1
|
Wu Q, Zhao X, Yang C, Yuan Y, Yang H, Fu Q. Efficacy and safety of radiotherapy combined with immune checkpoint inhibitors for advanced or unresectable hepatocellular carcinoma: A systematic review and meta-analysis. Crit Rev Oncol Hematol 2025; 211:104730. [PMID: 40239829 DOI: 10.1016/j.critrevonc.2025.104730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 04/02/2025] [Accepted: 04/11/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND To evaluate the efficacy and safety of radiotherapy with immune checkpoint inhibitors (ICIs), with or without anti-vascular endothelial growth factor (anti-VEGF) agents, in the treatment of advanced or unresectable hepatocellular carcinoma (HCC). METHODS Databases including Web of Science, PubMed, Embase, Cochrane Library databases, American Society of Clinical Oncology, and European Society for Medical Oncology were systematically searched. The search included publications up to August 31, 2024. Primary outcome measures included objective response rate (ORR), disease control rate (DCR), incidence of treatment-related adverse events (TRAEs), and TRAEs (grade ≥3). RESULTS Twenty-one articles were included in this study (927 participants). Following RECIST 1.1, for external radiotherapy combined with ICIs, the ORR and DCR were 56 % (95 % CI 0.48-0.64, I2=65.91 %) and 88 % (95 % CI 0.77-0.96, I2=87.19 %), respectively; for yttrium-90 combined with ICI, they were 31 % (95 %CI 0.20-0.43, I2=0 %) and 73 % (95 %CI 0.48-0.92, I2=75.23 %), respectively. According to CTCAE criteria, for external radiotherapy combined with ICIs, the incidence of TRAEs (all grades) was 95 % (95 % CI 0.89-0.98, I2=70.79 %), and the incidence of TRAEs (grades ≥3) was 35 % (95 % CI 0.23-0.48, I2=87.54 %); for yttrium-90 combined with ICIs, they were 78 % (95 %CI 0.48-0.98, I2=88.15 %) and 22 % (95 %CI 0.04-0.47, I2=83.69 %), respectively. Subgroup analyses indicated that sequential therapy demonstrated a higher DCR than concurrent therapy, while the combination of intensity-modulated radiotherapy, ICIs, and anti-VEGF agents showed improved efficacy but was associated with increased toxicity. CONCLUSIONS Radiotherapy combined with ICI demonstrates substantial efficacy and manageable safety in advanced or unresectable HCC. Sequential therapy may enhance therapeutic effectiveness while reducing TRAEs.
Collapse
Affiliation(s)
- Qibin Wu
- Organ Transplant Center, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610000, China
| | - Xia Zhao
- Organ Transplant Center, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610000, China
| | - Chong Yang
- Organ Transplant Center, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610000, China; Department of Hepatobiliary and Pancreatic Surgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610000, China
| | - Yinglin Yuan
- Department of Hepatobiliary and Pancreatic Surgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610000, China; Department of Gastrointestinal Surgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610000, China
| | - Hongji Yang
- Organ Transplant Center, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610000, China.
| | - Qiang Fu
- Organ Transplant Center, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610000, China.
| |
Collapse
|
2
|
Niture S, Ghosh S, Jaboin J, Seneviratne D. Tumor Microenvironment Dynamics of Triple-Negative Breast Cancer Under Radiation Therapy. Int J Mol Sci 2025; 26:2795. [PMID: 40141437 PMCID: PMC11943269 DOI: 10.3390/ijms26062795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/20/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer characterized by the absence of estrogen receptors (ER), progesterone receptors (PR), and HER2 expression. While TNBC is relatively less common, accounting for only 10-15% of initial breast cancer diagnosis, due to its aggressive nature, it carries a worse prognosis in comparison to its hormone receptor-positive counterparts. Despite significant advancements in the screening, diagnosis, and treatment of breast cancer, TNBC remains an important public health burden. Following treatment with chemotherapy, surgery, and radiation, over 40% of TNBC patients experience relapse within 3 years and achieve the least benefit from post-mastectomy radiation. The tumor microenvironment environment (TME) is pivotal in TNBC initiation, progression, immune evasion, treatment resistance, and tumor prognosis. TME is a complex network that consists of immune cells, non-immune cells, and soluble factors located in the region adjacent to the tumor that modulates the therapeutic response differentially between hormone receptor-positive breast cancer and TNBC. While the mechanisms underlying the radiation resistance of TNBC remain unclear, the immunosuppressive TME of TNBC has been implicated in chemotherapeutic resistance. Radiation therapy (RT) is known to alter the TME; however, immune changes elicited by radiation are poorly characterized to date, and whether these immune changes contribute to radiation resistance remains unknown. This review delves into the distinct characteristics of the TNBC TME, explores how RT influences TME dynamics, and examines mechanisms underlying tumor radiosensitization, radioresistance, and immune responses.
Collapse
Affiliation(s)
- Suryakant Niture
- Department of Radiation Oncology, Stephenson Cancer Center, Oklahoma University, Oklahoma City, OK 73104, USA
| | | | | | - Danushka Seneviratne
- Department of Radiation Oncology, Stephenson Cancer Center, Oklahoma University, Oklahoma City, OK 73104, USA
| |
Collapse
|
3
|
Morris ZS, Demaria S, Monjazeb AM, Formenti SC, Weichselbaum RR, Welsh J, Enderling H, Schoenfeld JD, Brody JD, McGee HM, Mondini M, Kent MS, Young KH, Galluzzi L, Karam SD, Theelen WSME, Chang JY, Huynh MA, Daib A, Pitroda S, Chung C, Serre R, Grassberger C, Deng J, Sodji QH, Nguyen AT, Patel RB, Krebs S, Kalbasi A, Kerr C, Vanpouille-Box C, Vick L, Aguilera TA, Ong IM, Herrera F, Menon H, Smart D, Ahmed J, Gartrell RD, Roland CL, Fekrmandi F, Chakraborty B, Bent EH, Berg TJ, Hutson A, Khleif S, Sikora AG, Fong L. Proceedings of the National Cancer Institute Workshop on combining immunotherapy with radiotherapy: challenges and opportunities for clinical translation. Lancet Oncol 2025; 26:e152-e170. [PMID: 40049206 DOI: 10.1016/s1470-2045(24)00656-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 03/09/2025]
Abstract
Radiotherapy both promotes and antagonises tumour immune recognition. Some clinical studies show improved patient outcomes when immunotherapies are integrated with radiotherapy. Safe, greater than additive, clinical response to the combination is limited to a subset of patients, however, and how radiotherapy can best be combined with immunotherapies remains unclear. The National Cancer Institute-Immuno-Oncology Translational Network-Society for Immunotherapy of Cancer-American Association of Immunology Workshop on Combining Immunotherapy with Radiotherapy was convened to identify and prioritise opportunities and challenges for radiotherapy and immunotherapy combinations. Sessions examined the immune effects of radiation, barriers to anti-tumour immune response, previous clinical trial data, immunological and computational assessment of response, and next-generation radiotherapy-immunotherapy combinations. Panel recommendations included: developing and implementing patient selection and biomarker-guided approaches; applying mechanistic understanding to optimise delivery of radiotherapy and selection of immunotherapies; using rigorous preclinical models including companion animal studies; embracing data sharing and standardisation, advanced modelling, and multidisciplinary cross-institution collaboration; interrogating clinical data, including negative trials; and incorporating novel clinical endpoints and trial designs.
Collapse
Affiliation(s)
- Zachary S Morris
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| | - Sandra Demaria
- Weill Cornell Medicine, Department of Radiation Oncology, New York, NY, USA
| | - Arta M Monjazeb
- UC Davis Health, Department of Radiation Oncology, Sacramento, CA, USA
| | - Silvia C Formenti
- Weill Cornell Medicine, Department of Radiation Oncology, New York, NY, USA
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology and the Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, USA
| | - James Welsh
- Department of Thoracic Radiation Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Heiko Enderling
- Department of Thoracic Radiation Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | | | - Joshua D Brody
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Heather M McGee
- Department of Radiation Oncology and Department of Immuno-Oncology, City of Hope, Duarte, CA, USA
| | - Michele Mondini
- Gustave Roussy, Université Paris-Saclay, INSERM U1030, Villejuif, France
| | - Michael S Kent
- Davis School of Veterinary Medicine, University of California, Davis, CA, USA
| | | | - Lorenzo Galluzzi
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Sana D Karam
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Joe Y Chang
- Department of Thoracic Radiation Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Mai Anh Huynh
- Brigham and Women's Hospital-Dana-Farber Cancer Institute, Boston, MA, USA
| | - Adi Daib
- Department of Thoracic Radiation Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Sean Pitroda
- Department of Radiation and Cellular Oncology and the Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, USA
| | - Caroline Chung
- Department of Thoracic Radiation Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Raphael Serre
- Aix Marseille University, SMARTc Unit, Inserm S 911 CRO2, Marseille, France
| | | | - Jie Deng
- Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Quaovi H Sodji
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Anthony T Nguyen
- Cedars-Sinai Medical Center, Department of Radiation Oncology, Los Angeles, CA, USA
| | - Ravi B Patel
- Department of Radiation Oncology, University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA, USA
| | - Simone Krebs
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medicine, Department of Radiology, New York, NY, USA
| | - Anusha Kalbasi
- Department of Radiation Oncology, Stanford Cancer Institute, Stanford School of Medicine, Stanford, CA, USA
| | - Caroline Kerr
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | | - Logan Vick
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, USA
| | | | - Irene M Ong
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Fernanda Herrera
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Lausanne, Switzerland
| | - Hari Menon
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - DeeDee Smart
- Radiation Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Jalal Ahmed
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robyn D Gartrell
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA; Department of Oncology, Division of Pediatric Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Christina L Roland
- Department of Thoracic Radiation Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Fatemeh Fekrmandi
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Binita Chakraborty
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Eric H Bent
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tracy J Berg
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Alan Hutson
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Samir Khleif
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Andrew G Sikora
- Department of Head and Neck Surgery, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Lawrence Fong
- Fred Hutchinson Cancer Center, University of Washington, Seattle, WA, USA
| |
Collapse
|
4
|
Alka K, Oyeniyi JF, Mohammad G, Zhao Y, Marcus S, Chinnaiyan P. The RAGE Inhibitor TTP488 (Azeliragon) Demonstrates Anti-Tumor Activity and Enhances the Efficacy of Radiation Therapy in Pancreatic Cancer Cell Lines. Cancers (Basel) 2024; 17:17. [PMID: 39796649 PMCID: PMC11718873 DOI: 10.3390/cancers17010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
Pancreatic cancer is the third leading cause of cancer-related mortality in the United States, with rising incidence and mortality. The receptor for advanced glycation end products (RAGE) and its ligands significantly contribute to pancreatic cancer progression by enhancing cell proliferation, fostering treatment resistance, and promoting a pro-tumor microenvironment via activation of the nuclear factor-kappa B (NF-κB) signaling pathways. This study validated pathway activation in human pancreatic cancer and evaluated the therapeutic efficacy of TTP488 (Azeliragon), a small-molecule RAGE inhibitor, alone and in combination with radiation therapy (RT) in preclinical models of pancreatic cancer. Human (Panc1) and murine (Pan02) pancreatic cancer cell lines exhibited elevated levels of RAGE and its ligands compared to normal pancreatic tissue. In vitro, Azeliragon inhibited RAGE-mediated NF-κB activation and ligand-mediated cell proliferation in pancreatic cancer cell lines. Target engagement of Azeliragon was confirmed in vivo, as determined by decreased NF-κB activation. Azeliragon demonstrated significant growth delay in mouse models of pancreatic cancer and additive effects when combined with RT. Additionally, Azeliragon modulated the immune suppressive tumor microenvironment in pancreatic cancer by reducing immunosuppressive cells, including M2 macrophages, regulatory T cells, and myeloid-derived suppressor cells, while enhancing CD8+ T cell infiltration. These findings suggest that Azeliragon, by inhibiting RAGE-mediated signaling and modulating immune response, may serve as an effective anti-cancer agent in pancreatic cancer.
Collapse
Affiliation(s)
- Kumari Alka
- Department of Radiation Oncology, Corewell Health William Beaumont University Hospital, Royal Oak, MI 48076, USA; (K.A.); (J.F.O.); (G.M.); (Y.Z.)
| | - Jacob F. Oyeniyi
- Department of Radiation Oncology, Corewell Health William Beaumont University Hospital, Royal Oak, MI 48076, USA; (K.A.); (J.F.O.); (G.M.); (Y.Z.)
| | - Ghulam Mohammad
- Department of Radiation Oncology, Corewell Health William Beaumont University Hospital, Royal Oak, MI 48076, USA; (K.A.); (J.F.O.); (G.M.); (Y.Z.)
| | - Yi Zhao
- Department of Radiation Oncology, Corewell Health William Beaumont University Hospital, Royal Oak, MI 48076, USA; (K.A.); (J.F.O.); (G.M.); (Y.Z.)
| | | | - Prakash Chinnaiyan
- Department of Radiation Oncology, Corewell Health William Beaumont University Hospital, Royal Oak, MI 48076, USA; (K.A.); (J.F.O.); (G.M.); (Y.Z.)
- Radiation Oncology, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
| |
Collapse
|
5
|
Ho AY, Shiao S, Kobald SA, Chen J, Duda DG, Ly A, Bossuyt V, Cho HL, Arnold B, Knott S, Gupta GP, McAndrew P, Karlan S, Tighiouart M, Muzikansky A, Basho R, McArthur H. PEARL: A Phase Ib/II Biomarker Study of Adding Radiation Therapy to Pembrolizumab Before Neoadjuvant Chemotherapy in Human Epidermal Growth Factor Receptor 2-Negative Breast Cancer. J Clin Oncol 2024; 42:4282-4293. [PMID: 39298718 DOI: 10.1200/jco.24.00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/11/2024] [Accepted: 07/19/2024] [Indexed: 09/22/2024] Open
Abstract
PURPOSE To assess safety and immune biomarkers after preoperative radiation therapy (RT) and anti-PD1 therapy in breast cancer. MATERIALS AND METHODS A phase I/IIb trial of pembrolizumab with RT was conducted in patients with triple-negative breast cancer (TNBC) and hormone receptor-positive/human epidermal growth factor receptor 2-negative (HR+/HER2-) breast cancer. All received pembrolizumab followed by a second cycle + RT (anti-PD1/RT) of 24 Gy/three daily fractions delivered to the breast tumor and then neoadjuvant chemotherapy (NAC). Blood and tumor biopsies were obtained at baseline, after anti-PD1, and after anti-PD-RT. Coprimary end points were safety and change in tumor-infiltrating lymphocytes (TILs). Secondary end points were pathologic complete response (pCR), residual cancer burden (RCB) rates, and event-free survival (EFS). RESULTS Sixty-six patients with stage I-III breast cancer (54 TNBC, 12 HR+/HER2-) were enrolled. The median follow-up was 32 months. Safety end point was met. Incidence of grade ≥3 toxicities was 41%. The pCR rate was 59.2%, 33.3%, and 54.5% for the TNBC, HR+/HER2-, and entire cohort, respectively. A total of 77.8% of TNBC and 41.6% of HR+/HER2- had a near pCR (RCB 0-1). The 3-year EFS was 80%. In the entire cohort, PD-L1 expression increased after anti-PD1 (median Combined Positive Score [CPS], 7.49-23.20; 95% CI, -41.88 to -6.30; P = .044) and anti-PD1/RT (median CPS, 7.49-23.41; 95% CI, -41.88 to -6.30; P = .009), compared with baseline. In TNBC, adding RT to anti-PD1 significantly decreased TILs (28.9%-17.1%; 95% CI, 2.46 to 21.09; P = .014). Baseline TILs correlated with PD-L1 expression and TNF-a. CONCLUSION Preoperative RT with pembrolizumab is safe and results in high pCR rates and 3-year EFS, despite the lack of pembrolizumab during NAC. PD-L1 and TILs may be predictive biomarkers for preoperative anti-PD1/RT response. Reduction in TILs after adding RT to anti-PD1 highlights the importance of treatment sequencing.
Collapse
Affiliation(s)
- Alice Y Ho
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC
| | - Stephen Shiao
- Department of Radiation Oncology, Cedars Sinai Medical Center, Los Angeles, CA
| | | | | | - Dan G Duda
- Massachusetts General Hospital, Boston, MA
| | - Amy Ly
- Massachusetts General Hospital, Boston, MA
| | | | | | | | | | | | - Philomena McAndrew
- Department of Radiation Oncology, Cedars Sinai Medical Center, Los Angeles, CA
| | - Scott Karlan
- Department of Radiation Oncology, Cedars Sinai Medical Center, Los Angeles, CA
| | - Mourad Tighiouart
- Department of Radiation Oncology, Cedars Sinai Medical Center, Los Angeles, CA
| | | | - Reva Basho
- Ellison Institute of Technology, Los Angeles, CA
| | | |
Collapse
|
6
|
Prades-Sagarra E, Yaromina A, Dubois L. Understanding the impact of radiation-induced lymphopenia: Preclinical and clinical research perspectives. Clin Transl Radiat Oncol 2024; 49:100852. [PMID: 39315059 PMCID: PMC11418132 DOI: 10.1016/j.ctro.2024.100852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/26/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024] Open
Abstract
Immunotherapy has revolutionized the field of cancer treatment, changing the standard of care to the use of immune checkpoint inhibitors. Radiotherapy can boost anti-tumour immune responses by changing the tumour microenvironment, but it also can cause radiotherapy-induced lymphopenia (RIL), a decrease in circulating lymphocyte counts. RIL has been associated with lower survival in patients undergoing radiotherapy, and new studies have suggested that it can also affect immunotherapy outcome. To study RIL's effects and to explore mitigation treatment strategies, preclinical models closely mimicking the clinical situation are needed. State-of-the-art image-guided small animal irradiators now offer the possibility to target specific organs in small animals to induce RIL, aiding research on its molecular mechanisms and prevention. This review covers the relationship between radiotherapy and RIL, its impact on patient survival, and future directions to generate models to investigate and prevent RIL.
Collapse
Affiliation(s)
- E. Prades-Sagarra
- The M-Lab, Department of Precision Medicine, GROW - Research Institute for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - A. Yaromina
- The M-Lab, Department of Precision Medicine, GROW - Research Institute for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - L.J. Dubois
- The M-Lab, Department of Precision Medicine, GROW - Research Institute for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
7
|
Eapen RS, Williams SG, Macdonald S, Keam SP, Lawrentschuk N, Au L, Hofman MS, Murphy DG, Neeson PJ. Neoadjuvant lutetium PSMA, the TIME and immune response in high-risk localized prostate cancer. Nat Rev Urol 2024; 21:676-686. [PMID: 39112733 DOI: 10.1038/s41585-024-00913-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2024] [Indexed: 11/02/2024]
Abstract
High-risk localized prostate cancer remains a lethal disease with high rates of recurrence, metastases and death, despite attempts at curative local treatment including surgery. Disease recurrence is thought to be a result of failure of local control and occult micrometastases. Neoadjuvant strategies before surgery have been effective in many cancers, but, to date, none has worked in this setting for prostate cancer. Prostate-specific membrane antigen (PSMA)-based theranostics is an exciting and rapidly evolving field in prostate cancer. The novel intravenous radionuclide therapy, [177Lu]Lu-PSMA-617 (lutetium PSMA) has been shown to be effective in treating men with metastatic castration-resistant prostate cancer, targeting cells expressing PSMA throughout the body. When given in a neoadjuvant setting, lutetium PSMA might also improve long-term oncological outcomes in men with high-risk localized disease. A component of radiotherapy is potentially an immunogenic form of cancer cell death. Lutetium PSMA could cause cancer cell death, resulting in release of tumour antigens and induction of a tumour-specific systemic immune response. This targeted radioligand treatment has the potential to treat local and systemic tumour sites by directly targeting cells that express PSMA, but might also act indirectly via this systemic immune response. In selected patients, lutetium PSMA could potentially be combined with systemic immunotherapies to augment the antitumour T cell response, and this might produce long-lasting immunity in prostate cancer.
Collapse
Affiliation(s)
- Renu S Eapen
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia.
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia.
- Prostate Cancer Theranostics and Imaging Centre of Excellence (ProsTIC), Peter MacCallum Cancer Centre, Melbourne, Australia.
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Australia.
| | - Scott G Williams
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Prostate Cancer Theranostics and Imaging Centre of Excellence (ProsTIC), Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Sean Macdonald
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Simon P Keam
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Nathan Lawrentschuk
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Lewis Au
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Michael S Hofman
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Prostate Cancer Theranostics and Imaging Centre of Excellence (ProsTIC), Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Declan G Murphy
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Prostate Cancer Theranostics and Imaging Centre of Excellence (ProsTIC), Peter MacCallum Cancer Centre, Melbourne, Australia
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Paul J Neeson
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia.
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
8
|
Patel AM, Haleem A, Revercomb L, Brant JA, Rajasekaran K, Sun LL, Brody RM, Carey RM. Primary site surgical resection in cM1 oral cavity squamous cell carcinoma. Laryngoscope Investig Otolaryngol 2024; 9:e70000. [PMID: 39281203 PMCID: PMC11401054 DOI: 10.1002/lio2.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/07/2024] [Indexed: 09/18/2024] Open
Abstract
Objective To investigate primary site surgical resection and overall survival (OS) in clinically distantly metastatic (cM1) oral cavity squamous cell carcinoma (OCSCC). Methods The 2006-2018 National Cancer Database was queried for patients presenting with cM1 OCSCC who underwent chemotherapy. Binary logistic, Kaplan-Meier, and multivariable Cox proportional hazards regression models were implemented. Results Of 278 patients satisfying inclusion criteria, 139 (50.0%) underwent chemotherapy alone, 80 (28.8%) underwent chemoradiotherapy, 25 (9.0%) underwent surgical resection + adjuvant chemotherapy, and 34 (12.2%) underwent surgical resection + adjuvant chemoradiotherapy; 5-year OS was 9.4%, 15.2%, 8.3%, and 23.8%, respectively (p < .001). Compared with those not undergoing surgical resection, patients undergoing surgical resection underwent radiotherapy more frequently (57.6% vs. 36.5%) but multiple-agent chemotherapy less frequently (40.7% vs. 74.4%) (p < .005). Twenty-one (36.2%) patients undergoing surgical resection had positive surgical margins. Academic facility (adjusted odds ratio [aOR] 3.19, 95% CI 1.54-6.62) and Charlson-Deyo comorbidity score ≥1 (aOR 2.82, 95% CI 1.25-6.32, p < .025) were associated with increased odds of undergoing surgical resection. Compared with chemotherapy alone, chemoradiotherapy (adjusted hazard ratio [aHR] 0.56, 95% CI 0.38-0.83) and surgical resection + adjuvant chemoradiotherapy (aHR 0.37, 95% CI 0.21-0.66) were associated with higher OS (p < .005). Immunotherapy (aHR 0.48, 95% CI 0.28-0.81, p = .006) was also independently associated with higher OS. Conclusion A minority of patients with cM1 OCSCC underwent primary site surgical resection. Despite the high rate of positive surgical margins, surgical resection + adjuvant chemoradiotherapy was associated with higher OS than chemotherapy alone, chemoradiotherapy, or surgical resection + adjuvant chemotherapy. Definitive local therapy may benefit select patients with cM1 OCSCC.Level of evidence: 4.
Collapse
Affiliation(s)
- Aman M Patel
- Department of Otolaryngology-Head and Neck Surgery Rutgers New Jersey Medical School Newark New Jersey USA
| | - Afash Haleem
- Department of Otolaryngology-Head and Neck Surgery Rutgers New Jersey Medical School Newark New Jersey USA
| | - Lucy Revercomb
- Department of Otolaryngology-Head and Neck Surgery Rutgers New Jersey Medical School Newark New Jersey USA
| | - Jason A Brant
- Department of Otorhinolaryngology-Head and Neck Surgery University of Pennsylvania Philadelphia Pennsylvania USA
- Department of Otolaryngology Corporal Michael J. Crescenz Veterans Affairs Medical Center Philadelphia Pennsylvania USA
| | - Karthik Rajasekaran
- Department of Otorhinolaryngology-Head and Neck Surgery University of Pennsylvania Philadelphia Pennsylvania USA
| | - Lova L Sun
- Division of Hematology and Oncology University of Pennsylvania Philadelphia Pennsylvania USA
| | - Robert M Brody
- Department of Otorhinolaryngology-Head and Neck Surgery University of Pennsylvania Philadelphia Pennsylvania USA
- Department of Otolaryngology Corporal Michael J. Crescenz Veterans Affairs Medical Center Philadelphia Pennsylvania USA
| | - Ryan M Carey
- Department of Otorhinolaryngology-Head and Neck Surgery University of Pennsylvania Philadelphia Pennsylvania USA
- Department of Otolaryngology Corporal Michael J. Crescenz Veterans Affairs Medical Center Philadelphia Pennsylvania USA
| |
Collapse
|
9
|
Jagodinsky JC, Vera JM, Jin WJ, Shea AG, Clark PA, Sriramaneni RN, Havighurst TC, Chakravarthy I, Allawi RH, Kim K, Harari PM, Sondel PM, Newton MA, Crittenden MR, Gough MJ, Miller JR, Ong IM, Morris ZS. Intratumoral radiation dose heterogeneity augments antitumor immunity in mice and primes responses to checkpoint blockade. Sci Transl Med 2024; 16:eadk0642. [PMID: 39292804 PMCID: PMC11522033 DOI: 10.1126/scitranslmed.adk0642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 04/03/2024] [Accepted: 08/08/2024] [Indexed: 09/20/2024]
Abstract
Radiation therapy (RT) activates multiple immunologic effects in the tumor microenvironment (TME), with diverse dose-response relationships observed. We hypothesized that, in contrast with homogeneous RT, a heterogeneous RT dose would simultaneously optimize activation of multiple immunogenic effects in a single TME, resulting in a more effective antitumor immune response. Using high-dose-rate brachytherapy, we treated mice bearing syngeneic tumors with a single fraction of heterogeneous RT at a dose ranging from 2 to 30 gray. When combined with dual immune checkpoint inhibition in murine models, heterogeneous RT generated more potent antitumor responses in distant, nonirradiated tumors compared with any homogeneous dose. The antitumor effect after heterogeneous RT required CD4 and CD8 T cells and low-dose RT to a portion of the tumor. At the 3-day post-RT time point, dose heterogeneity imprinted the targeted TME with spatial differences in immune-related gene expression, antigen presentation, and susceptibility of tumor cells to immune-mediated destruction. At a later 10-day post-RT time point, high-, moderate-, or low-RT-dose regions demonstrated distinct infiltrating immune cell populations. This was associated with an increase in the expression of effector-associated cytokines in circulating CD8 T cells. Consistent with enhanced adaptive immune priming, heterogeneous RT promoted clonal expansion of effector CD8 T cells. These findings illuminate the breadth of dose-dependent effects of RT on the TME and the capacity of heterogeneous RT to promote antitumor immunity when combined with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Justin C. Jagodinsky
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Jessica M. Vera
- Department of Statistics and Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
- Sage Bionetworks, 2901 Third Ave. Suite 330, Seattle, WA 98121, USA
| | - Won Jong Jin
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Amanda G. Shea
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Paul A. Clark
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Raghava N. Sriramaneni
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Thomas C. Havighurst
- Department of Statistics and Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
| | - Ishan Chakravarthy
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Raad H. Allawi
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - KyungMann Kim
- Department of Statistics and Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
| | - Paul M. Harari
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Paul M. Sondel
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Michael A. Newton
- Department of Statistics and Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
| | - Marka R. Crittenden
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, NE Glisan St., Portland, OR 97213, USA
- Oregon Clinic, Portland, OR 97232, USA
| | - Michael J. Gough
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, NE Glisan St., Portland, OR 97213, USA
| | - Jessica R. Miller
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Irene M. Ong
- Department of Statistics and Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
- Department of Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Zachary S. Morris
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
10
|
Habibi MA, Mirjani MS, Ahmadvand MH, Delbari P, Eftekhar MS, Ghazizadeh Y, Ghezel MA, Rad RH, Vakili KG, Lotfi S, Minaee P, Eazi S, Mehrizi MAA, Ahmadpour S. Anti-PD-1/PD-L1 inhibitor therapy for melanoma brain metastases: a systematic review and meta-analysis. Neurosurg Rev 2024; 47:434. [PMID: 39141214 DOI: 10.1007/s10143-024-02595-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 08/15/2024]
Abstract
Melanoma brain metastases present a major challenge in cancer treatment and reduce overall survival despite advances in managing primary melanoma. Immune checkpoint inhibitors (ICIs) that target PD-1/PD-L1 pathways have shown promise in treating advanced melanoma, but their efficacy for melanoma brain metastases is debated. This systematic review and meta-analysis summarize evidence on anti-PD-1/PD-L1 inhibitors for melanoma brain metastases. This systematic review and meta-analysis followed PRISMA guidelines. PICO criteria targeted melanoma brain metastasis patients treated with PD-1/PD-L1 inhibitors, assessing overall survival, progression-free survival, and complications. Inclusion criteria were English studies on humans using PD-1/PD-L1 inhibitors for melanoma brain metastases with > 10 patients. A total of 22 trials involving 1523 melanoma brain metastase patients treated with anti-PD-1/PD-L1 inhibitors were thoroughly analyzed. Our findings show the 6-month OS rate of 0.75 [95%CI:0.67-0.84], the 6-months PFS rate of 0.42 [95%CI:0.31-0.52], the 1-year OS rate of 0.63 [95%CI:0.52-0.74], the 1-year PFS rate was 0.45 [95%CI:0.32-0.58], the 18-months OS rate of 0.52 [95%CI:0.37-0.67], the 2-year OS rate of 50% [95% CI: (34%-65%)], the 2 year PFS rate of 0.36 (95%CI:0.23-0.50), the 3-year OS rate of 0.42 (95%CI:0.17-0.67), the 4-year PFS rate of 0.35 [95%CI:0.08-0.61], the 4-year OS rate of 0.29 [95%CI:0.01-0.56], the 5-year OS rate of 0.29 (95%CI:0.09-0.50), and the 5-year PFS rate of 0.11 (95%CI:0.03-0.19). The combined disease stability rate was 0.13 [95%CI:0.05-0.20], the progressive disease rate was 0.49 [95%CI:0.37-0.62], the partial response rate was 0.14 [95%CI:0.07-0.20], the object response rate was 0.35 [95%CI:0.24-0.46], and the complete response rate was 0.22 [95%CI:0.12-0.32]. In conclusion, our meta-analysis provides compelling evidence supporting the efficacy of PD-1/PD-L1 inhibitors in patients with melanoma brain tumors, as evidenced by favorable survival outcomes and disease control rates.
Collapse
Affiliation(s)
- Mohammad Amin Habibi
- Department of Neurosurgery, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Pouria Delbari
- Student Research Committee, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Shahir Eftekhar
- Department of Surgery, School of Medicine, Shahid Beheshti Hospital, Qom University of Medical Sciences, Qom, Iran
| | - Yalda Ghazizadeh
- Student Research Committee, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Ghezel
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Romina Hamidi Rad
- Department of Medicine, Tehran Medical Branch, Islamic Azad University, Tehran, Iran
| | - Kimia Ghazi Vakili
- Department of Medicine, Tehran Medical Branch, Islamic Azad University, Tehran, Iran
| | - Sohrab Lotfi
- Department of Medicine, Tehran Medical Branch, Islamic Azad University, Tehran, Iran
| | - Poriya Minaee
- Student Research Committee, Qom University of Medical Sciences, Qom, Iran
| | - SeyedMohammad Eazi
- Student Research Committee, Qom University of Medical Sciences, Qom, Iran
| | | | - Sajjad Ahmadpour
- Patient Safety Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
11
|
Qiu H, Shao Z, Wen X, Qu D, Liu Z, Chen Z, Zhang X, Ding X, Zhang L. HMGB1/TREM2 positive feedback loop drives the development of radioresistance and immune escape of glioblastoma by regulating TLR4/Akt signaling. J Transl Med 2024; 22:688. [PMID: 39075517 PMCID: PMC11287841 DOI: 10.1186/s12967-024-05489-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/04/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Radioresistance and immune escape are crucial reasons for unsatisfactory therapeutic effects of glioblastoma (GBM). Although triggering receptor expressed on myeloid cells-2 (TREM2) involved in forming immunosuppressive microenvironment, but the underlying mechanism and its roles in mediating cancer radioresistance remain unclear, moreover, the efficient delivery of drugs targeting TREM2 to GBM encounters serious challenges. Hence, this study aimed to elucidate the effect and mechanisms of targeted TREM2 silencing on reversing the radioresistance and immune escape of GBM aided by a glutathione-responsive biomimetic nanoparticle (NP) platform. METHODS Radioresistant GBM cell lines and TREM2 stable knockdown GBM cell lines were firstly established. RNA sequencing, colony formation assay, western blot, enzyme-linked immunosorbent assay and co-immunoprecipitation assay were used to detect the molecular mechanisms of TREM2 in regulating the radioresistance and immune escape of GBM. The glutathione-responsive biomimetic NP, angiopep-2 (A2)- cell membrane (CM)-NP/siTREM2/spam1, was then constructed to triply and targeted inhibit TREM2 for in vivo study. Orthotopic GBM-bearing mouse models were established to evaluate the anti-GBM effect of TREM2 inhibition, multiplex immunofluorescence assay was conducted to detect the infiltration of immune cells. RESULTS TREM2 was a regulator in accelerating the radioresistance and immune escape of GBM through participating in DNA damage repair and forming a positive feedback loop with high mobility group box 1 (HMGB1) to cascade the activation of Toll-like receptor 4 (TLR4)/protein kinase B (Akt) signaling. A2-CM-NP/siTREM2/spam1 was successfully synthesized with excellent passive targeting, active targeting and homologous targeting, and the in vivo results exhibited its remarkable anti-GBM therapeutic effect through promoting the infiltration of type 1 helper T cells and CD8+T cells, reducing the infiltration of type 2 helper T cells and regulatory T cells, repolarizing macrophages to M1-type, and decreasing the secretion of pro-tumor and immunosuppressive cytokines. CONCLUSIONS Targeting TREM2 therapy is a promising avenue for optimizing radiotherapy and immunotherapy to improve the prognosis of GBM patients.
Collapse
Affiliation(s)
- Hui Qiu
- Cancer Institute, Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, No. 9 Kunpeng North Road, Xuzhou, 221000, Jiangsu, China
| | - Zhiying Shao
- Cancer Institute, Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China
| | - Xin Wen
- Cancer Institute, Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, No. 9 Kunpeng North Road, Xuzhou, 221000, Jiangsu, China
| | - Debao Qu
- Cancer Institute, Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, No. 9 Kunpeng North Road, Xuzhou, 221000, Jiangsu, China
| | - Zhengyang Liu
- Cancer Institute, Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China
| | - Ziqin Chen
- Cancer Institute, Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China
| | - Xinyan Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China
| | - Xin Ding
- Cancer Institute, Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China.
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, No. 9 Kunpeng North Road, Xuzhou, 221000, Jiangsu, China.
| | - Longzhen Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China.
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, No. 9 Kunpeng North Road, Xuzhou, 221000, Jiangsu, China.
| |
Collapse
|
12
|
Wu Y, Yi M, Niu M, Zhou B, Mei Q, Wu K. Beyond success: unveiling the hidden potential of radiotherapy and immunotherapy in solid tumors. Cancer Commun (Lond) 2024; 44:739-760. [PMID: 38837878 PMCID: PMC11260771 DOI: 10.1002/cac2.12576] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/06/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024] Open
Abstract
Immunotherapy, particularly with immune checkpoint inhibitors, has significantly transformed cancer treatment. Despite its success, many patients struggle to respond adequately or sustain long-lasting clinical improvement. A growing consensus has emerged that radiotherapy (RT) enhances the response rate and overall efficacy of immunotherapy. Although combining RT and immunotherapy has been extensively investigated in preclinical models and has shown promising results, establishing itself as a dynamic and thriving area of research, clinical evidence for this combination strategy over the past five years has shown both positive and disappointing results, suggesting the need for a more nuanced understanding. This review provides a balanced and updated analysis of the combination of immunotherapy and RT. We summarized the preclinical mechanisms through which RT boosts antitumor immune responses and mainly focused on the outcomes of recently updated clinical trials, including those that may not have met expectations. We investigated the optimization of the therapeutic potential of this combined strategy, including key challenges, such as fractionation and scheduling, lymph node irradiation, and toxicity. Finally, we offered insights into the prospects and challenges associated with the clinical translation of this combination therapy, providing a realistic perspective on the current state of research and potential future directions.
Collapse
Affiliation(s)
- Yuze Wu
- Department of OncologyTongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Ming Yi
- Department of Breast SurgeryZhejiang University School of Medicine First Affiliated HospitalHangzhouZhejiangP. R. China
| | - Mengke Niu
- Department of OncologyTongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Binghan Zhou
- Department of OncologyTongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Qi Mei
- Department of OncologyTongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Kongming Wu
- Cancer CenterShanxi Bethune HospitalShanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical UniversityTaiyuanShanxiP. R. China
- Cancer CenterTongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
| |
Collapse
|
13
|
Telarovic I, Yong CSM, Kurz L, Vetrugno I, Reichl S, Fernandez AS, Cheng HW, Winkler R, Guckenberger M, Kipar A, Ludewig B, Pruschy M. Delayed tumor-draining lymph node irradiation preserves the efficacy of combined radiotherapy and immune checkpoint blockade in models of metastatic disease. Nat Commun 2024; 15:5500. [PMID: 38951172 PMCID: PMC11217506 DOI: 10.1038/s41467-024-49873-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 06/21/2024] [Indexed: 07/03/2024] Open
Abstract
Cancer resistance to immune checkpoint inhibitors motivated investigations into leveraging the immunostimulatory properties of radiotherapy to overcome immune evasion and to improve treatment response. However, clinical benefits of radiotherapy-immunotherapy combinations have been modest. Routine concomitant tumor-draining lymph node irradiation (DLN IR) might be the culprit. As crucial sites for generating anti-tumor immunity, DLNs are indispensable for the in situ vaccination effect of radiotherapy. Simultaneously, DLN sparing is often not feasible due to metastatic spread. Using murine models of metastatic disease in female mice, here we demonstrate that delayed (adjuvant), but not neoadjuvant, DLN IR overcomes the detrimental effect of concomitant DLN IR on the efficacy of radio-immunotherapy. Moreover, we identify IR-induced disruption of the CCR7-CCL19/CCL21 homing axis as a key mechanism for the detrimental effect of DLN IR. Our study proposes delayed DLN IR as a strategy to maximize the efficacy of radio-immunotherapy across different tumor types and disease stages.
Collapse
Affiliation(s)
- Irma Telarovic
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Carmen S M Yong
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Immunology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Lisa Kurz
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Irene Vetrugno
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Sabrina Reichl
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Alba Sanchez Fernandez
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Hung-Wei Cheng
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Rona Winkler
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Anja Kipar
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Burkhard Ludewig
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Martin Pruschy
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
14
|
Fang F, Jia Z, Xie H, Cao Y, Zhu X, Yang XY, Guo X, Zhang H. Prognostic utility of blood inflammation biomarkers before and after treatment on the survival of patients with locally advanced non-small cell lung cancer undergoing stereotactic body radiotherapy. THE CLINICAL RESPIRATORY JOURNAL 2024; 18:e13749. [PMID: 38685745 PMCID: PMC11058398 DOI: 10.1111/crj.13749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/26/2024] [Accepted: 03/20/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND AND OBJECTIVE The neutrophil-lymphocyte ratio (NLR) and platelet-lymphocyte ratio (PLR) were significant and succinct indicators of systemic inflammation. We assessed the influence of stereotactic body radiotherapy (SBRT) on NLR and PLR in patients with locally advanced non-small cell lung cancer (LA-NSCLC). METHODS We reviewed the medical data of patients with LA-NSCLC who underwent SBRT between 1 January 2013 and 31 December 2018. NLR and PLR values recorded at pre- and post-SBRT were examined. We assessed the correlation between pre/post-SBRT NLR and PLR and survival outcomes. The decision tree evaluation was conducted using Chi-square automatic detection. RESULTS In total, 213 patients were included in the study with a median follow-up duration of 40.00 (ranging from 5.28 to 100.70) months. Upon dichotomization by a median, we identified that post-SBRT NLR > 5.5 and post-SBRT PLR > 382.0 were negatively associated with shorter overall survival (OS). In the multivariate assessment, post-SBRT PLR > 382.0 was the only factor. Based on post-SBRT PLR, tumor locations, and tumor stage, we categorized patients into low, medium, or high-risk groups. CONCLUSIONS Post-SBRT PLR > 382.0 correlated with survival in patients undergoing SBRT. The decision tree model might play a role in future risk stratification to guide the clinical practice of individualized SBRT for LA-NSCLC.
Collapse
Affiliation(s)
- Fang Fang
- Department of Radiation OncologyChanghai Hospital Affiliated to Navy Medical UniversityShanghaiChina
| | - Zhen Jia
- Department of Radiation OncologyChanghai Hospital Affiliated to Navy Medical UniversityShanghaiChina
| | - Hongliang Xie
- Department of Radiation OncologyChanghai Hospital Affiliated to Navy Medical UniversityShanghaiChina
| | - Yangsen Cao
- Department of Radiation OncologyChanghai Hospital Affiliated to Navy Medical UniversityShanghaiChina
| | - Xiaofei Zhu
- Department of Radiation OncologyChanghai Hospital Affiliated to Navy Medical UniversityShanghaiChina
| | - Xiao Yu Yang
- Department of Hepatic SurgeryShanghai Eastern Hepatobiliary Surgery HospitalShanghaiChina
| | - Xueling Guo
- Department of Radiation OncologyChanghai Hospital Affiliated to Navy Medical UniversityShanghaiChina
| | - Huojun Zhang
- Department of Radiation OncologyChanghai Hospital Affiliated to Navy Medical UniversityShanghaiChina
| |
Collapse
|
15
|
Muralidhar A, Hernandez R, Morris ZS, Comas Rojas H, Bio Idrissou M, Weichert JP, McNeel DG. Myeloid-derived suppressor cells attenuate the antitumor efficacy of radiopharmaceutical therapy using 90Y-NM600 in combination with androgen deprivation therapy in murine prostate tumors. J Immunother Cancer 2024; 12:e008760. [PMID: 38663936 PMCID: PMC11043705 DOI: 10.1136/jitc-2023-008760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2024] [Indexed: 04/28/2024] Open
Abstract
RATIONALE Androgen deprivation therapy (ADT) is pivotal in treating recurrent prostate cancer and is often combined with external beam radiation therapy (EBRT) for localized disease. However, for metastatic castration-resistant prostate cancer, EBRT is typically only used in the palliative setting, because of the inability to radiate all sites of disease. Systemic radiation treatments that preferentially irradiate cancer cells, known as radiopharmaceutical therapy or targeted radionuclide therapy (TRT), have demonstrable benefits for treating metastatic prostate cancer. Here, we explored the use of a novel TRT, 90Y-NM600, specifically in combination with ADT, in murine prostate tumor models. METHODS 6-week-old male FVB mice were implanted subcutaneously with Myc-CaP tumor cells and given a single intravenous injection of 90Y-NM600, in combination with ADT (degarelix). The combination and sequence of administration were evaluated for effect on tumor growth and infiltrating immune populations were analyzed by flow cytometry. Sera were assessed to determine treatment effects on cytokine profiles. RESULTS ADT delivered prior to TRT (ADT→TRT) resulted in significantly greater antitumor response and overall survival than if delivered after TRT (TRT→ADT). Studies conducted in immunodeficient NRG mice failed to show a difference in treatment sequence, suggesting an immunological mechanism. Myeloid-derived suppressor cells (MDSCs) significantly accumulated in tumors following TRT→ADT treatment and retained immune suppressive function. However, CD4+ and CD8+ T cells with an activated and memory phenotype were more prevalent in the ADT→TRT group. Depletion of Gr1+MDSCs led to greater antitumor response following either treatment sequence. Chemotaxis assays suggested that tumor cells secreted chemokines that recruited MDSCs, notably CXCL1 and CXCL2. The use of a selective CXCR2 antagonist, reparixin, further improved antitumor responses and overall survival when used in tumor-bearing mice treated with TRT→ADT. CONCLUSION The combination of ADT and TRT improved antitumor responses in murine models of prostate cancer, however, this was dependent on the order of administration. This was found to be associated with one treatment sequence leading to an increase in infiltrating MDSCs. Combining treatment with a CXCR2 antagonist improved the antitumor effect of this combination, suggesting a possible approach for treating advanced human prostate cancer.
Collapse
Affiliation(s)
| | | | - Zachary S Morris
- Human Oncology, University of Wisconsin Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Hansel Comas Rojas
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Malick Bio Idrissou
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jamey P Weichert
- Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Douglas G McNeel
- Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
16
|
Layer JP, Shiban E, Brehmer S, Diehl CD, de Castro DG, Hamed M, Dejonckheere CS, Cifarelli DT, Friker LL, Herrlinger U, Hölzel M, Vatter H, Schneider M, Combs SE, Schmeel LC, Cifarelli CP, Giordano FA, Sarria GR, Kahl KH. Multicentric Assessment of Safety and Efficacy of Combinatorial Adjuvant Brain Metastasis Treatment by Intraoperative Radiation Therapy and Immunotherapy. Int J Radiat Oncol Biol Phys 2024; 118:1552-1562. [PMID: 38199383 DOI: 10.1016/j.ijrobp.2024.01.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
PURPOSE After surgical resection of brain metastases (BMs), intraoperative radiation therapy (IORT) provides a promising alternative to adjuvant external beam radiation therapy by enabling superior organ-at-risk preservation, reduction of in-hospital times, and timely admission to subsequent systemic treatments, which increasingly comprise novel targeted immunotherapeutic approaches. We sought to assess the safety and efficacy of IORT in combination with immune checkpoint inhibitors (ICIs) and other targeted therapies (TTs). METHODS AND MATERIALS In a multicentric approach incorporating individual patient data from 6 international IORT centers, all patients with BMs undergoing IORT were retrospectively assessed for combinatorial treatment with ICIs/TTs and evaluated for toxicity and cumulative rates, including wound dehiscence, radiation necrosis, leptomeningeal spread, local control, distant brain progression (DBP), and estimated overall survival. RESULTS In total, 103 lesions with a median diameter of 34 mm receiving IORT combined with immunomodulatory systemic treatment or other TTs were included. The median follow-up was 13.2 (range, 1.2-102.4) months, and the median IORT dose was 25 (range, 18-30) Gy prescribed to the applicator surface. There was 1 grade 3 adverse event related to IORT recorded (2.2%). A 4.9% cumulative radiation necrosis rate was observed. The 1-year local control rate was 98.0%, and the 1-year DBP-free survival rate was 60.0%. Median time to DBP was 5.5 (range, 1.0-18.5) months in the subgroup of patients experiencing DBP, and the cumulative leptomeningeal spread rate was 4.9%. The median estimated overall survival was 26 (range, 1.2 to not reached) months with a 1-year survival rate of 74.0%. Early initiation of immunotherapy/TTs was associated with a nonsignificant trend toward improved DBP rate and overall survival. CONCLUSIONS The combination of ICIs/TTs with IORT for resected BMs does not seem to increase toxicity and yields encouraging local control outcomes in the difficult-to-treat subgroup of larger BMs. Time gaps between surgery and systemic treatment could be shortened or avoided. The definitive role of IORT in local control after BM resection will be defined in a prospective trial.
Collapse
Affiliation(s)
- Julian P Layer
- Department of Radiation Oncology, University Hospital Bonn, Bonn, Germany; Institute of Experimental Oncology, University Hospital Bonn, Bonn, Germany
| | - Ehab Shiban
- Department of Neurosurgery, University Hospital Augsburg, Augsburg, Germany
| | - Stefanie Brehmer
- Department of Neurosurgery, University Medical Center Mannheim, Mannheim, Germany
| | - Christian D Diehl
- Department of Radiation Oncology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | | | - Motaz Hamed
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Cas S Dejonckheere
- Department of Radiation Oncology, University Hospital Bonn, Bonn, Germany
| | - Daniel T Cifarelli
- Department of Neurosurgery, West Virginia University, Morgantown, West Virginia
| | - Lea L Friker
- Institute of Experimental Oncology, University Hospital Bonn, Bonn, Germany; Institute of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Ulrich Herrlinger
- Division of Clinical Neuro-Oncology, Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Michael Hölzel
- Institute of Experimental Oncology, University Hospital Bonn, Bonn, Germany
| | - Hartmut Vatter
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | | | - Stephanie E Combs
- Department of Radiation Oncology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | | | | | - Frank A Giordano
- Department of Radiation Oncology, University Medical Center Mannheim, Mannheim, Germany; DKFZ-Hector Cancer Institute of the University Medical Center Mannheim, Mannheim, Germany; Mannheim Institute of Intelligent Systems in Medicine (MIISM), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Gustavo R Sarria
- Department of Radiation Oncology, University Hospital Bonn, Bonn, Germany.
| | - Klaus-Henning Kahl
- Department of Radiooncology, University Hospital Augsburg, Augsburg, Germany
| |
Collapse
|
17
|
Wisdom AJ, Barker CA, Chang JY, Demaria S, Formenti S, Grassberger C, Gregucci F, Hoppe BS, Kirsch DG, Marciscano AE, Mayadev J, Mouw KW, Palta M, Wu CC, Jabbour SK, Schoenfeld JD. The Next Chapter in Immunotherapy and Radiation Combination Therapy: Cancer-Specific Perspectives. Int J Radiat Oncol Biol Phys 2024; 118:1404-1421. [PMID: 38184173 DOI: 10.1016/j.ijrobp.2023.12.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/20/2023] [Accepted: 12/30/2023] [Indexed: 01/08/2024]
Abstract
Immunotherapeutic agents have revolutionized cancer treatment over the past decade. However, most patients fail to respond to immunotherapy alone. A growing body of preclinical studies highlights the potential for synergy between radiation therapy and immunotherapy, but the outcomes of clinical studies have been mixed. This review summarizes the current state of immunotherapy and radiation combination therapy across cancers, highlighting existing challenges and promising areas for future investigation.
Collapse
Affiliation(s)
- Amy J Wisdom
- Harvard Radiation Oncology Program, Boston, Massachusetts
| | - Christopher A Barker
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joe Y Chang
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medicine, New York, New York
| | - Silvia Formenti
- Department of Radiation Oncology, Weill Cornell Medicine, New York, New York
| | - Clemens Grassberger
- Department of Radiation Oncology, University of Washington, Fred Hutch Cancer Center, Seattle, Washington
| | - Fabiana Gregucci
- Department of Radiation Oncology, Weill Cornell Medicine, New York, New York
| | - Bradford S Hoppe
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, Florida
| | - David G Kirsch
- Department of Radiation Oncology, University of Toronto, Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ariel E Marciscano
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Jyoti Mayadev
- Department of Radiation Oncology, UC San Diego School of Medicine, San Diego, California
| | - Kent W Mouw
- Department of Radiation Oncology, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Manisha Palta
- Department of Radiation Oncology, Duke Cancer Center, Durham, North Carolina
| | - Cheng-Chia Wu
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, New York
| | - Salma K Jabbour
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey.
| | - Jonathan D Schoenfeld
- Department of Radiation Oncology, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Boston, Massachusetts.
| |
Collapse
|
18
|
Xuan L, Bai C, Ju Z, Luo J, Guan H, Zhou PK, Huang R. Radiation-targeted immunotherapy: A new perspective in cancer radiotherapy. Cytokine Growth Factor Rev 2024; 75:1-11. [PMID: 38061920 DOI: 10.1016/j.cytogfr.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 02/16/2024]
Abstract
In contemporary oncology, radiation therapy and immunotherapy stand as critical treatments, each with distinct mechanisms and outcomes. Radiation therapy, a key player in cancer management, targets cancer cells by damaging their DNA with ionizing radiation. Its effectiveness is heightened when used alongside other treatments like surgery and chemotherapy. Employing varied radiation types like X-rays, gamma rays, and proton beams, this approach aims to minimize damage to healthy tissue. However, it is not without risks, including potential damage to surrounding normal cells and side effects ranging from skin inflammation to serious long-term complications. Conversely, immunotherapy marks a revolutionary step in cancer treatment, leveraging the body's immune system to target and destroy cancer cells. It manipulates the immune system's specificity and memory, offering a versatile approach either alone or in combination with other treatments. Immunotherapy is known for its targeted action, long-lasting responses, and fewer side effects compared to traditional therapies. The interaction between radiation therapy and immunotherapy is intricate, with potential for both synergistic and antagonistic effects. Their combined use can be more effective than either treatment alone, but careful consideration of timing and sequence is essential. This review explores the impact of various radiation therapy regimens on immunotherapy, focusing on changes in the immune microenvironment, immune protein expression, and epigenetic factors, emphasizing the need for personalized treatment strategies and ongoing research to enhance the efficacy of these combined therapies in cancer care.
Collapse
Affiliation(s)
- Lihui Xuan
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China; Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Chenjun Bai
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Zhao Ju
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China; Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Jinhua Luo
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China; Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Hua Guan
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Ping-Kun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Ruixue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China.
| |
Collapse
|
19
|
Mehkri Y, Windermere SA, Still MEH, Yan SC, Goutnik M, Melnick K, Doonan B, Ghiaseddin AP, Rahman M. The Safety and Efficacy of Concurrent Immune Checkpoint Blockade and Stereotactic Radiosurgery Therapy with Practitioner and Researcher Recommendations. World Neurosurg 2024; 181:e133-e153. [PMID: 37739175 DOI: 10.1016/j.wneu.2023.09.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have shown growing promise in the treatment of brain metastases, especially combined with stereotactic radiosurgery (SRS). The combination of ICIs with SRS has been studied for efficacy as well as increasing radiation necrosis risks. In this review, we compare clinical outcomes of radiation necrosis, intracranial control, and overall survival between patients with brain metastases treated with either SRS alone or SRS-ICI combination therapy. METHODS A literature search of PubMed, Scopus, Embase, Web of Science, and Cochrane was performed in May 2023 for articles comparing the safety and efficacy of SRS/ICI versus SRS-alone for treating brain metastases. RESULTS The search criteria identified 1961 articles, of which 48 met inclusion criteria. Combination therapy with SRS and ICI does not lead to significant increases in incidence of radiation necrosis either radiographically or symptomatically. Overall, no difference was found in intracranial control between SRS-alone and SRS-ICI combination therapy. Combination therapy is associated with increased median overall survival. Notably, some comparative studies observed decreased neurologic deaths, challenging presumptions that improved survival is due to greater systemic control. The literature supports SRS-ICI administration within 4 weeks of another for survival but remains inconclusive, requiring further study for other outcome measures. CONCLUSIONS Combination SRS-ICI therapy is associated with significant overall survival benefit for patients with brain metastases without significantly increasing radiation necrosis risks compared to SRS alone. Although intracranial control rates appear to be similar between the 2 groups, timing of treatment delivery may improve control rates and demands further study attention.
Collapse
Affiliation(s)
- Yusuf Mehkri
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | | | - Megan E H Still
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Sandra C Yan
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Michael Goutnik
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Kaitlyn Melnick
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Bently Doonan
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Ashley P Ghiaseddin
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Maryam Rahman
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
20
|
Greenwood H, Hassan J, Fife K, Ajithkumar TV, Thippu Jayaprakash K. Single-Fraction Stereotactic Ablative Body Radiotherapy for Primary and Extracranial Oligometastatic Cancers. Clin Oncol (R Coll Radiol) 2023; 35:773-786. [PMID: 37852814 DOI: 10.1016/j.clon.2023.10.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/14/2023] [Accepted: 10/04/2023] [Indexed: 10/20/2023]
Abstract
Stereotactic ablative body radiotherapy (SABR) consists of delivering high doses of ionising radiation, typically across three to eight fractions with high precision and conformity. SABR has become increasingly commonplace throughout the last quarter of a century and is offered for the treatment of various primary and metastatic tumour types. Delivering SABR in a single fraction has arisen as an appealing possibility for several reasons. These include fewer hospital visits, greater patient convenience, improved sustainability and lower costs. However, these factors must be balanced against considerations such as toxicity, side-effects and, most importantly, progression-free and overall survival. In this review we seek to analyse the results of studies looking at the efficacy of single-fraction SABR for lung, prostate, renal and pancreas primary tumours, as well as oligometastases. The tumour type to be most widely treated with single-fraction SABR is lung, but its remit continues to expand. We also look at the biological rationale underpinning SABR and how this can be extended to single-fraction regimens. Finally, we turn our attention towards the future directions of SABR and specifically single-fraction regimens. These include the possibility of combining SABR with immunotherapy and technological advances in the field, which could serve to expand the scope of SABR. We conclude by summarising the current clinical studies of single-fraction SABR.
Collapse
Affiliation(s)
- H Greenwood
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - J Hassan
- University College London Medical School, London, UK
| | - K Fife
- Oncology Centre, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - T V Ajithkumar
- Oncology Centre, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - K Thippu Jayaprakash
- Oncology Centre, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK; Department of Oncology, The Queen Elizabeth Hospital King's Lynn NHS Foundation Trust, King's Lynn, UK.
| |
Collapse
|
21
|
Dong YC, Nieves LM, Hsu JC, Kumar A, Bouché M, Krishnan U, Mossburg KJ, Saxena D, Uman S, Kambayashi T, Burdick JA, Kim MM, Dorsey JF, Cormode DP. Novel Combination Treatment for Melanoma: FLASH Radiotherapy and Immunotherapy Delivered by a Radiopaque and Radiation Responsive Hydrogel. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:9542-9551. [PMID: 38933522 PMCID: PMC11198981 DOI: 10.1021/acs.chemmater.3c01390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Immunotherapies have become the standard treatment for melanoma. To further improve patient responses, combinations of immunotherapies and radiotherapy (RT) are being studied, since radiotherapies can potentially provide additional immune stimulation, in addition to direct antitumor effects. FLASH-RT is a novel, ultrahigh dose rate, radiation delivery approach, with the potential of at least equivalent tumor control efficacy and reduced damage to healthy tissue. However, the effects of combining FLASH-RT and immunotherapy have not been extensively studied in melanoma. Toll-like receptor (TLR) agonists, such as imiquimod (IMQ), are potent immunostimulatory agents, although their utility is limited due to poor solubility and systemic side effects. We therefore developed a novel combination therapy for melanoma consisting of IMQ delivered to the tumor via a radiopaque and radiation responsive hydrogel combined with FLASH-RT. We found that FLASH was able to effectively stimulate IMQ release from the hydrogel. In addition, we found that the combination of FLASH and released IMQ resulted in synergistic melanoma cell killing in vitro. The combination therapy reduced tumor growth compared to controls, enhanced survival, and resulted in remarkable enhancements in certain tumor cytokine levels. CT imaging allowed the hydrogel to be monitored in vivo. In addition, no adverse effects of the treatment were observed. Overall, this IMQ-gel and FLASH-RT combination may have potential as an improved treatment for melanoma and indicates that the interactions of FLASH-RT and TLR agonists merit further study.
Collapse
Affiliation(s)
- Yuxi C Dong
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States; Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Lenitza M Nieves
- Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jessica C Hsu
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States; Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Ananyaa Kumar
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | | - Uma Krishnan
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Katherine J Mossburg
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States; Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Deeksha Saxena
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Selen Uman
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Taku Kambayashi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States; Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Michele M Kim
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jay F Dorsey
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - David P Cormode
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States; Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
22
|
Pan S, Sun Z, Zhao B, Miao L, Zhou Q, Chen T, Zhu X. Therapeutic application of manganese-based nanosystems in cancer radiotherapy. Biomaterials 2023; 302:122321. [PMID: 37722183 DOI: 10.1016/j.biomaterials.2023.122321] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/05/2023] [Accepted: 09/09/2023] [Indexed: 09/20/2023]
Abstract
Radiotherapy is an important therapeutic modality in the treatment of cancers. Nevertheless, the characteristics of the tumor microenvironment (TME), such as hypoxia and high glutathione (GSH), limit the efficacy of radiotherapy. Manganese-based (Mn-based) nanomaterials offer a promising prospect for sensitizing radiotherapy due to their good responsiveness to the TME. In this review, we focus on the mechanisms of radiosensitization of Mn-based nanosystems, including alleviating tumor hypoxia, increasing reactive oxygen species production, increasing GSH conversion, and promoting antitumor immunity. We further illustrate the applications of these mechanisms in cancer radiotherapy, including the development and delivery of radiosensitizers, as well as their combination with other therapeutic modalities. Finally, we summarize the application of Mn-based nanosystems as contrast agents in realizing precision therapy. Hopefully, the present review will provide new insights into the biological mechanisms of Mn-based nanosystems, as well as their applications in radiotherapy, in order to address the difficulties and challenges that remain in their clinical application in the future.
Collapse
Affiliation(s)
- Shuya Pan
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China
| | - Zhengwei Sun
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China
| | - Bo Zhao
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China
| | - Liqing Miao
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China
| | - Qingfeng Zhou
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China
| | - Tianfeng Chen
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China; Department of Chemistry, Jinan University, China.
| | - Xueqiong Zhu
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China.
| |
Collapse
|
23
|
Necchi A, Faltas BM, Slovin SF, Meeks JJ, Pal SK, Schwartz LH, Huang RSP, Li R, Manley B, Chahoud J, Ross JS, Spiess PE. Immunotherapy in the Treatment of Localized Genitourinary Cancers. JAMA Oncol 2023; 9:1447-1454. [PMID: 37561425 PMCID: PMC11429659 DOI: 10.1001/jamaoncol.2023.2174] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Importance A true revolution in the management of advanced genitourinary cancers has occurred with the discovery and adoption of immunotherapy (IO). The therapeutic benefits of IO were recently observed not to be solely confined to patients with disseminated disease but also in select patients with localized and locally advanced genitourinary neoplasms. Observations KEYNOTE-057 demonstrated the benefit of pembrolizumab monotherapy for treating high-risk nonmuscle invasive bladder cancer unresponsive to bacillus Calmette-Guérin (BCG), resulting in recent US Food and Drug Administration approval. Furthermore, a current phase 3 trial (Checkmate274) demonstrated a disease-free survival benefit with the administration of adjuvant nivolumab vs placebo in muscle-invasive urothelial carcinoma after radical cystectomy. In addition, the recent highly publicized phase 3 KEYNOTE 564 trial demonstrated a recurrence-free survival benefit of adjuvant pembrolizumab in patients with high-risk localized/locally advanced kidney cancer. Conclusions and Relevance The adoption and integration of IO in the management of localized genitourinary cancers exhibiting aggressive phenotypes are becoming an emerging therapeutic paradigm. Clinical oncologists and scientists should become familiar with these trials and indications because they are likely to dramatically change our treatment strategies in the months and years to come.
Collapse
Affiliation(s)
- Andrea Necchi
- Vita-Salute San Raffaele University; IRCCS San Raffaele Hospital, Milan, Italy
| | - Bishoy M Faltas
- Englander Institute for Precision Medicine, Weill Cornell Medicine-NewYork Presbyterian Hospital. New York, New York
| | - Susan F Slovin
- Genitourinary Oncology Service, Department of Medicine, Sidney Kimmel Center for Prostate and Urologic Cancers, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joshua J Meeks
- Departments of Pathology, Urology, Biochemistry and Molecular Genetics, Northwestern University School of Medicine, Chicago, Illinois
| | - Sumanta K Pal
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Lawrence H Schwartz
- Department of Radiology, Columbia University College of Physicians and Surgeons, New York, New York
- Department of Radiology, New York Presbyterian Hospital, New York, New York
| | | | - Roger Li
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Brandon Manley
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Jad Chahoud
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Jeffrey S Ross
- Foundation Medicine, Cambridge, Massachusetts
- Departments of Pathology, Urology and Medicine (Oncology), Upstate Medical University, Syracuse, NY USA
| | - Philippe E Spiess
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida
| |
Collapse
|
24
|
Tsarovsky N, Felder M, Heck M, Slowinski J, Rasmussen K, VandenHeuvel S, Zaborek J, Morris ZS, Erbe AK, Sondel PM, Rakhmilevich AL. Cyclophosphamide augments the efficacy of in situ vaccination in a mouse melanoma model. Front Oncol 2023; 13:1200436. [PMID: 37746303 PMCID: PMC10516537 DOI: 10.3389/fonc.2023.1200436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction We have previously shown that an intratumoral (IT) injection of the hu14.18-IL2 immunocytokine (IC), an anti-GD2 antibody linked to interleukin 2, can serve as an in situ vaccine and synergize with local radiotherapy (RT) to induce T cell-mediated antitumor effects. We hypothesized that cyclophosphamide (CY), a chemotherapeutic agent capable of depleting T regulatory cells (Tregs), would augment in situ vaccination. GD2+ B78 mouse melanoma cells were injected intradermally in syngeneic C57BL/6 mice. Methods Treatments with RT (12Gy) and/or CY (100 mg/kg i.p.) started when tumors reached 100-300 mm3 (day 0 of treatment), followed by five daily injections of IT-IC (25 mcg) on days 5-9. Tumor growth and survival were followed. In addition, tumors were analyzed by flow cytometry. Results Similar to RT, CY enhanced the antitumor effect of IC. The strongest antitumor effect was achieved when CY, RT and IC were combined, as compared to combinations of IC+RT or IC+CY. Flow cytometric analyses showed that the combined treatment with CY, RT and IC decreased Tregs and increased the ratio of CD8+ cells/Tregs within the tumors. Moreover, in mice bearing two separate tumors, the combination of RT and IT-IC delivered to one tumor, together with systemic CY, led to a systemic antitumor effect detected as shrinkage of the tumor not treated directly with RT and IT-IC. Cured mice developed immunological memory as they were able to reject B78 tumor rechallenge. Conclusion Taken together, these preclinical results show that CY can augment the antitumor efficacy of IT- IC, given alone or in combination with local RT, suggesting potential benefit in clinical testing of these combinations.
Collapse
Affiliation(s)
- Noah Tsarovsky
- Department of Human Oncology, Madison, WI, United States
| | - Mildred Felder
- Department of Human Oncology, Madison, WI, United States
| | - Mackenzie Heck
- Department of Human Oncology, Madison, WI, United States
| | | | | | | | - Jen Zaborek
- Department of Biostatistics and Medical Informatics, Madison, WI, United States
| | - Zachary S. Morris
- Department of Human Oncology, Madison, WI, United States
- Paul P. Carbone Comprehensive Cancer Center, Madison, WI, United States
| | - Amy K. Erbe
- Department of Human Oncology, Madison, WI, United States
- Paul P. Carbone Comprehensive Cancer Center, Madison, WI, United States
| | - Paul M. Sondel
- Department of Human Oncology, Madison, WI, United States
- Paul P. Carbone Comprehensive Cancer Center, Madison, WI, United States
- Department of Pediatrics, University of Wisconsin, Madison, WI, United States
| | - Alexander L. Rakhmilevich
- Department of Human Oncology, Madison, WI, United States
- Paul P. Carbone Comprehensive Cancer Center, Madison, WI, United States
| |
Collapse
|
25
|
Jin WJ, Zangl LM, Hyun M, Massoud E, Schroeder K, Alexandridis RA, Morris ZS. ATM inhibition augments type I interferon response and antitumor T-cell immunity when combined with radiation therapy in murine tumor models. J Immunother Cancer 2023; 11:e007474. [PMID: 37730275 PMCID: PMC10510866 DOI: 10.1136/jitc-2023-007474] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND Radiation therapy (RT) elicits DNA double-strand breaks, resulting in tumor cytotoxicity and a type I interferon (IFN) response via stimulator of interferon genes (STING) activation. We investigated whether combining RT with an ataxia-telangiectasia mutated inhibitor promoted these effects and amplified tumor immunity. METHODS Mice-bearing syngeneic flank tumors (MOC2 head and neck squamous cell carcinoma or B78 melanoma) were treated with tumor-directed RT and oral administration of AZD0156. Specific immune cell depletion, type 1 interferon receptor 1 knock-out mice (IFNAR1-KO), and STING-deficient tumor cells were used to investigate tumor-immune crosstalk following RT and AZD0156 treatment. RESULTS Combining RT and AZD0156 reduced tumor growth compared with RT or AZD0156 alone in mice bearing MOC2 or B78 tumors. Low-dose AZD0156 (1-100 nM) alone did not affect tumor cell proliferation but suppressed tumor cell clonogenicity in combination with RT. Low-dose AZD0156 with RT synergistically increased IFN-β, major histocompatibility complex (MHC)-I, and programmed death-ligand 1 (PD-L1) expression in tumor cells. In contrast to wild-type mice, IFNAR1-KO mice showed reduced CD8+T cell tumor infiltration and poor survival following RT+AZD0156 treatment. CD8+T cell depletion reduced antitumor response during RT+AZD0156 treatment. STING-deficient MOC2 (MOC2-STING+/-) or B78 (B78-STING-/-) tumors eliminated the effects of RT+AZD0156 on the expression of IFN-β, MHC-I, and PD-L1, and reduced CD8+T cell infiltration and migration. Additional anti-PD-L1 therapy promoted antitumor response by elevation of tumor-MHC-I and lymphocyte activation. CONCLUSIONS Combined radiation and AZD0156 increase STING-dependent antitumor response. Tumor-derived cell-autonomous IFN-β amplification drives both MHC-I and PD-L1 induction at the tumor cell surface, which is required by anti-PD-L1 therapy to promote antitumor immune response following RT and AZD0156 combination therapy.
Collapse
Affiliation(s)
- Won Jong Jin
- Department Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Luke M Zangl
- Department Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Meredith Hyun
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Elian Massoud
- Department Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kaleb Schroeder
- Department Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Roxana A Alexandridis
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Zachary S Morris
- Department Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
26
|
Jiang S, Macaulay R, Ahmed K, Etame AB, Yu HHM. Characterization of Immune Infiltrates Associated With Radiation Necrosis in the Setting of Brain Metastases Following Stereotactic Radiosurgery and Immunotherapy: A Retrospective Cohort Analysis. Cureus 2023; 15:e43528. [PMID: 37719517 PMCID: PMC10501495 DOI: 10.7759/cureus.43528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/13/2023] [Indexed: 09/19/2023] Open
Abstract
INTRODUCTION Radiation necrosis (RN) is caused by vascular damage and brain parenchymal injury resulting in inflammation following radiotherapy (RT) for brain metastases. The impact of immunotherapy (IO) on the immune cellular microenvironment in patients' brain metastases is unknown. The objective of this study was to characterize the inflammatory microenvironment in the setting of RN compared to recurrent metastasis and determine whether IO treatment affects the cellular infiltrates. METHODS Adult patients with brain metastases from solid tumors who received both systemic IO and RT prior to resection of intracranial lesions were retrospectively analyzed. The resection either showed biopsy-proven RN or recurrent tumor. A group of patients who developed RN and were not on IO was reviewed as well. A total of 18 patients were categorized into one of three groups: necrosis, IO+RT; tumor, IO+RT; and necrosis, RT. Surgical specimens were stained for immune and inflammatory components and reviewed by a neuro-pathologist who remained blinded during the analysis. The presence or absence of lymphocytes, perivascular cuffs, plasma cells, macrophages, and fibrinoid vascular changes was characterized in a semiquantitative manner. RESULTS The median age was 61.5 years (range 37-82 years). Seventy-seven percent of primary cancers were melanoma. Patients with RN were more likely to exhibit immune infiltrates compared to patients with recurrent metastasis. Limited analysis showed 100% of patients in "necrosis, IO+RT" had quantifiable cell counts; conversely, 83.3% of patients in "tumor, IO+RT" lacked quantifiable cell counts. Additionally, 83.3% of patients in "necrosis, RT" showed immune cells, including lymphocytes, macrophages, plasma cells, and cuffing. CONCLUSION The immune microenvironment of brain metastasis following RT and IO showed higher levels of cell infiltrates in the RN setting versus the recurrent tumor setting. Patients who received prior IO compared to those with no IO had similar immune cell infiltrates adjacent to RN. Lower levels of immune cells in tumor recurrence following IO and RT raise the possibility that an environment lacking primed immune cells may decrease the efficacy of IO.
Collapse
Affiliation(s)
- Shirley Jiang
- Department of Radiation Oncology, Houston Lee Moffitt Cancer Center, Tampa, USA
- College of Medicine, University of South Florida (USF) Health, Tampa, USA
| | - Robert Macaulay
- Department of Pathology, Houston Lee Moffitt Cancer Center, Tampa, USA
| | - Kamran Ahmed
- Department of Radiation Oncology, Houston Lee Moffitt Cancer Center, Tampa, USA
| | - Arnold B Etame
- Department of Neurosurgery, Houston Lee Moffitt Cancer Center, Tampa, USA
| | | |
Collapse
|
27
|
Zhang Y, Gu W, Shao Y. The therapeutic targets of N6-methyladenosine (m6A) modifications on tumor radioresistance. Discov Oncol 2023; 14:141. [PMID: 37522921 PMCID: PMC10390431 DOI: 10.1007/s12672-023-00759-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023] Open
Abstract
Radiation therapy is an important tool for malignant tumors, and its tolerance needs to be addressed. In recent years, several studies have shown that regulators of aberrant m6A methylation play an important role in the formation, development and invasion and metastasis of tumors. A large number of studies have confirmed aberrant m6A methylation as a new target for tumour therapy, but research on whether it can play a role in tumor sensitivity to radiotherapy has not been extensive and thorough enough. Recent studies have shown that all three major enzymes of m6A methylation have significant roles in radioresistance, and that the enzymes that play a role differ in different tumor types and by different mechanisms, including regulating tumor cell stemness, affecting DNA damage and repair, and controlling the cell cycle. Therefore, elucidating the mechanisms of m6A methylation in the radiotherapy of malignant tumors is essential to counteract radioresistance, improve the efficacy of radiotherapy, and even propose targeted treatment plans for specific tumors. The latest research progress on m6A methylation and radioresistance is reviewed in this article.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China
| | - Wendong Gu
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China.
| | - Yingjie Shao
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China.
| |
Collapse
|
28
|
Wu W, Wang Y, Xie J, Fan S. Empagliflozin: a potential anticancer drug. Discov Oncol 2023; 14:127. [PMID: 37436535 DOI: 10.1007/s12672-023-00719-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/06/2023] [Indexed: 07/13/2023] Open
Abstract
Empagliflozin, a sodium-glucose cotransporter 2 (SGLT2) inhibitor, is a highly effective and well-tolerated antidiabetic drug. In addition to hypoglycemic effects, empagliflozin has many other effects, such as being hypotensive and cardioprotective. It also has anti-inflammatory and antioxidative stress effects in diabetic nephropathy. Several studies have shown that empagliflozin has anticancer effects. SGLT2 is expressed in a variety of cancer cell lines. The SGLT2 inhibitor empagliflozin has significant inhibitory effects on certain types of tumor cells, such as inhibition of proliferation, migration and induction of apoptosis. In conclusion, empagliflozin has promising applications in cancer therapy as a drug for the treatment of diabetes and heart failure. This article provides a brief review of the anticancer effects of empagliflozin.
Collapse
Affiliation(s)
- Wenwen Wu
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Yanyan Wang
- Department of Ultrasonic Medicine, The First People's Hospital of Xuzhou, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu, 221000, China
| | - Jun Xie
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.
| | - Shaohua Fan
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.
| |
Collapse
|
29
|
Galluzzi L, Aryankalayil MJ, Coleman CN, Formenti SC. Emerging evidence for adapting radiotherapy to immunotherapy. Nat Rev Clin Oncol 2023:10.1038/s41571-023-00782-x. [PMID: 37280366 DOI: 10.1038/s41571-023-00782-x] [Citation(s) in RCA: 146] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2023] [Indexed: 06/08/2023]
Abstract
Immunotherapy has revolutionized the clinical management of many malignancies but is infrequently associated with durable objective responses when used as a standalone treatment approach, calling for the development of combinatorial regimens with superior efficacy and acceptable toxicity. Radiotherapy, the most commonly used oncological treatment, has attracted considerable attention as a combination partner for immunotherapy owing to its well-known and predictable safety profile, widespread clinical availability, and potential for immunostimulatory effects. However, numerous randomized clinical trials investigating radiotherapy-immunotherapy combinations have failed to demonstrate a therapeutic benefit compared with either modality alone. Such a lack of interaction might reflect suboptimal study design, choice of end points and/or administration of radiotherapy according to standard schedules and target volumes. Indeed, radiotherapy has empirically evolved towards radiation doses and fields that enable maximal cancer cell killing with manageable toxicity to healthy tissues, without much consideration of potential radiation-induced immunostimulatory effects. Herein, we propose the concept that successful radiotherapy-immunotherapy combinations might require modifications of standard radiotherapy regimens and target volumes to optimally sustain immune fitness and enhance the antitumour immune response in support of meaningful clinical benefits.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
| | - Molykutty J Aryankalayil
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - C Norman Coleman
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Silvia C Formenti
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
30
|
Zhang R, Clark SD, Guo B, Zhang T, Jeansonne D, Jeyaseelan SJ, Francis J, Huang W. Challenges in the combination of radiotherapy and immunotherapy for breast cancer. Expert Rev Anticancer Ther 2023; 23:375-383. [PMID: 37039098 PMCID: PMC10929662 DOI: 10.1080/14737140.2023.2188196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 03/03/2023] [Indexed: 04/12/2023]
Abstract
INTRODUCTION Immunotherapy (IT) is showing promise in the treatment of breast cancer, but IT alone only benefits a minority of patients. Radiotherapy (RT) is usually included in the standard of care for breast cancer patients and is traditionally considered as a local form of treatment. The emerging knowledge of RT-induced systemic immune response, and the observation that the rare abscopal effect of RT on distant cancer metastases can be augmented by IT, have increased the enthusiasm for combinatorial immunoradiotherapy (IRT) for breast cancer patients. However, IRT largely follows the traditional sole RT and IT protocols and does not consider patient specificity, although patients' responses to treatment remain heterogeneous. AREAS COVERED This review discusses the rationale of IRT for breast cancer, the current knowledge, challenges, and future directions. EXPERT OPINION The synergy between RT and the immune system has been observed but not well understood at the basic level. The optimal dosages, timing, target, and impact of biomarkers are largely unknown. There is an urgent need to design efficacious pre-clinical and clinical trials to optimize IRT for cancer patients, maximize the synergy of radiation and immune response, and explore the abscopal effect in depth, taking into account patients' personal features.
Collapse
Affiliation(s)
- Rui Zhang
- Medical Physics Program, Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA, USA
- Department of Radiation Oncology, Mary Bird Perkins Cancer Center, Baton Rouge, LA, USA
| | - Samantha D Clark
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Beibei Guo
- Department of Experimental Statistics, Louisiana State University, Baton Rouge, LA, USA
| | - Tianyi Zhang
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Duane Jeansonne
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Samithamby J Jeyaseelan
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Joseph Francis
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Weishan Huang
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
31
|
Clinical Effects of Immuno-Oncology Therapy on Glioblastoma Patients: A Systematic Review. Brain Sci 2023; 13:brainsci13020159. [PMID: 36831702 PMCID: PMC9953849 DOI: 10.3390/brainsci13020159] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
The most prevalent and deadly primary malignant glioma in adults is glioblastoma (GBM), which has a median survival time of about 15 months. Despite the standard of care for glioblastoma, which includes gross total resection, high-dose radiation, and temozolomide chemotherapy, this tumor is still one of the most aggressive and difficult to treat. So, it is critical to find more potent therapies that can help glioblastoma patients have better clinical outcomes. Additionally, the prognosis for recurring malignant gliomas is poor, necessitating the need for innovative therapeutics. Immunotherapy is a rather new treatment for glioblastoma and its effects are not well studied when it is combined with standard chemoradiation therapy. We conducted this study to evaluate different glioblastoma immunotherapy approaches in terms of feasibility, efficacy, and safety. We conducted a computer-assisted literature search of electronic databases for essays that are unique, involve either prospective or retrospective research, and are entirely written and published in English. We examined both observational data and randomized clinical trials. Eighteen studies met the criteria for inclusion. In conclusion, combining immunotherapy with radiochemotherapy and tumor removal is generally possible and safe, and rather effective in the prolongation of survival measures.
Collapse
|
32
|
Sasaki M, Tanaka M, Kojima Y, Nishie H, Shimura T, Kubota E, Kataoka H. Anti-tumor immunity enhancement by photodynamic therapy with talaporfin sodium and anti-programmed death 1 antibody. Mol Ther Oncolytics 2023; 28:118-131. [PMID: 36726602 PMCID: PMC9867957 DOI: 10.1016/j.omto.2022.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 12/31/2022] [Indexed: 01/04/2023] Open
Abstract
Photodynamic therapy (PDT) is a relatively non-invasive anti-cancer therapy that employs a photosensitizer with a specific wavelength of light irradiation. PDT induces direct cell killing and enhancement effects on tumor immunity, but its underlying mechanism remains unknown. Here, we perform a basic analysis of the anti-tumor effect of talaporfin sodium (TS)-PDT as well as its synergism with the immune checkpoint inhibitor anti-programmed death 1 (anti-PD-1) antibody. We estimate the cell death mechanism induced by TS-PDT and the induction of damage-associated molecular patterns (DAMPs) by TS-PDT in vitro. We establish a syngeneic mouse model of bilateral flank tumors and verify the enhancement of the abscopal effect on the non-irradiated side. TS-PDT induced apoptosis, necrosis, and autophagy-associated cell death in vitro. TS-PDT induced the release and/or expression of DAMPs in vitro. Tumor growth was inhibited in the TS-PDT and anti-PD-1 antibody combination group compared with other single-treatment or non-treatment groups in vivo. In summary, TS-PDT induces the release and/or expression of DAMPs, indicating that it activates innate immunity. PD-1 blockage enhances the anti-tumor immunity induced by TS-PDT. Thus, our results demonstrate that the combination of TS-PDT and anti-PD-1 antibody can potentially be used for anti-tumor therapy.
Collapse
Affiliation(s)
- Makiko Sasaki
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Science, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Mamoru Tanaka
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Science, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan,Corresponding author: Mamoru Tanaka, MD, PhD, Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan.
| | - Yuki Kojima
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Science, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Hirotada Nishie
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Science, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Takaya Shimura
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Science, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Eiji Kubota
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Science, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Hiromi Kataoka
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Science, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| |
Collapse
|
33
|
Shen X, Huang S, Xiao H, Zeng S, Liu J, Ran Z, Xiong B. Efficacy and safety of PD-1/PD-L1 plus CTLA-4 antibodies ± other therapies in lung cancer: a systematic review and meta-analysis. Eur J Hosp Pharm 2023; 30:3-8. [PMID: 34497128 PMCID: PMC9811552 DOI: 10.1136/ejhpharm-2021-002803] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 08/24/2021] [Indexed: 01/07/2023] Open
Abstract
PURPOSE To investigate the efficacy and safety of programmed cell death 1 (PD-1)/programmed cell death-ligand 1 (PD-L1) plus cytotoxic T lymphocyte antigen-4 (CTLA-4) antibodies ± other therapies in patients with advanced lung cancer. METHODS In accordance with the retrieval strategy, we searched electronic databases for randomised controlled trials testing PD-1/PD-L1 plus CTLA-4 antibodies in patients with lung cancer; RR (for objective response rate (ORR), overall survival (OS), progression-free survival (PFS), and immune-related adverse events (irAEs)) from individual studies were calculated and pooled by using random-effects models or fixed-effects models; heterogeneity and publication bias analyses were also performed, using Review Manager 5.3 and Stata 15.1 for statistical analysis. RESULTS We included six studies. Four different immune checkpoint inhibitors (nivolumab, pembrolizumab, durvalumab, tremelimumab) were used. Dual checkpoint inhibitors ± other therapies for advanced lung cancer showed significant improvements in ORR (RR 1.49, 95% CI 1.11 to 1.98; p=0.007), OS (HR 0.72, 95% CI 0.63 to 0.83; p<0.00001), and PFS (HR 0.72, 95% CI 0.63 to 0.82; p<0.00001). The subgroup analyses were consistent with the pooled results. The PD-L1 ≥1% (HR 0.67, 95% CI 0.54 to 0.82; p<0.0001) subgroup differences indicated a statistically significant subgroup effect, but the PD-L1 <1% subgroup (HR 0.88, 95% CI 0.75 to 1.05; p=0.15) was not statistically significant. The incidence of adverse events (grade ≥3) was lower than that of the control group (RR 0.90, 95% CI 0.80 to 1.02; p=0.09), but was not significant. CONCLUSIONS PD-1/PD-L1 inhibitors combined with CTLA-4 inhibitors ± other therapies can improve the ORR, OS and PFS of patients with advanced or metastatic lung cancer, but the incidence of adverse reactions is high although generally tolerable. PROSPERO REGISTRATION CRD42020149216.
Collapse
Affiliation(s)
- Xiang Shen
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Shangke Huang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Hua Xiao
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Shan Zeng
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Jiexing Liu
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Zhuolan Ran
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Bin Xiong
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
34
|
The Current and Future Promises of Combination Radiation and Immunotherapy for Genitourinary Cancers. Cancers (Basel) 2022; 15:cancers15010127. [PMID: 36612124 PMCID: PMC9818005 DOI: 10.3390/cancers15010127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/12/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
As the indications for the use of immunotherapy in genitourinary malignancies expand, its role in combination with standard or conventional therapies has become the subject of contemporary studies. Radiotherapy has multiple immunomodulating effects on anti-tumor immune response, which highlights potential synergistic role with immunotherapy agents. We sought to review the body of published data studying the combination of immunotherapy and radiotherapy as well as the rationale for combination therapy. Trial information and primary articles were obtained using the following terms "immunotherapy", "radiotherapy", "prostate cancer", and "bladder cancer." All articles and trials were screened to ensure they included combination radiotherapy and immunotherapy. The effects of radiation on the immune system, including both immunogenic and immunosuppressive effects, have been reported. There is a potential for combinatorial or synergistic effects between radiation therapy and immunotherapy in treating bladder and prostate cancers. However, results from ongoing and future clinical trials are needed to best integrate immunotherapy into current standard of care treatments for GU cancers.
Collapse
|
35
|
Elias C, Zeidan YH, Bouferraa Y, Mukherji D, Temraz S, Charafeddine M, Al Darazi M, Shamseddine A. A phase II single arm study of Nivolumab with stereotactic Ablative radiation Therapy after induction chemotherapy in CHOlangiocarcinoma (NATCHO). BMC Cancer 2022; 22:1296. [PMID: 36503610 PMCID: PMC9743639 DOI: 10.1186/s12885-022-10373-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (CCA) is amongst the most common primary liver tumors worldwide. CCA carries a bad prognosis prompting research to establish new treatment modalities other than surgery and the current chemotherapeutic regimens adopted. Hence, this trial explores a new therapeutic approach, to combine stereotactic body radiation therapy (SBRT) and immunotherapy (Nivolumab), and asses its clinical benefit and safety profile after induction chemotherapy in CCA. METHODOLOGY This is a Phase II open-label, single-arm, multicenter study that investigates Nivolumab (PD-1 inhibitor) treatment at Day 1 followed by SBRT (30 Gy in 3 to 5 fractions) at Day 8, then monthly Nivolumab in 40 patients with non-resectable locally advanced, metastatic or recurrent intrahepatic or extrahepatic CCA. Eligible patients were those above 18 years of age with a pathologically and radiologically confirmed diagnosis of non-resectable locally advanced or metastatic or recurrent intrahepatic or extrahepatic CCA, following 4 cycles of cisplatin-based chemotherapy with an estimated life expectancy of more than 3 months, among other criteria. The primary endpoint is the progression free survival (PFS) rate at 8 months and disease control rate (DCR). The secondary endpoints are overall survival (OS), tumor response rate (TRR), duration of response, evaluation of biomarkers: CD3 + , CD4 + and CD8 + T cell infiltration, as well as any change in the PD-L1 expression through percutaneous core biopsy when compared with the baseline biopsy following 1 cycle of Nivolumab and SBRT. DISCUSSION SRBT alone showed promising results in the literature by both inducing the immune system locally and having abscopal effects on distant metastases. Moreover, given the prevalence of PD-L1 in solid tumors, targeting it or its receptor has become the mainstay of novel immunotherapeutic drugs use. A combination of both has never been explored in the scope of CCA and that is the aim of this study. TRIAL REGISTRATION ClinicalTrials.gov NCT04648319 , April 20, 2018.
Collapse
Affiliation(s)
- Charbel Elias
- grid.411654.30000 0004 0581 3406Department of Internal Medicine, Division of Hematology/Oncology, Naef K. Basile Cancer Institute- NKBCI, American University of Beirut Medical Center, Beirut, Lebanon
| | - Youssef H. Zeidan
- grid.411654.30000 0004 0581 3406Department of Radiation Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Youssef Bouferraa
- grid.411654.30000 0004 0581 3406Department of Internal Medicine, Division of Hematology/Oncology, Naef K. Basile Cancer Institute- NKBCI, American University of Beirut Medical Center, Beirut, Lebanon
| | - Deborah Mukherji
- grid.411654.30000 0004 0581 3406Department of Internal Medicine, Division of Hematology/Oncology, Naef K. Basile Cancer Institute- NKBCI, American University of Beirut Medical Center, Beirut, Lebanon
| | - Sally Temraz
- grid.411654.30000 0004 0581 3406Department of Internal Medicine, Division of Hematology/Oncology, Naef K. Basile Cancer Institute- NKBCI, American University of Beirut Medical Center, Beirut, Lebanon
| | - Maya Charafeddine
- grid.411654.30000 0004 0581 3406Department of Internal Medicine, Division of Hematology/Oncology, Naef K. Basile Cancer Institute- NKBCI, American University of Beirut Medical Center, Beirut, Lebanon
| | - Monita Al Darazi
- grid.411654.30000 0004 0581 3406Department of Internal Medicine, Division of Hematology/Oncology, Naef K. Basile Cancer Institute- NKBCI, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ali Shamseddine
- grid.411654.30000 0004 0581 3406Department of Internal Medicine, Division of Hematology/Oncology, Naef K. Basile Cancer Institute- NKBCI, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
36
|
Fabian KP, Kowalczyk JT, Reynolds ST, Hodge JW. Dying of Stress: Chemotherapy, Radiotherapy, and Small-Molecule Inhibitors in Immunogenic Cell Death and Immunogenic Modulation. Cells 2022; 11:cells11233826. [PMID: 36497086 PMCID: PMC9737874 DOI: 10.3390/cells11233826] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/11/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
Innovative strategies to re-establish the immune-mediated destruction of malignant cells is paramount to the success of anti-cancer therapy. Accumulating evidence suggests that radiotherapy and select chemotherapeutic drugs and small molecule inhibitors induce immunogenic cell stress on tumors that results in improved immune recognition and targeting of the malignant cells. Through immunogenic cell death, which entails the release of antigens and danger signals, and immunogenic modulation, wherein the phenotype of stressed cells is altered to become more susceptible to immune attack, radiotherapies, chemotherapies, and small-molecule inhibitors exert immune-mediated anti-tumor responses. In this review, we discuss the mechanisms of immunogenic cell death and immunogenic modulation and their relevance in the anti-tumor activity of radiotherapies, chemotherapies, and small-molecule inhibitors. Our aim is to feature the immunological aspects of conventional and targeted cancer therapies and highlight how these therapies may be compatible with emerging immunotherapy approaches.
Collapse
|
37
|
Jagodinsky JC, Bates AM, Clark PA, Sriramaneni RN, Havighurst TC, Chakravarty I, Nystuen EJ, Kim K, Sondel PM, Jin WJ, Morris ZS. Local TLR4 stimulation augments in situ vaccination induced via local radiation and anti-CTLA-4 checkpoint blockade through induction of CD8 T-cell independent Th1 polarization. J Immunother Cancer 2022; 10:e005103. [PMID: 36192087 PMCID: PMC9535200 DOI: 10.1136/jitc-2022-005103] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Radiation therapy (RT) has been demonstrated to generate an in situ vaccination (ISV) effect in murine models and in patients with cancer; however, this has not routinely translated into enhanced clinical response to immune checkpoint inhibition (ICI). We investigated whether the commonly used vaccine adjuvant, monophosphoryl lipid A (MPL) could augment the ISV regimen consisting of combination RT and ICI. MATERIALS/METHODS We used syngeneic murine models of melanoma (B78) and prostate cancer (Myc-CaP). Tumor-bearing mice received either RT (12 Gy, day 1), RT+anti-CTLA-4 (C4, day 3, 6, 9), MPL (20 µg IT injection days 5, 7, 9), RT+C4+MPL, or PBS control. To evaluate the effect of MPL on the irradiated tumor microenvironment, primary tumor with tumor draining lymph nodes were harvested for immune cell infiltration analysis and cytokine profiling, and serum was collected for analysis of antitumor antibody populations. RESULTS Combination RT+C4+MPL significantly reduced tumor growth, increased survival and complete response rate compared with RT+C4 in both B78 and Myc-CaP models. MPL favorably reprogrammed the irradiated tumor-immune microenvironment toward M1 macrophage and Th1 TBET+CD4+ T cell polarization. Furthermore, MPL significantly increased intratumoral expression of several Th1-associated and M1-associated proinflammatory cytokines. In co-culture models, MPL-stimulated macrophages directly activated CD8 T cells and polarized CD4 cells toward Th1 phenotype. MPL treatment significantly increased production of Th1-associated, IgG2c antitumor antibodies, which were required for and predictive of antitumor response to RT+C4+MPL, and enabled macrophage-mediated antibody-dependent direct tumor cell killing by MPL-stimulated macrophages. Macrophage-mediated tumor cell killing was dependent on FcγR expression. In metastatic models, RT and MPL generated a systemic antitumor immune response that augmented response to ICIs. This was dependent on macrophages and CD4+ but not CD8+T cells. CONCLUSIONS We report the potential for MPL to augment the ISV effect of combination RT+C4 through FcγR, macrophage, and TBET+CD4+ Th1 cell dependent mechanisms. To our knowledge, this is the first report describing generation of a CD8+ T cell-independent, Th1 polarized, systemic antitumor immune response with subsequent generation of immunologic memory. These findings support the potential for vaccine adjuvants to enhance the efficacy of in situ tumor vaccine approaches.
Collapse
Affiliation(s)
- Justin C Jagodinsky
- Department of Human Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Amber M Bates
- Department of Human Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Paul A Clark
- Department of Human Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Raghava N Sriramaneni
- Department of Human Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Thomas C Havighurst
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Ishan Chakravarty
- Department of Human Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Erin J Nystuen
- Department of Human Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - KyungMann Kim
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Paul M Sondel
- Department of Pediatrics, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Won Jong Jin
- Department of Human Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Zachary S Morris
- Department of Human Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
38
|
Boosting the Immune Response—Combining Local and Immune Therapy for Prostate Cancer Treatment. Cells 2022; 11:cells11182793. [PMID: 36139368 PMCID: PMC9496996 DOI: 10.3390/cells11182793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/29/2022] Open
Abstract
Due to its slow progression and susceptibility to radical forms of treatment, low-grade PC is associated with high overall survival (OS). With the clinical progression of PC, the therapy is becoming more complex. The immunosuppressive tumor microenvironment (TME) makes PC a difficult target for most immunotherapeutics. Its general immune resistance is established by e.g., immune evasion through Treg cells, synthesis of immunosuppressive mediators, and the defective expression of surface neoantigens. The success of sipuleucel-T in clinical trials initiated several other clinical studies that specifically target the immune escape of tumors and eliminate the immunosuppressive properties of the TME. In the settings of PC treatment, this can be commonly achieved with radiation therapy (RT). In addition, focal therapies usually applied for localized PC, such as high-intensity focused ultrasound (HIFU) therapy, cryotherapy, photodynamic therapy (PDT), and irreversible electroporation (IRE) were shown to boost the anti-cancer response. Nevertheless, the present guidelines restrict their application to the context of a clinical trial or a prospective cohort study. This review explains how RT and focal therapies enhance the immune response. We also provide data supporting the combination of RT and focal treatments with immune therapies.
Collapse
|
39
|
Abscopal Response in Metastatic Melanoma: Real-World Data of a Retrospective, Multicenter Study. Cancers (Basel) 2022; 14:cancers14174213. [PMID: 36077747 PMCID: PMC9454568 DOI: 10.3390/cancers14174213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/02/2022] [Accepted: 08/11/2022] [Indexed: 11/28/2022] Open
Abstract
Objective: To evaluate the incidence of the abscopal response (AR) in patients with metastatic melanoma requiring palliative radiotherapy (RT). Patients and methods: Patients treated for metastatic melanoma between January 1998 and February 2020 in four oncology departments were screened. Patients with progression under immune checkpoint inhibitors or without ongoing systemic treatment, and requiring palliative RT were considered. The AR was defined as an objective response according to RECIST and/or iRECIST for at least one non-irradiated metastasis at distance (≥10 cm) from the irradiated lesion. Primary endpoint was the rate of AR. Secondary endpoints were overall survival (OS), progression-free survival (PFS), local control (LC) of the irradiated lesion, and toxicity as assessed by CTCAE v5. Results: Over the period considered, 118 patients were included and analyzed. Fifteen patients (12.7%) had an AR. With a median follow-up of 7.7 months (range, 0.2−242.2), median OS and PFS after RT were significantly longer in patients with an AR compared to those without: 28 vs. 6.6 months (p < 0.01) and not reached vs. 3.2 months, respectively. No grade ≥2 toxicity was reported. Patients who developed an AR were more likely to be treated with immunotherapy (93.3% vs. 55.9%, p = 0.02). In multivariate analysis, they had a higher number of irradiated metastases treated concomitantly (HR = 16.9, p < 0.01) and a higher rate of mild infections during RT (HR = 403.5, p < 0.01). Conclusions: AR in metastatic melanoma seems to be highly prognostic of overall survival, although it is a rare phenomenon. It may be promoted by multiple concomitant treatments with RT and immunotherapy and by acute inflammatory events such as infection.
Collapse
|
40
|
Potluri HK, Ferreira CA, Grudzinski J, Massey C, Aluicio-Sarduy E, Engle JW, Kwon O, Marsh IR, Bednarz BP, Hernandez R, Weichert JP, McNeel DG. Antitumor efficacy of 90Y-NM600 targeted radionuclide therapy and PD-1 blockade is limited by regulatory T cells in murine prostate tumors. J Immunother Cancer 2022; 10:jitc-2022-005060. [PMID: 36002185 PMCID: PMC9413196 DOI: 10.1136/jitc-2022-005060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2022] [Indexed: 12/14/2022] Open
Abstract
Background Systemic radiation treatments that preferentially irradiate cancer cells over normal tissue, known as targeted radionuclide therapy (TRT), have shown significant potential for treating metastatic prostate cancer. Preclinical studies have demonstrated the ability of external beam radiation therapy (EBRT) to sensitize tumors to T cell checkpoint blockade. Combining TRT approaches with immunotherapy may be more feasible than combining with EBRT to treat widely metastatic disease, however the effects of TRT on the prostate tumor microenvironment alone and in combinfation with checkpoint blockade have not yet been studied. Methods C57BL/6 mice-bearing TRAMP-C1 tumors and FVB/NJ mice-bearing Myc-CaP tumors were treated with a single intravenous administration of either low-dose or high-dose 90Y-NM600 TRT, and with or without anti-PD-1 therapy. Groups of mice were followed for tumor growth while others were used for tissue collection and immunophenotyping of the tumors via flow cytometry. Results 90Y-NM600 TRT was safe at doses that elicited a moderate antitumor response. TRT had multiple effects on the tumor microenvironment including increasing CD8 +T cell infiltration, increasing checkpoint molecule expression on CD8 +T cells, and increasing PD-L1 expression on myeloid cells. However, PD-1 blockade with TRT treatment did not improve antitumor efficacy. Tregs remained functional up to 1 week following TRT, but CD8 +T cells were not, and the suppressive function of Tregs increased when anti-PD-1 was present in in vitro studies. The combination of anti-PD-1 and TRT was only effective in vivo when Tregs were depleted. Conclusions Our data suggest that the combination of 90Y-NM600 TRT and PD-1 blockade therapy is ineffective in these prostate cancer models due to the activating effect of anti-PD-1 on Tregs. This finding underscores the importance of thorough understanding of the effects of TRT and immunotherapy combinations on the tumor immune microenvironment prior to clinical investigation.
Collapse
Affiliation(s)
- Hemanth K Potluri
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Carolina A Ferreira
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Joseph Grudzinski
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Christopher Massey
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Jonathan W Engle
- Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ohyun Kwon
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ian R Marsh
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Bryan P Bednarz
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Reinier Hernandez
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jamey P Weichert
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Douglas G McNeel
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
41
|
Zhang Z, Liu X, Chen D, Yu J. Radiotherapy combined with immunotherapy: the dawn of cancer treatment. Signal Transduct Target Ther 2022; 7:258. [PMID: 35906199 PMCID: PMC9338328 DOI: 10.1038/s41392-022-01102-y] [Citation(s) in RCA: 270] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/19/2022] [Accepted: 06/30/2022] [Indexed: 11/09/2022] Open
Abstract
Radiotherapy (RT) is delivered for purposes of local control, but can also exert systemic effect on remote and non-irradiated tumor deposits, which is called abscopal effect. The view of RT as a simple local treatment has dramatically changed in recent years, and it is now widely accepted that RT can provoke a systemic immune response which gives a strong rationale for the combination of RT and immunotherapy (iRT). Nevertheless, several points remain to be addressed such as the interaction of RT and immune system, the identification of the best schedules for combination with immunotherapy (IO), the expansion of abscopal effect and the mechanism to amplify iRT. To answer these crucial questions, we roundly summarize underlying rationale showing the whole immune landscape in RT and clinical trials to attempt to identify the best schedules of iRT. In consideration of the rarity of abscopal effect, we propose that the occurrence of abscopal effect induced by radiation can be promoted to 100% in view of molecular and genetic level. Furthermore, the “radscopal effect” which refers to using low-dose radiation to reprogram the tumor microenvironment may amplify the occurrence of abscopal effect and overcome the resistance of iRT. Taken together, RT could be regarded as a trigger of systemic antitumor immune response, and with the help of IO can be used as a radical and systemic treatment and be added into current standard regimen of patients with metastatic cancer.
Collapse
Affiliation(s)
- Zengfu Zhang
- Department of Radiation Oncology, Shandong University Cancer Center, Yantai Road, No. 2999, Jinan, Shandong, China
| | - Xu Liu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jiyan Road, No. 440, Jinan, Shandong, China
| | - Dawei Chen
- Department of Radiation Oncology, Shandong University Cancer Center, Yantai Road, No. 2999, Jinan, Shandong, China.
| | - Jinming Yu
- Department of Radiation Oncology, Shandong University Cancer Center, Yantai Road, No. 2999, Jinan, Shandong, China.
| |
Collapse
|
42
|
Pompos A, Foote RL, Koong AC, Le QT, Mohan R, Paganetti H, Choy H. National Effort to Re-Establish Heavy Ion Cancer Therapy in the United States. Front Oncol 2022; 12:880712. [PMID: 35774126 PMCID: PMC9238353 DOI: 10.3389/fonc.2022.880712] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
In this review, we attempt to make a case for the establishment of a limited number of heavy ion cancer research and treatment facilities in the United States. Based on the basic physics and biology research, conducted largely in Japan and Germany, and early phase clinical trials involving a relatively small number of patients, we believe that heavy ions have a considerably greater potential to enhance the therapeutic ratio for many cancer types compared to conventional X-ray and proton radiotherapy. Moreover, with ongoing technological developments and with research in physical, biological, immunological, and clinical aspects, it is quite plausible that cost effectiveness of radiotherapy with heavier ions can be substantially improved.
Collapse
Affiliation(s)
- Arnold Pompos
- Department of Radiation Oncology, University of Texas (UT) Southwestern Medical Center, Dallas, TX, United States
| | - Robert L. Foote
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States
- *Correspondence: Robert L. Foote,
| | - Albert C. Koong
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Quynh Thu Le
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, United States
| | - Radhe Mohan
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Harald Paganetti
- Department of Radiation Oncology, Harvard Medical School and Massachusetts General Hospital, Boston, MA, United States
| | - Hak Choy
- Department of Radiation Oncology, University of Texas (UT) Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
43
|
Palumbo I, Pasqualetti F, Delishaj D, Gonnelli A, Aristei C, Borghesi S, Pirtoli L, Belgioia L, Arcangeli S. Integrating stereotactic radiotherapy and systemic therapies. Rep Pract Oncol Radiother 2022; 27:310-317. [PMID: 36299395 PMCID: PMC9591045 DOI: 10.5603/rpor.a2022.0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/16/2022] [Indexed: 12/03/2022] Open
Abstract
This paper focuses on stereotactic radiotherapy (SRT ) interactions with targeted therapies and immune system modulating agents because SRT inevitably interacts with them in the treatment of oligometastatic patients. Radiation oncologists need to be aware of the advantages and risks of these interactions which can, on one hand, enhance the effect of therapy or, on the other, potentiate reciprocal toxicities. To date, few prospective studies have evaluated the interactions of SRT with new-generation drugs and data are mainly based on retrospective experiences, which are often related to small sample sizes.
Collapse
Affiliation(s)
- Isabella Palumbo
- Radiation Oncology Section, University of Perugia and Perugia General Hospital, Perugia, Italy
| | - Francesco Pasqualetti
- Department of Radiation Oncology, Azienda Ospedaliera Universitaria Pisana, University of Pisa, Pisa, Italy
| | - Durim Delishaj
- Department of Radiation Oncology, Azienda Ospedaliera Universitaria Pisana, University of Pisa, Pisa, Italy
| | - Alessandra Gonnelli
- Department of Radiation Oncology, Azienda Ospedaliera Universitaria Pisana, University of Pisa, Pisa, Italy
| | - Cynthia Aristei
- Radiation Oncology Section, University of Perugia and Perugia General Hospital, Perugia, Italy
| | - Simona Borghesi
- Radiation Oncology Unit of Arezzo-Valdarno, Azienda USL Toscana Sud Est, Italy
| | - Luigi Pirtoli
- Unit of Radiation Oncology, University Hospital of Siena, Siena, Italy
| | - Liliana Belgioia
- Radiation Oncology Department, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Stefano Arcangeli
- Department of Radiation Oncology, Policlinico S. Gerardo and University of Milan Bicocca, Milan, Italy
| |
Collapse
|
44
|
Najafi M, Jahanbakhshi A, Gomar M, Iotti C, Giaccherini L, Rezaie O, Cavallieri F, Deantonio L, Bardoscia L, Botti A, Sardaro A, Cozzi S, Ciammella P. State of the Art in Combination Immuno/Radiotherapy for Brain Metastases: Systematic Review and Meta-Analysis. Curr Oncol 2022; 29:2995-3012. [PMID: 35621634 PMCID: PMC9139474 DOI: 10.3390/curroncol29050244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/03/2022] [Accepted: 04/17/2022] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVES Common origins for brain metastases (BMs) are melanoma, lung, breast, and renal cell cancers. BMs account for a large share of morbidity and mortality caused by these cancers. The advent of new immunotherapeutic treatments has made a revolution in the treatment of cancer patients and particularly, as a new concept, if it is combined with radiotherapy, may lead to considerably longer survival. This systematic review and meta-analysis aimed to evaluate the survival rate and toxicities of such a combination in brain metastases. METHODS To perform a systematic review of the literature until January 2021 using electronic databases such as PubMed, Cochrane Library, and Embase; the Newcastle-Ottawa Scale was used to evaluate the quality of cohort studies. For data extraction, two reviewers extracted the data blindly and independently. Hazard ratio with 95% confidence interval (CI), fixed-effect model, and inverse-variance method was calculated. The meta-analysis has been evaluated with the statistical software Stata/MP v.16 (The fastest version of Stata). RESULTS In the first step, 494 studies were selected to review the abstracts, in the second step, the full texts of 86 studies were reviewed. Finally, 28 studies were selected consisting of 1465 patients. The addition of IT to RT in the treatment of brain metastasis from melanoma and non-small-cell lung carcinoma was associated with a 39% reduction in mortality rate and has prolonged overall survival, with an acceptable toxicity profile. The addition of IT to RT compared with RT alone has a hazard ratio of 0.39(95% CI 0.34-0.44). CONCLUSIONS A combination of immuno/radiotherapy (IR) for the treatment of patients with BMs from melanoma and non-small-cell lung carcinoma has prolonged overall survival and reduced mortality rate, with acceptable toxicity. In terms of timing, RT seems to have the best effect on the result when performed before or simultaneously with immunotherapy.
Collapse
Affiliation(s)
- Masoumeh Najafi
- Skull Base Research Center, Iran University of Medical Sciences, Tehran 1997667665, Iran;
| | - Amin Jahanbakhshi
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran 1997667665, Iran;
| | - Marzieh Gomar
- Radiation Oncology Research Center, Iran Cancer Institute, Tehran University of Medical Sciences, Tehran 1416753955, Iran;
| | - Cinzia Iotti
- Radiation Therapy Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (C.I.); (L.G.); (P.C.)
| | - Lucia Giaccherini
- Radiation Therapy Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (C.I.); (L.G.); (P.C.)
| | - Omid Rezaie
- Hematology-Oncology Department, Jam Hospital, Tehran 1997667665, Iran;
| | - Francesco Cavallieri
- Neurology Unit, Neuromotor & Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Letizia Deantonio
- Radiation Oncology Clinic, Oncology Institute of Southern Switzerland (IOSI), 6500 Bellinzona, Switzerland;
| | - Lilia Bardoscia
- Radiation Oncology Unit, S. Luca Hospital, Healthcare Company Tuscany Nord Ovest, 55100 Lucca, Italy;
| | - Andrea Botti
- Medical Physics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Angela Sardaro
- Section of Radiology and Radiation Oncology, Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Salvatore Cozzi
- Radiation Therapy Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (C.I.); (L.G.); (P.C.)
| | - Patrizia Ciammella
- Radiation Therapy Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (C.I.); (L.G.); (P.C.)
| |
Collapse
|
45
|
Naik M, Al-Nahhas A, Khan SR. Treatment of Neuroendocrine Neoplasms with Radiolabeled Peptides-Where Are We Now. Cancers (Basel) 2022; 14:761. [PMID: 35159027 PMCID: PMC8833798 DOI: 10.3390/cancers14030761] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
Peptide receptor radionuclide therapy (PRRT) has been one of the most successful and exciting examples of theranostics in nuclear medicine in recent decades and is now firmly embedded in many treatment algorithms for unresectable or metastatic neuroendocrine neoplasms (NENs) worldwide. It is widely considered to be an effective treatment for well- or moderately differentiated neoplasms, which express high levels of somatostatin receptors that can be selectively targeted. This review article outlines the scientific basis of PRRT in treatment of NENs and describes its discovery dating back to the early 1990s. Early treatments utilizing Indium-111, a γ-emitter, showed promise in reduction in tumor size and improvement in biochemistry, but were also met with high radiation doses and myelotoxic and nephrotoxic effects. Subsequently, stable conjugation of DOTA-peptides with β-emitting radionuclides, such as Yttrium-90 and Lutetium-177, served as a breakthrough for PRRT and studies highlighted their potential in eliciting progression-free survival and quality of life benefits. This article will also elaborate on the key trials which paved the way for its approval and will discuss therapeutic considerations, such as patient selection and administration technique, to optimize its use.
Collapse
Affiliation(s)
- Mitesh Naik
- Department of Imaging, Charing Cross Hospital, Fulham Palace Road, London W6 8RF, UK;
| | | | - Sairah R. Khan
- Department of Imaging, Charing Cross Hospital, Fulham Palace Road, London W6 8RF, UK;
| |
Collapse
|
46
|
Lamplugh Z, Fan Y. Vascular Microenvironment, Tumor Immunity and Immunotherapy. Front Immunol 2021; 12:811485. [PMID: 34987525 PMCID: PMC8720970 DOI: 10.3389/fimmu.2021.811485] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/29/2021] [Indexed: 01/01/2023] Open
Abstract
Immunotherapy holds great promise for treating cancer. Nonetheless, T cell-based immunotherapy of solid tumors has remained challenging, largely due to the lack of universal tumor-specific antigens and an immunosuppressive tumor microenvironment (TME) that inhibits lymphocyte infiltration and activation. Aberrant vascularity characterizes malignant solid tumors, which fuels the formation of an immune-hostile microenvironment and induces tumor resistance to immunotherapy, emerging as a crucial target for adjuvant treatment in cancer immunotherapy. In this review, we discuss the molecular and cellular basis of vascular microenvironment-mediated tumor evasion of immune responses and resistance to immunotherapy, with a focus on vessel abnormality, dysfunctional adhesion, immunosuppressive niche, and microenvironmental stress in tumor vasculature. We provide an overview of opportunities and challenges related to these mechanisms. We also propose genetic programming of tumor endothelial cells as an alternative approach to recondition the vascular microenvironment and to overcome tumor resistance to immunotherapy.
Collapse
Affiliation(s)
| | - Yi Fan
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
47
|
Dai Y, Muaibati M, Xie W, Abasi A, Li K, Tong Q, Zhang T, Meng Y, Zhuang L, Huang X. PD-1/PD-L1 Inhibitors Monotherapy for the Treatment of Endometrial Cancer: Meta-Analysis and Systematic Review. Cancer Invest 2021; 40:293-309. [PMID: 34825855 DOI: 10.1080/07357907.2021.2012188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE The efficacy of programmed cell death protein 1(PD-1)/Programmed cell death 1 ligand 1 (PD-L1) inhibitors for endometrial cancer remain controversial, and guidelines are inconsistent on which are preferred therapies for advanced disease, or who develop metastases and recurrence. Therefore, we aimed to estimate the efficacy and safety of PD-1/PD-L1 inhibitors in endometrial cancer on a more complete database by adding multiple randomized trials. METHODS A systematic and comprehensive search was carried out in PD-1/PD-L1 inhibitors monotherapy. RESULTS The ORR of PD-1/PDL-1 inhibitors was 29%, and subgroup analysis showed that the pooled ORR of the proficient mismatch repair (pMMR) group was 4% and which was 45% of the deficient mismatch repair (dMMR) group. The DCR of PD-1/PD-L1 inhibitors was 48%, through subgroup analysis, we found that the DCR of the pMMR group was 21% and which was 58% of the dMMR group. The proportion of patients occurring overall adverse events was 65% and grade three or higher adverse events was 14%. The proficient mismatch repair (pMMR) group and the deficient mismatch repair (dMMR) group showed different results. CONCLUSION PD-1/PD-L1 inhibitors had shown little success in the pMMR population and better efficacy in the dMMR population.
Collapse
Affiliation(s)
- Yun Dai
- Department of Gynecological Oncology, Tongji Hospital of Huazhong University of Science and Technology, Wuhan, China
| | - Munawaer Muaibati
- Department of Gynecological Oncology, Tongji Hospital of Huazhong University of Science and Technology, Wuhan, China
| | - Weiming Xie
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Abuduyilimu Abasi
- Department of Gynecological Oncology, Tongji Hospital of Huazhong University of Science and Technology, Wuhan, China
| | - Kexin Li
- Department of Gynecological Oncology, Tongji Hospital of Huazhong University of Science and Technology, Wuhan, China
| | - Qing Tong
- Department of Gynecological Oncology, Tongji Hospital of Huazhong University of Science and Technology, Wuhan, China
| | - Tao Zhang
- Department of Gynecological Oncology, Tongji Hospital of Huazhong University of Science and Technology, Wuhan, China
| | - Yifan Meng
- Department of Gynecologic Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Liang Zhuang
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyuan Huang
- Department of Gynecological Oncology, Tongji Hospital of Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
48
|
Gulley JL, Schlom J, Barcellos-Hoff MH, Wang XJ, Seoane J, Audhuy F, Lan Y, Dussault I, Moustakas A. Dual inhibition of TGF-β and PD-L1: a novel approach to cancer treatment. Mol Oncol 2021; 16:2117-2134. [PMID: 34854206 PMCID: PMC9168966 DOI: 10.1002/1878-0261.13146] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/03/2021] [Accepted: 11/30/2021] [Indexed: 11/11/2022] Open
Abstract
Transforming growth factor β (TGF-β) and programmed death ligand 1 (PD-L1) initiate signaling pathways with complementary, nonredundant immunosuppressive functions in the tumor microenvironment (TME). In the TME, dysregulated TGF-β signaling suppresses antitumor immunity and promotes cancer fibrosis, epithelial-to-mesenchymal transition and angiogenesis. Meanwhile, PD-L1 expression inactivates cytotoxic T cells and restricts immunosurveillance in the TME. Anti-PD-L1 therapies have been approved for the treatment of various cancers, but TGF-β signaling in the TME is associated with resistance to these therapies. In this Review, we discuss the importance of the TGF-β and PD-L1 pathways in cancer, as well as clinical strategies using combination therapies that block these pathways separately or approaches with dual-targeting agents (bispecific and bifunctional immunotherapies) that may block them simultaneously. Currently, the furthest developed dual-targeting agent is bintrafusp alfa. This drug is a first-in-class bifunctional fusion protein that consists of the extracellular domain of the TGF-βRII receptor (a TGF-β "trap") fused to a human immunoglobulin G1 (IgG1) monoclonal antibody blocking PD-L1. Given the immunosuppressive effects of the TGF-β and PD-L1 pathways within the TME, colocalized and simultaneous inhibition of these pathways may potentially improve clinical activity and reduce toxicity.
Collapse
Affiliation(s)
- James L Gulley
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | - Xiao-Jing Wang
- Department of Pathology, University of Colorado, Aurora, CO, USA
| | - Joan Seoane
- ICREA, Vall D'Hebron Institute of Oncology, Universitat Autonoma de Barcelona, CIBERONC, Barcelona, Spain
| | | | - Yan Lan
- EMD Serono, Billerica, MA, USA
| | - Isabelle Dussault
- EMD Serono, Billerica, MA, USA.,Current affiliation: Fusion Pharmaceuticals, Boston, MA, USA
| | - Aristidis Moustakas
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
49
|
Girou DA, Ford E, Wade C, van Aarle C, Uliyanov A, Hanlon L, Tomsick J, Zoglauer A, Collon MJ, Beijersbergen MW, Barriere N. Design and modeling of a Laue lens for radiation therapy with hard x-ray photons. Phys Med Biol 2021; 66. [PMID: 34757951 DOI: 10.1088/1361-6560/ac3840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 11/10/2021] [Indexed: 11/11/2022]
Abstract
We have designed and modeled a novel optical system composed of a Laue lens coupled to an X-ray tube that produces a focused beam in an energy range near 100 keV (λ = 12.4 picometer). One application of this system is radiation therapy where it could enable treatment units that are considerably simpler and lower in cost than present technologies relying on linear accelerators. The Laue lens is made of Silicon Laue Components (SiLCs) which exploit the Silicon Pore Optics (SPO) technology. The lens concentrates photons to a small region thus allowing high dose rates at the focal area with very much lower dose rates at the skin and superficial regions. Monte Carlo simulations with Geant4 indicate a dose deposition rate of 0.2 Gy/min in a cylindrical volume of 0.7 mm diameter and 10 mm length, and a dose ratio of 72 at the surface (skin) compared to the focus placed 10 cm within a water phantom. Work is ongoing to newer generation crystal technologies to increase dose rate.
Collapse
Affiliation(s)
| | - Eric Ford
- Radiation Oncology, University of Washington, Box 356043, 1959 NE Pacific St, Seattle, Washington, 98195, UNITED STATES
| | - Colin Wade
- School of Physics and Centre for Space Research, University College Dublin, Dublin, IRELAND
| | - Casper van Aarle
- Department of Radiation Science and Technology, Delft University of Technology Faculty of Applied Sciences, Delft, Zuid-Holland, NETHERLANDS
| | - Alexey Uliyanov
- School of Physics and Centre for Space Research, University College Dublin, Dublin, IRELAND
| | - Lorraine Hanlon
- School of Physics and Centre for Space Research, University College Dublin, Dublin, IRELAND
| | - John Tomsick
- Space Sciences Laboratory, University of California Berkeley, Berkeley, California, UNITED STATES
| | - Andreas Zoglauer
- Space Sciences Laboratory, University of California Berkeley, Berkeley, California, UNITED STATES
| | | | | | | |
Collapse
|
50
|
PD-1 Inhibitor Maintenance Therapy Combined Iodine-125 Seed Implantation Successfully Salvage Recurrent Cervical Cancer after CCRT: A Case Report. Curr Oncol 2021; 28:4577-4586. [PMID: 34898560 PMCID: PMC8628734 DOI: 10.3390/curroncol28060387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/26/2021] [Accepted: 11/05/2021] [Indexed: 11/16/2022] Open
Abstract
Cervical cancer is the fourth most common cancer in females worldwide. Patients with stage III and IV cervical cancer based on the Federation of Gynecology and Obstetrics (FIGO) classification have higher recurrence rates. Because of organs at risk (OAR) protection and the low indication rate of salvage surgery, the choice of treatment is always challenging. Systemic chemotherapy is palliative and can be performed in conjunction with surgery or radiotherapy; however, it has no significant benefit to survival. Brachytherapy and stereotactic body radiotherapy (SBRT) are characterized by extremely high radiation doses applied to tumor cells while sparing the normal tissues. Several studies have investigated the efficacy of these technologies in recurrent cervical cancer and showed promising results. The immune checkpoint inhibitors approach was also investigated and showed promising results too. Herein, we report a case of a patient with cervical cancer that recurred five months after adjuvant chemotherapy and concurrent chemoradiotherapy. The disease prognosis after interstitial implantation brachytherapy (IIB) was determined. Then, the patient underwent radioactive 125I-seed implantation combined with PD-1 inhibitor treatment. The patient exhibited a partial response after seed implantation, and up to now, the duration of this partial response was 24 months.
Collapse
|