1
|
Sharma M, Naqa IE, Sneed PK. Does Time to Retreatment Matter? A Normal Tissue Complication Probability Model to Predict Radionecrosis After Repeat Stereotactic Radiosurgery for Recurrent Brain Metastases Incorporating Time-dependent Discounted Dose. Int J Radiat Oncol Biol Phys 2025; 122:467-475. [PMID: 39900228 DOI: 10.1016/j.ijrobp.2025.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 01/08/2025] [Accepted: 01/20/2025] [Indexed: 02/05/2025]
Abstract
PURPOSE To develop and compare normal tissue complication probability (NTCP) models for recurrent brain metastases (BMs) treated with repeat single-fraction stereotactic radiosurgery (SRS), considering time-dependent discounted prior dose. METHODS AND MATERIALS We developed three NTCP models (M0, M1-retreat, and M1-combo models) of BMs treated with GammaKnife-based SRS. The maximum dose is 0.2 cc (D0.2cc) of the lesion-specific brain, and the 1-year radionecrosis risk is modeled using a logistic response with doses converted into equivalent dose in 2-Gy fractions (EQD2) based on a linear quadratic linear model. The M0 and M1-retreat models, respectively, predicted radionecrosis risk after SRS to 1029 nonrecurrent lesions (patients, 262) and second SRS to 149 recurrent lesions (patients, 87). The M1-combo model accounted for the second SRS and time-dependent discounted first SRS dose for recurrent lesions estimated using a modified Gompertzian function. RESULTS All 3 models fitted the data well (χ2, 0.039-0.089, and P = 0.999-1.000). The fitted EQD250 was ∼ 103 Gy for the M0 model, ∼ 88 Gy for the M1-retreat model, and ∼ 165 Gy for the M1-combo model. The fitted γ50 exhibited a progressively flatter dose-response curve across the three models, with values of 1.2 per gray for the M0 model, 0.6 per gray for the M1-retreat model, and 0.4 per gray for the M1-combo model. For the brain D0.2cc of 29 and 19 Gy, the steepest to shallowest dose-response or largest change in NTCP values, ie, NTCP29Gy - NTCP19Gy, was observed in the M1-retreat (0.16), M0 (0.14), and M1-combo (0.06) models. CONCLUSIONS The model-fitted parameters predicted that recurrent BMs would have a lower threshold dose tolerance and a more gradual dose response to the second SRS than nonrecurrent BMs. This gradual dose-response becomes even more apparent when considering the time-dependent discounted first SRS as a cumulative second SRS. Tailoring SRS retreatment protocols based on NTCP modeling can potentially enhance therapeutic efficacy.
Collapse
Affiliation(s)
- Manju Sharma
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California.
| | - Issam El Naqa
- Department of Machine Learning, Moffitt Cancer Center, Tampa, Florida
| | - Penny K Sneed
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| |
Collapse
|
2
|
van Ommen F, van Genechten T, Willemsen-Bosman ME, Peters M, Seravalli E, van der Lugt J, Nievelstein RAJ, Mueller S, Hulleman E, van Vuurden DG, Kranendonk MEG, Hoving EW, Hoeben BAW, Janssens GO. Gross tumor volume increase and need for adaptive radiotherapy in pediatric-type diffuse high-grade glioma of the midline structures. Radiother Oncol 2025; 207:110873. [PMID: 40174703 DOI: 10.1016/j.radonc.2025.110873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/18/2025] [Accepted: 03/25/2025] [Indexed: 04/04/2025]
Abstract
INTRODUCTION Current pediatric-type diffuse high-grade glioma radiotherapy protocols apply a 1.0 cm clinical target volume (CTV) margin around the gross tumor volume (GTV). However, in adults with glioblastoma, large variations in GTV are observed during radiotherapy. The study aimed to map the GTV variation during a 6-week course of radiotherapy using repeated MR-imaging and to evaluate the need for plan adaptation. Also, the relation between GTV increase and time to disease progression (TTP) was assessed. MATERIAL AND METHODS Patients with newly diagnosed diffuse midline glioma or diffuse pediatric-type high-grade glioma of the midline structures undergoing a 6-week radiotherapy course, were eligible for inclusion. MRI scans were performed in the pre-treatment phase (MRI0), and at fraction 10 + 20 (rMRI10/rMRI20). On all scans, GTV was delineated. An increase was defined as a >5 % increase of GTV between scans. The need for treatment plan adaptation was based on dosimetric and visual criteria. GTV increase was compared to TTP. RESULTS Twenty patients were eligible. In 12/20 patients, a GTV increase was observed at rMR10/rMR20, more specifically in 6/11 pontine and 6/9 non-pontine tumors. Combining dosimetric criteria and visual inspection, 20 plan adaptations in 14 patients were required. The TTP (range: 1.6-17.6 months) was not significantly different between the group with (median 8.1 months) versus without a GTV increase (median 7.6 months; p = 0.66). CONCLUSION Repeated imaging demonstrated a GTV increase in 60 % of patients and plan adaptation in 70 %. When applying CTV margins of 1.0 cm, plan adaptation is recommended to ensure adequate radiotherapy treatment.
Collapse
Affiliation(s)
- Fasco van Ommen
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Toon van Genechten
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Department of Pediatric Oncology, University Hospital Antwerp, Antwerp, Belgium
| | | | - Max Peters
- Radiotherapiegroep Deventer, Deventer, the Netherlands
| | - Enrica Seravalli
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Rutger A J Nievelstein
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Department of Radiology & Nuclear Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Sabine Mueller
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Department of Neurology, Neurosurgery and Pediatrics, University of California San Francisco, San Francisco, United States
| | - Esther Hulleman
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | | | - Eelco W Hoving
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Bianca A W Hoeben
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, the Netherlands; Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Geert O Janssens
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, the Netherlands; Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.
| |
Collapse
|
3
|
Rana M, Liou KC, Thakur A, Nepali K, Liou JP. Advancing glioblastoma therapy: Learning from the past and innovations for the future. Cancer Lett 2025; 617:217601. [PMID: 40037502 DOI: 10.1016/j.canlet.2025.217601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/25/2025] [Accepted: 03/01/2025] [Indexed: 03/06/2025]
Abstract
Marred by a median survival of only around 12-15 months coupled with poor prognosis and effective therapeutic deprived drug armory, treatment/management of glioblastoma has proved to be a daunting task. Surgical resection, flanked by radiotherapy and chemotherapy with temozolomide, stands as the standard of care; however, this trimodal therapy often manifests limited efficacy due to the heterogeneous and highly infiltrative nature of GBM cells. In addition, the existence of the blood-brain barrier, tumor microenvironment, and the immunosuppressive nature of GBM, along with the encountered resistance of GBM cells towards conventional therapy, also hinders the therapeutic applications of chemotherapeutics in GBM. This review presents key insights into the molecular pathology of GBM, including genetic mutations, signaling pathways, and tumor microenvironment characteristics. Recent innovations such as immunotherapy, oncolytic viral therapies, vaccines, nanotechnology, electric field, and cancer neuroscience, as well as their clinical progress, have been covered. In addition, this compilation also encompasses a discussion on the role of personalized medicine in tailoring treatments based on individual tumor profiles, an approach that is gradually shifting the paradigm in GBM management. Endowed with the learnings imbibed from past failures coupled with the zeal to embrace novel/multidisciplinary approaches, researchers appear to be on the right track to pinpoint more effective and durable solutions in the context of GBM treatment.
Collapse
Affiliation(s)
- Mandeep Rana
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan
| | - Ke-Chi Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan
| | - Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan; TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, 110, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan.
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan; TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, 110, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan.
| |
Collapse
|
4
|
Tari SY, Heikal A, Le C, Yang F, Dinakaran D, Amanie J, Murtha A, Rowe LS, Roa WH, Patel S. Left hippocampus sparing model for glioblastoma radiotherapy by utilizing knowledge-based planning and multi-criteria optimization. J Appl Clin Med Phys 2025; 26:e70014. [PMID: 39955265 PMCID: PMC12059297 DOI: 10.1002/acm2.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 09/21/2024] [Accepted: 12/03/2024] [Indexed: 02/17/2025] Open
Abstract
PURPOSE Results of a prospective, randomized controlled trial at our institute demonstrate an association between the dose to the left hippocampus and neurocognitive decline post-radiotherapy for patients with glioblastoma. To minimize the dose to the left hippocampus, a left hippocampus sparing model was created using RapidPlan (RP) and multi-criteria optimization (MCO). MATERIALS AND METHODS For 147 patients with newly diagnosed glioblastoma treated with volumetric modulated arc therapy (VMAT), the left and right hippocampus were delineated. Ninety-seven of 147 VMAT plans were used to configure a RP model named HCS1. The remaining 50 VMAT plans were used for the model validation. All 97 plans were replanned with the HCS1 and further optimized using MCO (HCS1+MCO). MCO was used to explore the trade-off between reducing the left hippocampus mean dose and planning objectives for the targets and other organs-at-risk (OAR) for HCS1 plans. These plans were used to create a new model called HCS2. MCO and RP model configuration were done within the Eclipse treatment planning system. RESULTS The final HCS2 model decreased the mean dose to the left hippocampus by 26% compared to clinically treated plans without reducing target coverage for 50 validation data. The mean dose to the left hippocampus decreased from 32.65 Gy in clinically treated plans, 30.45 Gy in HCS1-generated plans, and 24.04 Gy in HCS2-generated plans. The mean volume receiving 95% of the prescription dose (V95%) of the planning target volume was 99.08% ± 1.39% in clinically treated plans, 99.03% ± 1.37% in HCS1-generated plans, and 98.80% ± 1.48% in HCS2-generated plans. Mean dose to 0.1 cc of the brainstem improved from 45.91 Gy in clinically treated plans to 39.29 Gy in HCS2-generated plans. CONCLUSIONS The RP model and MCO helps to decrease left hippocampus mean dose while maintaining the target volume coverage and OAR sparing comparable to clinically treated plans for glioblastoma patients.
Collapse
Affiliation(s)
- Shima Y. Tari
- Department of Medical PhysicsCross Cancer InstituteEdmontonAlbertaCanada
- Department of OncologyDivision of Medical PhysicsUniversity of AlbertaEdmontonAlbertaCanada
| | - Amr Heikal
- Department of Medical PhysicsCross Cancer InstituteEdmontonAlbertaCanada
- Department of OncologyDivision of Medical PhysicsUniversity of AlbertaEdmontonAlbertaCanada
| | - Connie Le
- Division of Radiation OncologyDepartment of OncologyUniversity of AlbertaEdmontonAlbertaCanada
| | - Fan Yang
- Division of Radiation OncologyDepartment of OncologyUniversity of AlbertaEdmontonAlbertaCanada
- Present address:
Mayo ClinicDepartment of Radiation OncologyPhoenixAZUSA
| | - Deepak Dinakaran
- Division of Radiation OncologyDepartment of OncologyUniversity of AlbertaEdmontonAlbertaCanada
- Present address:
Sunnybrook Health Science CenterDepartment of Radiation OncologyTorontoOntarioCanada
| | - John Amanie
- Division of Radiation OncologyDepartment of OncologyUniversity of AlbertaEdmontonAlbertaCanada
| | - Albert Murtha
- Division of Radiation OncologyDepartment of OncologyUniversity of AlbertaEdmontonAlbertaCanada
| | - Lindsay S. Rowe
- Division of Radiation OncologyDepartment of OncologyUniversity of AlbertaEdmontonAlbertaCanada
| | - Wilson H. Roa
- Division of Radiation OncologyDepartment of OncologyUniversity of AlbertaEdmontonAlbertaCanada
| | - Samir Patel
- Division of Radiation OncologyDepartment of OncologyUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
5
|
Young TC, Lin KY, Li WC, Huang CN, Tsai WH. The impact of pituitary adenomas on cognitive performance: a systematic review. Front Endocrinol (Lausanne) 2025; 16:1534635. [PMID: 40370784 PMCID: PMC12074915 DOI: 10.3389/fendo.2025.1534635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/31/2025] [Indexed: 05/16/2025] Open
Abstract
Purpose Increasing evidence suggests that beyond classical endocrine and visual symptoms, patients with pituitary adenoma (PA) may experience neurocognitive impairment, potentially resulting in reduced productivity and diminished quality of life. Prior studies have used diverse cognitive assessment tools across heterogeneous populations, leading to inconsistent findings. To address the variability, our study systematically analyzes the assessment batteries used in previous research, clarifying their corresponding cognitive domains. We seek to provide a more consistent and comprehensive understanding of the neurocognitive implications associated with PAs. Methods This study adhered to the Preferred Reporting Items for Systematic Reviews and Meta-analyses reporting guideline. Individual patient-level data, including clinical characteristics, tumor subtype, treatment interventions, hormonal status, and psychological outcomes, were systematically collected. Cognitive assessment tools were categorized according to their corresponding cognitive domains to facilitate domain-specific analyses. Results This systematic review included 70 studies encompassing a total of 3,842 patients with PA. Of these, 60 studies employed either objective neuropsychological tests or subjective questionnaires to evaluate cognitive function. The most frequently utilized assessment was the Digit Span test, with 42.9% of studies reporting significant impairments in complex attention and executive functioning among patients with PA. Twelve studies focused on structural brain changes as assessed by magnetic resonance imaging, with half documenting volumetric reductions in gray matter. Across the various PA subtypes, a consistent decline in discrete cognitive domains was observed, most notably in memory and executive function. Treatment-related data were provided in 59 studies. Perioperative changes in cognitive performance were described in 14 studies, of which 11 reported post-surgical improvement in at least one cognitive domain. Twenty studies investigated the potential adverse effects of radiotherapy on cognitive function; among them, 16 found no significant differences following treatment. Eight studies examined the association between tumor size and cognitive impairment; seven reported no statistically significant correlation. In contrast, 24 studies identified a significant relationship between hormonal dysregulation and cognitive decline. Conclusions The literature contains heterogeneous findings about the cognitive performance, nature of cognitive impairment, and subsequent effects of treatment. Patients with PA may experience cognitive decline in specific areas and are notably affected by hormone levels, while treatment may lead to cognitive recovery. The proposed tiered cognitive evaluation approach can improve assessment consistency in future practice.
Collapse
Affiliation(s)
- Ting-Chia Young
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Kai-Yen Lin
- Department of Medical Education, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wan-Cheng Li
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Chi-Ning Huang
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Wen-Hsuan Tsai
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan
| |
Collapse
|
6
|
Patwe PT, Deshpande SS, Mahajan GR. Stereotactic and fractionated stereotactic radiosurgery for single and multiple brain metastases: Results of multicenter planning studies. Phys Med 2025; 132:104950. [PMID: 40056703 DOI: 10.1016/j.ejmp.2025.104950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/10/2025] [Accepted: 02/26/2025] [Indexed: 03/10/2025] Open
Abstract
PURPOSE Stereotactic and fractionated stereotactic radiosurgery (SRS/fSRS) utilization is growing in India, although planning studies are scarce. This study assessed clinical practices for SRS/fSRS treatment planning for brain metastases (BM) using ICRU-91 and explored the impact of planning tools. METHODS & MATERIALS Participants from 23 centers received two anonymized CT datasets with predrawn structures for single met (SM) and four BMs (MM) cases via email. Centers used local protocol to create plans. The plans were evaluated for target coverage, normal brain doses, and ICRU-91 dosimetric indices. RESULTS Monaco TPS overestimated mean GTV (PTV) by 3.7 (4.2)% and 2.1 (2.0)% for SM and MM respectively. Some institutions had good conformity and target coverage, whereas others had high OAR doses despite inadequate PTV dose coverage. Conformity index (CI) ranged from 1.07 to 1.45 (SM) and 1.06 to 1.25 (MM), and homogeneity index (HI) ranged from 0.07 to 0.28 (SM) and 0.13 to 0.32 (MM). Significant variation in GI and dose prescription isodose line selection was observed among centers. CONCLUSIONS There was a significant heterogeneity in the planning parameters noted among different centers. The study emphasized the importance of established planning protocols and comprehensive training for staff involved in SRS/fSRS. Notably, plans with finer MLC width outperformed, yet wider MLC plans achieved ICRU-91 indices comparable to published literature. The importance of our study is underscored by the absence of a national framework for SRS planning in India.
Collapse
Affiliation(s)
- Parimal T Patwe
- School of Physical Sciences, Swami Ramanand Tirth Marathwada University, Nanded, Maharashtra, India 431 606
| | - Sudesh S Deshpande
- Department of Radiation Oncology, P.D. Hinduja National Hospital & Medical Research Centre, Mumbai, Maharashtra, India 400 016
| | - Gajanan R Mahajan
- Department of Physics, Shri Datta Arts, Commerce and Science College, Hadgaon, Nanded, Maharashtra 431 712, India.
| |
Collapse
|
7
|
Yang Z, Khazaieli M, Vaios E, Zhang R, Zhao J, Mullikin T, Yang A, Yin FF, Wang C. Total brain dose estimation in single-isocenter-multiple-targets (SIMT) radiosurgery via a novel deep neural network with spherical convolutions. Med Phys 2025. [PMID: 40100547 DOI: 10.1002/mp.17748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND AND PURPOSE Accurate prediction of normal brain dosimetric parameters is crucial for the quality control of single-isocenter multi-target (SIMT) stereotactic radiosurgery (SRS) treatment planning. Reliable dose estimation of normal brain tissue is one of the great indicators to evaluate plan quality and is used as a reference in clinics to improve potentially SIMT SRS treatment planning quality consistency. This study aimed to develop a spherical coordinate-defined deep learning model to predict the dose to a normal brain for SIMT SRS treatment planning. METHODS By encapsulating the human brain within a sphere, 3D volumetric data of planning target volume (PTVs) can be projected onto this geometry as a 2D spherical representation (in azimuthal and polar angles). A novel deep learning model spherical convolutional neural network (SCNN) was developed based on spherical convolution to predict brain dosimetric evaluators from spherical representation. Utilizing 106 SIMT cases, the model was trained to predict brain V50%, V60%, and V66.7%, corresponding to V10Gy and V12Gy, as key dosimetric indicators. The model prediction performance was evaluated using the coefficient of determination (R2), mean absolute error (MAE), and mean absolute percentage error (MAPE). RESULTS The SCNN accurately predicted normal brain dosimetric values from the modeled spherical PTV representation, with R2 scores of 0.92 ± 0.05/0.94 ± 0.10/0.93 ± 0.09 for V50%/V60%/V66.7%, respectively. MAEs values were 1.94 ± 1.61 cc/1.23 ± 0.98 cc/1.13 ± 0.99 cc, and MAPEs were 19.79 ± 20.36%/20.79 ± 21.07%/21.15 ± 22.24%, respectively. CONCLUSIONS The deep learning model provides treatment planners with accurate prediction of dose to normal brain, enabling improved consistency in treatment planning quality. This method can be extended to other brain-related analyses as an efficient data dimension reduction method.
Collapse
Affiliation(s)
- Zhenyu Yang
- Medical Physics Graduate Program, Duke Kunshan University, Kunshan, Jiangsu, China
- Department of Radiation Oncology, Duke University, Durham, North Carolina, USA
- Jiangsu Provincial University Key (Construction) Laboratory for Smart Diagnosis and Treatment of Lung Cancer, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Mercedeh Khazaieli
- Department of Radiation Oncology, Duke University, Durham, North Carolina, USA
| | - Eugene Vaios
- Department of Radiation Oncology, Duke University, Durham, North Carolina, USA
| | - Rihui Zhang
- Medical Physics Graduate Program, Duke Kunshan University, Kunshan, Jiangsu, China
- Jiangsu Provincial University Key (Construction) Laboratory for Smart Diagnosis and Treatment of Lung Cancer, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Jingtong Zhao
- Department of Radiation Oncology, Duke University, Durham, North Carolina, USA
| | - Trey Mullikin
- Department of Radiation Oncology, Duke University, Durham, North Carolina, USA
| | - Albert Yang
- Department of Radiation Oncology, Duke University, Durham, North Carolina, USA
| | - Fang-Fang Yin
- Medical Physics Graduate Program, Duke Kunshan University, Kunshan, Jiangsu, China
- Department of Radiation Oncology, Duke University, Durham, North Carolina, USA
- Jiangsu Provincial University Key (Construction) Laboratory for Smart Diagnosis and Treatment of Lung Cancer, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Chunhao Wang
- Department of Radiation Oncology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
8
|
Jiang CJ, Ho YW, Lok KH, Lu YY, Zhu CR, Cheng HCY. Dosimetric and radiobiological evaluation of stereotactic radiosurgery using volumetric modulated arc therapy and dynamic conformal arc therapy for multiple brain metastases. Sci Rep 2025; 15:9118. [PMID: 40097578 PMCID: PMC11914692 DOI: 10.1038/s41598-025-93502-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 03/07/2025] [Indexed: 03/19/2025] Open
Abstract
This paper presents a clinical comparison of the target dose, normal tissue complication probability (NTCP), and plan quality between volumetric modulated conformal arc therapy (VMAT) against dynamic conformal arc therapy (DCAT) techniques to facilitate clinical decision-making in multiple brain metastases (MBM) treatment. A total of 11 cases having 33 lesions were recruited at the Union Oncology Centre, Union Hospital, Hong Kong SAR. With CT images available, all plans were optimized using both HyperArc (HA) and Brainlab Elements Multiple Brain Metastases (Elements MBM). Target coverage, normal tissue sparing, and dose distribution were compared pairwise between VMAT and DCAT. Results showed that the plans generated using both techniques achieved adequate target coverage to meet up with the oncologist's prescription. With similar levels of NTCP, the normal brain received low doses of radiation using both techniques and the risk of brain necrosis was kept equally low. This indicated that VMAT and DCAT produced similar high-quality treatment plans with low risks of brain necrosis. Meanwhile, VMAT showed better homogeneity which could potentially be more useful for large targets, while DCAT showed better target conformity especially for targets smaller than 1 cc. In general, both HA and Elements MBM demonstrated ability to generate high-quality clinical plans.
Collapse
Affiliation(s)
- Chen-Jun Jiang
- Department of Diagnostic Radiology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Island, Hong Kong SAR, China.
| | - Yick-Wing Ho
- The Union Oncology Centre, Kowloon, Hong Kong SAR, China
| | - Ka-Hei Lok
- The Union Oncology Centre, Kowloon, Hong Kong SAR, China
| | - Yeow-Yuen Lu
- The Prince of Wales Hospital, New Territories, Hong Kong SAR, China
| | - Chun-Ran Zhu
- The Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, China.
| | | |
Collapse
|
9
|
Paolani G, Minosse S, Strolin S, Santoro M, Pucci N, Di Giuliano F, Garaci F, Oddo L, Toumia Y, Guida E, Riccitelli F, Perilli G, Vitaliti A, Bedini A, Dolci S, Paradossi G, Domenici F, Da Ros V, Strigari L. Intra-Arterial Super-Selective Delivery of Yttrium-90 for the Treatment of Recurrent Glioblastoma: In Silico Proof of Concept with Feasibility and Safety Analysis. Pharmaceutics 2025; 17:345. [PMID: 40143008 PMCID: PMC11945926 DOI: 10.3390/pharmaceutics17030345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 03/01/2025] [Accepted: 03/03/2025] [Indexed: 03/28/2025] Open
Abstract
Background: Intra-arterial cerebral infusion (IACI) of radiotherapeutics is a promising treatment for glioblastoma (GBM) recurrence. We investigated the in silico feasibility and safety of Yttrium-90-Poly(vinyl alcohol)-Microbubble (90Y-PVA-MB) IACI in patients with recurrent GBM and compared the results with those of external beam radiation therapy (EBRT). Methods: Contrast-enhanced T1-weighted magnetic resonance imaging (T1W-MRI) was used to delineate the tumor volumes and CT scans were used to automatically segment the organs at risk in nine patients with recurrent GBM. Volumetric Modulated Arc Therapy (VMAT) treatment plans were generated using a clinical treatment planning system. Assuming the relative intensity of each voxel from the MR-T1W as a valid surrogate for the post-IACI 90Y-PVA-MB distribution, a specific 90Y dose voxel kernel was obtained through Monte Carlo (MC) simulations and convolved with the MRI, resulting in a 90Y-PVA-MB-based dose distribution that was then compared with the VMAT plans. Results: The physical dose distribution obtained from the simulation of 1GBq of 90Y-PVA-MBs was rescaled to ensure that 95% of the prescribed dose was delivered to 95% or 99% of the target (i.e., A95% and A99%, respectively). The calculated activities were A95% = 269.2 [63.6-2334.1] MBq and A99% = 370.6 [93.8-3315.2] MBq, while the mean doses to the target were 58.2 [58.0-60.0] Gy for VMAT, and 123.1 [106.9-153.9] Gy and 170.1 [145.9-223.8] Gy for A95% and A99%, respectively. Additionally, non-target brain tissue was spared in the 90Y-PVA-MB treatment compared to the VMAT approach, with a median [range] of mean doses of 12.5 [12.0-23.0] Gy for VMAT, and 0.6 [0.2-1.0] Gy and 0.9 [0.3-1.5] Gy for the 90Y treatments assuming A95% and A99%, respectively. Conclusions: 90Y-PVA-MB IACI using MR-T1W appears to be feasible and safe, as it enables the delivery of higher doses to tumors and lower doses to non-target volumes compared to the VMAT approach.
Collapse
Affiliation(s)
- Giulia Paolani
- Department of Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Massarenti 9, 40138 Bologna, Italy; (G.P.); (S.S.); (M.S.); (L.S.)
| | - Silvia Minosse
- U.O.C Diagnostic Imaging, Department of Integrated Care Processes, Fondazione PTV Policlinico “Tor Vergata”, University of Rome “Tor Vergata”, Viale Oxford 81, 00133 Rome, Italy;
| | - Silvia Strolin
- Department of Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Massarenti 9, 40138 Bologna, Italy; (G.P.); (S.S.); (M.S.); (L.S.)
| | - Miriam Santoro
- Department of Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Massarenti 9, 40138 Bologna, Italy; (G.P.); (S.S.); (M.S.); (L.S.)
| | - Noemi Pucci
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Viale Oxford 81, 00133 Rome, Italy; (N.P.); (F.D.G.); (F.G.); (E.G.); (S.D.); (V.D.R.)
| | - Francesca Di Giuliano
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Viale Oxford 81, 00133 Rome, Italy; (N.P.); (F.D.G.); (F.G.); (E.G.); (S.D.); (V.D.R.)
| | - Francesco Garaci
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Viale Oxford 81, 00133 Rome, Italy; (N.P.); (F.D.G.); (F.G.); (E.G.); (S.D.); (V.D.R.)
| | - Letizia Oddo
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (L.O.); (Y.T.); (F.R.); (G.P.); (A.V.); (G.P.)
| | - Yosra Toumia
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (L.O.); (Y.T.); (F.R.); (G.P.); (A.V.); (G.P.)
- National Institute for Nuclear Physics (INFN), sez. Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Eugenia Guida
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Viale Oxford 81, 00133 Rome, Italy; (N.P.); (F.D.G.); (F.G.); (E.G.); (S.D.); (V.D.R.)
| | - Francesco Riccitelli
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (L.O.); (Y.T.); (F.R.); (G.P.); (A.V.); (G.P.)
| | - Giulia Perilli
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (L.O.); (Y.T.); (F.R.); (G.P.); (A.V.); (G.P.)
| | - Alessandra Vitaliti
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (L.O.); (Y.T.); (F.R.); (G.P.); (A.V.); (G.P.)
| | - Angelico Bedini
- Department of Technological Innovations and Safety of Plants, Products and Anthropic Settlements (DIT), Italian National Institute for Insurance against Accidents at Work, Inail, Piazzale Giulio Pastore 6, 00144 Rome, Italy;
| | - Susanna Dolci
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Viale Oxford 81, 00133 Rome, Italy; (N.P.); (F.D.G.); (F.G.); (E.G.); (S.D.); (V.D.R.)
| | - Gaio Paradossi
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (L.O.); (Y.T.); (F.R.); (G.P.); (A.V.); (G.P.)
- National Institute for Nuclear Physics (INFN), sez. Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Fabio Domenici
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (L.O.); (Y.T.); (F.R.); (G.P.); (A.V.); (G.P.)
- National Institute for Nuclear Physics (INFN), sez. Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Valerio Da Ros
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Viale Oxford 81, 00133 Rome, Italy; (N.P.); (F.D.G.); (F.G.); (E.G.); (S.D.); (V.D.R.)
| | - Lidia Strigari
- Department of Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Massarenti 9, 40138 Bologna, Italy; (G.P.); (S.S.); (M.S.); (L.S.)
| |
Collapse
|
10
|
Richard SA. Pathological Mechanisms of Irradiation-Induced Neurological Deficits in the Developing Brain. Eur J Neurosci 2025; 61:e70070. [PMID: 40098303 DOI: 10.1111/ejn.70070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/02/2025] [Accepted: 03/04/2025] [Indexed: 03/19/2025]
Abstract
Cranial irradiation or radiotherapy (CRT) is one of the essential therapeutic modalities for central nervous system (CNS) tumors, and its efficacy is well known. Nevertheless, CRT is also associated with brain damages such as focal cerebral necrosis, neuroinflammation, cerebral microvascular anomalies, neurocognitive dysfunction, and hormone deficiencies in children. Children's brains are much more sensitive to CRT compared to the adult's brains. Thus, children's brains are also more likely to develop long-term CRT complication, which severely lessens their long-term quality of life after treatment. CRT to the juvenile rat led to a retardation of growth of the cerebellum; both the gray and white matter and neurogenic regions like the subventricular zone and the dentate gyrus in the hippocampus were predominantly vulnerable to CRT. Also, CRT-induced cognitive changes typically manifested as deficits in hippocampal-related functions of learning as well as memory, such as spatial information processing. Fractionated CRT-stimulated cognitive decline and hormone deficiencies were precisely associated with augmented neuronal cell death, blockade of neurogenesis, and stimulation of astrocytes and microglia. Thus, the aim of this review is to highlight the pathological mechanism of CRT-induced neurological deficits in the developing brain.
Collapse
Affiliation(s)
- Seidu A Richard
- Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, Ghana
- Institute of Neuroscience, Third Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
11
|
Dasgupta A, Sawant S, Chatterjee A, Gota V, Sahu A, Choudhari A, Bhattacharya K, Puranik A, Dev I, Moiyadi A, Shetty P, Singh V, Menon N, Epari S, Sahay A, Shah A, Bano N, Shaikh F, Jirage A, Gupta T. Study Protocol of a Prospective Phase 2 Study of Chlorophyllin for the Management of Brain Radionecrosis in Patients With Diffuse Glioma (CHROME). Cancer Med 2025; 14:e70657. [PMID: 40025673 PMCID: PMC11872794 DOI: 10.1002/cam4.70657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 01/12/2025] [Accepted: 01/27/2025] [Indexed: 03/04/2025] Open
Abstract
INTRODUCTION Chlorophyllin (CHL) effectively decreases the side effects of radiotherapy (RT) by scavenging radiation-induced free radicals and reactive oxygen species in preclinical trials. This study aims to assess the efficacy of oral CHL for the treatment of brain radionecrosis in patients with diffuse glioma. METHODS This is a phase 2 trial prospective, interventional study. Adults (> 18 years) with a histological diagnosis of diffuse glioma developing radionecrosis will be eligible for the study. Radionecrosis will be identified using standard imaging protocols with magnetic resonance imaging (MRI) with or without positron emission tomography (PET). Patients will be accrued in two strata: symptomatic (stratum A) and asymptomatic (stratum B). Chlorophyllin will be prescribed to all patients using a morning oral dose of 750 mg before breakfast for 3 months. In addition, participants in stratum A will be given a tapering dose of dexamethasone for 1 month, while stratum B will not be receiving any steroids. Imaging with an MRI brain protocol and PET scan will be planned at 1 month and MRI at 3 months after starting CHL. The primary endpoint is the clinical-radiological response at 1 month. Secondary endpoints include response at 3 months, biological responses, survival analysis, and quality-of-life scores. The total sample size is 118 (60 and 58 in stratum A and B, respectively), with one interim analysis planned. DISCUSSION Radionecrosis leads to significant morbidity and is usually treated with corticosteroids, which can lead to several side effects from both acute and long-term use. Refractory radionecrosis requires treatment with bevacizumab or surgical resection. Chlorophyllin is a cheap, safe, and readily available phytopharmaceutical drug, which is being investigated in the phase 2 study and, if proven effective, can be considered an alternative for treating radionecrosis. TRIAL REGISTRATION Clinical Trial Registry India (CTRI): CTRI/2023/08/056166; ClinicalTrials.gov: NCT06016452.
Collapse
Affiliation(s)
- Archya Dasgupta
- Department of Radiation OncologyTata Memorial CentreMumbaiIndia
- Homi Bhabha National Institute (HBNI)MumbaiIndia
| | - Saranga Sawant
- Homi Bhabha National Institute (HBNI)MumbaiIndia
- Clinical Research Secretariat (CRS), Tata Memorial CentreMumbaiIndia
| | - Abhishek Chatterjee
- Department of Radiation OncologyTata Memorial CentreMumbaiIndia
- Homi Bhabha National Institute (HBNI)MumbaiIndia
| | - Vikram Gota
- Homi Bhabha National Institute (HBNI)MumbaiIndia
- Department of Clinical PharmacologyThe Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial CentreNavi MumbaiIndia
| | - Arpita Sahu
- Homi Bhabha National Institute (HBNI)MumbaiIndia
- Department of Radio‐DiagnosisTata Memorial CentreMumbaiIndia
| | - Amitkumar Choudhari
- Homi Bhabha National Institute (HBNI)MumbaiIndia
- Department of Radio‐DiagnosisTata Memorial CentreMumbaiIndia
| | - Kajari Bhattacharya
- Homi Bhabha National Institute (HBNI)MumbaiIndia
- Department of Radio‐DiagnosisTata Memorial CentreMumbaiIndia
| | - Ameya Puranik
- Homi Bhabha National Institute (HBNI)MumbaiIndia
- Department of Nuclear MedicineTata Memorial CentreMumbaiIndia
| | - Indraja Dev
- Homi Bhabha National Institute (HBNI)MumbaiIndia
- Department of Nuclear MedicineTata Memorial CentreMumbaiIndia
| | - Aliasgar Moiyadi
- Homi Bhabha National Institute (HBNI)MumbaiIndia
- Neurosurgical Oncology Services, Department of Surgical OncologyTata Memorial CentreMumbaiIndia
| | - Prakash Shetty
- Homi Bhabha National Institute (HBNI)MumbaiIndia
- Neurosurgical Oncology Services, Department of Surgical OncologyTata Memorial CentreMumbaiIndia
| | - Vikas Singh
- Homi Bhabha National Institute (HBNI)MumbaiIndia
- Neurosurgical Oncology Services, Department of Surgical OncologyTata Memorial CentreMumbaiIndia
| | - Nandini Menon
- Homi Bhabha National Institute (HBNI)MumbaiIndia
- Department of Medical OncologyTata Memorial CentreMumbaiIndia
| | - Sridhar Epari
- Homi Bhabha National Institute (HBNI)MumbaiIndia
- Department of PathologyTata Memorial CentreMumbaiIndia
| | - Ayushi Sahay
- Homi Bhabha National Institute (HBNI)MumbaiIndia
- Department of PathologyTata Memorial CentreMumbaiIndia
| | - Aekta Shah
- Homi Bhabha National Institute (HBNI)MumbaiIndia
- Department of PathologyTata Memorial CentreMumbaiIndia
| | - Nazia Bano
- Department of Radiation OncologyTata Memorial CentreMumbaiIndia
- Clinical Research Secretariat (CRS), Tata Memorial CentreMumbaiIndia
| | - Farnaz Shaikh
- Department of Radiation OncologyTata Memorial CentreMumbaiIndia
- Clinical Research Secretariat (CRS), Tata Memorial CentreMumbaiIndia
| | - Aabha Jirage
- Department of Radiation OncologyTata Memorial CentreMumbaiIndia
| | - Tejpal Gupta
- Department of Radiation OncologyTata Memorial CentreMumbaiIndia
- Homi Bhabha National Institute (HBNI)MumbaiIndia
| |
Collapse
|
12
|
Mrvoljak M, Mishra S, Chen L, Neil E, Ehler E, Terezakis S, Sloan L. Case report: A rare case of a long-term survivor of glioblastoma who underwent two courses of hypofractionated radiotherapy as part of her care. Front Oncol 2025; 15:1501466. [PMID: 39968069 PMCID: PMC11832352 DOI: 10.3389/fonc.2025.1501466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/07/2025] [Indexed: 02/20/2025] Open
Abstract
Glioblastoma (GB) is a primary brain tumor that is lethal and challenging to treat. The 3-year overall survival (OS) of patients with this diagnosis has stayed the same since 2005. The patient is a 75-year-old woman who presented with progressive aphasia and was diagnosed with GB (WHO grade 4, IDH1/IDH2 wild type, ATRX intact, p53 and PTEN mutant, BRAF non-mutated, O6-methylguanine-DNA methyltransferase promoter methylated) and who underwent surgical resection, hypofractionated radiotherapy (HFRT) using intensity-modulated radiotherapy (IMRT) (4,005 cGy in 15 fractions) alone, and adjuvant temozolomide (TMZ). She was progression-free for approximately 20 months. Although planned, concurrent TMZ was not used during the complete first course of HFRT due to the patient's performance status. After recurrence, another HFRT (35 Gy in 10 fractions) was employed. She was progression-free on imaging for 8 months until a recent follow-up scan showed potential progression versus radiation-related change. At the time of this case report, her care is still ongoing. This represents a rare case of a long-term survivor of GB who has received two courses of HFRT, a treatment option that is usually used in those with predicted shorter survival times.
Collapse
Affiliation(s)
- Midhad Mrvoljak
- College of Osteopathic Medicine, Des Moines University, Des Moines, IA, United States
- Department of Radiation Oncology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Shubhendu Mishra
- Department of Radiation Oncology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Liam Chen
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
- Department of Pathology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Elizabeth Neil
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Eric Ehler
- Department of Radiation Oncology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Stephanie Terezakis
- Department of Radiation Oncology, University of Minnesota Medical School, Minneapolis, MN, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - Lindsey Sloan
- Department of Radiation Oncology, University of Minnesota Medical School, Minneapolis, MN, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
13
|
Marson F, Pizzardi S, Alborghetti L, Vurro F, Lacavalla MA, Fiorino C, Spinelli AE. Real-time dose measurement in minibeam radiotherapy using radioluminescence imaging. Phys Med 2025; 130:104894. [PMID: 39799812 DOI: 10.1016/j.ejmp.2025.104894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/11/2024] [Accepted: 01/03/2025] [Indexed: 01/15/2025] Open
Abstract
PURPOSE Minibeam radiotherapy (MBRT) uses small parallel beams of radiation to create a highly modulated dose pattern. The aim of this study is to develop an optical radioluminescence imaging (RLI) approach to perform real-time dose measurement for MBRT. METHODS MBRT was delivered using an image-guided small animal irradiator equipped with a custom collimator. Five slabs of plastic scintillators with a thicknesses of 0.5, 1, 2, 3 and 10 mm were placed on top of a mouse phantom, to localize and measure the delivered dose. A thin radioluminescence film (Gd2O2S:Tb) was used to obtain the mini beam dose profile that was compared against GafChromic (GC) films measurements. The RLI signal was detected with a CMOS camera placed at 90 deg with respect to the beam axis. Monte Carlo (MC) simulations were also performed using TOPAS for comparison with the experimental results. RESULTS The measured peak to valley dose ratio (PVDR) obtained with RLI was 16.7 in line with GC films measurements. The differences between peak and valley dimension were less that 3% with respect to GC measurements. Using RLI performed with the scintillator slabs, it was possible to localize and measure in real-time MBRT delivery on the mouse phantom. CONCLUSIONS We proposed a novel method for MBRT dose localization and measurement in real-time based on RLI. The results we obtained are in good agreement with GC film measurements.
Collapse
Affiliation(s)
- Francesca Marson
- IRCCS San Raffaele Scientific Institute, Experimental Imaging Center, Milan, Italy
| | - Stefano Pizzardi
- IRCCS San Raffaele Scientific Institute, Experimental Imaging Center, Milan, Italy
| | - Lisa Alborghetti
- IRCCS San Raffaele Scientific Institute, Experimental Imaging Center, Milan, Italy
| | - Federica Vurro
- IRCCS San Raffaele Scientific Institute, Experimental Imaging Center, Milan, Italy
| | | | - Claudio Fiorino
- IRCCS San Raffaele Scientific Institute, Medical Physics Department, Milan, Italy
| | - Antonello E Spinelli
- IRCCS San Raffaele Scientific Institute, Experimental Imaging Center, Milan, Italy.
| |
Collapse
|
14
|
Schleifenbaum JK, Morgenthaler J, Sharma SJ, Klußmann JP, Linde P, Wegen S, Rosenbrock J, Baues C, Fokas E, Khor R, Ng SP, Marnitz S, Trommer M. Optimising (re-)irradiation for locally recurrent head and neck cancer: impact of dose-escalation, salvage surgery, PEG tube and biomarkers on oncological outcomes-a single centre analysis. Radiat Oncol 2025; 20:1. [PMID: 39748422 PMCID: PMC11697932 DOI: 10.1186/s13014-024-02570-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 12/08/2024] [Indexed: 01/04/2025] Open
Abstract
INTRODUCTION Locoregional recurrence (LR) is common in locally advanced head and neck cancer (HNSCC), posing challenges for treatment. We analysed outcome parameters and toxicities for patients being treated with radiotherapy (RT) for LR-HNSCC and investigated patient and disease related prognostic factors in this prognostically unfavourable group. METHODS This analysis includes 101 LR-HNSCC patients treated with RT, radio-chemotherapy (RCT) or radio-immunotherapy (RIT) between 2010 and 2018 at a high-volume tertiary centre. Patient characteristics, tumour and treatment details were retrospectively collected. Overall survival (OS), progression-free survival (PFS) and toxicities according to Common Terminology Criteria for Adverse Events (CTCAE) v5.0 were assessed. RESULTS 62% of patients were radiotherapy-naïve (initial RT group) while 38% were re-irradiated at site of LR (re-RT group). Median OS for initial RT was 24 months, for re-RT 12 months (p < 0.01). In the RCT subgroup, patients with initial RT had significantly longer OS with 35 months compared to re-RT 12 months (p < 0.05). Patients with UICC grade IV tumours and percutaneous endoscopic gastrostomy (PEG) tube had significantly shorter OS in multivariate analysis: initial RT 13 vs. re-RT 32 months and initial RT 12 vs. re-RT 32 months respectively. Salvage surgery before RT at recurrence was a positive prognostic factor for OS (initial RT 35 vs. re-RT 12 months). Other significant factors for longer OS in univariate analysis included low inflammatory status (Glasgow Prognostic Score 0) and radiation doses ≥ 50 Gy. We detected 37 (15%) ≥ CTCAE Grade 3 events for initial RT and 19 (15%) for re-RT patients. CONCLUSION In this analysis, we identified key prognostic factors including PEG tube and inflammation status that could guide treatment decision. Our findings suggest salvage surgery as preferred treatment option with postoperative RT at LR. Adverse events due to re-RT were acceptable. A radiation dose of ≥ 50 Gy should be administered to achieve better outcomes.
Collapse
Affiliation(s)
- Julia Katharina Schleifenbaum
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Centre for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany
| | - Janis Morgenthaler
- Centre for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany
- Department of Radiation Oncology, Cyberknife and Radiotherapy, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Department of Radiation Oncology, Olivia Newton-John Cancer Wellness and Research Centre, Austin Health, Melbourne, VIC, Australia
| | - Shachi Jenny Sharma
- Centre for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Jens Peter Klußmann
- Centre for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Philipp Linde
- Centre for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany
- Department of Radiation Oncology, Cyberknife and Radiotherapy, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Simone Wegen
- Centre for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany
- Department of Radiation Oncology, Cyberknife and Radiotherapy, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Johannes Rosenbrock
- Centre for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany
- Department of Radiation Oncology, Cyberknife and Radiotherapy, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Christian Baues
- Department of Radiation Oncology, University Hospitals of the Ruhr University of Bochum, Ruhr University Bochum, Bochum, Germany
| | - Emmanouil Fokas
- Centre for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany
- Department of Radiation Oncology, Cyberknife and Radiotherapy, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Richard Khor
- Department of Radiation Oncology, Olivia Newton-John Cancer Wellness and Research Centre, Austin Health, Melbourne, VIC, Australia
| | - Sweet Ping Ng
- Department of Radiation Oncology, Olivia Newton-John Cancer Wellness and Research Centre, Austin Health, Melbourne, VIC, Australia
| | - Simone Marnitz
- Privatpraxis für Radioonkologie im Vosspalais, Voßstr. 33, 10117, Berlin, Germany
| | - Maike Trommer
- Centre for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany.
- Department of Radiation Oncology, Cyberknife and Radiotherapy, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
- Department of Radiation Oncology, Olivia Newton-John Cancer Wellness and Research Centre, Austin Health, Melbourne, VIC, Australia.
| |
Collapse
|
15
|
LeCompte MC, Vuppala N, Reyes JM, Page B, Croog V, Huang E, Redmond KJ, Kleinberg LR. Fractionated reirradiation of recurrent high-grade gliomas: Safety with higher reirradiation dose and larger targets. Neurooncol Adv 2025; 7:vdaf004. [PMID: 39991181 PMCID: PMC11842973 DOI: 10.1093/noajnl/vdaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025] Open
Abstract
Background The optimal regimen, normal tissue tolerances, and appropriate indications for reirradiation for recurrent high-grade glioma (HGG) are uncertain. The aim of this study was to determine whether higher reirradiation dose was associated with toxicity or survival. Methods Patients with HGG treated with fractionated reirradiation at a single institution from 2007 to 2022 were retrospectively reviewed. Metrics evaluated included overall survival (OS), prognostic factors for survival, and treatment-related toxicity. Results Two hundred and thirty patients with recurrent HGG were reviewed. Median follow-up was 8.8 months. Median reirradiation dose was 41.4 Gy with 80.4% receiving concurrent systemic therapy. Median cumulative maximum doses to brainstem and optic structures were 77.9 Gy (range: 4.6-146.0 Gy) and 55.1 Gy (3.3-106.3 Gy), respectively. No injuries to these structures were identified. Radiation necrosis (RN) was identified in 9.4%. There were no significant associations between RN and target size, systemic therapy use, or reirradiation dose. Median OS was 10.2 months from reirradiation start. On multivariate analysis, improved OS was associated with better KPS, longer interval between radiotherapy sessions, reirradiation at first recurrence, and reirradiation dose ≥ 41.4 Gy. Median OS for those with IDH wildtype glioblastoma was 8.7 months. On multivariate analysis of an IDH wildtype disease subanalysis, improved OS was associated with longer interval between radiotherapy sessions and higher reirradiation dose. Conclusions These data support the safety and efficacy of fractionated reirradiation for recurrent HGG. They suggest higher reirradiation dose may be feasible, including for large treatment volumes and for tumors near the brainstem or optic structures.
Collapse
Affiliation(s)
- Michael C LeCompte
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Neil Vuppala
- Alabama College of Osteopathic Medicine, Dothan, Alabama, USA
| | - Juan M Reyes
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Brandi Page
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Victoria Croog
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ellen Huang
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kristin J Redmond
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Lawrence R Kleinberg
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
16
|
Lai S, Luo S, Lin S, Huang X, Wang X, Xu X, Weng X. Is Bevacizumab a Cost-Effective Regimen for Treating Cerebral Radiation Necrosis in the United States? Pract Radiat Oncol 2025; 15:e10-e20. [PMID: 39216726 DOI: 10.1016/j.prro.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Bevacizumab has been demonstrated to have superior efficacy in the treatment of cerebral radiation necrosis (CRN), but its high cost may exacerbate the disease burden. This study aimed to assess the cost-effectiveness of bevacizumab in comparison to corticosteroids for treating CRN from the US payers' perspective. METHODS Decision tree models were constructed to simulate the process of bevacizumab and corticosteroids in CRN short-term and long-term therapy. Critical clinical data were derived from the NCT01621880 trial. Costs and utility values were obtained from the US official websites and published literature. The main outcomes were total costs, quality-adjusted life-years (QALYs), and incremental cost-effectiveness ratio (ICER). One-way and probabilistic sensitivity analyses were performed to assess the robustness of the models. RESULTS In the short-term and long-term models, bevacizumab added 0.11 (0.46 vs 0.35) and 0.16 (0.54 vs 0.38) QALYs compared with corticosteroids therapy, with corresponding incremental costs of $12,351 and $23,253, respectively. The resultant ICERs were $112,987/QALY and $150,245/QALY for short-term and long-term treatment, respectively. The one-way sensitivity analysis indicated that utility value of nonrecurrence status, body weight, and bevacizumab price per cycle were the most influential factors for ICER of both models. At the willingness-to-pay threshold of $150,000/QALY in the United States, the probabilities of bevacizumab being cost-effective for CRN short and long-term treatment were 63.9% and 49%, respectively. CONCLUSIONS Compared with corticosteroids, bevacizumab is an economical alternative for CRN short-term treatment from the US payers' perspective, whereas long-term therapy draws an opposite conclusion.
Collapse
Affiliation(s)
- Shufei Lai
- School of Pharmacy, Fujian Medical University, Fuzhou, China; Department of Pharmacy, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fujian Province, Changle, China
| | - Shaohong Luo
- Department of Pharmacy, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fujian Province, Changle, China
| | - Shen Lin
- Department of Pharmacy, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fujian Province, Changle, China
| | - Xiaoting Huang
- Department of Pharmacy, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fujian Province, Changle, China
| | - Xiangzhen Wang
- School of Pharmacy, Fujian Medical University, Fuzhou, China; Department of Pharmacy, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fujian Province, Changle, China
| | - Xiongwei Xu
- Department of Pharmacy, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fujian Province, Changle, China
| | - Xiuhua Weng
- Department of Pharmacy, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fujian Province, Changle, China.
| |
Collapse
|
17
|
Parikh S, Alluri U, Heyes G, Evison F, Meade S, Benghiat H, Hartley A, Hickman M, Sawlani V, Chavda S, Wykes V, Sanghera P. Clinical Outcomes and Relevance of Composite V12 Gy in Patients With Four or More Brain Metastases Treated With Single Fraction Stereotactic Radiosurgery. Clin Oncol (R Coll Radiol) 2025; 37:103663. [PMID: 39522323 DOI: 10.1016/j.clon.2024.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
AIMS Tissue V12Gy (total brain volume receiving 12Gy including target) can predict for late toxicity in single target benign disease treated with stereotactic radiosurgery (SRS). The value of this metric remains uncertain for multiple brain metastases. This retrospective cohort study reports the outcomes and evaluates the predictors of toxicity in patients with four or more brain metastases treated with single-fraction SRS. MATERIALS AND METHODS Two hundred twenty-six patients with 2160 metastases treated from 2014-21 were retrospectively studied. Symptomatic late toxicity (new/progressive neurological symptoms ≥3 months post SRS) with magnetic resonance imaging (MRI) changes suggestive of treatment effect were analysed. Kaplan-Meier and competing risk analysis was used to assess survival and toxicity respectively. RESULTS median number of metastases/patient was 6 (range: 4-41) and median composite tissue V12Gy (inclusive of planning target volume (PTV)) was 11.3 cc (IQR: 6.1 cc-17.1 cc). Sixteen out of the 226 patients developed symptomatic late radiation adverse event (R-AE), and the cumulative incidence was 4.9% at 1 year and 6.9% at 2 years. The total target volume was significantly predictive of the risk of late R-AE. Volume of the largest lesion, V12Gy and V15Gy did not predict for late R-AE, but plotted graphs showed suggestions of linear relationships between dosimetric parameters and late R-AE. CONCLUSION Within the limitations of this study, the cumulative incidence of symptomatic toxicity remains acceptable despite routinely accepting a composite tissue V12Gy in excess of 10 cc to treat multiple brain metastases. ADVANCES IN KNOWLEDGE V12Gy has limitations as a plan quality metric in multiple brain metastases treated with SRS. There is insufficient evidence to have a defined target limit as <10 cc.
Collapse
Affiliation(s)
- S Parikh
- Cancer Centre, Department of Clinical Oncology, The Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2GW, United Kingdom.
| | - U Alluri
- Cancer Centre, Department of Clinical Oncology, The Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2GW, United Kingdom
| | - G Heyes
- Department of Radiotherapy Physics, The Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2GW, United Kingdom
| | - F Evison
- Data Science Team, Research, Development & Innovation, University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2GW, United Kingdom
| | - S Meade
- Cancer Centre, Department of Clinical Oncology, The Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2GW, United Kingdom
| | - H Benghiat
- Cancer Centre, Department of Clinical Oncology, The Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2GW, United Kingdom
| | - A Hartley
- Cancer Centre, Department of Clinical Oncology, The Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2GW, United Kingdom
| | - M Hickman
- Cancer Centre, Department of Clinical Oncology, The Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2GW, United Kingdom
| | - V Sawlani
- Department of Radiology, The Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, B12 2GW, United Kingdom
| | - S Chavda
- Department of Radiology, The Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, B12 2GW, United Kingdom
| | - V Wykes
- Institute of Cancer and Genomic Sciences, University of Birmingham, United Kingdom; Department of Neurosurgery, The Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - P Sanghera
- Cancer Centre, Department of Clinical Oncology, The Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2GW, United Kingdom
| |
Collapse
|
18
|
Li M, Tong F, Wu B, Dong X. Radiation-Induced Brain Injury: Mechanistic Insights and the Promise of Gut-Brain Axis Therapies. Brain Sci 2024; 14:1295. [PMID: 39766494 PMCID: PMC11674909 DOI: 10.3390/brainsci14121295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Radiation therapy is widely recognized as an efficacious modality for treating neoplasms located within the craniofacial region. Nevertheless, this approach is not devoid of risks, predominantly concerning potential harm to the neural structures. Adverse effects may encompass focal cerebral necrosis, cognitive function compromise, cerebrovascular pathology, spinal cord injury, and detriment to the neural fibers constituting the brachial plexus. With increasing survival rates among oncology patients, evaluating post-treatment quality of life has become crucial in assessing the benefits of radiation therapy. Consequently, it is imperative to investigate therapeutic strategies to mitigate cerebral complications from radiation exposure. Current management of radiation-induced cerebral damage involves corticosteroids and bevacizumab, with preclinical research on antioxidants and thalidomide. Despite these efforts, an optimal treatment remains elusive. Recent studies suggest the gut microbiota's involvement in neurologic pathologies. This review aims to discuss the causes and existing treatments for radiation-induced cerebral injury and explore gut microbiota modulation as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Mengting Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fan Tong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bian Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaorong Dong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
19
|
Dattoli Viegas AM, Carando D, Koivunoro H, Joensuu H, González SJ. Predicting radiotoxic effects after BNCT for brain cancer using a novel dose calculation model. Phys Med 2024; 128:104840. [PMID: 39520731 DOI: 10.1016/j.ejmp.2024.104840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/09/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
PURPOSE The normal brain is an important dose-limiting organ for brain cancer patients undergoing radiotherapy. This study aims to develop a model to calculate photon isoeffective doses (DIsoE) to normal brain that can explain the incidence of grade 2 or higher somnolence syndrome (SS⩾2) after Boron Neutron Capture Therapy (BNCT). METHODS A DIsoE model was constructed to find the reference photon dose that equals the Normal Tissue Complication Probability (NTCP) of the absorbed dose from BNCT. Limb paralysis rates from the rat spinal cord model exposed to conventional or BNCT irradiation were used to determine model parameters. NTCP expressions for both irradiations were constructed based on Lyman's model accordingly. DIsoE values were calculated for BNCT treatments performed in Finland and USA. An equivalent uniform dose (EUD) based on peak and average whole-brain doses and treatment fields was also introduced. Combining DIsoE and EUD models, a dose-response curve for SS⩾2 in BNCT patients was constructed and compared to conventional radiotherapy outcomes. RESULTS The DIsoE model reveals higher than expected photon-equivalent doses in the brain, indicating the need to modify standard dose calculation methods. Neither peak dose nor average whole-brain dose alone predicts SS⩾2 development. However, the dose-response curve derived from combining DIsoE and EUD models effectively explains the incidence of SS⩾2 after BNCT. CONCLUSIONS The introduced DIsoE and EUD models predict the incidence of somnolence syndrome after BNCT. The first dose-response relationship for SS⩾2 derived entirely from brain tumour patients treated with BNCT, consistent with photon radiotherapy responses, is presented.
Collapse
Affiliation(s)
- Ana Mailén Dattoli Viegas
- División Física Computacional y Biofísica de las Radiaciones, Comisión Nacional de Energía Atómica (CNEA), Av. General Paz 1499, B1650KNA, San Martín, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2270, C1425FQD, Ciudad Autónoma de Buenos Aires, Argentina.
| | - Daniel Carando
- Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, and IMAS (UBA-CONICET), Pabellón I, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina.
| | - Hanna Koivunoro
- Neutron Therapeutics, 1 Industrial Drive, Danvers, Massachusetts (01923), United States; Department of Oncology, Helsinki University Hospital and University of Helsinki, Haartmaninkatu 4, P.O.B. 180, FIN-00029, Helsinki, Finland.
| | - Heikki Joensuu
- Department of Oncology, Helsinki University Hospital and University of Helsinki, Haartmaninkatu 4, P.O.B. 180, FIN-00029, Helsinki, Finland.
| | - Sara Josefina González
- División Física Computacional y Biofísica de las Radiaciones, Comisión Nacional de Energía Atómica (CNEA), Av. General Paz 1499, B1650KNA, San Martín, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2270, C1425FQD, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
20
|
Epstein JE, Pople CB, Meng Y, Lipsman N. An update on the role of focused ultrasound in neuro-oncology. Curr Opin Neurol 2024; 37:682-692. [PMID: 39498847 DOI: 10.1097/wco.0000000000001314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
PURPOSE OF REVIEW Brain tumor treatment presents challenges for patients and clinicians, with prognosis for many of the most common brain tumors being poor. Focused ultrasound (FUS) can be deployed in several ways to circumvent these challenges, including the need to penetrate the blood-brain barrier and spare healthy brain tissue. This article reviews current FUS applications within neuro-oncology, emphasizing ongoing or recently completed clinical trials. RECENT FINDINGS Most clinical interest in FUS for neuro-oncology remains focused on exploring BBB disruption to enhance the delivery of standard-of-care therapeutics. More recently, the application of FUS for radiosensitization, liquid biopsy, and sonodynamic therapy is garnering increased clinical attention to assist in tumor ablation, early detection, and phenotypic diagnosis. Preclinical studies show encouraging data for the immunomodulatory effects of FUS, but these findings have yet to be tested clinically. SUMMARY FUS is a burgeoning area of neuro-oncology research. Data from several forthcoming large clinical trials should help clarify its role in neuro-oncology care.
Collapse
Affiliation(s)
- Jordan E Epstein
- Harquail Centre for Neuromodulation
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Ontario, Canada
| | - Christopher B Pople
- Harquail Centre for Neuromodulation
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Ontario, Canada
| | - Ying Meng
- Harquail Centre for Neuromodulation
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Ontario, Canada
| | - Nir Lipsman
- Harquail Centre for Neuromodulation
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Ontario, Canada
| |
Collapse
|
21
|
Staudinger C, Dennler M, Körner M, Beckmann K, Kowalska ME, Meier V, Rohrer Bley C. Relationship between radiation dose and cerebral microbleed formation in dogs with intracranial tumors. J Vet Intern Med 2024; 38:3182-3192. [PMID: 39391956 PMCID: PMC11586539 DOI: 10.1111/jvim.17213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Cerebral microbleeds (CMBs) are a possible sequela in human brain tumor patients treated with radiation therapy (RT). No such association is reported in dogs. OBJECTIVES To investigate whether CMBs occur in dogs after radiotherapy, and if there is an association between number and dose, and an increase over time. ANIMALS Thirty-four client-owned dogs irradiated for primary intracranial neoplasia. ≥2 magnetic resonance imaging (MRI) scans including susceptibility-weighted imaging (SWI) were required. METHODS Retrospective, observational, single-center study. Cerebral microbleeds identified on 3 T SWI were counted within the entire brain, and within low- (<20 Gy), intermediate- (20-30 Gy), and high- (>30 Gy) dose regions. A generalized linear mixed-effects model was used to analyze the relationship between the CMBs count and the predictor variables (irradiation dose, time after treatment). RESULTS Median follow-up time was 12.6 months (range, 1.8-37.6 months). Eighty-three MR scans were performed. In 4/15 dogs (27%, 95% CI, 10%-52%) CMBs were present at baseline. ≥1 CMBs after RT were identified in 21/34 dogs (62%, 95% CI, 45%-77%). With each month, the number of CMBs increased by 14% (95% CI, 11%-16%; P < .001). The odds of developing CMBs in the high-dose region are 4.7 times (95% CI, 3.9-5.6; P < .001) greater compared with the low-dose region. CONCLUSION AND CLINICAL IMPORTANCE RT is 1 possible cause of CMBs formation in dogs. Cerebral microbleeds are most likely to occur in the peritumoral high-dose volume, to be chronic, and to increase in number over time. Their clinical relevance remains unknown.
Collapse
Affiliation(s)
- Chris Staudinger
- Clinic for Diagnostic Imaging, Department of Clinical Diagnostics and Services, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
| | - Matthias Dennler
- Clinic for Diagnostic Imaging, Department of Clinical Diagnostics and Services, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
| | - Maximilian Körner
- Division of Radiation Oncology, Department for Small Animals, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
| | - Katrin Beckmann
- Division of Neurology, Department for Small Animals, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
| | - Malwina E. Kowalska
- Section of Epidemiology, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
| | - Valeria Meier
- Division of Radiation Oncology, Department for Small Animals, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
| | - Carla Rohrer Bley
- Division of Radiation Oncology, Department for Small Animals, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
| |
Collapse
|
22
|
Kutuk T, Kotecha R, Herrera R, Wieczorek DJJ, Fellows ZW, Chaswal V, La Rosa A, Mishra V, McDermott MW, Siomin V, Mehta MP, Gutierrez AN, Tolakanahalli R. Surgically targeted radiation therapy versus stereotactic radiation therapy: A dosimetric comparison for brain metastasis resection cavities. Brachytherapy 2024; 23:751-760. [PMID: 39098499 DOI: 10.1016/j.brachy.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/13/2024] [Accepted: 06/27/2024] [Indexed: 08/06/2024]
Abstract
PURPOSE Surgically targeted radiation therapy (STaRT) with Cesium-131 seeds embedded in a collagen tile is a promising treatment for recurrent brain metastasis. In this study, the biological effective doses (BED) for normal and target tissues from STaRT plans were compared with those of external beam radiotherapy (EBRT) modalities. METHODS Nine patients (n = 9) with 12 resection cavities (RCs) who underwent STaRT (cumulative physical dose of 60 Gy to a depth of 5 mm from the RC edge) were replanned with CyberKnifeⓇ (CK), Gamma KnifeⓇ (GK), and intensity modulated proton therapy (IMPT) using an SRT approach (30 Gy in 5 fractions). Statistical significance comparing D95% and D90% in BED10Gy (BED10Gy95% and BED10Gy90%) and to RC + 0 to + 5 mm expansion margins, and parameters associated with radiation necrosis risk (V83Gy, V103Gy, V123Gy and V243Gy) to the normal brain were evaluated by a Wilcoxon-signed rank test. RESULTS For RC + 0 mm, median BED10Gy 90% for STaRT (90.1 Gy10, range: 64.1-140.9 Gy10) was significantly higher than CK (74.3 Gy10, range:59.3-80.4 Gy10, p = 0.04), GK (69.4 Gy10, range: 59.8-77.1 Gy10, p = 0.005), and IMPT (49.3 Gy10, range: 49.0-49.7 Gy10, p = 0.003), respectively. However, for the RC + 5 mm, the median BED10Gy 90% for STaRT (34.1 Gy10, range: 22.2-59.7 Gy10) was significantly lower than CK (44.3 Gy10, range: 37.8-52.4 Gy10), and IMPT (46.6 Gy10, range: 45.1-48.5 Gy10), respectively, but not significantly different from GK (34.1 Gy10, range: 22.8-47.0 Gy10). The median V243Gy was significantly higher in CK (11.7 cc, range: 4.7-20.1 cc), GK(6.2 cc, range: 2.3-11.9 cc) and IMPT (19.9 cc, range: 11.1-36.6 cc) compared to STaRT (1.1 cc, range: 0.0-7.8 cc) (p < 0.01). CONCLUSIONS This comparative analysis suggests a STaRT approach may treat recurrent brain tumors effectively via delivery of higher radiation doses with equivalent or greater BED up to at least 3 mm from the RC edge as compared to EBRT approaches.
Collapse
Affiliation(s)
- Tugce Kutuk
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL
| | - Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL; Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL
| | - Roberto Herrera
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL
| | - D Jay J Wieczorek
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL; Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL
| | - Zachary W Fellows
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL
| | - Vibha Chaswal
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL; Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL
| | - Alonso La Rosa
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL
| | - Vivek Mishra
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL; Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL
| | - Michael W McDermott
- Department of Neurosurgery, Miami Cancer Institute, Baptist Health South Florida, Miami, FL
| | - Vitaly Siomin
- Department of Neurosurgery, Miami Cancer Institute, Baptist Health South Florida, Miami, FL
| | - Minesh P Mehta
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL; Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL
| | - Alonso N Gutierrez
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL; Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL
| | - Ranjini Tolakanahalli
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL; Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL.
| |
Collapse
|
23
|
Tang PLY, Romero AM, Nout RA, van Rij C, Slagter C, Swaak-Kragten AT, Smits M, Warnert EAH. Amide proton transfer-weighted CEST MRI for radiotherapy target delineation of glioblastoma: a prospective pilot study. Eur Radiol Exp 2024; 8:123. [PMID: 39477835 PMCID: PMC11525355 DOI: 10.1186/s41747-024-00523-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/04/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Extensive glioblastoma infiltration justifies a 15-mm margin around the gross tumor volume (GTV) to define the radiotherapy clinical target volume (CTV). Amide proton transfer (APT)-weighted imaging could enable visualization of tumor infiltration, allowing more accurate GTV delineation. We quantified the impact of integrating APT-weighted imaging into GTV delineation of glioblastoma and compared two APT-weighted quantification methods-magnetization transfer ratio asymmetry (MTRasym) and Lorentzian difference (LD) analysis-for target delineation. METHODS Nine glioblastoma patients underwent an extended imaging protocol prior to radiotherapy, yielding APT-weighted MTRasym and LD maps. From both maps, biological tumor volumes were generated (BTVMTRasym and BTVLD) and added to the conventional GTV to generate biological GTVs (GTVbio,MTRasym and GTVbio,LD). Wilcoxon signed-rank tests were performed for comparisons. RESULTS The GTVbio,MTRasym and GTVbio,LD were significantly larger than the conventional GTV (p ≤ 0.022), with a median volume increase of 9.3% and 2.1%, respectively. The GTVbio,MTRasym and GTVbio,LD were significantly smaller than the CTV (p = 0.004), with a median volume reduction of 72.1% and 70.9%, respectively. There was no significant volume difference between the BTVMTRasym and BTVLD (p = 0.074). In three patients, BTVMTRasym delineation was affected by elevated signals at the brain periphery due to residual motion artifacts; this elevation was absent on the APT-weighted LD maps. CONCLUSION Larger biological GTVs compared to the conventional GTV highlight the potential of APT-weighted imaging for radiotherapy target delineation of glioblastoma. APT-weighted LD mapping may be advantageous for target delineation as it may be more robust against motion artifacts. RELEVANCE STATEMENT The introduction of APT-weighted imaging may, ultimately, enhance visualization of tumor infiltration and eliminate the need for the substantial 15-mm safety margin for target delineation of glioblastoma. This could reduce the risk of radiation toxicity while still effectively irradiating the tumor. TRIAL REGISTRATION NCT05970757 (ClinicalTrials.gov). KEY POINTS Integration of APT-weighted imaging into target delineation for radiotherapy is feasible. The integration of APT-weighted imaging yields larger GTVs in glioblastoma. APT-weighted LD mapping may be more robust against motion artifacts than APT-weighted MTRasym.
Collapse
Affiliation(s)
- Patrick L Y Tang
- Brain Tumor Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Alejandra Méndez Romero
- Brain Tumor Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Remi A Nout
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Caroline van Rij
- Brain Tumor Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Cleo Slagter
- Brain Tumor Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Annemarie T Swaak-Kragten
- Brain Tumor Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marion Smits
- Brain Tumor Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Medical Delta, Delft, The Netherlands
| | - Esther A H Warnert
- Brain Tumor Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
24
|
Al-Rubaiey S, Senger C, Bukatz J, Krantchev K, Janas A, Eitner C, Nieminen-Kelhä M, Brandenburg S, Zips D, Vajkoczy P, Acker G. Determinants of cerebral radionecrosis in animal models: A systematic review. Radiother Oncol 2024; 199:110444. [PMID: 39067705 DOI: 10.1016/j.radonc.2024.110444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 06/13/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Radionecrosis is a common complication in radiation oncology, while mechanisms and risk factors have yet to be fully explored. We therefore conducted a systematic review to understand the pathogenesis and identify factors that significantly affect the development. METHODS We performed a systematic literature search based on the PRISMA guidelines using PubMed, Ovid, and Web of Science databases. The complete search strategy can be found as a preregistered protocol on PROSPERO (CRD42023361662). RESULTS We included 83 studies, most involving healthy animals (n = 72, 86.75 %). High doses of hemispherical irradiation of 30 Gy in rats and 50 Gy in mice led repeatedly to radionecrosis among different studies and set-ups. Higher dose and larger irradiated volume were associated with earlier onset. Fractionated schedules showed limited effectiveness in the prevention of radionecrosis. Distinct anatomical brain structures respond to irradiation in various ways. White matter appears to be more vulnerable than gray matter. Younger age, more evolved animal species, and genetic background were also significant factors, whereas sex was irrelevant. Only 13.25 % of the studies were performed on primary brain tumor bearing animals, no studies on brain metastases are currently available. CONCLUSION This systematic review identified various factors that significantly affect the induction of radionecrosis. The current state of research neglects the utilization of animal models of brain tumors, even though patients with brain malignancies constitute the largest group receiving brain irradiation. This latter aspect should be primarily addressed when developing an experimental radionecrosis model for translational implementation.
Collapse
Affiliation(s)
- Sanaria Al-Rubaiey
- Department of Neurosurgery, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Charitéplatz 1 10117, Berlin, Germany; Department of Radiation Oncology, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Augustenburger Platz 1 13353, Berlin, Germany.
| | - Carolin Senger
- Department of Radiation Oncology, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Augustenburger Platz 1 13353, Berlin, Germany.
| | - Jan Bukatz
- Department of Neurosurgery, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Charitéplatz 1 10117, Berlin, Germany; Department of Radiation Oncology, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Augustenburger Platz 1 13353, Berlin, Germany.
| | - Kiril Krantchev
- Department of Neurosurgery, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Charitéplatz 1 10117, Berlin, Germany.
| | - Anastasia Janas
- Department of Neurosurgery, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Charitéplatz 1 10117, Berlin, Germany; Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Charitéplatz 1 10117, Berlin, Germany.
| | - Chiara Eitner
- Department of Neurosurgery, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Charitéplatz 1 10117, Berlin, Germany.
| | - Melina Nieminen-Kelhä
- Department of Neurosurgery, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Charitéplatz 1 10117, Berlin, Germany.
| | - Susan Brandenburg
- Department of Neurosurgery, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Charitéplatz 1 10117, Berlin, Germany.
| | - Daniel Zips
- Department of Radiation Oncology, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Augustenburger Platz 1 13353, Berlin, Germany.
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Charitéplatz 1 10117, Berlin, Germany.
| | - Güliz Acker
- Department of Neurosurgery, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Charitéplatz 1 10117, Berlin, Germany; Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Charitéplatz 1 10117, Berlin, Germany; Department of Radiation Oncology, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Augustenburger Platz 1 13353, Berlin, Germany.
| |
Collapse
|
25
|
Bennett LC, Hyer DE, Vu J, Patwardhan K, Erhart K, Gutierrez AN, Pons E, Jensen E, Ubau M, Zapata J, Wroe A, Wake K, Nelson NP, Culberson WS, Smith BR, Hill PM, Flynn RT. Patient-specific quality assurance of dynamically-collimated proton therapy treatment plans. Med Phys 2024; 51:5901-5910. [PMID: 38977285 PMCID: PMC11781041 DOI: 10.1002/mp.17295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/16/2024] [Accepted: 06/10/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND The dynamic collimation system (DCS) provides energy layer-specific collimation for pencil beam scanning (PBS) proton therapy using two pairs of orthogonal nickel trimmer blades. While excellent measurement-to-calculation agreement has been demonstrated for simple cube-shaped DCS-trimmed dose distributions, no comparison of measurement and dose calculation has been made for patient-specific treatment plans. PURPOSE To validate a patient-specific quality assurance (PSQA) process for DCS-trimmed PBS treatment plans and evaluate the agreement between measured and calculated dose distributions. METHODS Three intracranial patient cases were considered. Standard uncollimated PBS and DCS-collimated treatment plans were generated for each patient using the Astroid treatment planning system (TPS). Plans were recalculated in a water phantom and delivered at the Miami Cancer Institute (MCI) using an Ion Beam Applications (IBA) dedicated nozzle system and prototype DCS. Planar dose measurements were acquired at two depths within low-gradient regions of the target volume using an IBA MatriXX ion chamber array. RESULTS Measured and calculated dose distributions were compared using 2D gamma analysis with 3%/3 mm criteria and low dose threshold of 10% of the maximum dose. Median gamma pass rates across all plans and measurement depths were 99.0% (PBS) and 98.3% (DCS), with a minimum gamma pass rate of 88.5% (PBS) and 91.2% (DCS). CONCLUSIONS The PSQA process has been validated and experimentally verified for DCS-collimated PBS. Dosimetric agreement between the measured and calculated doses was demonstrated to be similar for DCS-collimated PBS to that achievable with noncollimated PBS.
Collapse
Affiliation(s)
- Laura C Bennett
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, 5601 Seamans Center for the Engineering Arts and Sciences, Iowa City, Iowa, USA
| | - Daniel E Hyer
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Justin Vu
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, 5601 Seamans Center for the Engineering Arts and Sciences, Iowa City, Iowa, USA
| | - Kaustubh Patwardhan
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | | | - Alonso N Gutierrez
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA
| | - Eduardo Pons
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA
| | - Eric Jensen
- Ion Beam Applications S.A., R&D Proton Therapy, Louvain-La-Neuve, Belgium
| | - Manual Ubau
- Ion Beam Applications S.A., R&D Proton Therapy, Louvain-La-Neuve, Belgium
| | - Julio Zapata
- Ion Beam Applications S.A., R&D Proton Therapy, Louvain-La-Neuve, Belgium
| | - Andrew Wroe
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA
| | - Karsten Wake
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Nicholas P Nelson
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
- Department of Radiation Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Wesley S Culberson
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Blake R Smith
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Patrick M Hill
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Ryan T Flynn
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| |
Collapse
|
26
|
Altergot A, Ohlmann C, Nüsken F, Palm J, Hecht M, Dzierma Y. Effect of different optimization parameters in single isocenter multiple brain metastases radiosurgery. Strahlenther Onkol 2024; 200:815-826. [PMID: 38977432 PMCID: PMC11343813 DOI: 10.1007/s00066-024-02249-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/21/2024] [Indexed: 07/10/2024]
Abstract
PURPOSE Automated treatment planning for multiple brain metastases differs from traditional planning approaches. It is therefore helpful to understand which parameters for optimization are available and how they affect the plan quality. This study aims to provide a reference for designing multi-metastases treatment plans and to define quality endpoints for benchmarking the technique from a scientific perspective. METHODS In all, 20 patients with a total of 183 lesions were retrospectively planned according to four optimization scenarios. Plan quality was evaluated using common plan quality parameters such as conformity index, gradient index and dose to normal tissue. Therefore, different scenarios with combinations of optimization parameters were evaluated, while taking into account dependence on the number of treated lesions as well as influence of different beams. RESULTS Different scenarios resulted in minor differences in plan quality. With increasing number of lesions, the number of monitor units increased, so did the dose to healthy tissue and the number of interlesional dose bridging in adjacent metastases. Highly modulated cases resulted in 4-10% higher V10% compared to less complex cases, while monitor units did not increase. Changing the energy to a flattening filter free (FFF) beam resulted in lower local V12Gy (whole brain-PTV) and even though the number of monitor units increased by 13-15%, on average 46% shorter treatment times were achieved. CONCLUSION Although no clinically relevant differences in parameters where found, we identified some variation in the dose distributions of the different scenarios. Less complex scenarios generated visually more dose overlap; therefore, a more complex scenario may be preferred although differences in the quality metrics appear minor.
Collapse
Affiliation(s)
- Angelika Altergot
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Center, Kirrberger Straße, Homburg/Saar, Germany.
| | - Carsten Ohlmann
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Center, Kirrberger Straße, Homburg/Saar, Germany
| | - Frank Nüsken
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Center, Kirrberger Straße, Homburg/Saar, Germany
| | - Jan Palm
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Center, Kirrberger Straße, Homburg/Saar, Germany
| | - Markus Hecht
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Center, Kirrberger Straße, Homburg/Saar, Germany
| | - Yvonne Dzierma
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Center, Kirrberger Straße, Homburg/Saar, Germany
| |
Collapse
|
27
|
Shibahara D, Tanaka K, Togao O, Shiraishi Y, Yoneshima Y, Iwama E, Yoshitake T, Ishigami K, Okamoto I. Bevacizumab for Brain Radiation Necrosis in Patients With Nonsquamous Nonsmall Cell Lung Cancer. Clin Lung Cancer 2024; 25:581-586.e3. [PMID: 39068108 DOI: 10.1016/j.cllc.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/06/2024] [Accepted: 06/25/2024] [Indexed: 07/30/2024]
Affiliation(s)
- Daisuke Shibahara
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan.
| | - Kentaro Tanaka
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Osamu Togao
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Yoshimasa Shiraishi
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Yasuto Yoneshima
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Eiji Iwama
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Tadamasa Yoshitake
- Department of Radiology Informatics and Network, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Kousei Ishigami
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Isamu Okamoto
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| |
Collapse
|
28
|
Dursun CU, Tugcu AO, Isik N. Radiation necrosis and survival issues commentary in the articles by Desideri et al. Radiother Oncol 2024; 198:110417. [PMID: 38960326 DOI: 10.1016/j.radonc.2024.110417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 05/03/2024] [Indexed: 07/05/2024]
Affiliation(s)
- Cemal Ugur Dursun
- Kartal Dr. Lutfi Kirdar City Hospital, Department of Radiation Oncology, Istanbul, Turkey
| | - Ahmet Oguz Tugcu
- Gulhane Training and Research Hospital, Department of Radiation Oncology, Ankara, Turkey
| | - Naciye Isik
- Kartal Dr. Lutfi Kirdar City Hospital, Department of Radiation Oncology, Istanbul, Turkey
| |
Collapse
|
29
|
Eling L, Verry C, Balosso J, Flandin I, Kefs S, Bouchet A, Adam JF, Laissue JA, Serduc R. Neurologic Changes Induced by Whole-Brain Synchrotron Microbeam Irradiation: 10-Month Behavioral and Veterinary Follow-Up. Int J Radiat Oncol Biol Phys 2024; 120:178-188. [PMID: 38462014 DOI: 10.1016/j.ijrobp.2024.02.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/19/2024] [Accepted: 02/25/2024] [Indexed: 03/12/2024]
Abstract
PURPOSE Novel radiation therapy approaches have increased the therapeutic efficacy for malignant brain tumors over the past decades, but the balance between therapeutic gain and radiotoxicity remains a medical hardship. Synchrotron microbeam radiation therapy, an innovative technique, deposes extremely high (peak) doses in micron-wide, parallel microbeam paths, whereas the diffusing interbeam (valley) doses lie in the range of conventional radiation therapy doses. In this study, we evaluated normal tissue toxicity of whole-brain microbeam irradiation (MBI) versus that of a conventional hospital broad beam (hBB). METHODS AND MATERIALS Normal Fischer rats (n = 6-7/group) were irradiated with one of the two modalities, exposing the entire brain to MBI valley/peak doses of 0/0, 5/200, 10/400, 13/520, 17/680, or 25/1000 Gy or to hBB doses of 7, 10, 13, 17, or 25 Gy. Two additional groups of rats received an MBI valley dose of 10 Gy coupled with an hBB dose of 7 or 15 Gy (groups MBI17* and MBI25*). Behavioral parameters were evaluated for 10 months after irradiation combined with veterinary observations. RESULTS MBI peak doses of ≥680 Gy caused acute toxicity and death. Animals exposed to hBB or MBI dose-dependently gained less weight than controls; rats in the hBB25 and MBI25* groups died within 6 months after irradiation. Increasing doses of MBI caused hyperactivity but no other detectable behavioral alterations in our tests. Importantly, no health concerns were seen up to an MBI valley dose of 17 Gy. CONCLUSIONS While acute toxicity of microbeam exposures depends on very high peak doses, late toxicity mainly relates to delivery of high MBI valley doses. MBI seems to have a low impact on normal rat behavior, but further tests are warranted to fully explore this hypothesis. However, high peak and valley doses are well tolerated from a veterinary point of view. This normal tissue tolerance to whole-brain, high-dose MBI reveals a promising avenue for microbeam radiation therapy, that is, therapeutic applications of microbeams that are poised for translation to a clinical environment.
Collapse
Affiliation(s)
- Laura Eling
- Université Grenoble Alpes, Institut National de la Santé et de la Recherche Médicale UA7 Synchrotron Radiation for Biomedicine, Saint-Martin d'Hères, France.
| | - Camille Verry
- Centre Hospitalier Universitaire Grenoble Alpes, Maquis du Grésivaudan, La Tronche, France
| | - Jacques Balosso
- Centre Hospitalier Universitaire Grenoble Alpes, Maquis du Grésivaudan, La Tronche, France
| | - Isabelle Flandin
- Centre Hospitalier Universitaire Grenoble Alpes, Maquis du Grésivaudan, La Tronche, France
| | - Samy Kefs
- Centre Hospitalier Universitaire Grenoble Alpes, Maquis du Grésivaudan, La Tronche, France
| | - Audrey Bouchet
- INSERM U1296, Radiation: Defense, Health, Environment, Lyon, France
| | - Jean François Adam
- Université Grenoble Alpes, Institut National de la Santé et de la Recherche Médicale UA7 Synchrotron Radiation for Biomedicine, Saint-Martin d'Hères, France; Centre Hospitalier Universitaire Grenoble Alpes, Maquis du Grésivaudan, La Tronche, France
| | | | - Raphael Serduc
- Université Grenoble Alpes, Institut National de la Santé et de la Recherche Médicale UA7 Synchrotron Radiation for Biomedicine, Saint-Martin d'Hères, France; Centre Hospitalier Universitaire Grenoble Alpes, Maquis du Grésivaudan, La Tronche, France
| |
Collapse
|
30
|
Luo S, Lai S, Wu Y, Hong J, Lin D, Lin S, Huang X, Xu X, Weng X. Cost-effectiveness analysis of bevacizumab for cerebral radiation necrosis treatment based on real-world utility value in China. Strahlenther Onkol 2024; 200:805-814. [PMID: 38829437 DOI: 10.1007/s00066-024-02242-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/01/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND Bevacizumab shows superior efficacy in cerebral radiation necrosis (CRN) therapy, but its economic burden remains heavy due to the high drug price. This study aims to evaluate the cost-effectiveness of bevacizumab for CRN treatment from the Chinese payers' perspective. METHODS A decision tree model was developed to compare the costs and health outcomes of bevacizumab and corticosteroids for CRN therapy. Efficacy and safety data were derived from the NCT01621880 trial, which compared the effectiveness and safety of bevacizumab monotherapy with corticosteroids for CRN in nasopharyngeal cancer patients, and demonstrated that bevacizumab invoked a significantly higher response than corticosteroids (65.5% vs. 31.5%, P < 0.001) with no significant differences in adverse events between two groups. The utility value of the "non-recurrence" status was derived from real-world data. Costs and other utility values were collected from an authoritative Chinese network database and published literature. The primary outcomes were total costs, quality-adjusted life-years (QALYs), and incremental cost-effectiveness ratio (ICER). The uncertainty of the model was evaluated via one-way and probabilistic sensitivity analyses. RESULTS Bevacizumab treatment added 0.12 (0.48 vs. 0.36) QALYs compared to corticosteroid therapy, along with incremental costs of $ 2010 ($ 4260 vs. $ 2160). The resultant ICER was $ 16,866/QALY, which was lower than the willingness-to-pay threshold of $ 38,223/QALY in China. The price of bevacizumab, body weight, and the utility value of recurrence status were the key influential parameters for ICER. Probabilistic sensitivity analysis revealed that the probability of bevacizumab being cost-effectiveness was 84.9%. CONCLUSION Compared with corticosteroids, bevacizumab is an economical option for CRN treatment in China.
Collapse
Affiliation(s)
- Shaohong Luo
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, 350004, Fuzhou, China
- Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 350212, Changle, Fujian Province, China
| | - Shufei Lai
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, 350004, Fuzhou, China
- Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 350212, Changle, Fujian Province, China
- School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Yajing Wu
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, 350004, Fuzhou, China
- Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 350212, Changle, Fujian Province, China
- School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Jinsheng Hong
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, 350004, Fuzhou, China
- Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 350212, Fuzhou, China
- Key Laboratory of Radiation Biology of Fujian higher education institutions, The First Affiliated Hospital of Fujian Medical University, 350004, Fuzhou, China
| | - Dong Lin
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, 350004, Fuzhou, China
- Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 350212, Changle, Fujian Province, China
| | - Shen Lin
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, 350004, Fuzhou, China
- Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 350212, Changle, Fujian Province, China
| | - Xiaoting Huang
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, 350004, Fuzhou, China
- Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 350212, Changle, Fujian Province, China
| | - Xiongwei Xu
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, 350004, Fuzhou, China
- Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 350212, Changle, Fujian Province, China
| | - Xiuhua Weng
- Department of Pharmacy, The First Affiliated Hospital of Fujian Medical University, 350004, Fuzhou, China.
- Department of Pharmacy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 350212, Changle, Fujian Province, China.
| |
Collapse
|
31
|
Lan J, Ren Y, Liu Y, Chen L, Liu J. A bibliometric analysis of radiation-induced brain injury: a research of the literature from 1998 to 2023. Discov Oncol 2024; 15:364. [PMID: 39172266 PMCID: PMC11341524 DOI: 10.1007/s12672-024-01223-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Radiation-induced brain injury (RIBI) is a debilitating sequela after cranial radiotherapy. Research on the topic of RIBI has gradually entered the public eye, with more innovations and applications of evidence-based research and biological mechanism research in the field of that. This was the first bibliometric analysis on RIBI, assessing brain injury related to radiation articles that were published during 1998-2023, to provide an emerging theoretical basis for the future development of RIBI. METHODS Literature were obtained from the Web of Science Core Collection (WOSCC) from its inception to December 31, 2023. The column of publications, author details, affiliated institutions and countries, publication year, and keywords were also recorded. RESULTS A total of 2543 journal articles were selected. The annual publications on RIBI fluctuated within a certain range. Journal of Neuro-oncology was the most published journal and Radiation Oncology was the most impactful one. LIMOLI CL was the most prolific author with 37 articles and shared the highest h-index with BARNETT GH. The top one country and institutions were the USA and the University of California System, respectively. Clusters analysis of co-keywords demonstrated that the temporal research trends in this field primarily focused on imaging examination and therapy for RIBI. CONCLUSION This study collects, visualizes, and analyzes the literature within the field of RIBI over the last 25 years to map the development process, research frontiers and hotspots, and cutting-edge directions in clinical practice and mechanisms related to RIBI.
Collapse
Affiliation(s)
- Jinxin Lan
- Department of Neurosurgery, The First Medical Center, The Chinese PLA General Hospital, Beijing, 100853, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yifan Ren
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yuyang Liu
- Department of Neurosurgery, The 920th Hospital of Joint Logistics Support Force, Kunming, 650032, Yunnan, China
| | - Ling Chen
- Department of Neurosurgery, The First Medical Center, The Chinese PLA General Hospital, Beijing, 100853, China.
- Chinese PLA General Hospital, Chinese PLA Institute of Neurosurgery, 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| | - Jialin Liu
- Department of Neurosurgery, The First Medical Center, The Chinese PLA General Hospital, Beijing, 100853, China.
- Chinese PLA General Hospital, Chinese PLA Institute of Neurosurgery, 28 Fuxing Road, Haidian District, Beijing, 100853, China.
| |
Collapse
|
32
|
Varma C, Schroeder MK, Price BR, Khan KA, Curty da Costa E, Hochman-Mendez C, Caldarone BJ, Lemere CA. Long-Term, Sex-Specific Effects of GCRsim and Gamma Irradiation on the Brains, Hearts, and Kidneys of Mice with Alzheimer's Disease Mutations. Int J Mol Sci 2024; 25:8948. [PMID: 39201636 PMCID: PMC11355020 DOI: 10.3390/ijms25168948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Understanding the hazards of space radiation is imperative as astronauts begin voyaging on missions with increasing distances from Earth's protective shield. Previous studies investigating the acute or long-term effects of specific ions comprising space radiation have revealed threats to organs generally considered radioresistant, like the brain, and have shown males to be more vulnerable than their female counterparts. However, astronauts will be exposed to a combination of ions that may result in additive effects differing from those of any one particle species. To better understand this nuance, we irradiated 4-month-old male and female, wild-type and Alzheimer's-like mice with 0, 0.5, or 0.75 Gy galactic cosmic ray simulation (GCRsim) or 0, 0.75, or 2 Gy gamma radiation (wild-type only). At 11 months, mice underwent brain and heart MRIs or behavioral tests, after which they were euthanized to assess amyloid-beta pathology, heart and kidney gene expression and fibrosis, and plasma cytokines. Although there were no changes in amyloid-beta pathology, we observed many differences in brain MRIs and behavior, including opposite effects of GCRsim on motor coordination in male and female transgenic mice. Additionally, several genes demonstrated persistent changes in the heart and kidney. Overall, we found sex- and genotype-specific, long-term effects of GCRsim and gamma radiation on the brain, heart, and kidney.
Collapse
Affiliation(s)
- Curran Varma
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA 02115, USA; (C.V.); (M.K.S.); (B.R.P.); (K.A.K.)
| | - Maren K. Schroeder
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA 02115, USA; (C.V.); (M.K.S.); (B.R.P.); (K.A.K.)
| | - Brittani R. Price
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA 02115, USA; (C.V.); (M.K.S.); (B.R.P.); (K.A.K.)
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Khyrul A. Khan
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA 02115, USA; (C.V.); (M.K.S.); (B.R.P.); (K.A.K.)
| | - Ernesto Curty da Costa
- Department of Regenerative Medicine Research, Texas Heart Institute, Houston, TX 77030, USA; (E.C.d.C.); (C.H.-M.)
| | - Camila Hochman-Mendez
- Department of Regenerative Medicine Research, Texas Heart Institute, Houston, TX 77030, USA; (E.C.d.C.); (C.H.-M.)
| | | | - Cynthia A. Lemere
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA 02115, USA; (C.V.); (M.K.S.); (B.R.P.); (K.A.K.)
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
33
|
Eichner M, Hellerbach A, Hoevels M, Luyken K, Judge M, Rueß D, Ruge M, Kocher M, Hunsche S, Treuer H. Use of dose-area product to assess plan quality in robotic radiosurgery. Z Med Phys 2024; 34:428-435. [PMID: 36717311 PMCID: PMC11384082 DOI: 10.1016/j.zemedi.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/04/2022] [Accepted: 01/03/2023] [Indexed: 01/30/2023]
Abstract
PURPOSE In robotic stereotactic radiosurgery (SRS), optimal selection of collimators from a set of fixed cones must be determined manually by trial and error. A unique and uniformly scaled metric to characterize plan quality could help identify Pareto-efficient treatment plans. METHODS The concept of dose-area product (DAP) was used to define a measure (DAPratio) of the targeting efficiency of a set of beams by relating the integral DAP of the beams to the mean dose achieved in the target volume. In a retrospective study of five clinical cases of brain metastases with representative target volumes (range: 0.5-5.68 ml) and 121 treatment plans with all possible collimator choices, the DAPratio was determined along with other plan metrics (conformity index CI, gradient index R50%, treatment time, total number of monitor units TotalMU, radiotoxicity index f12, and energy efficiency index η50%), and the respective Spearman's rank correlation coefficients were calculated. The ability of DAPratio to determine Pareto efficiency for collimator selection at DAPratio < 1 and DAPratio < 0.9 was tested using scatter plots. RESULTS The DAPratio for all plans was on average 0.95 ± 0.13 (range: 0.61-1.31). Only the variance of the DAPratio was strongly dependent on the number of collimators. For each target, there was a strong or very strong correlation of DAPratio with all other metrics of plan quality. Only for R50% and η50% was there a moderate correlation with DAPratio for the plans of all targets combined, as R50% and η50% strongly depended on target size. Optimal treatment plans with CI, R50%, f12, and η50% close to 1 were clearly associated with DAPratio < 1, and plans with DAPratio < 0.9 were even superior, but at the cost of longer treatment times and higher total monitor units. CONCLUSIONS The newly defined DAPratio has been demonstrated to be a metric that characterizes the target efficiency of a set of beams in robotic SRS in one single and uniformly scaled number. A DAPratio < 1 indicates Pareto efficiency. The trade-off between plan quality on the one hand and short treatment time or low total monitor units on the other hand is also represented by DAPratio.
Collapse
Affiliation(s)
- Markus Eichner
- Department of Stereotaxy and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany.
| | - Alexandra Hellerbach
- Department of Stereotaxy and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany.
| | - Mauritius Hoevels
- Department of Stereotaxy and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany.
| | - Klaus Luyken
- Department of Stereotaxy and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany.
| | - Michael Judge
- Department of Radiation Oncology, Cyberknife and Radiation Therapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany.
| | - Daniel Rueß
- Department of Stereotaxy and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany.
| | - Maximilian Ruge
- Department of Stereotaxy and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany.
| | - Martin Kocher
- Department of Stereotaxy and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany.
| | - Stefan Hunsche
- Department of Stereotaxy and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany.
| | - Harald Treuer
- Department of Stereotaxy and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany.
| |
Collapse
|
34
|
Brunaud C, Valable S, Ropars G, Dwiri FA, Naveau M, Toutain J, Bernaudin M, Freret T, Léger M, Touzani O, Pérès EA. Deformation-based morphometry: a sensitive imaging approach to detect radiation-induced brain injury? Cancer Imaging 2024; 24:95. [PMID: 39026377 PMCID: PMC11256482 DOI: 10.1186/s40644-024-00736-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/27/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Radiotherapy is a major therapeutic approach in patients with brain tumors. However, it leads to cognitive impairments. To improve the management of radiation-induced brain sequalae, deformation-based morphometry (DBM) could be relevant. Here, we analyzed the significance of DBM using Jacobian determinants (JD) obtained by non-linear registration of MRI images to detect local vulnerability of healthy cerebral tissue in an animal model of brain irradiation. METHODS Rats were exposed to fractionated whole-brain irradiation (WBI, 30 Gy). A multiparametric MRI (anatomical, diffusion and vascular) study was conducted longitudinally from 1 month up to 6 months after WBI. From the registration of MRI images, macroscopic changes were analyzed by DBM and microscopic changes at the cellular and vascular levels were evaluated by quantification of cerebral blood volume (CBV) and diffusion metrics including mean diffusivity (MD). Voxel-wise comparisons were performed on the entire brain and in specific brain areas identified by DBM. Immunohistology analyses were undertaken to visualize the vessels and astrocytes. RESULTS DBM analysis evidenced time-course of local macrostructural changes; some of which were transient and some were long lasting after WBI. DBM revealed two vulnerable brain areas, namely the corpus callosum and the cortex. DBM changes were spatially associated to microstructural alterations as revealed by both diffusion metrics and CBV changes, and confirmed by immunohistology analyses. Finally, matrix correlations demonstrated correlations between JD/MD in the early phase after WBI and JD/CBV in the late phase both in the corpus callosum and the cortex. CONCLUSIONS Brain irradiation induces local macrostructural changes detected by DBM which could be relevant to identify brain structures prone to radiation-induced tissue changes. The translation of these data in patients could represent an added value in imaging studies on brain radiotoxicity.
Collapse
Affiliation(s)
- Carole Brunaud
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP Cyceron, Caen, F-14000, France
| | - Samuel Valable
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP Cyceron, Caen, F-14000, France
| | - Gwenn Ropars
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP Cyceron, Caen, F-14000, France
| | - Fatima-Azzahra Dwiri
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP Cyceron, Caen, F-14000, France
| | - Mikaël Naveau
- Université de Caen Normandie, CNRS, INSERM, Normandie Université, UAR 3408/US50, GIP Cyceron, Caen, F-14000, France
| | - Jérôme Toutain
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP Cyceron, Caen, F-14000, France
| | - Myriam Bernaudin
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP Cyceron, Caen, F-14000, France
| | - Thomas Freret
- Université de Caen Normandie, INSERM, Normandie Université, COMETE UMR-S 1075, GIP Cyceron, Caen, F-14000, France
| | - Marianne Léger
- Université de Caen Normandie, INSERM, Normandie Université, COMETE UMR-S 1075, GIP Cyceron, Caen, F-14000, France
| | - Omar Touzani
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP Cyceron, Caen, F-14000, France
| | - Elodie A Pérès
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP Cyceron, Caen, F-14000, France.
| |
Collapse
|
35
|
Irastorza-Valera L, Soria-Gómez E, Benitez JM, Montáns FJ, Saucedo-Mora L. Review of the Brain's Behaviour after Injury and Disease for Its Application in an Agent-Based Model (ABM). Biomimetics (Basel) 2024; 9:362. [PMID: 38921242 PMCID: PMC11202129 DOI: 10.3390/biomimetics9060362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
The brain is the most complex organ in the human body and, as such, its study entails great challenges (methodological, theoretical, etc.). Nonetheless, there is a remarkable amount of studies about the consequences of pathological conditions on its development and functioning. This bibliographic review aims to cover mostly findings related to changes in the physical distribution of neurons and their connections-the connectome-both structural and functional, as well as their modelling approaches. It does not intend to offer an extensive description of all conditions affecting the brain; rather, it presents the most common ones. Thus, here, we highlight the need for accurate brain modelling that can subsequently be used to understand brain function and be applied to diagnose, track, and simulate treatments for the most prevalent pathologies affecting the brain.
Collapse
Affiliation(s)
- Luis Irastorza-Valera
- E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain; (L.I.-V.); (J.M.B.); (F.J.M.)
- PIMM Laboratory, ENSAM–Arts et Métiers ParisTech, 151 Bd de l’Hôpital, 75013 Paris, France
| | - Edgar Soria-Gómez
- Achúcarro Basque Center for Neuroscience, Barrio Sarriena, s/n, 48940 Leioa, Spain;
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi, 5, 48009 Bilbao, Spain
- Department of Neurosciences, University of the Basque Country UPV/EHU, Barrio Sarriena, s/n, 48940 Leioa, Spain
| | - José María Benitez
- E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain; (L.I.-V.); (J.M.B.); (F.J.M.)
| | - Francisco J. Montáns
- E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain; (L.I.-V.); (J.M.B.); (F.J.M.)
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Luis Saucedo-Mora
- E.T.S. de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain; (L.I.-V.); (J.M.B.); (F.J.M.)
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology (MIT), 77 Massachusetts Ave, Cambridge, MA 02139, USA
| |
Collapse
|
36
|
Milano MT, Marks LB, Olch AJ, Yorke ED, Jackson A, Bentzen SM, Constine LS. Comparison of Risks of Late Effects From Radiation Therapy in Children Versus Adults: Insights From the QUANTEC, HyTEC, and PENTEC Efforts. Int J Radiat Oncol Biol Phys 2024; 119:387-400. [PMID: 38069917 DOI: 10.1016/j.ijrobp.2023.08.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/14/2023] [Accepted: 08/29/2023] [Indexed: 05/19/2024]
Abstract
Pediatric Normal Tissue Effects in the Clinic (PENTEC) seeks to refine quantitative radiation dose-volume relationships for normal-tissue complication probabilities (NTCPs) in survivors of pediatric cancer. This article summarizes the evolution of PENTEC and compares it with similar adult-focused efforts (eg, Quantitative Analysis of Normal Tissue Effects in the Clinic [QUANTEC] and Hypofractionated Treatment Effects in the Clinic [HyTEC]) with respect to content, oversight, support, scope, and methodology of literature review. It then summarizes key organ-specific findings from PENTEC in an attempt to compare NTCP estimates in children versus adults. In brief, select normal-tissue risks within developing organs and tissues (eg, maldevelopment of musculoskeletal tissue, teeth, breasts, and reproductive organs) are primarily relevant only in children. For some organs and tissues, children appear to have similar (eg, brain for necrosis, optic apparatus, parotid gland, liver), greater (eg, brain for neurocognition, cerebrovascular, breast for lactation), less (ovary), or perhaps slightly less (eg, lung) risks of toxicity versus adults. Similarly, even within the broad pediatric age range (including adolescence), for some endpoints, younger children have greater (eg, hearing and brain for neurocognition) or lesser (eg, ovary, thyroid) risks of radiation-associated toxicities. NTCP comparisons in adults versus children are often confounded by marked differences in treatment paradigms that expose normal tissues to radiation (ie, cancer types, prescribed radiation therapy dose and fields, and chemotherapy agents used). To add to the complexity, it is unclear if age is best analyzed as a continuous variable versus with age groupings (eg, infants, young children, adolescents, young adults, middle-aged adults, older adults). Further work is needed to better understand the complex manner in which age and developmental status affect risk.
Collapse
Affiliation(s)
- Michael T Milano
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York.
| | - Lawrence B Marks
- Department of Radiation Oncology and Lineberger Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - Arthur J Olch
- Radiation Oncology Program, Children's Hospital Los Angeles/Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Ellen D Yorke
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Andrew Jackson
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Søren M Bentzen
- Greenebaum Comprehensive Cancer Center and Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland
| | - Louis S Constine
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
37
|
Yilmaz MT, Kahvecioglu A, Yedekci FY, Yigit E, Ciftci GC, Kertmen N, Zorlu F, Yazici G. Comparison of different target volume delineation strategies based on recurrence patterns in adjuvant radiotherapy for glioblastoma. Neurooncol Pract 2024; 11:275-283. [PMID: 38737611 PMCID: PMC11085836 DOI: 10.1093/nop/npae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024] Open
Abstract
Background Radiation Therapy Oncology Group (RTOG) and the European Organization for Research and Treatment of Cancer (EORTC) recommendations are commonly used guidelines for adjuvant radiotherapy in glioblastoma. In our institutional protocol, we delineate T2-FLAIR alterations as gross target volume (GTV) with reduced clinical target volume (CTV) margins. We aimed to present our oncologic outcomes and compare the recurrence patterns and planning parameters with EORTC and RTOG delineation strategies. Methods Eighty-one patients who received CRT between 2014 and 2021 were evaluated retrospectively. EORTC and RTOG delineations performed on the simulation computed tomography and recurrence patterns and planning parameters were compared between delineation strategies. Statistical Package for the Social Sciences (SPSS) version 23.0 (IBM, Armonk, NY, USA) was utilized for statistical analyses. Results Median overall survival and progression-free survival were 21 months and 11 months, respectively. At a median 18 month follow-up, of the 48 patients for whom recurrence pattern analysis was performed, recurrence was encompassed by only our institutional protocol's CTV in 13 (27%) of them. For the remaining 35 (73%) patients, recurrence was encompassed by all separate CTVs. In addition to the 100% rate of in-field recurrence, the smallest CTV and lower OAR doses were obtained by our protocol. Conclusions The current study provides promising results for including the T2-FLAIR alterations to the GTV with smaller CTV margins with impressive survival outcomes without any marginal recurrence. The fact that our protocol did not result in larger irradiated brain volume is further encouraging in terms of toxicity.
Collapse
Affiliation(s)
- Melek Tugce Yilmaz
- Department of Radiation Oncology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Alper Kahvecioglu
- Department of Radiation Oncology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Fazli Yagiz Yedekci
- Department of Radiation Oncology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Ecem Yigit
- Department of Radiation Oncology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Gokcen Coban Ciftci
- Radiology Department, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Neyran Kertmen
- Department of Medical Oncology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Faruk Zorlu
- Department of Radiation Oncology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Gozde Yazici
- Department of Radiation Oncology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
38
|
Basree MM, Li C, Um H, Bui AH, Liu M, Ahmed A, Tiwari P, McMillan AB, Baschnagel AM. Leveraging radiomics and machine learning to differentiate radiation necrosis from recurrence in patients with brain metastases. J Neurooncol 2024; 168:307-316. [PMID: 38689115 DOI: 10.1007/s11060-024-04669-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/27/2024] [Indexed: 05/02/2024]
Abstract
OBJECTIVE Radiation necrosis (RN) can be difficult to radiographically discern from tumor progression after stereotactic radiosurgery (SRS). The objective of this study was to investigate the utility of radiomics and machine learning (ML) to differentiate RN from recurrence in patients with brain metastases treated with SRS. METHODS Patients with brain metastases treated with SRS who developed either RN or tumor reccurence were retrospectively identified. Image preprocessing and radiomic feature extraction were performed using ANTsPy and PyRadiomics, yielding 105 features from MRI T1-weighted post-contrast (T1c), T2, and fluid-attenuated inversion recovery (FLAIR) images. Univariate analysis assessed significance of individual features. Multivariable analysis employed various classifiers on features identified as most discriminative through feature selection. ML models were evaluated through cross-validation, selecting the best model based on area under the receiver operating characteristic (ROC) curve (AUC). Specificity, sensitivity, and F1 score were computed. RESULTS Sixty-six lesions from 55 patients were identified. On univariate analysis, 27 features from the T1c sequence were statistically significant, while no features were significant from the T2 or FLAIR sequences. For clinical variables, only immunotherapy use after SRS was significant. Multivariable analysis of features from the T1c sequence yielded an AUC of 76.2% (standard deviation [SD] ± 12.7%), with specificity and sensitivity of 75.5% (± 13.4%) and 62.3% (± 19.6%) in differentiating radionecrosis from recurrence. CONCLUSIONS Radiomics with ML may assist the diagnostic ability of distinguishing RN from tumor recurrence after SRS. Further work is needed to validate this in a larger multi-institutional cohort and prospectively evaluate it's utility in patient care.
Collapse
Affiliation(s)
- Mustafa M Basree
- Deparment of Human Oncology, University of Wisconsin, Madison, WI, USA
| | - Chengnan Li
- Department of Computer Science, University of Wisconsin, Madison, WI, USA
| | - Hyemin Um
- Department of Radiology, University of Wisconsin, Madison, WI, USA
| | - Anthony H Bui
- School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Manlu Liu
- School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Azam Ahmed
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Pallavi Tiwari
- Department of Radiology, University of Wisconsin, Madison, WI, USA
| | - Alan B McMillan
- Department of Radiology, University of Wisconsin, Madison, WI, USA.
- Department of Biomedical Engineering, College of Engineering, University of Wisconsin, Madison, WI, USA.
- Department of Medical Physics, University of Wisconsin, Madison, WI, USA.
| | - Andrew M Baschnagel
- School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA.
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
39
|
Dong J, Ng WT, Wong CHL, Li JS, Bollen H, Chow JCH, Eisbruch A, Lee AWM, Lee VHF, Ng SP, Nuyts S, Smee R, Ferlito A. Dosimetric parameters predict radiation-induced temporal lobe necrosis in nasopharyngeal carcinoma patients: A systematic review and meta-analysis. Radiother Oncol 2024; 195:110258. [PMID: 38537680 DOI: 10.1016/j.radonc.2024.110258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/07/2024]
Abstract
This systematic review examines the role of dosimetric parameters in predicting temporal lobe necrosis (TLN) risk in nasopharyngeal carcinoma (NPC) patients treated with three-dimensional conformal RT (3D-CRT), intensity-modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT). TLN is a serious late complication that can adversely affect the quality of life of NPC patients. Understanding the relationship between dosimetric parameters and TLN can guide treatment planning and minimize radiation-related complications. A comprehensive search identified relevant studies published up to July 2023. Studies reporting on dosimetric parameters and TLN in NPC patients undergoing 3D-CRT, IMRT, and VMAT were included. TLN incidence, follow-up duration, and correlation with dosimetric parameters of the temporal lobe were analyzed. The review included 30 studies with median follow-up durations ranging from 28 to 110 months. The crude incidence of TLN varied from 2.3 % to 47.3 % and the average crude incidence of TLN is approximately 14 %. Dmax and D1cc emerged as potential predictors of TLN in 3D-CRT and IMRT-treated NPC patients. Threshold values of >72 Gy for Dmax and >62 Gy for D1cc were associated with increased TLN risk. However, other factors should also be considered, including host characteristics, tumor-specific features and therapeutic factors. In conclusion, this systematic review highlights the significance of dosimetric parameters, particularly Dmax and D1cc, in predicting TLN risk in NPC patients undergoing 3D-CRT, IMRT, and VMAT. The findings provide valuable insights that can help in developing optimal treatment planning strategies and contribute to the development of clinical guidelines in this field.
Collapse
Affiliation(s)
- Jun Dong
- Clinical Oncology Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Wai Tong Ng
- Clinical Oncology Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China; Department of Clinical Oncology, Shenzhen Key Laboratory for Cancer Metastasis and Personalized Therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China; Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Charlene H L Wong
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ji-Shi Li
- Clinical Oncology Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Heleen Bollen
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, Belgium; Department of Radiation Oncology, Leuven Cancer Institute, University Hospitals Leuven, Belgium
| | - James C H Chow
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| | - Avraham Eisbruch
- Department of Radiation Oncology, University of Michigan Medicine, Ann Arbor, MI, USA
| | - Anne W M Lee
- Clinical Oncology Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China; Department of Clinical Oncology, Shenzhen Key Laboratory for Cancer Metastasis and Personalized Therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China; Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Victor H F Lee
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Sweet Ping Ng
- Department of Radiation Oncology, Olivia Newton-John Cancer and Wellness Centre, Austin Health, Melbourne, Australia
| | - Sandra Nuyts
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, Belgium; Department of Radiation Oncology, Leuven Cancer Institute, University Hospitals Leuven, Belgium
| | - Robert Smee
- Department of Radiation Oncology, The Prince of Wales Cancer Centre, Sydney, Australia
| | - Alfio Ferlito
- Coordinator of the International Head and Neck Scientific Group, Padua, Italy
| |
Collapse
|
40
|
Mahajan A, Stavinoha PL, Rongthong W, Brodin NP, McGovern SL, El Naqa I, Palmer JD, Vennarini S, Indelicato DJ, Aridgides P, Bowers DC, Kremer L, Ronckers C, Constine L, Avanzo M. Neurocognitive Effects and Necrosis in Childhood Cancer Survivors Treated With Radiation Therapy: A PENTEC Comprehensive Review. Int J Radiat Oncol Biol Phys 2024; 119:401-416. [PMID: 33810950 DOI: 10.1016/j.ijrobp.2020.11.073] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/08/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE A PENTEC review of childhood cancer survivors who received brain radiation therapy (RT) was performed to develop models that aid in developing dose constraints for RT-associated central nervous system (CNS) morbidities. METHODS AND MATERIALS A comprehensive literature search, through the PENTEC initiative, was performed to identify published data pertaining to 6 specific CNS toxicities in children treated with brain RT. Treatment and outcome data on survivors were extracted and used to generate normal tissue complication probability (NTCP) models. RESULTS The search identified investigations pertaining to 2 of the 6 predefined CNS outcomes: neurocognition and brain necrosis. For neurocognition, models for 2 post-RT outcomes were developed to (1) calculate the risk for a below-average intelligence quotient (IQ) (IQ <85) and (2) estimate the expected IQ value. The models suggest that there is a 5% risk of a subsequent IQ <85 when 10%, 20%, 50%, or 100% of the brain is irradiated to 35.7, 29.1, 22.2, or 18.1 Gy, respectively (all at 2 Gy/fraction and without methotrexate). Methotrexate (MTX) increased the risk for an IQ <85 similar to a generalized uniform brain dose of 5.9 Gy. The model for predicting expected IQ also includes the effect of dose, age, and MTX. Each of these factors has an independent, but probably cumulative effect on IQ. The necrosis model estimates a 5% risk of necrosis for children after 59.8 Gy or 63.6 Gy (2 Gy/fraction) to any part of the brain if delivered as primary RT or reirradiation, respectively. CONCLUSIONS This PENTEC comprehensive review establishes objective relationships between patient age, RT dose, RT volume, and MTX to subsequent risks of neurocognitive injury and necrosis. A lack of consistent RT data and outcome reporting in the published literature hindered investigation of the other predefined CNS morbidity endpoints.
Collapse
Affiliation(s)
- Anita Mahajan
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota.
| | - Peter L Stavinoha
- Division of Pediatrics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Warissara Rongthong
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - N Patrik Brodin
- Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, New York
| | - Susan L McGovern
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Issam El Naqa
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Joshua D Palmer
- Department of Radiation Oncology, James Cancer Hospital at Ohio State University, Nationwide Children's Hospital, Columbus, Ohio
| | - Sabina Vennarini
- Proton Therapy Center, Azienda Provinciale per I Servizi Sanitari, Trento, Italy
| | - Daniel J Indelicato
- Department of Radiation Oncology, University of Florida, Gainesville, Florida
| | - Paul Aridgides
- Department of Radiation Oncology, SUNY Upstate Medical University, Syracuse, New York
| | - Daniel C Bowers
- Division of Pediatric Hematology and Oncology, University of Texas Southwestern Medical School, Dallas, Texas
| | - Leontien Kremer
- Department of Pediatrics, UMC Amsterdam, Location AMC, Amsterdam, the Netherlands; Department of Pediatric Oncology, Princess Máxima Center for Paediatric Oncology, Utrecht, the Netherlands
| | - Cecile Ronckers
- Department of Pediatrics, UMC Amsterdam, Location AMC, Amsterdam, the Netherlands; Department of Pediatric Oncology, Princess Máxima Center for Paediatric Oncology, Utrecht, the Netherlands; Institute of Biostatistics and Registry Research, Medical University Brandenburg-Theodor Fontane, Neuruppin, Germany
| | - Louis Constine
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York
| | - Michele Avanzo
- Medical Physics Department, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| |
Collapse
|
41
|
Ajithkumar T, Avanzo M, Yorke E, Tsang DS, Milano MT, Olch AJ, Merchant TE, Dieckmann K, Mahajan A, Fuji H, Paulino AC, Timmermann B, Marks LB, Bentzen SM, Jackson A, Constine LS. Brain and Brain Stem Necrosis After Reirradiation for Recurrent Childhood Primary Central Nervous System Tumors: A PENTEC Comprehensive Review. Int J Radiat Oncol Biol Phys 2024; 119:655-668. [PMID: 38300187 DOI: 10.1016/j.ijrobp.2023.12.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 12/19/2023] [Accepted: 12/26/2023] [Indexed: 02/02/2024]
Abstract
PURPOSE Reirradiation is increasingly used in children and adolescents/young adults (AYA) with recurrent primary central nervous system tumors. The Pediatric Normal Tissue Effects in the Clinic (PENTEC) reirradiation task force aimed to quantify risks of brain and brain stem necrosis after reirradiation. METHODS AND MATERIALS A systematic literature search using the PubMed and Cochrane databases for peer-reviewed articles from 1975 to 2021 identified 92 studies on reirradiation for recurrent tumors in children/AYA. Seventeen studies representing 449 patients who reported brain and brain stem necrosis after reirradiation contained sufficient data for analysis. While all 17 studies described techniques and doses used for reirradiation, they lacked essential details on clinically significant dose-volume metrics necessary for dose-response modeling on late effects. We, therefore, estimated incidences of necrosis with an exact 95% CI and qualitatively described data. Results from multiple studies were pooled by taking the weighted average of the reported crude rates from individual studies. RESULTS Treated cancers included ependymoma (n = 279 patients; 7 studies), medulloblastoma (n = 98 patients; 6 studies), any CNS tumors (n = 62 patients; 3 studies), and supratentorial high-grade gliomas (n = 10 patients; 1 study). The median interval between initial and reirradiation was 2.3 years (range, 1.2-4.75 years). The median cumulative prescription dose in equivalent dose in 2-Gy fractions (EQD22; assuming α/β value = 2 Gy) was 103.8 Gy (range, 55.8-141.3 Gy). Among 449 reirradiated children/AYA, 22 (4.9%; 95% CI, 3.1%-7.3%) developed brain necrosis and 14 (3.1%; 95% CI, 1.7%-5.2%) developed brain stem necrosis with a weighted median follow-up of 1.6 years (range, 0.5-7.4 years). The median cumulative prescription EQD22 was 111.4 Gy (range, 55.8-141.3 Gy) for development of any necrosis, 107.7 Gy (range, 55.8-141.3 Gy) for brain necrosis, and 112.1 Gy (range, 100.2-117 Gy) for brain stem necrosis. The median latent period between reirradiation and the development of necrosis was 5.7 months (range, 4.3-24 months). Though there were more events among children/AYA undergoing hypofractionated versus conventionally fractionated reirradiation, the differences were not statistically significant (P = .46). CONCLUSIONS Existing reports suggest that in children/AYA with recurrent brain tumors, reirradiation with a total EQD22 of about 112 Gy is associated with an approximate 5% to 7% incidence of brain/brain stem necrosis after a median follow-up of 1.6 years (with the initial course of radiation therapy being given with conventional prescription doses of ≤2 Gy per fraction and the second course with variable fractionations). We recommend a uniform approach for reporting dosimetric endpoints to derive robust predictive models of late toxicities following reirradiation.
Collapse
Affiliation(s)
- Thankamma Ajithkumar
- Department of Oncology, Cambridge University Hospitals, Cambridge, United Kingdom.
| | - Michele Avanzo
- Division of Medical Physics, Centro di Riferimento Oncologico Aviano IRCCS, Aviano, Italy
| | - Ellen Yorke
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Derek S Tsang
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Michael T Milano
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York
| | - Arthur J Olch
- Department of Radiation Oncology and Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Thomas E Merchant
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Karin Dieckmann
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Anita Mahajan
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Hiroshi Fuji
- National Center for Child Health and Development, Tokyo, Japan
| | - Arnold C Paulino
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Beate Timmermann
- Department of Particle Therapy, University Hospital Essen, West German Proton Therapy Centre Essen, West German Cancer Center, Essen, Germany
| | - Lawrence B Marks
- Department of Radiation Oncology and Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Soren M Bentzen
- Division of Biostatistics and Bioinformatics, Department of Radiation Oncology, and University of Maryland Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Andrew Jackson
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Louis S Constine
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York; Department of Pediatrics, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
42
|
Gecici NN, Gurses ME, Kaye B, Jimenez NLF, Berke C, Gökalp E, Lu VM, Ivan ME, Komotar RJ, Shah AH. Comparative analysis of bevacizumab and LITT for treating radiation necrosis in previously radiated CNS neoplasms: a systematic review and meta-analysis. J Neurooncol 2024; 168:1-11. [PMID: 38619777 PMCID: PMC11093788 DOI: 10.1007/s11060-024-04650-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/15/2024] [Indexed: 04/16/2024]
Abstract
PURPOSE Radiation necrosis (RN) is a local inflammatory reaction that arises in response to radiation injury and may cause significant morbidity. This study aims to evaluate and compare the efficacy of bevacizumab and laser interstitial thermal therapy (LITT) in treating RN in patients with previously radiated central nervous system (CNS) neoplasms. METHODS PubMed, Cochrane, Scopus, and EMBASE databases were screened. Studies of patients with radiation necrosis from primary or secondary brain tumors were included. Indirect meta-analysis with random-effect modeling was performed to compare clinical and radiological outcomes. RESULTS Twenty-four studies were included with 210 patients in the bevacizumab group and 337 patients in the LITT group. Bevacizumab demonstrated symptomatic improvement/stability in 87.7% of cases, radiological improvement/stability in 86.2%, and steroid wean-off in 45%. LITT exhibited symptomatic improvement/stability in 71.2%, radiological improvement/stability in 64.7%, and steroid wean-off in 62.4%. Comparative analysis revealed statistically significant differences favoring bevacizumab in symptomatic improvement/stability (p = 0.02), while no significant differences were observed in radiological improvement/stability (p = 0.27) or steroid wean-off (p = 0.90). The rates of adverse reactions were 11.2% for bevacizumab and 14.9% for LITT (p = 0.66), with the majority being grade 2 or lower (72.2% for bevacizumab and 62.5% for LITT). CONCLUSION Both bevacizumab and LITT exhibited favorable clinical and radiological outcomes in managing RN. Bevacizumab was found to be associated with better symptomatic control compared to LITT. Patient-, diagnosis- and lesion-related factors should be considered when choosing the ideal treatment modality for RN to enhance overall patient outcomes.
Collapse
Affiliation(s)
- Neslihan Nisa Gecici
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, US
| | - Muhammet Enes Gurses
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, US.
| | - Brandon Kaye
- Dr. Kiran C. Patel College of Allopathic Medicine, Davie, FL, 33326, US
| | | | - Chandler Berke
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, US
| | - Elif Gökalp
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, US
| | - Victor M Lu
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, US
| | - Michael E Ivan
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, US
| | - Ricardo J Komotar
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, US
| | - Ashish H Shah
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, US
| |
Collapse
|
43
|
Chow JCH, Ho JCS, Cheung KM, Johnson D, Ip BYM, Beitler JJ, Strojan P, Mäkitie AA, Eisbruch A, Ng SP, Nuyts S, Mendenhall WM, Babighian S, Ferlito A. Neurological complications of modern radiotherapy for head and neck cancer. Radiother Oncol 2024; 194:110200. [PMID: 38438018 DOI: 10.1016/j.radonc.2024.110200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/21/2024] [Accepted: 02/29/2024] [Indexed: 03/06/2024]
Abstract
Radiotherapy is one of the mainstay treatment modalities for the management of non-metastatic head and neck cancer (HNC). Notable improvements in treatment outcomes have been observed in the recent decades. Modern radiotherapy techniques, such as intensity-modulated radiotherapy and charged particle therapy, have significantly improved tumor target conformity and enabled better preservation of normal structures. However, because of the intricate anatomy of the head and neck region, multiple critical neurological structures such as the brain, brainstem, spinal cord, cranial nerves, nerve plexuses, autonomic pathways, brain vasculature, and neurosensory organs, are variably irradiated during treatment, particularly when tumor targets are in close proximity. Consequently, a diverse spectrum of late neurological sequelae may manifest in HNC survivors. These neurological complications commonly result in irreversible symptoms, impair patients' quality of life, and contribute to a substantial proportion of non-cancer deaths. Although the relationship between radiation dose and toxicity has not been fully elucidated for all complications, appropriate application of dosimetric constraints during radiotherapy planning may reduce their incidence. Vigilant surveillance during the course of survivorship also enables early detection and intervention. This article endeavors to provide a comprehensive review of the various neurological complications of modern radiotherapy for HNC, summarize the current incidence data, discuss methods to minimize their risks during radiotherapy planning, and highlight potential strategies for managing these debilitating toxicities.
Collapse
Affiliation(s)
- James C H Chow
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong Special Administrative Region.
| | - Jason C S Ho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong Special Administrative Region
| | - Ka Man Cheung
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong Special Administrative Region
| | - David Johnson
- Department of Clinical Oncology, Prince of Wales Hospital, Hong Kong Special Administrative Region
| | - Bonaventure Y M Ip
- Division of Neurology, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong Special Administrative Region; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Jonathan J Beitler
- Harold Alfond Center for Cancer Care, Maine General Hospital, Augusta, ME, USA
| | - Primož Strojan
- Department of Radiation Oncology, Institute of Oncology, Ljubljana, Slovenia
| | - Antti A Mäkitie
- Department of Otorhinolaryngology, Head and Neck Surgery, Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Avraham Eisbruch
- Department of Radiation Oncology, University of Michigan Medicine, Ann Arbor, MI, USA
| | - Sweet Ping Ng
- Department of Radiation Oncology, Olivia Newton-John Cancer Centre, Austin Health, Melbourne, Australia
| | - Sandra Nuyts
- Department of Radiation Oncology, Leuven Cancer Institute, University Hospitals Leuven, KU Leuven - University of Leuven, Leuven, Belgium; Laboratory of Experimental Radiotherapy, Department of Oncology, University of Leuven, Leuven, Belgium
| | - William M Mendenhall
- Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Silvia Babighian
- Department of Ophthalmology, Ospedale Sant'Antonio, Azienda Ospedaliera, Padova, Italy
| | - Alfio Ferlito
- Coordinator of the International Head and Neck Scientific Group, Padua, Italy
| |
Collapse
|
44
|
Jelinek MJ, Joshi N. Off the Top of Our Head. Int J Radiat Oncol Biol Phys 2024; 119:8-9. [PMID: 38631749 DOI: 10.1016/j.ijrobp.2023.11.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 11/19/2023] [Indexed: 04/19/2024]
Affiliation(s)
- Michael J Jelinek
- Division of Hematology, Oncology, and Cell Therapy, Rush Cancer Center, Chicago, Illinois
| | - Nikhil Joshi
- Department of Radiation Oncology, Rush Cancer Center, Chicago, Illinois
| |
Collapse
|
45
|
Srsich AR, McCurdy MD, Fantozzi PM, Hocking MC. Predicting neuropsychological late effects in pediatric brain tumor survivors using the Neurological Predictor Scale and the Pediatric Neuro-Oncology Rating of Treatment Intensity. J Int Neuropsychol Soc 2024; 30:380-388. [PMID: 37746790 PMCID: PMC12012858 DOI: 10.1017/s1355617723000589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
OBJECTIVE The Neurological Predictor Scale (NPS) quantifies cumulative exposure to tumor- and treatment-related neurological risks. The Pediatric Neuro-Oncology Rating of Treatment Intensity (PNORTI) measures the intensity of different treatment modalities, but research is needed to establish whether it is associated with late effects. This study evaluated the predictive validity of the NPS and PNORTI for neuropsychological outcomes in pediatric brain tumor survivors. METHOD A retrospective chart review was completed of pediatric brain tumor survivors (PBTS) (n = 161, Mage = 13.47, SD = 2.80) who were at least 2 years from the end of tumor-directed treatment. Attention, intellectual functioning, perceptual reasoning, processing speed, verbal reasoning, and working memory were analyzed in relation to the NPS and PNORTI. RESULTS NPS scores ranged from 1 to 11 (M = 5.57, SD = 2.27) and PNORTI scores ranged from 1 (n = 101; 62.7%) to 3 (n = 18; 11.2%). When controlling for age, sex, SES factors, and time since treatment, NPS scores significantly predicted intellectual functioning [F(7,149) = 12.86, p < .001, R2 = .38] and processing speed [F(7,84) = 5.28, p < .001, R2 = .31]. PNORTI scores did not significantly predict neuropsychological outcomes. CONCLUSIONS The findings suggest that the NPS has value in predicting IF and processing speed above-and-beyond demographic variables. The PNORTI was not associated with neuropsychological outcomes. Future research should consider establishing clinical cutoff scores for the NPS to help determine which survivors are most at risk for neuropsychological late effects and warrant additional assessment.
Collapse
Affiliation(s)
| | | | | | - Matthew C. Hocking
- The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- The University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
46
|
Zhou S, Ding X, Zhang Y, Liu Y, Wang X, Guo Y, Zhang J, Liu X, Gong G, Su Y, Wang L, Zhao M, Hu M. Evaluation of specific RBE in different cells of hippocampus under high-dose proton irradiation in rats. Sci Rep 2024; 14:8193. [PMID: 38589544 PMCID: PMC11001863 DOI: 10.1038/s41598-024-58831-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024] Open
Abstract
The study aimed to determine the specific relative biological effectiveness (RBE) of various cells in the hippocampus following proton irradiation. Sixty Sprague-Dawley rats were randomly allocated to 5 groups receiving 20 or 30 Gy of proton or photon irradiation. Pathomorphological neuronal damage in the hippocampus was assessed using Hematoxylin-eosin (HE) staining. The expression level of NeuN, Nestin, Caspase-3, Olig2, CD68 and CD45 were determined by immunohistochemistry (IHC). The RBE range established by comparing the effects of proton and photon irradiation at equivalent biological outcomes. Proton20Gy induced more severe damage to neurons than photon20Gy, but showed no difference compared to photon30Gy. The RBE of neuron was determined to be 1.65. Similarly, both proton20Gy and proton30Gy resulted in more inhibition of oligodendrocytes and activation of microglia in the hippocampal regions than photon20Gy and photon30Gy. However, the expression of Olig2 was higher and CD68 was lower in the proton20Gy group than in the photon30Gy group. The RBE of oligodendrocyte and microglia was estimated to be between 1.1 to 1.65. For neural stem cells (NSCs) and immune cells, there were no significant difference in the expression of Nestin and CD45 between proton and photon irradiation (both 20 and 30 Gy). Therefore, the RBE for NSCs and immune cell was determined to be 1.1. These findings highlight the varying RBE values of different cells in the hippocampus in vivo. Moreover, the actual RBE of the hippocampus may be higher than 1.1, suggesting that using as RBE value of 1.1 in clinical practice may underestimate the toxicities induced by proton radiation.
Collapse
Affiliation(s)
- Shengying Zhou
- School of Clinical Medicine, Shandong Second Medical University, Weifang, 261053, Shandong, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, NO.440 Ji Yan Road, Jinan, 250117, Shandong, China
| | - Xingchen Ding
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, NO.440 Ji Yan Road, Jinan, 250117, Shandong, China
| | - Yiyuan Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, NO.440 Ji Yan Road, Jinan, 250117, Shandong, China
| | - Yuanyuan Liu
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Xiaowen Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, NO.440 Ji Yan Road, Jinan, 250117, Shandong, China
- Shandong University cancer center, Jinan, 250100, Shandong, China
| | - Yujiao Guo
- Affiliated Hospital of Jining Medical College, Jining, 272067, Shandong, China
| | | | - Xiao Liu
- 960 Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Jinan, 250031, Shandong, China
| | - Guanzhong Gong
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, NO.440 Ji Yan Road, Jinan, 250117, Shandong, China
| | - Ya Su
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, NO.440 Ji Yan Road, Jinan, 250117, Shandong, China
| | - Lizhen Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, NO.440 Ji Yan Road, Jinan, 250117, Shandong, China
| | - Miaoqing Zhao
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China.
| | - Man Hu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, NO.440 Ji Yan Road, Jinan, 250117, Shandong, China.
| |
Collapse
|
47
|
Wu EL, Patel A, McGunigal MC, Johng SY, Mortazavi A, Jay AK, Ahn PH, Anaizi AN, DeKlotz TR. Characterization of cerebral radiation necrosis following the treatment of sinonasal malignancies. Laryngoscope Investig Otolaryngol 2024; 9:e1200. [PMID: 38525116 PMCID: PMC10960240 DOI: 10.1002/lio2.1200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/05/2023] [Accepted: 12/03/2023] [Indexed: 03/26/2024] Open
Abstract
Objectives Our study aims to determine the incidence and potential risk factors for cerebral radiation necrosis (CRN) following treatment of sinonasal malignancies. Methods One hundred thirty-two patients diagnosed with sinonasal malignancies over an 18-year period were identified at two institutions. Forty-six patients meeting inclusion criteria and treated with radiation therapy were included for analysis. Demographic and clinical-pathologic characteristics were collected and reviewed. Post-treatment magnetic resonance imaging (MRI) at least 1 year following treatment was reviewed to determine presence or absence of CRN. Results CRN was identified on MRI in 8 of 46 patients (17.4%) following radiation treatment. Patients with a history of reirradiation were more likely to develop CRN (50% vs. 10.5%, p < .05). The BEDs of radiation were also higher in CRN patients compared to non-CRN patients, but this difference was not significant (p > .05). CRN patients had a higher proportion of tumors with skull base involvement than non-CRN patients (100% vs. 57.9%, p = .037). Demographics, comorbidities, pathology, primary tumor subsite, chemotherapy use, and stage of disease demonstrated no significant increase in risk of CRN. Conclusions Reirradiation and tumor skull base involvement were significant risk factors associated with CRN. Higher average total prescribed and BEDs of radiation were seen in the CRN groups, but these differences were not statistically significant. Gender, comorbidities, tumor subsite, tumor location, and treatment type were not significantly different between groups. Level of evidence Level 3.
Collapse
Affiliation(s)
- Eric L. Wu
- Department of Otolaryngology – Head and Neck SurgeryMedStar Georgetown University HospitalWashingtonDCUSA
| | - Atur Patel
- Department of Otolaryngology – Head and Neck SurgeryMedStar Georgetown University HospitalWashingtonDCUSA
| | - Mary C. McGunigal
- Veteran Affairs New York Harbor Healthcare SystemState University of New York – Downstate Medical CenterNew YorkNew YorkUSA
| | | | | | - Ann K. Jay
- Department of RadiologyMedStar Georgetown University HospitalWashingtonDCUSA
| | - Peter H. Ahn
- Department of Radiation OncologyMedStar Georgetown University HospitalWashingtonDCUSA
| | - Amjad N. Anaizi
- Department of NeurosurgeryMedStar Georgetown University HospitalWashingtonDCUSA
| | - Timothy R. DeKlotz
- Department of Otolaryngology – Head and Neck SurgeryMedStar Georgetown University HospitalWashingtonDCUSA
| |
Collapse
|
48
|
Lütgendorf-Caucig C, Pelak M, Hug E, Flechl B, Surböck B, Marosi C, Mock U, Zach L, Mardor Y, Furman O, Hentschel H, Gora J, Fossati P, Stock M, Graichen U, Klee S, Georg P. Prospective Analysis of Radiation-Induced Contrast Enhancement and Health-Related Quality of Life After Proton Therapy for Central Nervous System and Skull Base Tumors. Int J Radiat Oncol Biol Phys 2024; 118:1206-1216. [PMID: 38244874 DOI: 10.1016/j.ijrobp.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/22/2024]
Abstract
PURPOSE Intracerebral radiation-induced contrast enhancement (RICE) can occur after photon as well as proton beam therapy (PBT). This study evaluated the incidence, characteristics, and risk factors of RICE after PBT delivered to, or in direct proximity to, the brain and its effect on health-related quality of life (HRQoL). METHODS AND MATERIALS Four hundred twenty-one patients treated with pencil beam scanning PBT between 2017 and 2021 were included. Follow-up included clinical evaluation and contrast-enhanced magnetic resonance imaging at 3, 6, and 12 months after treatment completion and annually thereafter. RICE was graded according to Common Terminology Criteria for Adverse Events version 4, and HRQoL parameters were assessed via European Organisation for Research and Treatment of Cancer Quality of Life Questionnaire (EORTC QLQ)-C30 questionnaires. RESULTS The median follow-up was 24 months (range, 6-54), and median dose to 1% relative volume of noninvolved central nervous system (D1%CNS) was 54.3 Gy relative biologic effectiveness (RBE; range, 30-76 Gy RBE). The cumulative RICE incidence was 15% (n = 63), of which 10.5% (n = 44) were grade 1, 3.1% (n = 13) were grade 2, and 1.4% (n = 6) were grade 3. No grade 4 or 5 events were observed. Twenty-six of 63 RICE (41.3%) had resolved at the latest follow-up. The median onset after PBT and duration of RICE in patients in whom the lesions resolved were 11.8 and 9.0 months, respectively. On multivariable analysis, D1%CNS > 57.6 Gy RBE, previous in-field radiation, and diabetes mellitus were identified as significant risk factors for RICE development. Previous radiation was the only factor influencing the risk of symptomatic RICE. After PBT, general HRQoL parameters were not compromised. In a matched cohort analysis of 54/50 patients with and without RICE, no differences in global health score or functional and symptom scales were seen. CONCLUSIONS The overall incidence of clinically relevant RICE after PBT is very low and has no significant negative effect on long-term patient QoL.
Collapse
Affiliation(s)
| | - Maciej Pelak
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria; University Clinic for Radiotherapy and Radiation Oncology, Uniklinikum Salzburg, Salzburg, Austria.
| | - Eugen Hug
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Birgit Flechl
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Birgit Surböck
- Department of Neurology, Klinikum Favoriten, Vienna, Austria
| | - Christine Marosi
- Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Ulrike Mock
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Leor Zach
- Department of Radiation Oncology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Tel Aviv University, Sackler Faculty of Medicine, Tel Aviv, Israel
| | - Yael Mardor
- Tel Aviv University, Sackler Faculty of Medicine, Tel Aviv, Israel; Advanced Technology Center, Sheba Medical Center, Ramat Gan, Israel
| | - Orit Furman
- Department of Radiation Oncology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | | | - Joanna Gora
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Piero Fossati
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Markus Stock
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Uwe Graichen
- Department of General Health Studies, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Sascha Klee
- Department of General Health Studies, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Petra Georg
- Department of Radiotherapy, Karl Landsteiner University of Health Sciences, University Hospital Krems, Krems, Austria
| |
Collapse
|
49
|
Mangesius J, Seppi T, Arnold CR, Mangesius S, Kerschbaumer J, Demetz M, Minasch D, Vorbach SM, Sarcletti M, Lukas P, Nevinny-Stickel M, Ganswindt U. Prognosis versus Actual Outcomes in Stereotactic Radiosurgery of Brain Metastases: Reliability of Common Prognostic Parameters and Indices. Curr Oncol 2024; 31:1739-1751. [PMID: 38668035 PMCID: PMC11049204 DOI: 10.3390/curroncol31040132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
This study aims to evaluate the clinical outcome of stereotactic radiosurgery as the sole treatment for brain metastases and to assess prognostic factors influencing survival. A total of 108 consecutive patients with 213 metastases were retrospectively analyzed. Treatment was determined with close-meshed MRI follow-up. Various prognostic factors were assessed, and several prognostic indices were compared regarding their reliability to estimate overall survival. Median overall survival was 15 months; one-year overall survival was 50.5%. Both one- and two-year local controls were 90.9%. The rate of new metastases after SRS was 49.1%. Multivariate analysis of prognostic factors revealed that the presence of extracranial metastases, male sex, lower KPI, and progressive extracranial disease were significant risk factors for decreased survival. Of all evaluated prognostic indices, the Basic Score for Brain Metastases (BSBMs) showed the best correlation with overall survival. A substantial survival advantage was found for female patients after SRS when compared to male patients (18 versus 9 months, p = 0.003). SRS of brain metastasis is a safe and effective treatment option when frequent monitoring for new metastases with MRI is performed. Common prognostic scores lack reliable estimation of survival times. Female sex should be considered as an additional independent positive prognostic factor influencing survival.
Collapse
Affiliation(s)
- Julian Mangesius
- Department of Radiation Oncology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Thomas Seppi
- Department of Radiation Oncology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | | | - Stephanie Mangesius
- Department of Neuroradiology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Johannes Kerschbaumer
- Department of Neurosurgery, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Matthias Demetz
- Department of Neurosurgery, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Danijela Minasch
- Department of Radiation Oncology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Samuel Moritz Vorbach
- Department of Radiation Oncology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Manuel Sarcletti
- Department of Radiation Oncology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Peter Lukas
- Department of Radiation Oncology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | | | - Ute Ganswindt
- Department of Radiation Oncology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
50
|
Nakamura M, Mizumoto M, Saito T, Shimizu S, Li Y, Oshiro Y, Inaba M, Hosaka S, Fukushima H, Suzuki R, Iizumi T, Nakai K, Maruo K, Sakurai H. A systematic review and meta-analysis of radiotherapy and particle beam therapy for skull base chondrosarcoma: TRP-chondrosarcoma 2024. Front Oncol 2024; 14:1380716. [PMID: 38567162 PMCID: PMC10985235 DOI: 10.3389/fonc.2024.1380716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction Chondrosarcoma is a rare malignant bone tumor. Particle beam therapy (PT) can concentrate doses to targets while reducing adverse events. A meta-analysis based on a literature review was performed to examine the efficacy of PT and photon radiotherapy for skull base chondrosarcoma. Methods The meta-analysis was conducted using 21 articles published from 1990 to 2022. Results After PT, the 3- and 5-year overall survival (OS) rates were 94.1% (95% confidence interval [CI]: 91.0-96.2%) and 93.9% (95% CI: 90.6-96.1%), respectively, and the 3- and 5-year local control rates were 95.4% (95% CI: 92.0-97.4%) and 90.1% (95% CI: 76.8-96.0%), respectively. Meta-regression analysis revealed a significant association of PT with a superior 5-year OS rate compared to three-dimensional conformal radiotherapy (p < 0.001). In the studies used in the meta-analysis, the major adverse event of grade 2 or higher was temporal lobe necrosis (incidence 1-18%, median 7%). Conclusion PT for skull base chondrosarcoma had a good outcome and may be a valuable option among radiotherapy modalities. However, high-dose postoperative irradiation of skull base chondrosarcoma can cause adverse events such as temporal lobe necrosis.
Collapse
Affiliation(s)
| | - Masashi Mizumoto
- Department of Radiation Oncology, University of Tsukuba, Tsukuba, Japan
| | - Takashi Saito
- Department of Radiation Oncology, University of Tsukuba, Tsukuba, Japan
| | - Shosei Shimizu
- Department of Pediatric Radiation Therapy Center/Pediatric Proton Beam Therapy Center, Hebei Yizhou Cancer Hospital, Zhuozhou, China
| | - Yinuo Li
- Department of Radiation Oncology, University of Tsukuba, Tsukuba, Japan
| | - Yoshiko Oshiro
- Department of Radiation Oncology, University of Tsukuba, Tsukuba, Japan
- Department of Radiation Oncology, Tsukuba Medical Center Hospital, Tsukuba, Japan
| | - Masako Inaba
- Department of Pediatrics, University of Tsukuba Hospital, Tsukuba, Japan
| | - Sho Hosaka
- Department of Pediatrics, University of Tsukuba Hospital, Tsukuba, Japan
| | - Hiroko Fukushima
- Department of Child Health, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Ryoko Suzuki
- Department of Child Health, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Takashi Iizumi
- Department of Radiation Oncology, University of Tsukuba, Tsukuba, Japan
| | - Kei Nakai
- Department of Radiation Oncology, University of Tsukuba, Tsukuba, Japan
| | - Kazushi Maruo
- Department of Biostatistics, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hideyuki Sakurai
- Department of Radiation Oncology, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|