1
|
Ryu S, Ye X, Olson JJ, Mikkelsen T, Bangiyev L, Lesser GJ, Batchelor T, Nabors B, Desideri S, Walbert T, Grossman SA. Phase I and pharmacodynamic study of arsenic trioxide plus radiotherapy in patients with newly diagnosed glioblastoma. Neurooncol Adv 2024; 6:vdae089. [PMID: 38978961 PMCID: PMC11229030 DOI: 10.1093/noajnl/vdae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024] Open
Abstract
Background When arsenic trioxide (ATO) was combined with radiation for treatment of transplanted murine gliomas in the brain, tumor response improved with disrupted tumor blood flow and survival was significantly prolonged. Methods Total of 31 patients with newly diagnosed glioblastoma were accrued to a multi-institutional, NCI-funded, phase I study to determine the maximum tolerated dose (MTD) of ATO administered with radiation. Secondary objectives were survival and pharmacodynamic changes in perfusion on magnetic resonance imaging (MRI). Patients (unknown MGMT and IDH status) received ATO either once or twice weekly during radiation without concurrent or adjuvant temozolomide. Results Median age: 54.9 years, male: 68%, KPS ≥ 90: 77%, debulking surgery: 77%. Treatments were well-tolerated: 81% of patients received all the planned ATO doses. Dose-limiting toxicities included elevated liver function tests, hypokalemia, and edema. The MTD on the weekly schedule was 0.4 mg/kg and on the biweekly was 0.3 mg/kg. The median survival (mOS) for all patients was 17.7 months. Survival on the biweekly schedule (22.8 months) was longer than on the weekly schedule (12.1 months) (P = .039) as was progression-free survival (P = .004). Similarly, cerebral blood flow was significantly reduced in patients treated on the biweekly schedule (P = .007). Conclusions ATO with standard radiation is well tolerated in patients with newly diagnosed glioblastoma. Even without temozolomide or adjuvant therapy, the overall survival of all patients (17.7 months) and especially patients who received biweekly ATO (22.8 months) is surprising and accompanied by pharmacodynamic changes on MRI. Further studies of this regimen are warranted.
Collapse
Affiliation(s)
- Samuel Ryu
- Department of Radiation Oncology, Stony Brook University School of Medicine, Stony Brook, New York, USA
| | - Xiaobu Ye
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jeffrey J Olson
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Tom Mikkelsen
- Jeffries Center for Precision Medicine, Henry Ford Health, Detroit, Michigan, USA
| | - Lev Bangiyev
- Department of Radiology, Stony Brook University School of Medicine, Stony Brook, New York, USA
| | - Glenn J Lesser
- Department of Internal Medicine, Hematology and Oncology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Tracy Batchelor
- Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Burt Nabors
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Serena Desideri
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tobias Walbert
- Department of Neurology, Henry Ford Health, Wayne State School of Medicine, Detroit, Michigan, USA
- Department of Surgery, Michigan State University, Detroit, Michigan, USA
| | - Stuart A Grossman
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Chen J, Chen S, Luo H, Wu W, Wang S. The application of arsenic trioxide in cancer: An umbrella review of meta-analyses based on randomized controlled trials. JOURNAL OF ETHNOPHARMACOLOGY 2023; 316:116734. [PMID: 37290735 DOI: 10.1016/j.jep.2023.116734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/31/2023] [Accepted: 06/03/2023] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Processed from natural minerals, arsenic trioxide (ATO) as an ancient Chinese medicine has been used to treat diseases for over 2000 years. And it was applied to treat acute promyelocytic leukemia (APL) since the 1970s in China. Summarizing the clinical evidence of ATO in cancer is conducive to further understanding, development, and promotion of its pharmacological research. AIM OF THE STUDY It is the first time to comprehensively assess and summarize the evidence of ATO in cancer treatment via umbrella review. MATERIALS AND METHODS 8 databases in English or Chinese from their inception to February 21, 2023 were searched by two reviewers separately and suitable meta-analyses (MAs) were included in this umbrella review. Their methodological quality and risk of bias were evaluated and data of outcomes was extracted and pooled again. The evidence certainty of pooled results was classified. RESULTS 17 MAs with 27 outcomes and seven comparisons in three cancers were included in this umbrella review. However, their methodological quality was unsatisfactory with 6 MAs as low quality and 12 MAs as critically low quality. Their shortcomings were mainly focused on protocol, literature selecting, bias risk, small sample study bias, and conflicts of interest or funding. And they were all assessed as high risk in bias. It was suggested that ATO had an advantage in enhancing complete remission rate, event-free survival, and recurrence free survival and decreasing recurrence rate, cutaneous toxicity, hyper leukocyte syndrome, tretinoin syndrome, edema and hepatotoxicity in different comparisons of APL with low or moderate certainty. Besides, compared with transcatheter arterial chemoembolization (TACE) alone, ATO plus TACE also could improve objective response rate, disease control rate, survival rate (0.5, 1, 2, and 3-year) and life quality and reduce the level of alpha fetoprotein in primarily hepatocellular carcinoma with low or moderate certainty. However, no significant results were found in MM. Finally, key findings were as followed. ATO has potential broad-spectrum anticancer effects but the clinical transformation is rarely achieved. Route of administration may affect the antitumor effects of ATO. ATO can act synergistically in combination with a variety of antitumor therapies. The safety and drug resistance of ATO should be paid more attention to. CONCLUSIONS ATO may be a promising drug in anticancer treatment although earlier RCTs have dragged down the level of evidence. However, high-quality clinical trials are expected to explore its broad-spectrum anticancer effects, wide application, appropriate route of administration, and compound dosage form.
Collapse
Affiliation(s)
- Jixin Chen
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510120, PR China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510120, PR China
| | - Shuqi Chen
- Department of Acupuncture, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510120, PR China
| | - Huiyan Luo
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510120, PR China
| | - Wanyin Wu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510120, PR China.
| | - Sumei Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510120, PR China.
| |
Collapse
|
3
|
Yan J, Hanif S, Zhang D, Ismail M, Wang X, Li Q, Shi B, Muhammad P, Wu H. Arsenic Prodrug-Mediated Tumor Microenvironment Modulation Platform for Synergetic Glioblastoma Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36487-36502. [PMID: 35921662 DOI: 10.1021/acsami.2c12076] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Glioblastoma (GBM) has a distinct internal environment characterized by high levels of glutathione (GSH) and low oxygen partial pressure, which significantly restrict most drugs' effectiveness. Arsenic-based drugs are emerging candidates for treating solid tumors; however, relatively high doses in solo systems and inconsistent complementary systems severely damage the normal tissues. We proposed a novel covalently conjugated strategy for arsenic-based therapy via arsenic-boronic acid complex formation. The boronic acid was modified on silver (AgL) to capture AsV under an alkaline condition named arsenate plasmonic complex (APC) with a distinct Raman response. The APC can precisely release the captured AsV in lysosomal acidic pH that specifically targets TME to initiate a multimodal therapeutic effect such as GSH depletion and reactive oxygen species generation. In addition, GSH activation leads to subconverted AsV into AsIII, which further facilitated glutathione peroxidase (GPx) and superoxide dismutase inhibition, whereas the tumor selective etching of the silver core triggered by endogenous H2O2 that can oxidize to generate highly toxic Ag ions produces and supplies O2 to help the alleviated hypoxia. Both in vitro and in vivo data verify the APC-based chemotherapy paving the way for efficient nanomedicine-enabled boronate affinity-based arsenic chemotherapeutics for on demand site-specific cancer combination treatment of GBM tumors.
Collapse
Affiliation(s)
- Jiliang Yan
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences and School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Sumaira Hanif
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences and School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Dongya Zhang
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences and School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Muhammad Ismail
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences and School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Xiao Wang
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences and School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Qianjin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Bingyang Shi
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences and School of Pharmacy, Henan University, Kaifeng 475004, China
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Pir Muhammad
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences and School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Haigang Wu
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences and School of Pharmacy, Henan University, Kaifeng 475004, China
| |
Collapse
|
4
|
Oh JM, Rajendran RL, Gangadaran P, Hong CM, Jeong JH, Lee J, Ahn BC. Targeting GLI1 Transcription Factor for Restoring Iodine Avidity with Redifferentiation in Radioactive-Iodine Refractory Thyroid Cancers. Cancers (Basel) 2022; 14:1782. [PMID: 35406554 PMCID: PMC8997411 DOI: 10.3390/cancers14071782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/25/2022] Open
Abstract
Radioactive-iodine (RAI) therapy is the mainstay for patients with recurrent and metastatic thyroid cancer. However, many patients exhibit dedifferentiation characteristics along with lack of sodium iodide symporter (NIS) functionality, low expression of thyroid-specific proteins, and poor RAI uptake, leading to poor prognosis. Previous studies have demonstrated the effect of GLI family zinc finger 1 (GLI1) inhibition on tumor growth and apoptosis. In this study, we investigated the role of GLI1 in the context of redifferentiation and improvement in the efficacy of RAI therapy for thyroid cancer. We evaluated GLI1 expression in several thyroid cancer cell lines and selected TPC-1 and SW1736 cell lines showing the high expression of GLI. We performed GLI1 knockdown and evaluated the changes of thyroid-specific proteins expression, RAI uptake and I-131-mediated cytotoxicity. The effect of GANT61 (GLI1 inhibitor) on endogenous NIS expression was also assessed. Endogenous NIS expression upregulated by inhibiting GLI1, in addition, increased expression level in plasma membrane. Also, GLI1 knockdown increased expression of thyroid-specific proteins. Restoration of thyroid-specific proteins increased RAI uptake and I-131-mediated cytotoxic effect. Treatment with GANT61 also increased expression of endogenous NIS. Targeting GLI1 can be a potential strategy with redifferentiation for restoring RAI avidity in dedifferentiated thyroid cancers.
Collapse
Affiliation(s)
- Ji Min Oh
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (J.M.O.); (R.L.R.); (P.G.); (C.M.H.); (J.L.)
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (J.M.O.); (R.L.R.); (P.G.); (C.M.H.); (J.L.)
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (J.M.O.); (R.L.R.); (P.G.); (C.M.H.); (J.L.)
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Chae Moon Hong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (J.M.O.); (R.L.R.); (P.G.); (C.M.H.); (J.L.)
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu 41944, Korea; zzu--@hanmail.net
| | - Ju Hye Jeong
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu 41944, Korea; zzu--@hanmail.net
| | - Jaetae Lee
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (J.M.O.); (R.L.R.); (P.G.); (C.M.H.); (J.L.)
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu 41944, Korea; zzu--@hanmail.net
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (J.M.O.); (R.L.R.); (P.G.); (C.M.H.); (J.L.)
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu 41944, Korea; zzu--@hanmail.net
| |
Collapse
|
5
|
Tang R, Zhu J, Liu Y, Wu N, Han J. Formulation Comprising Arsenic Trioxide and Dimercaprol Enhances Radiosensitivity of Pancreatic Cancer Xenografts. Technol Cancer Res Treat 2021; 20:15330338211036324. [PMID: 34433326 PMCID: PMC8404670 DOI: 10.1177/15330338211036324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE To investigate the efficacy of a formula comprising arsenic trioxide and dimercaprol (BAL-ATO) as a radiosensitizing agent in model mice with pancreatic cancer xenografts. METHODS Female BALB/c nude mice bearing SW1990 human pancreatic cancer xenografts were divided into four treatment arms, including control, radiotherapy (RT), BAL-ATO, and RT + BAL-ATO groups. Survival and tumor volume were analyzed. We also assessed apoptosis in tumor samples by live imaging and detected hypoxia by confocal laser microscope observation. We further investigated the mechanisms of BAL-ATO action in RT by detecting affected proteins by western blot and immunohistochemistry assays. RESULTS Median survival was significantly longer in the RT + BAL-ATO group (64.5 days) compared with the control (49.5 days), RT (39 days), and BAL-ATO (48 days) groups (P < 0.001). RT + BAL-ATO inhibited the growth of tumors in mice by 73% compared with the control group, which was significantly higher than the rate of inhibition following RT alone (59%) (P < 0.01). Further analysis showed an improved microenvironment in terms of hypoxia in tumors treated with BAL-ATO alone or RT + BAL-ATO. Expression of signaling molecules associated with pancreatic cancer stem cells, including CD24, CD44, ALDH1A1, Gli-1, and Nestin, was detected in tumors treated with BAL-ATO alone or in combination with RT. CONCLUSION These data suggest that BAL-ATO function as a radiosensitizer in mice with pancreatic cancer xenografts, via mechanisms involving hypoxia reduction and inhibition of signaling pathways associated with pancreatic cancer stem cells. BAL-ATO may thus be a promising radiosensitizing agent in patients with pancreatic cancer.
Collapse
Affiliation(s)
- Renyan Tang
- Department of Traditional Chinese Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianmin Zhu
- Shanghai Clinical Center, Chinese Academy of Sciences/Xuhui Central Hospital, Shanghai, China
| | - Ying Liu
- Department of Oncology, Yunnan Traditional Chinese Medicine Hospital, Kunming, China
| | - Ning Wu
- Department of Oncology, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Jinbin Han
- Department of Traditional Chinese Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Abele M, Müller SL, Schleicher S, Hartmann U, Döring M, Queudeville M, Lang P, Handgretinger R, Ebinger M. Arsenic trioxide in pediatric cancer - a case series and review of literature. Pediatr Hematol Oncol 2021; 38:471-485. [PMID: 33635158 DOI: 10.1080/08880018.2021.1872748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Arsenic trioxide (ATO) has become an established component of treatment protocols for acute promyelocytic leukemia (APL) with excellent efficacy and no relevant sustained toxicity. Part of its action has been attributed to the inhibition of Hedgehog signaling (Hh) which enables a possible therapeutic approach as many pediatric tumor entities have been associated with increased Hh activity. We retrospectively analyzed 31 patients with refractory and relapsed pediatric cancer who were treated with ATO at the University Children's Hospital of Tuebingen. Additionally a literature review on the clinical and preclinical use of ATO in pediatric cancer treatment was performed.ATO alone as well as combinations with other drugs have proven effective in vitro and in mouse models of various pediatric malignancies. However, only few data on the clinical use of ATO in pediatric patients besides APL exist. In our patient sample, ATO was overall well tolerated in the treatment of various pediatric cancers, even in combination with other cytostatic drugs. Due to distinct tumor entities, differently progressed disease stages and varying co-medication, no clear statement can be made regarding the efficacy of ATO treatment. However, patients with proven Hh activation in molecular tumor profiling surpassed all other patients, who received ATO in an experimental treatment setting, in terms of survival. As molecular profiling of tumors increases and enhanced Hh activity can be detected at an early stage, ATO might expand its clinical use to other pediatric malignancies beyond APL depending on further clinical studies.
Collapse
Affiliation(s)
- Michael Abele
- Pediatric Hematology/Oncology, Department of Pediatrics, University Hospital Tuebingen, Tuebingen, Germany
| | - Sara-Lena Müller
- Clinic for Anaesthesiology, Critical Care, Emergency Medicine and Pain Management, Klinikum Ludwigsburg, Germany
| | - Sabine Schleicher
- Pediatric Hematology/Oncology, Department of Pediatrics, University Hospital Tuebingen, Tuebingen, Germany
| | | | - Michaela Döring
- Pediatric Hematology/Oncology, Department of Pediatrics, University Hospital Tuebingen, Tuebingen, Germany
| | - Manon Queudeville
- Pediatric Hematology/Oncology, Department of Pediatrics, University Hospital Tuebingen, Tuebingen, Germany
| | - Peter Lang
- Pediatric Hematology/Oncology, Department of Pediatrics, University Hospital Tuebingen, Tuebingen, Germany
| | - Rupert Handgretinger
- Pediatric Hematology/Oncology, Department of Pediatrics, University Hospital Tuebingen, Tuebingen, Germany
| | - Martin Ebinger
- Pediatric Hematology/Oncology, Department of Pediatrics, University Hospital Tuebingen, Tuebingen, Germany
| |
Collapse
|
7
|
Hernández-Bojórquez M, Trejo-Solis C, Lárraga-Gutiérrez JM, Martínez-Dávalos A. Monte Carlo dosimetry of a cell culture irradiation model using a 6 MV X-ray beam. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2020.109251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Fang Y, Zhang Z. Arsenic trioxide as a novel anti-glioma drug: a review. Cell Mol Biol Lett 2020; 25:44. [PMID: 32983240 PMCID: PMC7517624 DOI: 10.1186/s11658-020-00236-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/15/2020] [Indexed: 02/08/2023] Open
Abstract
Arsenic trioxide has shown a strong anti-tumor effect with little toxicity when used in the treatment of acute promyelocytic leukemia (APL). An effect on glioma has also been shown. Its mechanisms include regulation of apoptosis and autophagy; promotion of the intracellular production of reactive oxygen species, causing oxidative damage; and inhibition of tumor stem cells. However, glioma cells and tissues from other sources show different responses to arsenic trioxide. Researchers are working to enhance its efficacy in anti-glioma treatments and reducing any adverse reactions. Here, we review recent research on the efficacy and mechanisms of action of arsenic trioxide in the treatment of gliomas to provide guidance for future studies.
Collapse
Affiliation(s)
- Yi Fang
- Department of Ultrasound, First Affiliated Hospital of China Medical University, Shenyang, 110001 Liaoning People's Republic of China
| | - Zhen Zhang
- Department of Ultrasound, First Affiliated Hospital of China Medical University, Shenyang, 110001 Liaoning People's Republic of China
| |
Collapse
|
9
|
Yang Y, Yan R, Zhang L, Meng X, Sun W. Primary glioblastoma transcriptome data analysis for screening survival-related genes. J Cell Biochem 2019; 121:1901-1910. [PMID: 31633244 DOI: 10.1002/jcb.29425] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 10/08/2019] [Indexed: 01/27/2023]
Abstract
PURPOSE The aim of this study was to screen survival-related genes for glioblastoma (GBM). METHODS GSE53733 was downloaded from Gene Expression Omnibus (GEO) database, including 16 short-term (ST), 31 intermediate (IM), and 23 long-term (LT) survivors. Analysis of variance was used to analyze the expression in three groups. The genes with P < .01 were screened as differentially expressed genes (DEGs). Soft clustering was performed using Mfuzz to mine the expression patterns of differential genes in three groups of overall survival (OS) classification. The cytoscape plugin clueGO was used for functional enrichment analysis. The protein interaction between differential genes was extracted from the STRING V10 database, and the protein-protein interaction (PPI) network was constructed and displayed with cytoscape. The hub genes were verified by quantitative reverse-transcription polymerase chain reaction. RESULTS Total 662 DEGs were obtained among three groups and enriched in 12 clusters. The overlap analysis between clusters could classify these 12 clusters Cluster A and B. Total 264 OS.DEGs were contained in Cluter A and Cluster B, and enriched in 28 Gene Ontology terms, such as trophoblast giant cell differentiation (P value = 6.18E-04), muscle fiber development (P value = 9.09E-04), and negative regulation of stem cell differentiation (P value = 1.76E-03). The top five nodes with highest degree in OS.PPI were HDAC1, DECR1, RASL11A, PDIA3, and POLR2F. The expression of DECR1 and POLR2F was significantly lower, while the levels of HDAC1 and PDIA3 were highly expressed in GBM tissues. CONCLUSION DECR1, POLR2F, HDAC1, and PDIA3 might be potential key genes affected the overall survival time of patients with GBM.
Collapse
Affiliation(s)
- Ying Yang
- Intensive Care Unit, Affiliated Hospital of Jining Medical University, Jining, China
| | - Ranran Yan
- Intensive Care Unit, Affiliated Hospital of Jining Medical University, Jining, China
| | - Liwen Zhang
- Intensive Care Unit, Affiliated Hospital of Jining Medical University, Jining, China
| | - Xiangli Meng
- Nursing Department, Affiliated Hospital of Jining Medical University, Jining, China
| | - Wen Sun
- Teaching Administration Office, Affiliated Hospital of Jining Medical University, Jining, China
| |
Collapse
|
10
|
Miodragović Ð, Swindell EP, Waxali ZS, Bogachkov A, O'Halloran TV. Beyond Cisplatin: Combination Therapy with Arsenic Trioxide. Inorganica Chim Acta 2019; 496:119030. [PMID: 32863421 PMCID: PMC7453736 DOI: 10.1016/j.ica.2019.119030] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Platinum drugs (cisplatin, oxaliplatin, and carboplatin) and arsenic trioxide are the only commercial inorganic non-radioactive anticancer drugs approved by the US Food and Drug Administration. Numerous efforts are underway to take advantage of the synergy between the anticancer activity of cisplatin and arsenic trioxide - two drugs with strikingly different mechanisms of action. These include co-encapsulation of the two drugs in novel nanoscale delivery systems as well as the development of small molecule agents that combine the activity of these two inorganic materials. Several of these new molecular entities containing Pt-As bonds have broad anticancer activity, are robust in physiological buffer solutions, and form stable complexes with biopolymers. This review summarizes results from a number of preclinical studies involving the combination of cisplatin and As2O3, co-encapsulation and nanoformulation efforts, and the chemistry and cytotoxicity of the first member of platinum anticancer agents with an arsenous acid moiety bound to the platinum(II) center: arsenoplatins.
Collapse
Affiliation(s)
- Ðenana Miodragović
- Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Northeastern Illinois University, 5500 North St Louis Avenue, Chicago, Illinois 60625, United States
| | - Elden P Swindell
- Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Zohra Sattar Waxali
- Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Abraham Bogachkov
- Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Thomas V O'Halloran
- Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
11
|
Kayano D, Kinuya S. Current Consensus on I-131 MIBG Therapy. Nucl Med Mol Imaging 2018; 52:254-265. [PMID: 30100938 DOI: 10.1007/s13139-018-0523-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/27/2018] [Accepted: 04/12/2018] [Indexed: 12/24/2022] Open
Abstract
Metaiodobenzylguanidine (MIBG) is structurally similar to the neurotransmitter norepinephrine and specifically targets neuroendocrine cells including some neuroendocrine tumors. Iodine-131 (I-131)-labeled MIBG (I-131 MIBG) therapy for neuroendocrine tumors has been performed for more than a quarter-century. The indications of I-131 MIBG therapy include treatment-resistant neuroblastoma (NB), unresectable or metastatic pheochromocytoma (PC) and paraganglioma (PG), unresectable or metastatic carcinoid tumors, and unresectable or metastatic medullary thyroid cancer (MTC). I-131 MIBG therapy is one of the considerable effective treatments in patients with advanced NB, PC, and PG. On the other hand, I-131 MIBG therapy is an alternative method after more effective novel therapies are used such as radiolabeled somatostatin analogs and tyrosine kinase inhibitors in patients with advanced carcinoid tumors and MTC. No-carrier-aided (NCA) I-131 MIBG has more favorable potential compared to the conventional I-131 MIBG. Astatine-211-labeled meta-astatobenzylguanidine (At-211 MABG) has massive potential in patients with neuroendocrine tumors. Further studies about the therapeutic protocols of I-131 MIBG including NCA I-131 MIBG in the clinical setting and At-211 MABG in both the preclinical and clinical settings are needed.
Collapse
Affiliation(s)
- Daiki Kayano
- 1Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, 920-8641 Japan.,2Department of Nuclear Medicine, Fukushima Medical University Hospital, 1 Hikariga-oka, Fukushima, 960-1295 Japan
| | - Seigo Kinuya
- 1Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, 920-8641 Japan
| |
Collapse
|
12
|
Lin LT, Liu SY, Leu JD, Chang CY, Chiou SH, Lee TC, Lee YJ. Arsenic trioxide-mediated suppression of miR-182-5p is associated with potent anti-oxidant effects through up-regulation of SESN2. Oncotarget 2018; 9:16028-16042. [PMID: 29662624 PMCID: PMC5882315 DOI: 10.18632/oncotarget.24678] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 02/24/2018] [Indexed: 01/15/2023] Open
Abstract
Arsenic trioxide (ATO) is a traditional Chinese medicine that can induce oxidative stress for treatment of cancer cells. However, ATO may generate anti-oxidative responses to compromise the cytotoxic effect, but the underlying mechanisms remain unclear. Here we found that ATO could inhibit miR-182-5p expression in patient-derived primary S1 glioblastoma (GBM) cells accompanied by up-regulation of Sestrin-2 (SESN2) mRNA, a known anti-oxidant molecule. This phenomenon was also detected in a U87MG glioma cell line, human lung adenocarcinoma H1299 cell line and A549 cell line. Pretreatment with a free radical scavenger N-acetylcysteine (NAC) reduced the oxidative stress induced by ATO. Concomitantly, ATO mediated suppression of miR-182-5p and enhancement of SESN2 expression were also compromised. The MTT assay further showed that ATO induced cytotoxicity was enhanced by transfection of miR-182-5p mimics. Overexpression of miR-182-5p mimics significantly suppressed the expression of SENS2 and a firefly luciferase reporter gene fused to 3’- untranslated region (UTR) of SESN2 mRNA. Use of ribonucleoprotein immunoprecipitation (RNP-IP), ATO mediated suppression of miR-182-5p led to the stabilization of SESN2 mRNA as a result of Argonaute-2 (AGO2) dependent gene silencing. Furthermore, high expression of miR-182-5p and low expression of SESN2 mRNA tend to be associated with longer survival of glioma or lung cancer patients using public available gene expression datasets and online tools for prediction of clinical outcomes. Taken together, current data suggest that the miR-182-5p/SENS2 pathway is involved in ATO induced anti-oxidant responses, which may be important for the design of novel strategy for cancer treatment.
Collapse
Affiliation(s)
- Liang-Ting Lin
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan.,Current address: Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong
| | - Shin-Yi Liu
- Department of Radiation Oncology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Jyh-Der Leu
- Division of Radiation Oncology, Taipei City Hospital Ren Ai Branch, Taipei, Taiwan.,Institute of Neuroscience, National Chengchi University, Taipei, Taiwan
| | - Chun-Yuan Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Hwa Chiou
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | - Te-Chang Lee
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yi-Jang Lee
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan.,Biophotonics and Molecular Imaging Research Center (BMIRC), National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
13
|
Activation of the basal cell carcinoma pathway in a patient with CNS HGNET-BCOR diagnosis: consequences for personalized targeted therapy. Oncotarget 2018; 7:83378-83391. [PMID: 27825128 PMCID: PMC5347776 DOI: 10.18632/oncotarget.13092] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/19/2016] [Indexed: 01/01/2023] Open
Abstract
High grade neuroepithelial tumor of the central nervous system with BCOR alteration (CNS HGNET-BCOR) is a recently described new tumor entity with a dismal prognosis. The objective of this study was to identify and validate pathways deregulated in CNS HGNET-BCOR as basis for targeted therapy approaches. We characterized the BCOR alteration in a pediatric patient with CNS HGNET-BCOR diagnosis by Sanger sequencing and demonstrated an elevated BCOR expression by qRT-PCR and western blot. By whole transcriptome sequencing and Ingenuity Pathway Analysis, we identified the activation of the Sonic Hedgehog (SHH) and of the WNT signaling pathway in two different regions of the primary tumor and of one inoculation metastasis compared to normal brain. We validated the activation of the SHH and of the WNT pathway by qRT-PCR analysis of GLI1 and AXIN2 respectively. GLI1 and AXIN2 were upregulated in the primary tumor and in two inoculation metastases compared to normal brain. Mutational analysis of SMO, PTCH1 and SUFU, three key components of the SHH pathway, revealed a Single Nucleotide Polymorphism (SNP) in PTCH1 (rs357564). We tested the effect of the GLI-inhibitor arsenic trioxide (ATO) on a short-term cell culture isolated from the metastasis. ATO was able to reduce the viability of the cells with an IC50 of 1.3 μM. In summary, these results provide functional evidence of altered BCOR expression and homogeneous coactivation of both the SHH and WNT signaling pathways, building the basis for potential novel therapeutic approaches for patients with a CNS HGNET-BCOR diagnosis.
Collapse
|
14
|
Personalized therapy: CNS HGNET-BCOR responsiveness to arsenic trioxide combined with radiotherapy. Oncotarget 2017; 8:114210-114225. [PMID: 29371980 PMCID: PMC5768397 DOI: 10.18632/oncotarget.23174] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/16/2017] [Indexed: 01/08/2023] Open
Abstract
High-grade neuroepithelial tumor of the central nervous system with BCOR alteration (HGNET-BCOR) is a rare, highly malignant tumor. At the time of this publication, no standard protocol exists to treat this tumor entity. In this work, we tested the responsiveness of the primary culture PhKh1 derived from tumor tissue from a pediatric HGNET-BCOR patient (P1) to inhibitors of the Sonic hedgehog pathway combined with radiation. The SMO inhibitors vismodegib and itraconazole had low effect on the proliferation of the PhKh1 cells. However, the GLI inhibitor arsenic trioxide reduced the expression of GLI target genes in the PhKh1 cells and in combination with radiotherapy significantly decreased their clonogenic potential. PhKh1 cells resistant to arsenic trioxide were characterized by the overexpression of molecular chaperones. We combined arsenic trioxide and radiation in the relapse therapy protocol of P1, achieving complete remission after seven weeks. Clinical remission lasted for six months, when P1 developed systemic metastases. Meanwhile, an increase in the concentration of circulating tumor DNA carrying a BCOR internal tandem duplication was observed. Molecular characterization of a second patient (P2) was also performed. In P2, we detected a larger tandem duplication and greater activation of the Sonic hedgehog pathway than in P1. These findings suggest that combining arsenic trioxide with radiotherapy may represent a new therapeutic approach. Moreover, peripheral blood analysis for circulating tumor DNA could help in the early detection of systemic metastases.
Collapse
|
15
|
A phase II trial of arsenic trioxide and temozolomide in combination with radiation therapy for patients with malignant gliomas. J Neurooncol 2017; 133:589-594. [PMID: 28510787 DOI: 10.1007/s11060-017-2469-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 05/06/2017] [Indexed: 10/19/2022]
Abstract
Standard treatment for GBM is radiation (RT) and temozolomide (TMZ). Arsenic trioxide (ATO) is synergistic with RT based on several mechanisms of action previously identified, however not tested herein. The MTD of ATO, RT and TMZ was determined in a Phase I trial. We now present the combined Phase I/II data. Patients with newly diagnosed malignant gliomas were eligible for treatment. Patients were treated with RT (60 GY), TMZ (75 mg/m2 daily × 42 days) and ATO 0.20 mg/kg daily in week 1 then twice a week ×5 weeks, after completing RT they were treated with TMZ 5/28 for up to 12 months. MRIs were performed every 8 weeks. A total of 42 patients were enrolled in both the Phase I and II trials for this study treatment. Of the 42 enrolled patients (24 M and 18 W) the median age was 54 (24-80) and median KPS 90 (60-100). 28 patients had a GBM and 14 had anaplastic glioma (AG). All patients completed RT/TMZ/ATO and went on to maintenance TMZ. Median number of post RT cycles of TMZ was 4 (0-12). Median PFS was 7 m for GBM and 75 m for AG and median OS was 17 m for GBM and NR for AG. Best response was CR in 2, SD in 28, PR in 5 and PD in 7. There were no unexpected adverse events. Grade 3 toxicities likely attributable to ATO included prolonged Qtc (n = 1), elevated liver enzymes (n = 2 for ALT/n = 1 for AST) and elevated bilirubin (n = 1). Adding ATO to RT and TMZ is feasible with no increased side effects. The addition of arsenic did not improve overall survival in the GBM patients as compared to historic data. MGMT status was analyzed in 20 of the 42 patients where tissue was available for retrieval and MGMT testing.
Collapse
|
16
|
Modak S, Zanzonico P, Carrasquillo JA, Kushner BH, Kramer K, Cheung NKV, Larson SM, Pandit-Taskar N. Arsenic Trioxide as a Radiation Sensitizer for 131I-Metaiodobenzylguanidine Therapy: Results of a Phase II Study. J Nucl Med 2016; 57:231-7. [PMID: 26742708 DOI: 10.2967/jnumed.115.161752] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 10/13/2015] [Indexed: 01/31/2023] Open
Abstract
UNLABELLED Arsenic trioxide has in vitro and in vivo radiosensitizing properties. We hypothesized that arsenic trioxide would enhance the efficacy of the targeted radiotherapeutic agent (131)I-metaiodobenzylguanidine ((131)I-MIBG) and tested the combination in a phase II clinical trial. METHODS Patients with recurrent or refractory stage 4 neuroblastoma or metastatic paraganglioma/pheochromocytoma (MP) were treated using an institutional review board-approved protocol (Clinicaltrials.gov identifier NCT00107289). The planned treatment was (131)I-MIBG (444 or 666 MBq/kg) intravenously on day 1 plus arsenic trioxide (0.15 or 0.25 mg/m(2)) intravenously on days 6-10 and 13-17. Toxicity was evaluated using National Cancer Institute Common Toxicity Criteria, version 3.0. Response was assessed by International Neuroblastoma Response Criteria or (for MP) by changes in (123)I-MIBG or PET scans. RESULTS Twenty-one patients were treated: 19 with neuroblastoma and 2 with MP. Fourteen patients received (131)I-MIBG and arsenic trioxide, both at maximal dosages; 2 patients received a 444 MBq/kg dose of (131)I-MIBG plus a 0.15 mg/kg dose of arsenic trioxide; and 3 patients received a 666 MBq/kg dose of (131)I-MIBG plus a 0.15 mg/kg dose of arsenic trioxide. One did not receive arsenic trioxide because of transient central line-induced cardiac arrhythmia, and another received only 6 of 10 planned doses of arsenic trioxide because of grade 3 diarrhea and vomiting with concurrent grade 3 hypokalemia and hyponatremia. Nineteen patients experienced myelosuppression higher than grade 2, most frequently thrombocytopenia (n = 18), though none required autologous stem cell rescue. Twelve of 13 evaluable patients experienced hyperamylasemia higher than grade 2 from transient sialoadenitis. By International Neuroblastoma Response Criteria, 12 neuroblastoma patients had no response and 7 had progressive disease, including 6 of 8 entering the study with progressive disease. Objective improvements in semiquantitative (131)I-MIBG scores were observed in 6 patients. No response was seen in MP. Seventeen of 19 neuroblastoma patients continued on further chemotherapy or immunotherapy. Mean 5-year overall survival (±SD) for neuroblastoma was 37% ± 11%. Mean absorbed dose of (131)I-MIBG to blood was 0.134 cGy/MBq, well below myeloablative levels in all patients. CONCLUSION (131)I-MIBG plus arsenic trioxide was well tolerated, with an adverse event profile similar to that of (131)I-MIBG therapy alone. The addition of arsenic trioxide to (131)I-MIBG did not significantly improve response rates when compared with historical data with (131)I-MIBG alone.
Collapse
Affiliation(s)
- Shakeel Modak
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Pat Zanzonico
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York; and
| | - Jorge A Carrasquillo
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Brian H Kushner
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kim Kramer
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nai-Kong V Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Steven M Larson
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Neeta Pandit-Taskar
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
17
|
Ninomiya Y, Cui X, Yasuda T, Wang B, Yu D, Sekine-Suzuki E, Nenoi M. Arsenite induces premature senescence via p53/p21 pathway as a result of DNA damage in human malignant glioblastoma cells. BMB Rep 2015; 47:575-80. [PMID: 24499675 PMCID: PMC4261516 DOI: 10.5483/bmbrep.2014.47.10.254] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Indexed: 01/17/2023] Open
Abstract
In this study, we investigate whether arsenite-induced DNA damage leads to p53-dependent premature senescence using human glioblastoma cells with p53-wild type (U87MG-neo) and p53 deficient (U87MG-E6). A dose dependent relationship between arsenite and reduced cell growth is demonstrated, as well as induced γH2AX foci formation in both U87MG-neo and U87MG-E6 cells at low concentrations of arsenite. Senescence was induced by arsenite with senescence-associated β-galactosidase staining. Dimethyl- and trimethyl-lysine 9 of histone H3 (H3DMK9 and H3TMK9) foci formation was accompanied by p21 accumulation only in U87MG-neo but not in U87MG-E6 cells. This suggests that arsenite induces premature senescence as a result of DNA damage with heterochromatin forming through a p53/p21 dependent pathway. p21 and p53 siRNA consistently decreased H3TMK9 foci formation in U87M G-neo but not in U87MG-E6 cells after arsenite treatment. Taken together, arsenite reduces cell growth independently of p53 and induces premature senescence via p53/p21-dependent pathway following DNA damage. [BMB Reports 2014; 47(10): 575-580]
Collapse
Affiliation(s)
- Yasuharu Ninomiya
- Radiation Risk Reduction Research Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Xing Cui
- Medical Physics Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Takeshi Yasuda
- Radiation Emergency Medicine Research Program, Research Center for Radiation Emergency Medicine, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Bing Wang
- Radiation Risk Reduction Research Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Dong Yu
- School of Radiological Medicine and Protection, Medical College of Soochow University, 199 Ren Ai Rd, Suzhou Industrial Park, Suzhou 215123, China
| | - Emiko Sekine-Suzuki
- Research Program for Application of Heavy ions and Medical Science, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Mitsuru Nenoi
- Radiation Risk Reduction Research Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| |
Collapse
|
18
|
Yoshimura Y, Shiino A, Muraki K, Fukami T, Yamada S, Satow T, Fukuda M, Saiki M, Hojo M, Miyamoto S, Onishi N, Saya H, Inubushi T, Nozaki K, Tanigaki K. Arsenic trioxide sensitizes glioblastoma to a myc inhibitor. PLoS One 2015; 10:e0128288. [PMID: 26038891 PMCID: PMC4454553 DOI: 10.1371/journal.pone.0128288] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 04/27/2015] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma multiforme (GBM) is associated with high mortality due to infiltrative growth and recurrence. Median survival of the patients is less than 15 months, increasing requirements for new therapies. We found that both arsenic trioxide and 10058F4, an inhibitor of Myc, induced differentiation of cancer stem-like cells (CSC) of GBM and that arsenic trioxide drastically enhanced the anti-proliferative effect of 10058F4 but not apoptotic effects. EGFR-driven genetically engineered GBM mouse model showed that this cooperative effect is higher in EGFRvIII-expressing INK4a/Arf-/- neural stem cells (NSCs) than in control wild type NSCs. In addition, treatment of GBM CSC xenografts with arsenic trioxide and 10058F4 resulted in significant decrease in tumor growth and increased differentiation with concomitant decrease of proneural and mesenchymal GBM CSCs in vivo. Our study was the first to evaluate arsenic trioxide and 10058F4 interaction in GBM CSC differentiation and to assess new opportunities for arsenic trioxide and 10058F4 combination as a promising approach for future differentiation therapy of GBM.
Collapse
Affiliation(s)
- Yayoi Yoshimura
- Research Institute, Shiga Medical Center, Moriyama 5-4-30, Shiga 524–8524, Japan
- Department of Neurosurgery, Shiga University of Medical Science, Shiga 520–2192, Japan
| | - Akihiko Shiino
- Biomedical MR Science Center, Shiga University of Medical Science, Shiga 520–2192, Japan
- Department of Neurosurgery, Shiga University of Medical Science, Shiga 520–2192, Japan
| | - Kazue Muraki
- Research Institute, Shiga Medical Center, Moriyama 5-4-30, Shiga 524–8524, Japan
| | - Tadateru Fukami
- Department of Neurosurgery, Shiga University of Medical Science, Shiga 520–2192, Japan
| | - Shigeki Yamada
- Department of Neurosurgery, Shiga Medical Center, Shiga 524–8524, Japan
| | - Takeshi Satow
- Department of Neurosurgery, Shiga Medical Center, Shiga 524–8524, Japan
| | - Miyuki Fukuda
- Department of Neurosurgery, Shiga Medical Center, Shiga 524–8524, Japan
| | - Masaaki Saiki
- Department of Neurosurgery, Shiga Medical Center, Shiga 524–8524, Japan
| | - Masato Hojo
- Department of Neurosurgery, Shiga Medical Center, Shiga 524–8524, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto 606–8507, Japan
| | - Nobuyuki Onishi
- Division of Gene Regulation, School of Medicine, Keio University, Tokyo 160–8582, Japan
| | - Hideyuki Saya
- Division of Gene Regulation, School of Medicine, Keio University, Tokyo 160–8582, Japan
| | - Toshiro Inubushi
- Biomedical MR Science Center, Shiga University of Medical Science, Shiga 520–2192, Japan
| | - Kazuhiko Nozaki
- Department of Neurosurgery, Shiga University of Medical Science, Shiga 520–2192, Japan
- * E-mail: (KN); (KT)
| | - Kenji Tanigaki
- Research Institute, Shiga Medical Center, Moriyama 5-4-30, Shiga 524–8524, Japan
- * E-mail: (KN); (KT)
| |
Collapse
|
19
|
Gwak HS, Park MJ, Park IC, Woo SH, Jin HO, Rhee CH, Jung HW. Tetraarsenic oxide-induced inhibition of malignant glioma cell invasion in vitro via a decrease in matrix metalloproteinase secretion and protein kinase B phosphorylation. J Neurosurg 2014; 121:1483-91. [PMID: 25303017 DOI: 10.3171/2014.8.jns131991] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Local invasiveness of malignant glioma is a major reason for the failure of current treatments including surgery and radiation therapy. Tetraarsenic oxide (As4O6 [TAO]) is a trivalent arsenic compound that has potential anticancer and antiangiogenic effects in selected cancer cell lines at a lower concentration than arsenic trioxide (As2O3 [ATO]), which has been more widely tested in vitro and in vivo. The authors tried to determine the cytotoxic concentration of TAO in malignant glioma cell lines and whether TAO would show anti-invasive effects under conditions independent of cell death or apoptosis. METHODS The human phosphatase and tensin homolog (PTEN)-deficient malignant glioma cell lines U87MG, U251MG, and U373MG together with PTEN-functional LN428 were cultured with a range of micromolar concentrations of TAO. The invasiveness of the glioma cell lines was analyzed. The effect of TAO on matrix metalloproteinase (MMP) secretion and membrane type 1 (MT1)-MMP expression was measured using gelatin zymography and Western blot, respectively. Akt, or protein kinase B, activity, which is a downstream effector of PTEN, was assessed with a kinase assay using glycogen synthesis kinase-3β (GSK-3β) as a substrate and Western blotting of phosphorylated Akt. RESULTS Tetraarsenic oxide inhibited 50% of glioma cell proliferation at 6.3-12.2 μM. Subsequent experiments were performed under the same TAO concentrations and exposure times, avoiding the direct tumoricidal effect of TAO, which was confirmed with apoptosis markers. An invasion assay revealed a dose-dependent decrease in invasiveness under the influence of TAO. Both the gelatinolytic activity of MMP-2 and MT1-MMP expression decreased in a dose-dependent manner in all cell lines, which was in accordance with the invasion assay results. The TAO decreased kinase activity of Akt on GSK-3β assay and inhibited Akt phosphorylation in a dose-dependent manner in all cell lines regardless of their PTEN status. CONCLUSIONS These results showed that TAO effectively inhibits proliferation of glioblastoma cell lines and also exerts an anti-invasive effect via decreased MMP-2 secretion, decreased MT1-MMP expression, and the inhibition of Akt phosphorylation under conditions devoid of cytotoxicity. Further investigations using an in vivo model are needed to evaluate the potential role of TAO as an anti-invasive agent.
Collapse
Affiliation(s)
- Ho-Shin Gwak
- Neuro-Oncology Clinic, National Cancer Center, Goyang
| | | | | | | | | | | | | |
Collapse
|
20
|
Boyko-Fabian M, Niehr F, Distel L, Budach V, Tinhofer I. Increased growth-inhibitory and cytotoxic activity of arsenic trioxide in head and neck carcinoma cells with functional p53 deficiency and resistance to EGFR blockade. PLoS One 2014; 9:e98867. [PMID: 24927258 PMCID: PMC4057125 DOI: 10.1371/journal.pone.0098867] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 05/08/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND AND PURPOSE Mutations in the p53 gene are frequently observed in squamous cell carcinoma of the head and neck region (SCCHN) and have been associated with drug resistance. The potential of arsenic trioxide (ATO) for treatment of p53-deficient tumor cells and those with acquired resistance to cisplatin and cetuximab was determined. MATERIAL AND METHODS In a panel of 10 SCCHN cell lines expressing either wildtype p53, mutated p53 or which lacked p53 by deletion the interference of p53 deficiency with the growth-inhibitory and radiosensitizing potential of ATO was determined. The causal relationship between p53 deficiency and ATO sensitivity was evaluated by reconstitution of wildtype p53 in p53-deficient SCCHN cells. Interference of ATO treatment with cell cycle, DNA repair and apoptosis and its efficacy in cells with acquired resistance to cisplatin and cetuximab was evaluated. RESULTS Functional rather than structural defects in the p53 gene predisposed tumor cells to increased sensitivity to ATO. Reconstitution of wt p53 in p53-deficient SCCHN cells rendered them less sensitive to ATO treatment. Combination of ATO with irradiation inhibited clonogenic growth in an additive manner. The inhibitory effect of ATO in p53-deficient tumor cells was mainly associated with DNA damage, G2/M arrest, upregulation of TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) receptors and apoptosis. Increased activity of ATO was observed in cetuximab-resistant SCCHN cells whereas cisplatin resistance was associated with cross-resistance to ATO. CONCLUSIONS Addition of ATO to treatment regimens for p53-deficient SCCHN and tumor recurrence after cetuximab-containing regimens might represent an attractive strategy in SCCHN.
Collapse
Affiliation(s)
- Mariya Boyko-Fabian
- Translational Radiooncology Laboratory, Department of Radiooncology and Radiotherapy, Charité University Hospital, Berlin, Germany
| | - Franziska Niehr
- Translational Radiooncology Laboratory, Department of Radiooncology and Radiotherapy, Charité University Hospital, Berlin, Germany
| | - Luitpold Distel
- Department of Radiation Oncology, University Erlangen-Nuremberg, Erlangen, Germany
| | - Volker Budach
- Translational Radiooncology Laboratory, Department of Radiooncology and Radiotherapy, Charité University Hospital, Berlin, Germany
| | - Ingeborg Tinhofer
- Translational Radiooncology Laboratory, Department of Radiooncology and Radiotherapy, Charité University Hospital, Berlin, Germany
- * E-mail:
| |
Collapse
|
21
|
Arsenic trioxide inhibits Hedgehog, Notch and stem cell properties in glioblastoma neurospheres. Acta Neuropathol Commun 2014; 2:31. [PMID: 24685274 PMCID: PMC3977902 DOI: 10.1186/2051-5960-2-31] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/15/2014] [Indexed: 02/08/2023] Open
Abstract
Background Notch and Hedgehog signaling have been implicated in the pathogenesis and stem-like characteristics of glioblastomas, and inhibitors of the pathways have been suggested as new therapies for these aggressive tumors. It has also been reported that targeting both pathways simultaneously can be advantageous in treating glioblastoma neurospheres, but this is difficult to achieve in vivo using multiple agents. Since arsenic trioxide has been shown to inhibit both Notch and Hedgehog in some solid tumors, we examined its effects on these pathways and on stem cell phenotype in glioblastoma. Results We found that arsenic trioxide suppresses proliferation and promotes apoptosis in three stem-like glioblastoma neurospheres lines, while inhibiting Notch and Hedgehog target genes. Importantly, arsenic trioxide markedly reduced clonogenic capacity of the tumor neurospheres, and the stem-like CD133-positive fraction was also diminished along with expression of the stem cell markers SOX2 and CD133. Conclusions Our results suggest that arsenic trioxide may be effective in targeting stem-like glioblastoma cells in patients by inhibiting Notch and Hedgehog activity.
Collapse
|
22
|
Drappatz J, Norden AD, Wen PY. Therapeutic strategies for inhibiting invasion in glioblastoma. Expert Rev Neurother 2014; 9:519-34. [DOI: 10.1586/ern.09.10] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
23
|
Karsy M, Albert L, Murali R, Jhanwar-Uniyal M. The impact of arsenic trioxide and all-trans retinoic acid on p53 R273H-codon mutant glioblastoma. Tumour Biol 2014; 35:4567-80. [PMID: 24399651 DOI: 10.1007/s13277-013-1601-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 12/23/2013] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma (GBM) is the most common primary brain tumor in adults and demonstrates a 1-year median survival time. Codon-specific hotspot mutations of p53 result in constitutively active mutant p53, which promotes aberrant proliferation, anti-apoptosis, and cell cycle checkpoint failure in GBM. Recently identified CD133(+) cancer stem cell populations (CSC) within GBM also confer therapeutic resistance. We studied targeted therapy in a codon-specific p53 mutant (R273H) created by site-directed mutagenesis in U87MG. The effects of arsenic trioxide (ATO, 1 μM) and all-trans retinoic acid (ATRA, 10 μM), possible targeted treatments of CSCs, were investigated in U87MG neurospheres. The results showed that U87-p53(R273H) cells generated more rapid neurosphere growth than U87-p53(wt) but inhibition of neurosphere proliferation was seen with both ATO and ATRA. U87-p53(R273H) neurospheres showed resistance to differentiation into glial cells and neuronal cells with ATO and ATRA exposure. ATO was able to generate apoptosis at high doses and proliferation of U87-p53(wt) and U87-p53(R273H) cells was reduced with ATO and ATRA in a dose-dependent manner. Elevated pERK1/2 and p53 expression was seen in U87-p53(R273H) neurospheres, which could be reduced with ATO and ATRA treatment. Additionally, differential responses in pERK1/2 were seen with ATO treatment in neurospheres and non-neurosphere cells. In conclusion, codon-specific mutant p53 conferred a more aggressive phenotype to our CSC model. However, ATO and ATRA could potently suppress CSC properties in vitro and may support further clinical investigation of these agents.
Collapse
Affiliation(s)
- Michael Karsy
- Department of Neurosurgery, University of Utah, 175 North Medical Dr. East, Salt Lake City, UT, 84132, USA,
| | | | | | | |
Collapse
|
24
|
Wu J, Ji Z, Liu H, Liu Y, Han D, Shi C, Shi C, Wang C, Yang G, Chen X, Shen C, Li H, Bi Y, Zhang D, Zhao S. Arsenic trioxide depletes cancer stem-like cells and inhibits repopulation of neurosphere derived from glioblastoma by downregulation of Notch pathway. Toxicol Lett 2013; 220:61-9. [PMID: 23542114 DOI: 10.1016/j.toxlet.2013.03.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/12/2013] [Accepted: 03/20/2013] [Indexed: 12/31/2022]
Abstract
Notch signaling has been demonstrated to have a central role in cancer stem-like cells (CSLCs) in glioblastoma multiforme (GBM). We have recently demonstrated the inhibitory effect of arsenic trioxide (ATO) on CSLCs in glioblastoma cell lines. In this study we used neurosphere recovery assay that measured neurosphere formation at three time points to assess the capacity of the culture to repopulate after ATO treatment. Our results provided strong evidence that ATO depleted CSLCs in GBM, and inhibited neurosphere recovery and secondary neurosphere formation. ATO inhibited the phosphorylation and activation of AKT and STAT3 through Notch signaling blockade. These data show that the ATO is a promising new approach to decrease glioblastoma proliferation and recurrence by downregulation of Notch pathway.
Collapse
Affiliation(s)
- Jianing Wu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Cohen KJ, Gibbs IC, Fisher PG, Hayashi RJ, Macy ME, Gore L. A phase I trial of arsenic trioxide chemoradiotherapy for infiltrating astrocytomas of childhood. Neuro Oncol 2013; 15:783-7. [PMID: 23460318 DOI: 10.1093/neuonc/not021] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Arsenic trioxide (ATO) has demonstrated preclinical evidence of activity in the treatment of infiltrating astrocytomas. METHODS We conducted a phase I trial of ATO given concomitantly with radiation therapy in children with newly diagnosed anaplastic astrocytoma, glioblastoma, or diffuse intrinsic pontine glioma. Eligible patients received a fixed daily dose of 0.15 mg/kg of ATO once a week, with each subsequent cohort of patients receiving an additional dose per week up to a planned frequency of ATO administration 5 days per week as tolerated. Twenty-four children were enrolled and 21 children were evaluable. RESULTS ATO was well tolerated throughout the entire dose escalation, resulting in confirmation of safety when administered 5 days per week during irradiation. CONCLUSIONS The recommended dose of ATO during conventional irradiation is 0.15 mg/kg given on a daily basis with each fraction of radiation therapy administered.
Collapse
Affiliation(s)
- Kenneth J Cohen
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Bloomberg 11379, 1800 Orleans St, Baltimore, MD 21287, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Phase I study of arsenic trioxide and temozolomide in combination with radiation therapy in patients with malignant gliomas. J Neurooncol 2012; 110:237-43. [PMID: 22875709 DOI: 10.1007/s11060-012-0957-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 07/30/2012] [Indexed: 10/28/2022]
Abstract
To evaluate the toxicity and maximum tolerated dose (MTD) of arsenic trioxide (ATO) in combination with temozolomide (TMZ) and radiation therapy (RT) in malignant gliomas. A 3 + 3 dose escalation study was performed in patients with newly diagnosed glioblastoma, anaplastic astrocytoma (AA), and anaplastic oligoastrocytoma (AOA). All patients received RT 59-61 Gy in 28-33 fractions, TMZ for 42 days, and ATO 1-2 h prior to RT for 5 days during the first week, then twice weekly until completing RT. Dose levels (DL) were: (1) TMZ 60 mg/m(2)/ATO 0.2 mg/kg; (2) TMZ 75 mg/m(2)/ATO 0.2 mg/kg; (3) TMZ 75 mg/m(2)/ATO 0.25 mg/kg. Dose-limiting toxicity (DLT) was defined as grade 3 non-hematologic toxicity or grade 4 toxicity of any type from enrollment until 3 weeks after finishing RT. 17 patients (13 glioblastoma, 4 AA/AOA) were accrued. Median age was 52 (range 25-80). Median KPS was 90 %. DLT's occurred at DL 2 (grade 4 transaminase elevation) and DL 3 (grade 4 neutropenia and grade 3 QTc prolongation). The MTD of TMZ 75 mg/m(2)/ATO 0.2 mg/kg was safe and well tolerated. A phase II study evaluating the efficacy of this combination is underway.
Collapse
|
27
|
Ning S, Bednarski M, Oronsky B, Scicinski J, Saul G, Knox SJ. Dinitroazetidines are a novel class of anticancer agents and hypoxia-activated radiation sensitizers developed from highly energetic materials. Cancer Res 2012; 72:2600-8. [PMID: 22589277 DOI: 10.1158/0008-5472.can-11-2303] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In an effort to develop cancer therapies that maximize cytotoxicity, while minimizing unwanted side effects, we studied a series of novel compounds based on the highly energetic heterocyclic scaffold, dinitroazetidine. In this study, we report the preclinical validation of 1-bromoacetyl-3,3-dinitroazetidine (ABDNAZ), a representative lead compound currently in a phase I clinical trial in patients with cancer. In tumor cell culture, ABDNAZ generated reactive free radicals in a concentration- and time-dependent manner, modulating intracellular redox status and triggering apoptosis. When administered to mice as a single agent, ABDNAZ exhibited greater cytotoxicity than cisplatin or tirapazamine under hypoxic conditions. However, compared with cisplatin, ABDNAZ was better tolerated at submaximal doses, yielding significant tumor growth inhibition in the absence of systemic toxicity. Similarly, when combined with radiation, ABDNAZ accentuated antitumor efficacy along with the therapeutic index. Toxicity studies indicated that ABDNAZ was not myelosuppressive and no dose-limiting toxicity was apparent following daily administration for 14 days. Taken together, our findings offer preclinical proof-of-concept for ABDNAZ as a promising new anticancer agent with a favorable toxicity profile, either as a chemotherapeutic agent or a radiosensitizer.
Collapse
Affiliation(s)
- Shoucheng Ning
- Department of Radiation Oncology, Stanford University Medical Center, Stanford, CA 94305, USA
| | | | | | | | | | | |
Collapse
|
28
|
Su Y, Wang X, Xu W, Xue L, He C, Yang D, An R. Arsenic Trioxide Increases the Sensitivity of 786–0 Renal Carcinoma Cells to Radiotherapy. Cancer Invest 2012; 30:114-8. [DOI: 10.3109/07357907.2011.640652] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
29
|
Dizaji MZ, Malehmir M, Ghavamzadeh A, Alimoghaddam K, Ghaffari SH. Synergistic Effects of Arsenic Trioxide and Silibinin on Apoptosis and Invasion in Human Glioblastoma U87MG Cell Line. Neurochem Res 2011; 37:370-80. [DOI: 10.1007/s11064-011-0620-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 08/27/2011] [Accepted: 09/23/2011] [Indexed: 01/08/2023]
|
30
|
Raja WK, Satti J, Liu G, Castracane J. Dose Response of MTLn3 Cells to Serial Dilutions of Arsenic Trioxide and Ionizing Radiation. Dose Response 2011; 11:29-40. [PMID: 23550222 DOI: 10.2203/dose-response.11-025.raja] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
MTLn3 cells derived from mouse mammary epithelium are known to be highly malignant and are resistant to both radio- and chemo-therapy. We exposed MTLn3 cells to various doses of inorganic Arsenic trioxide (As2O3) in combination with ionizing radiation. Cells were treated with a series of As2O3 concentrations ranging from 20 μM to 1.22 nM for 8 hour, 24 hour and 48 hour periods. Post-treated cell proliferation was quantified by measuring mitochondrial activity and DNA analysis. Cells exposed to radiation and As2O3 at concentration greater than 1.25 μM showed apoptosis and radiations alone treated cells were statistically not different from the control. Hormesis was observed for As2O3 concentrations in the range of 0.078 μM to 0.625 μM while the combined chemo and radiation treatments of the cells did not affect the hormetic effect. We have demonstrated that As2O3 (in the presence and absence of ionizing radiation) in specific low concentrations induced apoptosis in the otherwise chemoresistant cancer cells. This low concentration-mediated cell death is immediately followed by a surge in cell survival. Low dosing dosimetry is highly desirable in metronomic therapy however, it has a narrow window since necrosis, hormesis, apoptosis and other dose-dependent biological processes take place in this region. Further quantifiable dosimetry is highly desired for routine clinical practice.
Collapse
Affiliation(s)
- Waseem Khan Raja
- Biomedical Engineering, Tufts University and College of Nanoscale Science and Engineering, University at Albany
| | | | | | | |
Collapse
|
31
|
Chiu HW, Lin W, Ho SY, Wang YJ. Synergistic effects of arsenic trioxide and radiation in osteosarcoma cells through the induction of both autophagy and apoptosis. Radiat Res 2011; 175:547-60. [PMID: 21388295 DOI: 10.1667/rr2380.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Osteosarcoma is the most common primary malignant bone tumor, occurring mainly in children and adolescents, and survival largely depends on their response to chemotherapy. However, the risk of relapse and adverse outcomes is still high. We investigated the synergistic anti-cancer effects of ionizing radiation combined with arsenic trioxide (ATO) and the mechanisms underlying apoptosis or autophagy induced by combined radiation and ATO treatment in human osteosarcoma cells. We found that exposure to radiation increased the population of HOS cells in the G(2)/M phase within 12 h in a time-dependent manner. Radiation combined with ATO induced a significantly prolonged G(2)/M arrest, consequently enhancing cell death. Furthermore, combined treatment resulted in enhanced ROS generation compared to treatment with ATO or radiation alone. The enhanced cytotoxic effect of combined treatment occurred from the increased induction of autophagy and apoptosis through inhibition of the PI3K/Akt signaling pathway in HOS cells. The combined treatment of HOS cells pretreated with Z-VAD, 3-MA or PEG-catalase resulted in a significant reduction of cytotoxicity. In addition, G(2)/M arrest and ROS generation could be involved in the underlying mechanisms. The data suggest that a combination of radiation and ATO could be a new potential therapeutic strategy for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Hui-Wen Chiu
- Department of Environmental and Occupational Health, National Cheng Kung University, Medical College, Tainan, Taiwan
| | | | | | | |
Collapse
|
32
|
Zhao S, Zhang J, Zhang X, Dong X, Sun X. Arsenic trioxide induces different gene expression profiles of genes related to growth and apoptosis in glioma cells dependent on the p53 status. Mol Biol Rep 2008; 35:421-429. [PMID: 17530438 DOI: 10.1007/s11033-007-9102-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Accepted: 05/07/2007] [Indexed: 01/21/2023]
Abstract
We have previously reported that As(2)O(3) affected cell cycle progression and cyclins D1 and B1 expression in two glioma cell lines differing in p53 status (U87MG-wt; T98G-mutated). In the present study, we further demonstrated that As(2)O(3) affected proliferation, viability and apoptosis of the two cell lines in a dose- and time-dependent manner, and T98G cells were more sensitive than U87MG cells to As(2)O(3) -induced apoptosis and inhibition of proliferation and viability. We further investigated the expression profiles of genes related with apoptosis and cell cycle in the two cell lines with a human cDNA-microarray (SuperArray) spotted with 267 genes of apoptosis and cell cycle. Thirty five genes were upregulated and 15 genes downregulated at least 2-fold by As(2)O(3) in U87-MG cells; whereas, 38 genes were upregulated and 21 genes downregulated at least 2-fold in T98G cells by As(2)O(3). After As(2)O(3) treatment, p53 expression was upregulated 56.5-fold in T98G cells, but only 6.0-fold in U87MG cells. The results indicate that As(2)O(3) suppresses the growth of U87MG cells mainly by regulating expression of genes of cell cycle arrest, stress and toxicity; whereas As(2)O(3) affects T98G cells mainly by regulating expression of genes belonging to Bcl-2, tumor necrotic factor receptor and ligand families. The data may be helpful for optimizing As(2)O(3) as an anti-cancer drug in the treatment of gliomas.
Collapse
Affiliation(s)
- Shiguang Zhao
- Department of Neurosurgery, The First Clinical Medical School of Harbin Medical University, Harbin, China
| | | | | | | | | |
Collapse
|
33
|
Zhao S, Zhang X, Zhang J, Zhang J, Zou H, Liu Y, Dong X, Sun X. Intravenous administration of arsenic trioxide encapsulated in liposomes inhibits the growth of C6 gliomas in rat brains. J Chemother 2008; 20:253-262. [PMID: 18467254 DOI: 10.1179/joc.2008.20.2.253] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Arsenic trioxide (ATO) is a potent anti-tumor agent used to treat acute promyelocytic leukemia (APL), and more recently solid tumors including gliomas. However, the dose of ATO required to suppress gliomas is markedly higher than that used to treat APL, which leads to toxicity and undesirable side-effects, even though the local concentration of ATO in brains is relatively low after systemic administration. In an attempt to minimize the toxicity, enhance the penetrating activity across the blood-brain barrier, and reduce enzyme degradation, we prepared ATO encapsulated in liposomes, and investigated its therapeutic effect on C6 gliomas established in rat brains. The prepared ATO liposomes were stable at room temperature for 3 days and the latency rate was over 90% within 72 h. Intravenous injection of ATO liposomes led to a much higher concentration of ATO (5- fold, compared with ATO solution) in rat brains, resulting in inhibition of C6 gliomas in brains and prolonging the survival of rats bearing brain gliomas. ATO-liposome therapy resulted in fewer side effects, compared with free ATO solution. ATO-liposome therapy inhibited tumor angiogenesis by downregulating the expression of vascular endothelial growth factor (VEGF), and inducing cell apoptosis. The results warrant future investigation of the use of ATO encapsulated in liposomes to treat gliomas.
Collapse
Affiliation(s)
- Shiguang Zhao
- Department of Neurosurgery, First Clinical Medical School of Harbin Medical University, Harbin, China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Dilda PJ, Hogg PJ. Arsenical-based cancer drugs. Cancer Treat Rev 2007; 33:542-64. [PMID: 17624680 DOI: 10.1016/j.ctrv.2007.05.001] [Citation(s) in RCA: 281] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Revised: 05/21/2007] [Accepted: 05/23/2007] [Indexed: 01/04/2023]
Abstract
Arsenic is a semi-metal or metalloid with two biologically important oxidation states, As(III) and As(V). As(III), in particular, reacts with closely spaced protein thiols, forming stable cyclic dithioarsinite complexes in which both sulfur atoms are bound to arsenic. It is this reaction that is mostly responsible for arsenics cytotoxicity. Arsenic compounds have been used as medicinal agents for many centuries for the treatment of diseases such as psoriasis, syphilis, and rheumatosis. From the 1700's until the introduction of and use of modern chemotherapy and radiation therapy in the mid 1900's, arsenic was a mainstay in the treatment of leukemia. Concerns about the toxicity of arsenical compounds led eventually to their abandonment for the treatment of cancer. The discovery in the 1980's that arsenic trioxide induces complete remission in a high percentage of patients with acute promyelocytic leukemia has awakened interest in this metalloid for the treatment of human disease. In particular, a new class or organoarsenicals are being trialed for the treatment of hematological malignancies and solid tumors. In this review, we discuss the arsenical-based compounds used in the past and present for the treatment of various forms of cancer. Mechanisms of action and selectivity and acute and chronic toxicities are discussed along with the prospects of this class of molecule.
Collapse
Affiliation(s)
- Pierre J Dilda
- UNSW Cancer Research Centre, University of New South Wales and Department of Haematology, Prince of Wales Hospital, Sydney 2052, Australia
| | | |
Collapse
|
35
|
Ning S, Knox SJ. Optimization of combination therapy of arsenic trioxide and fractionated radiotherapy for malignant glioma. Int J Radiat Oncol Biol Phys 2006; 65:493-8. [PMID: 16563655 DOI: 10.1016/j.ijrobp.2005.12.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Revised: 12/07/2005] [Accepted: 12/09/2005] [Indexed: 11/17/2022]
Abstract
PURPOSE The primary objective was to optimize the combined treatment regimen using arsenic trioxide (ATO) and fractionated radiotherapy for the treatment of malignant glioma. METHODS AND MATERIALS Nude mice with human glioma xenograft tumors were treated with fractionated local tumor radiation of 250 cGy/fraction/day and 5 mg/kg ATO for 5-10 days. RESULTS Time course experiments demonstrated that maximal tumor growth delay occurred when ATO was administered between 0 and 4 h after radiation. The combination treatment of ATO and radiation synergistically inhibited tumor growth and produced a tumor growth delay time of 13.2 days, compared with 1.4 days and 6.5 days for ATO and radiation alone (p < 0.01), respectively. The use of concurrent therapy of radiation and ATO initially, followed by ATO as maintenance therapy, was superior to the use of preloading with ATO before combined therapy and produced a tumor growth delay time of 22.7 days as compared with 11.7 days for the ATO preloading regimen (p < 0.01). The maintenance dose of ATO after concurrent therapy was effective and important for continued inhibition of tumor growth. CONCLUSIONS The combined use of fractionated radiation and ATO is effective for the treatment of glioma xenograft tumors. ATO was most effective when administered 0-4 h after radiation without pretreatment with ATO. These results have important implications for the optimization of treatment regimen using ATO and fractionated radiotherapy for the treatment of brain tumors.
Collapse
Affiliation(s)
- Shoucheng Ning
- Department of Radiation Oncology, Stanford University Medical Center, Stanford, CA 94305-1245, USA
| | | |
Collapse
|
36
|
Griffin RJ, Williams BW, Park HJ, Song CW. Preferential action of arsenic trioxide in solid-tumor microenvironment enhances radiation therapy. Int J Radiat Oncol Biol Phys 2005; 61:1516-22. [PMID: 15817358 DOI: 10.1016/j.ijrobp.2004.12.058] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2004] [Revised: 12/07/2004] [Accepted: 12/16/2004] [Indexed: 12/09/2022]
Abstract
PURPOSE To investigate the effect of arsenic trioxide, Trisenox (TNX), on primary cultures of endothelial cells and tumor tissue under varying pH and pO(2) environments and the effects of combined TNX and radiation therapy on experimental tumors. METHODS AND MATERIALS Human dermal microvascular endothelial cells were cultured in vitro and exposed to TNX under various combinations of aerobic, hypoxic, neutral, or acidic conditions, and levels of activated JNK MAP kinase were assessed by Western blotting. FSaII fibrosarcoma cells grown in the hind limb of female C3H mice were used to study the effect of TNX on tumor blood perfusion and oxygenation. The tumor-growth delay after a single or fractionated irradiation with or without TNX treatment was assessed. RESULTS A single intraperitoneal injection of 8 mg/kg TNX reduced the blood perfusion in FSaII tumors by 53% at 2 hours after injection. To increase the oxygenation of the tumor vasculature during TNX treatment, some animals were allowed to breathe carbogen (95% O(2)/5% CO(2)). Carbogen breathing alone for 2 hours reduced tumor perfusion by 33%. When carbogen breathing was begun immediately after TNX injection, no further reduction occurred in tumor blood perfusion at 2 hours after injection. In vitro, TNX exposure increased activity JNK MAP kinase preferentially in endothelial cells cultured in an acidic or hypoxic environment. In vivo, the median oxygenation in FSaII tumors measured at 3 or 5 days after TNX injection was found to be significantly elevated compared with control tumors. Subsequently, radiation-induced tumor-growth delay was synergistically increased when radiation and TNX injection were fractionated at 3-day or 5-day intervals. CONCLUSIONS Trisenox has novel vascular-damaging properties, preferentially against endothelium in regions of low pH or pO(2), which leads to tumor cell death and enhancement of the response of tumors to radiotherapy.
Collapse
Affiliation(s)
- Robert J Griffin
- Department of Therapeutic Radiology, University of Minnesota Medical School, Minneapolis, USA.
| | | | | | | |
Collapse
|