathogens in the riskiest areas.
Collapse
Affiliation(s)
- P Barroso
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco, Turin 10095, Italy; Departament of Animal Health, Facultad de Veterinaria, Universidad de León, León 24071, Spain.
| | - P Palencia
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco, Turin 10095, Italy; Biodiversity Research Institute (University of Oviedo - CSIC - Principado de Asturias), Mieres, Spain
| |
Collapse
|
9
|
Majeed A, Mahmood S, Tahir AH, Ahmad M, Shabbir MAB, Ahmad W, Iqbal A, Mushtaq RMZ, Aroosa S, Ahmed HS, Rasool N, Ramish W. Patterns of Common Dermatological Conditions among Children and Adolescents in Pakistan. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1905. [PMID: 38003954 PMCID: PMC10673470 DOI: 10.3390/medicina59111905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023]
Abstract
Background and Objectives: Dermatological disorders are highly prevalent among children in Pakistan. The present cross-sectional study aims to identify the spectrum of dermatological conditions among children and adolescents in Pakistan. Materials and Methods: A total of 582 patients (50.9% males; 49.1% females) were included in the study based on their age (5.7 ± 4.1 years), dermatological condition, and epidemiology. The youngest patient was aged ten days, whereas the eldest was seventeen. Age criteria were further stratified into three categories: infants and toddlers (≤5 years), children (≥5 to <12 years), and adolescents (≥12 to <18 years). Amongst them, the majority was from Punjab (81.6%), while the other regions included were Azad Jammu and Kashmir (14.4%), Islamabad (3.3%), and Khyber Pakhtunkhwa (0.7%). Results: Scabies was the highest reported skin condition with 281 (45.55%) patients, followed by 114 (19.6%) with eczema, 60 (10.3%) with dermatitis, 33 (5.7%) with tinea capitis, 17 (2.9%) with tinea corporis, 16 (2.7%) with impetigo, and 15 (2.6%) with folliculitis. Other conditions include urticaria, burns, infections, pediculosis, tinea inguinalis, tinea faciei, nappy rashes, alopecia, warts, tinea incognito, tinea cruris, and acne vulgaris. The chi-squared test showed a high prevalence of tinea corporis and acne among adolescents (12-17 years), whereas eczema, dermatitis, and impetigo were more prevalent among infants and toddlers. Conclusions: Pets or livestock and poor hygiene were found to be highly reported risk factors for many dermatological conditions like scabies and fungal infections. Dermatological conditions are common in younger individuals, but unfortunately, many children do not receive the desired medical assistance.
Collapse
Affiliation(s)
- Arfa Majeed
- Department of Pharmacology and Toxicology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Sammina Mahmood
- Department of Botany, Division of Science and Technology, Bank Road Campus, University of Education, Lahore 54000, Pakistan
| | - Adnan Hassan Tahir
- Department of Clinical Sciences, Faculty of Veterinary and Animal Sciences, PMAS—Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Mehmood Ahmad
- Department of Pharmacology and Toxicology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
- Department of Pharmacology and Toxicology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | | | - Waqas Ahmad
- Department of Pathology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Asif Iqbal
- Department of Parasitology, Riphah International University, Lahore 54000, Pakistan
| | | | - Sadaf Aroosa
- Department of Pharmacology and Toxicology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Hafiz Saleet Ahmed
- Department of Livestock Management, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Naeem Rasool
- Department of Pharmacology and Toxicology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Wajeeha Ramish
- Department of Pharmacology and Toxicology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| |
Collapse
|
10
|
Ringwaldt EM, Brook BW, Buettel JC, Cunningham CX, Fuller C, Gardiner R, Hamer R, Jones M, Martin AM, Carver S. Host, environment, and anthropogenic factors drive landscape dynamics of an environmentally transmitted pathogen: Sarcoptic mange in the bare-nosed wombat. J Anim Ecol 2023; 92:1786-1801. [PMID: 37221666 DOI: 10.1111/1365-2656.13960] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/09/2023] [Indexed: 05/25/2023]
Abstract
Understanding the spatial dynamics and drivers of wildlife pathogens is constrained by sampling logistics, with implications for advancing the field of landscape epidemiology and targeted allocation of management resources. However, visually apparent wildlife diseases, when combined with remote-surveillance and distribution modelling technologies, present an opportunity to overcome this landscape-scale problem. Here, we investigated dynamics and drivers of landscape-scale wildlife disease, using clinical signs of sarcoptic mange (caused by Sarcoptes scabiei) in its bare-nosed wombat (BNW; Vombatus ursinus) host. We used 53,089 camera-trap observations from over 3261 locations across the 68,401 km2 area of Tasmania, Australia, combined with landscape data and ensemble species distribution modelling (SDM). We investigated: (1) landscape variables predicted to drive habitat suitability of the host; (2) host and landscape variables associated with clinical signs of disease in the host; and (3) predicted locations and environmental conditions at greatest risk of disease occurrence, including some Bass Strait islands where BNW translocations are proposed. We showed that the Tasmanian landscape, and ecosystems therein, are nearly ubiquitously suited to BNWs. Only high mean annual precipitation reduced habitat suitability for the host. In contrast, clinical signs of sarcoptic mange disease in BNWs were widespread, but heterogeneously distributed across the landscape. Mange (which is environmentally transmitted in BNWs) was most likely to be observed in areas of increased host habitat suitability, lower annual precipitation, near sources of freshwater and where topographic roughness was minimal (e.g. human modified landscapes, such as farmland and intensive land-use areas, shrub and grass lands). Thus, a confluence of host, environmental and anthropogenic variables appear to influence the risk of environmental transmission of S. scabiei. We identified that the Bass Strait Islands are highly suitable for BNWs and predicted a mix of high and low suitability for the pathogen. This study is the largest spatial assessment of sarcoptic mange in any host species, and advances understanding of the landscape epidemiology of environmentally transmitted S. scabiei. This research illustrates how host-pathogen co-suitability can be useful for allocating management resources in the landscape.
Collapse
Affiliation(s)
- E M Ringwaldt
- School of Natural Sciences, Biological Science, University of Tasmania, Hobart, Tasmania, Australia
| | - B W Brook
- School of Natural Sciences, Biological Science, University of Tasmania, Hobart, Tasmania, Australia
| | - J C Buettel
- School of Natural Sciences, Biological Science, University of Tasmania, Hobart, Tasmania, Australia
| | - C X Cunningham
- School of Natural Sciences, Biological Science, University of Tasmania, Hobart, Tasmania, Australia
- School of Environmental and Forest Sciences, University of Washington, Seattle, Washington, USA
| | - C Fuller
- School of Natural Sciences, Biological Science, University of Tasmania, Hobart, Tasmania, Australia
| | - R Gardiner
- School of Science, Engineering and Technology, University of Sunshine Coast, Sippy Downs, Queensland, Australia
| | - R Hamer
- School of Natural Sciences, Biological Science, University of Tasmania, Hobart, Tasmania, Australia
| | - M Jones
- School of Natural Sciences, Biological Science, University of Tasmania, Hobart, Tasmania, Australia
| | - A M Martin
- Caesar Kleberg Wildlife Research Institute, Texas A&M University-Kingsville, Kingsville, Texas, USA
| | - S Carver
- School of Natural Sciences, Biological Science, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
11
|
Carver S, Lewin ZM, Burgess LG, Wilkinson V, Whitehead J, Driessen MM. Density independent decline from an environmentally transmitted parasite. Biol Lett 2023; 19:20230169. [PMID: 37607579 PMCID: PMC10444343 DOI: 10.1098/rsbl.2023.0169] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/04/2023] [Indexed: 08/24/2023] Open
Abstract
Invasive environmentally transmitted parasites have the potential to cause declines in host populations independent of host density, but this is rarely characterized in naturally occurring populations. We investigated (1) epidemiological features of a declining bare-nosed wombat (Vombatus ursinus) population in central Tasmania owing to a sarcoptic mange (agent Sarcoptes scabiei) outbreak, and (2) reviewed all longitudinal wombat-mange studies to improve our understanding of when host population declines may occur. Over a 7-year period, the wombat population declined 80% (95% CI 77-86%) and experienced a 55% range contraction. The average apparent prevalence of mange was high 27% (95% CI 21-34), increased slightly over our study period, and the population decline continued unabated, independent of declining host abundance. Combined with other longitudinal studies, our research indicated wombat populations may be at risk of decline when apparent prevalence exceeds 25%. This empirical study supports the capacity of environmentally transmitted parasites to cause density independent host population declines and suggests prevalence limits may be an indicator of impending decline-causing epizootics in bare-nosed wombats. This research is the first to test effects of density in mange epizootics where transmission is environmental and may provide a guide for when apparent prevalence indicates a local conservation threat.
Collapse
Affiliation(s)
- Scott Carver
- Department of Biological Sciences, University of Tasmania, Tasmania, Australia
| | - Zachary M. Lewin
- Department of Biological Sciences, University of Tasmania, Tasmania, Australia
| | - Leah G. Burgess
- Department of Biological Sciences, University of Tasmania, Tasmania, Australia
| | - Vicky Wilkinson
- Department of Biological Sciences, University of Tasmania, Tasmania, Australia
| | | | | |
Collapse
|
12
|
Lewin ZM, Astorga F, Escobar LE, Carver S. Assessing Variation in the Individual-Level Impacts of a Multihost Pathogen. Transbound Emerg Dis 2023; 2023:4003285. [PMID: 40303735 PMCID: PMC12017245 DOI: 10.1155/2023/4003285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/02/2025]
Abstract
Most pathogens infect more than one host species, and given infection, the individual-level impact they have varies among host species. Nevertheless, variation in individual-level impacts of infection remains poorly characterised. Using the impactful and host-generalist ectoparasitic mite Sarcoptes scabiei (causing sarcoptic mange), we assessed individual-level variation in pathogen impacts by (1) compiling all documented individual-level impacts of S. scabiei across free-living host species, (2) quantifying and ranking S. scabiei impacts among host species, and (3) evaluating factors associated with S. scabiei impacts. We compiled individual-level impacts of S. scabiei infection from 77 host species, spanning 31 different impacts, and totalling 683 individual-level impact descriptions. The most common impacts were those affecting the skin, alopecia (130 descriptions), and hyperkeratosis coverage (106). From these impacts, a standardised metric was generated for each species (average impact score (AIS) with a 0-1 range), as a proxy of pathogen virulence allowing quantitative comparison of S. scabiei impacts among host species while accounting for the variation in the number and types of impacts assessed. The Japanese raccoon dog (Nyctereutes viverrinus) was found to be the most impacted host (AIS 0.899). We applied species inclusion criteria for ranking and found more well-studied species tended to be those impacted more by S. scabiei (26/27 species AIS < 0.5). AIS had relatively weak relationships with predictor variables (methodological, phylogenetic, and geographic). There was a tendency for Diprotodontia, Artiodactyla, and Carnivora to be the most impacted taxa and for research to be focussed in developed regions of the world. This study is the first quantitative assessment of individual-level pathogen impacts of a multihost parasite. The proposed methodology can be applied to other multihost pathogens of public health, animal welfare, and conservation concern and enables further research to address likely causes of variation in pathogen virulence among host species.
Collapse
Affiliation(s)
- Zachary M. Lewin
- Department of Biological Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Francisca Astorga
- Universidad Andres Bello, Centro de Investigación Para la Sustentabilidad, Facultad de Ciencias de la Vida, Santiago, Chile
| | - Luis E. Escobar
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, USA
| | - Scott Carver
- Department of Biological Sciences, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
13
|
Takano K, de Hayr L, Carver S, Harvey RJ, Mounsey KE. Pharmacokinetic and pharmacodynamic considerations for treating sarcoptic mange with cross-relevance to Australian wildlife. Int J Parasitol Drugs Drug Resist 2023; 21:97-113. [PMID: 36906936 PMCID: PMC10023865 DOI: 10.1016/j.ijpddr.2023.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 03/07/2023]
Abstract
Sarcoptes scabiei is the microscopic burrowing mite responsible for sarcoptic mange, which is reported in approximately 150 mammalian species. In Australia, sarcoptic mange affects a number of native and introduced wildlife species, is particularly severe in bare-nosed wombats (Vombatus ursinus) and an emerging issue in koala and quenda. There are a variety of acaricides available for the treatment of sarcoptic mange which are generally effective in eliminating mites from humans and animals in captivity. In wild populations, effective treatment is challenging, and concerns exist regarding safety, efficacy and the potential emergence of acaricide resistance. There are risks where acaricides are used intensively or inadequately, which could adversely affect treatment success rates as well as animal welfare. While reviews on epidemiology, treatment strategies, and pathogenesis of sarcoptic mange in wildlife are available, there is currently no review evaluating the use of specific acaricides in the context of their pharmacokinetic and pharmacodynamic properties, and subsequent likelihood of emerging drug resistance, particularly for Australian wildlife. This review critically evaluates acaricides that have been utilised to treat sarcoptic mange in wildlife, including dosage forms and routes, pharmacokinetics, mode of action and efficacy. We also highlight the reports of resistance of S. scabiei to acaricides, including clinical and in vitro observations.
Collapse
Affiliation(s)
- Kotaro Takano
- School of Health, University of the Sunshine Coast, Maroochydore, Queensland, Australia; Sunshine Coast Health Institute, Birtinya, QLD, Australia
| | - Lachlan de Hayr
- School of Health, University of the Sunshine Coast, Maroochydore, Queensland, Australia; Sunshine Coast Health Institute, Birtinya, QLD, Australia
| | - Scott Carver
- Department of Biological Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Robert J Harvey
- School of Health, University of the Sunshine Coast, Maroochydore, Queensland, Australia; Sunshine Coast Health Institute, Birtinya, QLD, Australia
| | - Kate E Mounsey
- School of Health, University of the Sunshine Coast, Maroochydore, Queensland, Australia; Sunshine Coast Health Institute, Birtinya, QLD, Australia.
| |
Collapse
|
14
|
Burgess LG, Richards SA, Driessen MM, Wilkinson V, Amin RJ, Carver S. Fine-Scale Landscape Epidemiology: Sarcoptic Mange in Bare-Nosed Wombats ( Vombatus ursinus). Transbound Emerg Dis 2023; 2023:2955321. [PMID: 40303715 PMCID: PMC12016856 DOI: 10.1155/2023/2955321] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 05/02/2025]
Abstract
Landscape epidemiology provides a valuable framework to interpret, predict, and manage spatiotemporal patterns of disease. Yet, owing to the difficulty of detecting pathogen occurrence in free-ranging wildlife, disentangling the factors driving disease dynamics remains a considerable challenge, particularly at fine spatial scales. Here, we investigated the fine-scale landscape epidemiology of sarcoptic mange-a visually apparent disease caused by the mite Sarcoptes scabiei-in bare-nosed wombats (Vombatus ursinus), by: (1) characterizing the distribution and density of wombats within the landscape and (2) examining the effect of environmental variation on the occurrence and apparent prevalence of mange. Wombats were heterogeneously distributed over 19.4 km of transect space (0.096-1.39 wombats ha-1) and seven months of time (increasing by a factor of 1.76). Wombat density was negatively associated with distance to vegetation cover, supporting a general propensity for wombats to occur and burrow near vegetation (native and exotic, excluding pasture). The apparent prevalence of mange varied spatially (3.1-37.5%), with the probability of disease greater in wombats with minimal vegetation and low-lying pans in their estimated home range. We observed trends of increased prevalence in areas with more burrows available per wombat and in individuals occurring near vegetation cover (although not within their home range). Wombat density and active burrow density did not influence the prevalence of mange. This research emphasizes the fine scale at which spatiotemporal patterns of disease can manifest and is the first to investigate the influence of host density for any species with indirect transmission of S. scabiei. Collectively, our results suggest that individuals inhabiting less optimal habitat (pasture) may be at greater risk of disease, or that diseased wombats may be competitively excluded from more optimal habitat (vegetated areas). We discuss implications for understanding and managing mange in wombats and cross-applicability to other mange-affected species with environmental transmission.
Collapse
Affiliation(s)
- Leah G. Burgess
- School of Natural Sciences, University of Tasmania, Hobart, Tas 7001, Australia
| | - Shane A. Richards
- School of Natural Sciences, University of Tasmania, Hobart, Tas 7001, Australia
| | - Michael M. Driessen
- Department of Natural Resources and Environment Tasmania, Hobart, Tas 7001, Australia
| | - Vicky Wilkinson
- School of Natural Sciences, University of Tasmania, Hobart, Tas 7001, Australia
| | - Rahil J. Amin
- School of Natural Sciences, University of Tasmania, Hobart, Tas 7001, Australia
| | - Scott Carver
- School of Natural Sciences, University of Tasmania, Hobart, Tas 7001, Australia
| |
Collapse
|
15
|
Lebene C, Tora E. Mange: Epidemiology and ivermectin efficacy in goats and application of zero-inflated negative binomial regression in Uba Debre Tsehay, southern Ethiopia. Vet Parasitol Reg Stud Reports 2023; 37:100814. [PMID: 36623896 DOI: 10.1016/j.vprsr.2022.100814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 11/18/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022]
Abstract
Mites are one of the most common and widely distributed ectoparasites of goats in Ethiopia, contributing to major burdens in livestock productivity in the country. Between February 2021 and July 2021, this study was conducted to estimate the prevalence of mange mites, assess the potential risk factors, identify the species infesting goats, and evaluate the efficacy of ivermectin in naturally infested goats in the Uba Debere Tsehay district of Gofa Zone, Southern Ethiopia. A cross-sectional study, longitudinal field efficacy, and questionnaire survey were conducted. A total of 384 goats suspected of having mange were scraped for mite prevalence and count. The mite count data were analyzed using zero-inflated negative binomial (ZINB) models with explanatory variables. The ZINB models indicated that a substantial proportion of the observed zero mite count reflected a failure to detect mites in suspected goats, meaning that the estimated true prevalence was much higher than the apparent prevalence as calculated using a simple proportion of nonzero mite counts. Overall prevalence of mange was 21.87% (84/384) in the study areas. Sarcoptes species (21.09%) and Demodex species (0.78%) were the mite genera identified in this study. Among goats with poor, medium, and good body conditions, mite prevalence was 36.3%, 12.3%, and 10.9%, respectively. Both the prevalence and intensity of infestation were significantly associated with body condition scores, but other risk factors were not. The questionnaire survey indicated that 85.94% of the participants preferred to use modern treatment options (ivermectin 1%, injection) and 76.56% (98/128) respondents replied that ivermectin treatment is effective. Wilcoxon rank-sum test analysis shows that there was significantly (P < 0.05) fewer mites counted on goats treated with ivermectin than on untreated goats at each count up to day 56 after treatment. No live mites were found on any treated animal on days 28 and 56. Mixed ANOVA indicated that there was a significant difference within treatment groups. This study showed that mites are one of the constraints to goat production in the study area and ivermectin was highly effective against Demodex and Sarcoptes mites in goats. Hence, there is a need to create awareness about the impact of mange on goat production, and appropriate ivermectin treatment against mites should be implemented.
Collapse
Affiliation(s)
- Chernet Lebene
- Gofa Zone Livestock and Fishery Resource Department, Sawla, Ethiopia
| | - Ephrem Tora
- Department of Animal Sciences, College of Agriculture, Arba Minch University, P.O. Box 21, Arba Minch, Ethiopia.
| |
Collapse
|
16
|
Hindle IJ, Forbes LK, Carver S. The effect of spatial dynamics on the behaviour of an environmentally transmitted disease. JOURNAL OF BIOLOGICAL DYNAMICS 2022; 16:144-159. [PMID: 35404769 DOI: 10.1080/17513758.2022.2061614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Understanding the spread of pathogens through the environment is critical to a fuller comprehension of disease dynamics. However, many mathematical models of disease dynamics ignore spatial effects. We seek to expand knowledge around the interaction between the bare-nosed wombat (Vombatus ursinus) and sarcoptic mange (etiologic agent Sarcoptes scabiei), by extending an aspatial mathematical model to include spatial variation. S. scabiei was found to move through our modelled region as a spatio-temporal travelling wave, leaving behind pockets of localized host extinction, consistent with field observations. The speed of infection spread was also comparable with field research. Our model predicts that the inclusion of spatial dynamics leads to the survival and recovery of affected wombat populations when an aspatial model predicts extinction. Collectively, this research demonstrates how environmentally transmitted S. scabiei can result in travelling wave dynamics, and that inclusion of spatial variation reveals a more resilient host population than aspatial modelling approaches.
Collapse
Affiliation(s)
- Ivy J Hindle
- School of Physical Sciences, University of Tasmania, Hobart, Australia
| | - Lawrence K Forbes
- School of Physical Sciences, University of Tasmania, Hobart, Australia
| | - Scott Carver
- Department of Biological Sciences, University of Tasmania, Hobart, Australia
| |
Collapse
|
17
|
Zhou M, Peng P, Zhang X, Hussain S, Lu Y, Han L, Chen D, Li H, Liu Q, Tian L, Sun H, Hou Z. The genetic characteristics of Sarcoptes scabiei from Chinese serow (Capricornis milneedwardsii) and goral (Naemorhedus goral arnouxianus) compared with other mites from different hosts and geographic locations using ITS2 and cox1 sequences. Parasitol Res 2022; 121:3611-3618. [PMID: 36201043 DOI: 10.1007/s00436-022-07686-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/29/2022] [Indexed: 10/10/2022]
Abstract
Scabies is a common parasitic disease in many mammalian species, caused by the infestation of Sarcoptes scabiei. There is no consistent conclusion on whether Sarcoptes mites from different hosts or geographic locations have apparent genetic divergence. In this study, we collected and morphologically identified S. scabiei from Chinese serow and goral, and we described the genetic diversity of S. scabiei and other mites based on phylogenetic analyses of the ITS2 and cox1 sequence fragments, including data available in GenBank. The mites isolated from Chinese serow and goral were S. scabiei, and they were morphologically similar. The phylogenetic trees and haplotype networks showed that S. scabiei from other locations worldwide did not cluster according to host divergence or geographical distribution. Additionally, the Fst values were - 0.224 to 0.136 and - 0.045 to 1 between S. scabiei from different hosts, including humans and domestic and wild animals, based on partial ITS and cox1 sequences. Worldwide S. scabiei samples formed three clusters (with H2, H5, and H12 at their centers) in the ITS and one cluster (with C9 at the center) in the cox1 haplotype phylogenetic network. The S. scabiei collected from Chinese serow and goral were morphologically similar and had the same genotype. A study on the genetic characteristics of S. scabiei from Chinese serow and goral together with other mites from different hosts and geographic locations around the world showed no obvious divergence. These findings indicated that scabies likely is a zoonotic disease and that the global prevalence of scabies is probably related to the worldwide trade of domestic animals.
Collapse
Affiliation(s)
- Mengchao Zhou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China.,Laboratory of Vector-Borne Diseases and Pathogens Ecology, Northeast Forestry University, Harbin, China
| | - Peng Peng
- General Station for Surveillance of Wildlife Diseases, National Forestry and Grassland Administration, Shenyang, China
| | - Xiaotian Zhang
- General Station for Surveillance of Wildlife Diseases, National Forestry and Grassland Administration, Shenyang, China
| | - Shakeel Hussain
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China.,Laboratory of Vector-Borne Diseases and Pathogens Ecology, Northeast Forestry University, Harbin, China
| | - Yaxian Lu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China.,Laboratory of Vector-Borne Diseases and Pathogens Ecology, Northeast Forestry University, Harbin, China
| | - Lei Han
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China.,Laboratory of Vector-Borne Diseases and Pathogens Ecology, Northeast Forestry University, Harbin, China
| | - Denghui Chen
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China.,Laboratory of Vector-Borne Diseases and Pathogens Ecology, Northeast Forestry University, Harbin, China
| | - Hongjia Li
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China.,Laboratory of Vector-Borne Diseases and Pathogens Ecology, Northeast Forestry University, Harbin, China
| | - Quan Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China.,Laboratory of Vector-Borne Diseases and Pathogens Ecology, Northeast Forestry University, Harbin, China
| | - Lihong Tian
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China. .,Laboratory of Vector-Borne Diseases and Pathogens Ecology, Northeast Forestry University, Harbin, China.
| | - Heting Sun
- General Station for Surveillance of Wildlife Diseases, National Forestry and Grassland Administration, Shenyang, China.
| | - Zhijun Hou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China. .,Laboratory of Vector-Borne Diseases and Pathogens Ecology, Northeast Forestry University, Harbin, China.
| |
Collapse
|
18
|
Carver S, Peters A, Richards SA. Model Integrated Disease Management to facilitate effective translatable solutions for wildlife disease issues. J Appl Ecol 2022. [DOI: 10.1111/1365-2664.14298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Scott Carver
- Department of Biological Sciences University of Tasmania
| | - Andrew Peters
- School of Animal and Veterinary Sciences Charles Sturt University
| | | |
Collapse
|
19
|
Bains J, Carver S, Hua S. Pathophysiological and Pharmaceutical Considerations for Enhancing the Control of Sarcoptes scabiei in Wombats Through Improved Transdermal Drug Delivery. Front Vet Sci 2022; 9:944578. [PMID: 35836504 PMCID: PMC9274280 DOI: 10.3389/fvets.2022.944578] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
Sarcoptic scabiei is an invasive parasitic mite that negatively impacts wombats, causing sarcoptic mange disease, characterized by alopecia, intense pruritus, hyperkeratosis, and eventual mortality. Evidence suggests that wombats may be unable to recovery from infection without the assistance of treatments. Transdermal drug delivery is considered the most ideal route of administration for in situ treatment in free-ranging wombats, as it is non-invasive and avoids the need to capture affected individuals. Although there are effective antiparasitic drugs available, an essential challenge is adequate administration of drugs and sufficient drug retention and absorption when delivered. This review will describe the implications of sarcoptic mange on the physiology of wombats as well as discuss the most widely used antiparasitic drugs to treat S. scabiei (ivermectin, moxidectin, and fluralaner). The prospects for improved absorption of these drugs will be addressed in the context of pathophysiological and pharmaceutical considerations influencing transdermal drug delivery in wombats with sarcoptic mange.
Collapse
Affiliation(s)
- Jaskaran Bains
- Therapeutic Targeting Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Scott Carver
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Susan Hua
- Therapeutic Targeting Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- *Correspondence: Susan Hua
| |
Collapse
|