1
|
Overs A, Peixoto P, Hervouet E, Molimard C, Monnien F, Durand J, Guittaut M, Vienot A, Viot J, Herfs M, Borg C, Feugeas JP, Selmani Z. COL25A1 and METAP1D DNA methylation are promising liquid biopsy epigenetic biomarkers of colorectal cancer using digital PCR. Clin Epigenetics 2024; 16:146. [PMID: 39425144 PMCID: PMC11490026 DOI: 10.1186/s13148-024-01748-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/16/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Colorectal cancer is a public health issue and was the third leading cause of cancer-related death worldwide in 2022. Early diagnosis can improve prognosis, making screening a central part of colorectal cancer management. Blood-based screening, diagnosis and follow-up of colorectal cancer patients are possible with the study of cell-free circulating tumor DNA. This study aimed to identify novel DNA methylation biomarkers of colorectal cancer that can be used for the follow-up of patients with colorectal cancer. METHODS A DNA methylation profile was established in the Gene Expression Omnibus (GEO) database (n = 507) using bioinformatics analysis and subsequently confirmed using The Cancer Genome Atlas (TCGA) database (n = 348). The in silico profile was then validated on local tissue and cell-free DNA samples using methylation-specific digital PCR in colorectal cancer patients (n = 35) and healthy donors (n = 35). RESULTS The DNA methylation of COL25A1 and METAP1D was predicted to be a colorectal cancer biomarker by bioinformatics analysis (ROC AUC = 1, 95% CI [0.999-1]). The two biomarkers were confirmed with tissue samples, and the combination of COL25A1 and METAP1D yielded 49% sensitivity and 100% specificity for cell-free DNA. CONCLUSION Bioinformatics analysis of public databases revealed COL25A1 and METAP1D DNA methylation as clinically applicable liquid biopsies DNA methylation biomarkers. The specificity implies an excellent positive predictive value for follow-up, and the high sensitivity and relative noninvasiveness of a blood-based test make these biomarkers compatible with colorectal cancer screening. However, the clinical impact of these biomarkers in colorectal cancer screening and follow-up needs to be established in further prospective studies.
Collapse
Affiliation(s)
- Alexis Overs
- Department of Oncobiology, University Hospital of Besançon, 3 Boulevard Alexandre Fleming, 25000, Besançon, France.
- UMR1098, INSERM, University of Bourgogne Franche-Comté, Besançon, France.
| | - Paul Peixoto
- UMR1098, INSERM, University of Bourgogne Franche-Comté, Besançon, France
| | - Eric Hervouet
- UMR1098, INSERM, University of Bourgogne Franche-Comté, Besançon, France
| | - Chloé Molimard
- Department of Pathology, University Hospital of Besançon, 25000, Besancon, France
| | - Franck Monnien
- Department of Pathology, University Hospital of Besançon, 25000, Besancon, France
| | - Jules Durand
- UMR1098, INSERM, University of Bourgogne Franche-Comté, Besançon, France
| | - Michael Guittaut
- UMR1098, INSERM, University of Bourgogne Franche-Comté, Besançon, France
| | - Angélique Vienot
- Department of Oncology, University Hospital of Besançon, 25000, Besancon, France
| | - Julien Viot
- Department of Oncology, University Hospital of Besançon, 25000, Besancon, France
| | - Michael Herfs
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liège, Belgium
| | - Christophe Borg
- UMR1098, INSERM, University of Bourgogne Franche-Comté, Besançon, France
- Department of Oncology, University Hospital of Besançon, 25000, Besancon, France
| | - Jean-Paul Feugeas
- Department of Oncobiology, University Hospital of Besançon, 3 Boulevard Alexandre Fleming, 25000, Besançon, France
- UMR1098, INSERM, University of Bourgogne Franche-Comté, Besançon, France
| | - Zohair Selmani
- Department of Oncobiology, University Hospital of Besançon, 3 Boulevard Alexandre Fleming, 25000, Besançon, France
- UMR1098, INSERM, University of Bourgogne Franche-Comté, Besançon, France
| |
Collapse
|
2
|
Huang J, Sun C, Zhu Q, Wu G, Cao Y, Shi J, He S, Jiang L, Liao J, Li L, Zhong C, Lu Y. Phenotyping of FGF12A V52H mutation in mouse implies a complex FGF12 network. Neurobiol Dis 2024; 200:106637. [PMID: 39142611 DOI: 10.1016/j.nbd.2024.106637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/26/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024] Open
Abstract
Pathogenic missense mutation of the FGF12 gene is responsible for a variable disease phenotypic spectrum. Disease-specific therapies require precise dissection of the relationship between different mutations and phenotypes. The lack of a proper animal model hinders the investigation of related diseases, such as early-onset epileptic encephalopathy. Here, an FGF12AV52H mouse model was generated using CRISPR/Cas9 technology, which altered the A isoform without affecting the B isoform. The FGF12AV52H mice exhibited seizure susceptibility, while no spontaneous seizures were observed. The increased excitability in dorsal hippocampal CA3 neurons was confirmed by patch-clamp recordings. Furthermore, immunostaining showed that the balance of excitatory/inhibitory neurons in the hippocampus of the FGF12AV52H mice was perturbed. The increases in inhibitory SOM+ neurons and excitatory CaMKII+ neurons were heterogeneous. Moreover, the locomotion, anxiety levels, risk assessment behavior, social behavior, and cognition of the FGF12AV52H mice were investigated by elevated plus maze, open field, three-chamber sociability, and novel object tests, respectively. Cognition deficit, impaired risk assessment, and social behavior with normal social indexes were observed, implying complex consequences of V52H FGF12A in mice. Together, these data suggest that the function of FGF12A in neurons can be immediate or long-term and involves modulation of ion channels and the differentiation and maturation of neurons. The FGF12AV52H mouse model increases the understanding of the function of FGF12A, and it is of great importance for revealing the complex network of the FGF12 gene in physiological and pathological processes.
Collapse
Affiliation(s)
- Jianyu Huang
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chongyang Sun
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Zhu
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Department of Neurology, Surgery Division, Epilepsy Center, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Ge Wu
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Cao
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jiarui Shi
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuyu He
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Department of Neurology, Surgery Division, Epilepsy Center, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Luyao Jiang
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jianxiang Liao
- Department of Neurology, Surgery Division, Epilepsy Center, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Lin Li
- Department of Neurology, Surgery Division, Epilepsy Center, Shenzhen Children's Hospital, Shenzhen 518038, China.
| | - Cheng Zhong
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Yi Lu
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
3
|
Biadun M, Karelus R, Krowarsch D, Opalinski L, Zakrzewska M. FGF12: biology and function. Differentiation 2024; 139:100740. [PMID: 38042708 DOI: 10.1016/j.diff.2023.100740] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/04/2023]
Abstract
Fibroblast growth factor 12 (FGF12) belongs to the fibroblast growth factor homologous factors (FHF) subfamily, which is also known as the FGF11 subfamily. The human FGF12 gene is located on chromosome 3 and consists of four introns and five coding exons. Their alternative splicing results in two FGF12 isoforms - the shorter 'b' isoform and the longer 'a' isoform. Structurally, the core domain of FGF12, is highly homologous to that of the other FGF proteins, providing the classical tertiary structure of β-trefoil. FGF12 is expressed in various tissues, most abundantly in excitable cells such as neurons and cardiomyocytes. For many years, FGF12 was thought to be exclusively an intracellular protein, but recent studies have shown that it can be secreted despite the absence of a canonical signal for secretion. The best-studied function of FGF12 relates to its interaction with sodium channels. In addition, FGF12 forms complexes with signaling proteins, regulates the cytoskeletal system, binds to the FGF receptors activating signaling cascades to prevent apoptosis and interacts with the ribosome biogenesis complex. Importantly, FGF12 has been linked to nervous system disorders, cancers and cardiac diseases such as epileptic encephalopathy, pulmonary hypertension and cardiac arrhythmias, making it a potential target for gene therapy as well as a therapeutic agent.
Collapse
Affiliation(s)
- Martyna Biadun
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland; Department of Protein Biotechnology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Radoslaw Karelus
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Daniel Krowarsch
- Department of Protein Biotechnology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Lukasz Opalinski
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Malgorzata Zakrzewska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland.
| |
Collapse
|
4
|
Biadun M, Sochacka M, Karelus R, Baran K, Czyrek A, Otlewski J, Krowarsch D, Opalinski L, Zakrzewska M. FGF homologous factors are secreted from cells to induce FGFR-mediated anti-apoptotic response. FASEB J 2023; 37:e23043. [PMID: 37342898 DOI: 10.1096/fj.202300324r] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/10/2023] [Accepted: 06/07/2023] [Indexed: 06/23/2023]
Abstract
FGF homologous factors (FHFs) are the least described group of fibroblast growth factors (FGFs). The FHF subfamily consists of four proteins: FGF11, FGF12, FGF13, and FGF14. Until recently, FHFs were thought to be intracellular, non-signaling molecules, despite sharing structural and sequence similarities with other members of FGF family that can be secreted and activate cell signaling by interacting with surface receptors. Here, we show that despite lacking a canonical signal peptide for secretion, FHFs are exported to the extracellular space. Furthermore, we propose that their secretion mechanism is similar to the unconventional secretion of FGF2. The secreted FHFs are biologically active and trigger signaling in cells expressing FGF receptors (FGFRs). Using recombinant proteins, we demonstrated their direct binding to FGFR1, resulting in the activation of downstream signaling and the internalization of the FHF-FGFR1 complex. The effect of receptor activation by FHF proteins is an anti-apoptotic response of the cell.
Collapse
Affiliation(s)
- Martyna Biadun
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
- Department of Protein Biotechnology, Faculty of Biotchnology, University of Wroclaw, Wroclaw, Poland
| | - Martyna Sochacka
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Radoslaw Karelus
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Karolina Baran
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Aleksandra Czyrek
- Department of Protein Biotechnology, Faculty of Biotchnology, University of Wroclaw, Wroclaw, Poland
| | - Jacek Otlewski
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Daniel Krowarsch
- Department of Protein Biotechnology, Faculty of Biotchnology, University of Wroclaw, Wroclaw, Poland
| | - Lukasz Opalinski
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Malgorzata Zakrzewska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
5
|
Sochacka M, Karelus R, Opalinski L, Krowarsch D, Biadun M, Otlewski J, Zakrzewska M. FGF12 is a novel component of the nucleolar NOLC1/TCOF1 ribosome biogenesis complex. Cell Commun Signal 2022; 20:182. [PMID: 36411431 PMCID: PMC9677703 DOI: 10.1186/s12964-022-01000-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/26/2022] [Indexed: 11/22/2022] Open
Abstract
Among the FGF proteins, the least characterized superfamily is the group of fibroblast growth factor homologous factors (FHFs). To date, the main role of FHFs has been primarily seen in the modulation of voltage-gated ion channels, but a full picture of the function of FHFs inside the cell is far from complete. In the present study, we focused on identifying novel FGF12 binding partners to indicate its intracellular functions. Among the identified proteins, a significant number were nuclear proteins, especially RNA-binding proteins involved in translational processes, such as ribosomal processing and modification. We have demonstrated that FGF12 is localized to the nucleolus, where it interacts with NOLC1 and TCOF1, proteins involved in the assembly of functional ribosomes. Interactions with both NOLC1 and TCOF1 are unique to FGF12, as other FHF proteins only bind to TCOF1. The formation of nucleolar FGF12 complexes with NOLC1 and TCOF1 is phosphorylation-dependent and requires the C-terminal region of FGF12. Surprisingly, NOLC1 and TCOF1 are unable to interact with each other in the absence of FGF12. Taken together, our data link FHF proteins to nucleoli for the first time and suggest a novel and unexpected role for FGF12 in ribosome biogenesis. Video Abstract.
Collapse
Affiliation(s)
- Martyna Sochacka
- grid.8505.80000 0001 1010 5103Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Radoslaw Karelus
- grid.8505.80000 0001 1010 5103Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Lukasz Opalinski
- grid.8505.80000 0001 1010 5103Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Daniel Krowarsch
- grid.8505.80000 0001 1010 5103Department of Protein Biotechnology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Martyna Biadun
- grid.8505.80000 0001 1010 5103Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Jacek Otlewski
- grid.8505.80000 0001 1010 5103Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Malgorzata Zakrzewska
- grid.8505.80000 0001 1010 5103Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wrocław, Poland
| |
Collapse
|
6
|
Ornitz DM, Itoh N. New developments in the biology of fibroblast growth factors. WIREs Mech Dis 2022; 14:e1549. [PMID: 35142107 PMCID: PMC10115509 DOI: 10.1002/wsbm.1549] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/28/2023]
Abstract
The fibroblast growth factor (FGF) family is composed of 18 secreted signaling proteins consisting of canonical FGFs and endocrine FGFs that activate four receptor tyrosine kinases (FGFRs 1-4) and four intracellular proteins (intracellular FGFs or iFGFs) that primarily function to regulate the activity of voltage-gated sodium channels and other molecules. The canonical FGFs, endocrine FGFs, and iFGFs have been reviewed extensively by us and others. In this review, we briefly summarize past reviews and then focus on new developments in the FGF field since our last review in 2015. Some of the highlights in the past 6 years include the use of optogenetic tools, viral vectors, and inducible transgenes to experimentally modulate FGF signaling, the clinical use of small molecule FGFR inhibitors, an expanded understanding of endocrine FGF signaling, functions for FGF signaling in stem cell pluripotency and differentiation, roles for FGF signaling in tissue homeostasis and regeneration, a continuing elaboration of mechanisms of FGF signaling in development, and an expanding appreciation of roles for FGF signaling in neuropsychiatric diseases. This article is categorized under: Cardiovascular Diseases > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology Congenital Diseases > Stem Cells and Development Cancer > Stem Cells and Development.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nobuyuki Itoh
- Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| |
Collapse
|
7
|
Miura T, Kawano M, Takahashi K, Yuasa N, Habu M, Kimura F, Imamura T, Nakayama F. High-Sulfated Hyaluronic Acid Ameliorates Radiation-Induced Intestinal Damage Without Blood Anticoagulation. Adv Radiat Oncol 2022; 7:100900. [PMID: 35295873 PMCID: PMC8918722 DOI: 10.1016/j.adro.2022.100900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/13/2022] [Indexed: 12/29/2022] Open
Abstract
Purpose Many growth factors, such as fibroblast growth factors (FGFs), are useful for the treatment or prevention of radiation damage after radiation therapy. Although heparin can be supplemented to increase the therapeutic effects of FGFs, it possesses strong anticoagulant effects, which limit its potential for clinical use. Therefore, chemically sulfated hyaluronic acid (HA) was developed as a safe alternative to heparin. This study examined the involvement of sulfated HA in radioprotective and anticoagulant effects. Methods and Materials FGF1 was administered intraperitoneally to BALB/c mice with sulfated HA 24 hours before or after total body irradiation with γ-rays. Several radioprotective effects were examined in the jejunum. The blood coagulation time in the presence of sulfated HA was measured using murine whole blood. Results FGF1 with high-sulfated HA (HA-HS) exhibited almost the same level of in vitro mitogenic activity as heparin, whereas FGF1 with HA or low-sulfated HA exhibited almost no mitogenic activity. Furthermore, HA-HS had high binding capability with FGF1. FGF1 with HA-HS significantly promoted crypt survival to the same level as heparin after total body irradiation and reduced radiation-induced apoptosis in crypt cells. Moreover, pretreatment of HA-HS without FGF1 also increased crypt survival and reduced apoptosis. Crypt survival with FGF1 in the presence of HA depended on the extent of sulfation of HA. Moreover, the blood anticoagulant effects of sulfated HA were weaker than those of heparin. As sulfated HA did not promote the reactivity of antithrombin III to thrombin, it did not increase anticoagulative effects to the same extent as heparin. Conclusions This study suggested that HA-HS promotes the radioprotective effects of FGF1 without anticoagulant effects. HA-HS has great potential for practical use to promote tissue regeneration after radiation damage.
Collapse
Affiliation(s)
- Taichi Miura
- Regenerative Therapy Research Group, Department of Radiation Regulatory Science Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Mitsuko Kawano
- Regenerative Therapy Research Group, Department of Radiation Regulatory Science Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Keiko Takahashi
- Regenerative Therapy Research Group, Department of Radiation Regulatory Science Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | | | - Masato Habu
- Tokyo Chemical Industry Co, Ltd (TCI), Tokyo, Japan
| | - Fumie Kimura
- Tokyo Chemical Industry Co, Ltd (TCI), Tokyo, Japan
| | - Toru Imamura
- Regenerative Therapy Research Group, Department of Radiation Regulatory Science Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), Chiba, Japan
- School of Bioscience and Biotechnology, Tokyo University of Technology, Hachioji, Japan
| | - Fumiaki Nakayama
- Regenerative Therapy Research Group, Department of Radiation Regulatory Science Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), Chiba, Japan
- Corresponding author: Fumiaki Nakayama, MD, PhD
| |
Collapse
|
8
|
Min S, Kim K, Ku S, Park J, Seo J, Roh S. Newly synthesized peptide, Ara‐27, exhibits significant improvement in cell‐penetrating ability compared to conventional peptides. Biotechnol Prog 2020; 36:e3014. [DOI: 10.1002/btpr.3014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/17/2020] [Accepted: 04/21/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Sol Min
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, School of Dentistry Seoul National University Seoul Korea
| | - Kichul Kim
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, School of Dentistry Seoul National University Seoul Korea
| | - Seockmo Ku
- Fermentation Science Program, School of Agriculture, College of Basic and Applied Sciences Middle Tennessee State University Murfreesboro Tennessee USA
| | - Jeong‐Yoon Park
- The Spine and Spinal Cord Institute, Department of Neurosurgery, Gangnam Severance Hospital Yonsei University College of Medicine Seoul Republic of Korea
| | - Jeongmin Seo
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, School of Dentistry Seoul National University Seoul Korea
- Biomedical Research Institute NeoRegen Biotech Co., Ltd. Gyeonggi‐do Korea
| | - Sangho Roh
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, School of Dentistry Seoul National University Seoul Korea
| |
Collapse
|
9
|
Sochacka M, Opalinski L, Szymczyk J, Zimoch MB, Czyrek A, Krowarsch D, Otlewski J, Zakrzewska M. FHF1 is a bona fide fibroblast growth factor that activates cellular signaling in FGFR-dependent manner. Cell Commun Signal 2020; 18:69. [PMID: 32357892 PMCID: PMC7193404 DOI: 10.1186/s12964-020-00573-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/01/2020] [Indexed: 12/22/2022] Open
Abstract
Abstract Fibroblast growth factors (FGFs) via their receptors (FGFRs) transduce signals from the extracellular space to the cell interior, modulating pivotal cellular processes such as cell proliferation, motility, metabolism and death. FGF superfamily includes a group of fibroblast growth factor homologous factors (FHFs), proteins whose function is still largely unknown. Since FHFs lack the signal sequence for secretion and are unable to induce FGFR-dependent cell proliferation, these proteins were considered as intracellular proteins that are not involved in signal transduction via FGFRs. Here we demonstrate for the first time that FHF1 directly interacts with all four major FGFRs. FHF1 binding causes efficient FGFR activation and initiation of receptor-dependent signaling cascades. However, the biological effect of FHF1 differs from the one elicited by canonical FGFs, as extracellular FHF1 protects cells from apoptosis, but is unable to stimulate cell division. Our data define FHF1 as a FGFR ligand, emphasizing much greater similarity between FHFs and canonical FGFs than previously indicated. Video Abstract. (MP4 38460 kb)
Graphical abstract ![]()
Collapse
Affiliation(s)
- Martyna Sochacka
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Lukasz Opalinski
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Jakub Szymczyk
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Marta B Zimoch
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Aleksandra Czyrek
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Daniel Krowarsch
- Department of Protein Biotechnology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Jacek Otlewski
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Malgorzata Zakrzewska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland.
| |
Collapse
|
10
|
Dianat-Moghadam H, Teimoori-Toolabi L. Implications of Fibroblast Growth Factors (FGFs) in Cancer: From Prognostic to Therapeutic Applications. Curr Drug Targets 2019; 20:852-870. [DOI: 10.2174/1389450120666190112145409] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 01/01/2019] [Accepted: 01/02/2019] [Indexed: 12/22/2022]
Abstract
Fibroblast growth factors (FGFs) are pleiotropic molecules exerting autocrine, intracrine
and paracrine functions via activating four tyrosine kinase FGF receptors (FGFR), which further trigger
a variety of cellular processes including angiogenesis, evasion from apoptosis, bone formation,
embryogenesis, wound repair and homeostasis. Four major mechanisms including angiogenesis, inflammation,
cell proliferation, and metastasis are active in FGF/FGFR-driven tumors. Furthermore,
gain-of-function or loss-of-function in FGFRs1-4 which is due to amplification, fusions, mutations,
and changes in tumor–stromal cells interactions, is associated with the development and progression
of cancer. Although, the developed small molecule or antibodies targeting FGFR signaling offer immense
potential for cancer therapy, emergence of drug resistance, activation of compensatory pathways
and systemic toxicity of modulators are bottlenecks in clinical application of anti-FGFRs. In this
review, we present FGF/FGFR structure and the mechanisms of its function, as well as cross-talks
with other nodes and/or signaling pathways. We describe deregulation of FGF/FGFR-related mechanisms
in human disease and tumor progression leading to the presentation of emerging therapeutic approaches,
resistance to FGFR targeting, and clinical potentials of individual FGF family in several
human cancers. Additionally, the underlying biological mechanisms of FGF/FGFR signaling, besides
several attempts to develop predictive biomarkers and combination therapies for different cancers
have been explored.
Collapse
Affiliation(s)
- Hassan Dianat-Moghadam
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Ladan Teimoori-Toolabi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
11
|
Kawano M, Miura T, Fujita M, Koike S, Imadome K, Ishikawa A, Yasuda T, Imamura T, Imai T, Nakayama F. The FGF1/CPP-C chimera protein protects against intestinal adverse effects of C-ion radiotherapy without exacerbating pancreatic carcinoma. Clin Transl Radiat Oncol 2018; 14:8-16. [PMID: 30406211 PMCID: PMC6215021 DOI: 10.1016/j.ctro.2018.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/27/2018] [Accepted: 10/21/2018] [Indexed: 01/03/2023] Open
Abstract
C-ion radiotherapy is applied to pancreatic carcinoma in the abdominal cavity. The FGF1/CPP-C chimeric protein has an intracellular signaling mode. FGF1/CPP-C protects against C-ion-induced intestinal damage. FGF1/CPP-C inhibits the proliferation and metastasis of pancreatic carcinoma cells. FGF1/CPP-C may be useful for C-ion radiotherapy against pancreatic cancer.
Background and purpose Carbon ion (C-ion) beams are concentrated to irradiate pancreatic carcinoma in the upper abdomen; however, this radiotherapy potentially causes adverse reactions in the gastrointestinal tract. FGF1 is a candidate radioprotector for radiation-induced intestinal damage, but may promote the malignancy of pancreatic cancer. An FGF1/CPP-C chimeric protein was created to enhance the intracellular signaling mode of FGF1 instead of FGFR signaling. The present study investigated the effects of FGF1/CPP-C on the intestinal adverse reactions of C-ion radiotherapy as well as its influence on the malignancy of pancreatic cancer. Materials and methods FGF1/CPP-C was administered intraperitoneally to BALB/c mice without heparin 12 h before total body irradiation (TBI) with low-LET C-ion (17 keV/μm) at 6–8 Gy. Several radioprotective effects were examined in the jejunum. The invasion and migration of the human pancreatic carcinoma cell lines MIAPaCa-2 and PANC-1 were assessed using Boyden chambers after cultures with FGF1/CPP-C. Results The FGF1/CPP-C treatment promoted crypt survival after C-ion irradiation at 7–8 Gy significantly more than the FGF1 treatment. FGF1/CPP-C also inhibited C-ion radiotherapy-induced apoptosis and reduced γH2AX foci in crypt cells more than FGF1. However, FGF1/CPP-C inhibited the downstream signaling pathways of FGFRs and suppressed the activation of cell-cycle regulatory molecules in the intestine until 4 h after TBI. Furthermore, IEC6 cells were arrested in G2M after cultures with FGF1/CPP-C or FGF1, suggesting that DNA repair after irradiation is promoted by FGF1/CPP-C-induced G2M arrest. In contrast, FGF1/CPP-C appeared to be internalized into MIAPaCa-2 and PANC-1 cells more efficiently than FGF1. Therefore, FGF1/CPP-C reduced the in vitro proliferation, invasion, and migration of MIAPaCa-2 and PANC-1 cells significantly more than FGF1 through the cellular internalization of FGF1. Conclusion These results suggest that the intracellular signaling mode of FGF1/CPP-C attenuates the intestinal adverse effects of C-ion radiotherapy without enhancing the malignancy of pancreatic carcinoma.
Collapse
Affiliation(s)
- Mitsuko Kawano
- National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Taichi Miura
- National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Mayumi Fujita
- National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Sachiko Koike
- National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Kaori Imadome
- National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Atsuko Ishikawa
- National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Takeshi Yasuda
- National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Toru Imamura
- National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan.,School of Bioscience and Biotechnology, Tokyo University of Technology, Hachioji, Japan
| | - Takashi Imai
- National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Fumiaki Nakayama
- National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| |
Collapse
|
12
|
Kawano M, Umeda S, Yasuda T, Fujita M, Ishikawa A, Imamura T, Imai T, Nakayama F. FGF18 signaling in the hair cycle resting phase determines radioresistance of hair follicles by arresting hair cycling. Adv Radiat Oncol 2017; 1:170-181. [PMID: 28740887 PMCID: PMC5514016 DOI: 10.1016/j.adro.2016.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 05/24/2016] [Accepted: 05/27/2016] [Indexed: 12/17/2022] Open
Abstract
Purpose Telogen (resting phase) hair follicles (HFs) are more radioresistant than their anagen (growth phase) counterparts. Fibroblast growth factor (FGF) 18 is strongly expressed in telogen HFs to maintain the telogen phase, whereas several other FGFs exert radioprotective effects; however, the role of FGF18 in the radioresistance of HFs remains unknown. This study focused on clarifying the role of FGF18 in the radioresistance of telogen HFs and its potential as a radioprotector. Methods and materials BALB/c mice with telogen or plucking-induced anagen HFs were exposed to total body irradiation with γ-rays at 4 to 12 Gy after intraperitoneal treatment with FGF18 or an FGF receptor inhibitor. A time course analysis was performed histologically and hair growth was observed 14 or 15 days after depilation. Skin specimens were analyzed by DNA microarrays and Western blotting. Results Telogen irradiation at 6 Gy resulted in transient cell growth arrest, leading to successful hair growth, whereas anagen irradiation failed to promote hair growth. Telogen irradiation did not induce apoptosis in HFs or reduce HF stem cells, whereas anagen irradiation induced apoptosis and reduced stem cell numbers. The Inhibition of FGF receptor signaling during the telogen phase promoted HF cell proliferation; however, hair failed to grow after irradiation. In contrast, recombinant FGF18 induced transient cell growth arrest after anagen irradiation with enhanced DNA repair, leading to the inhibition of apoptosis, maintenance of HF stem cells, and successful hair growth. Moreover, FGF18 reduced the expression levels of genes promoting G2/M transition as well as the protein expression levels of cyclin B1 and cdc2 in skin, and induced G2/M arrest in the keratinocyte cell line HaCaT. Conclusions These results suggest that FGF18 signaling mediates radioresistance in telogen HFs by arresting the cell cycle, and that FGF18 has potential as a radioprotector for radiation-induced alopecia.
Collapse
Affiliation(s)
- Mitsuko Kawano
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Chiba, Japan
| | - Sachiko Umeda
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Chiba, Japan
| | - Takeshi Yasuda
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Chiba, Japan
| | - Mayumi Fujita
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Chiba, Japan
| | - Atsuko Ishikawa
- Department of Radiation Effects Research, National Institute of Radiological Sciences, Chiba, Japan
| | - Toru Imamura
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Chiba, Japan.,Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan.,School of Bioscience and Biotechnology, Tokyo University of Technology, Hachioji, Japan
| | - Takashi Imai
- Medical Databank Section, Hospital, National Institute of Radiological Sciences, Chiba, Japan
| | - Fumiaki Nakayama
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Chiba, Japan
| |
Collapse
|
13
|
Histone demethylase JMJD2C: epigenetic regulators in tumors. Oncotarget 2017; 8:91723-91733. [PMID: 29207681 PMCID: PMC5710961 DOI: 10.18632/oncotarget.19176] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 06/28/2017] [Indexed: 11/25/2022] Open
Abstract
Histone methylation is one of the major epigenetic modifications, and various histone methylases and demethylases participate in the epigenetic regulating. JMJD2C has been recently identified as one of the histone lysine demethylases. As one member of the Jumonji-C histone demethylase family, JMJD2C has the ability to demethylate tri- or di-methylated histone 3 and 2 in either K9 (lysine residue 9) or K36 (lysine residue 36) sites by an oxidative reaction, thereby affecting heterochromatin formation, genomic imprinting, X-chromosome inactivation, and transcriptional regulation of genes. JMJD2C was firstly found to involve in embryonic development and stem cell regulation. Afterwards, aberrant status of JMJD2C histone methylation was observed during the formation and development of various tumors, and it has been reported to play crucial roles in the progression of breast cancer, prostate carcinomas, osteosarcoma, blood neoplasms and so on, indicating that JMJD2C represents a promising anti-cancer target. In this review, we will focus on the research progress and prospect of JMJD2C in tumors, and provide abundant evidence for the functional application and therapeutic potential of targeting JMJD2C in tumors.
Collapse
|
14
|
Identification of Significant Pathways Induced by PAX5 Haploinsufficiency Based on Protein-Protein Interaction Networks and Cluster Analysis in Raji Cell Line. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5326370. [PMID: 28316978 PMCID: PMC5339483 DOI: 10.1155/2017/5326370] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 01/23/2017] [Accepted: 01/30/2017] [Indexed: 12/02/2022]
Abstract
PAX5 encodes a transcription factor essential for B-cell differentiation, and PAX5 haploinsufficiency is involved in tumorigenesis. There were few studies on how PAX5 haploinsufficiency regulated genes expression to promote tumorigenesis. In this study, we constructed the cell model of PAX5 haploinsufficiency using gene editing technology in Raji cells, detected differentially expressed genes in PAX5 haploinsufficiency Raji cells, and used protein-protein interaction networks and cluster analysis to comprehensively investigate the cellular pathways involved in PAX5 haploinsufficiency. The clusters of gene transcription, inflammatory and immune response, and cancer pathways were identified as three important pathways associated with PAX5 haploinsufficiency in Raji cells. These changes hinted that the mechanism of PAX5 haploinsufficiency promoting tumorigenesis may be related to genomic instability, immune tolerance, and tumor pathways.
Collapse
|
15
|
Abstract
Nearly 30years ago, certain small, relatively nontoxic peptides were discovered to be capable of traversing the cell membrane. These cell-penetrating peptides, as they are now called, have been shown to not only be capable of crossing the cell membrane themselves but can also carry many different therapeutic agents into cells, including small molecules, plasmid DNA, siRNA, therapeutic proteins, viruses, imaging agents, and other various nanoparticles. Many cell-penetrating peptides have been derived from natural proteins, but several other cell-penetrating peptides have been developed that are either chimeric or completely synthetic. How cell-penetrating peptides are internalized into cells has been a topic of debate, with some peptides seemingly entering cells through an endocytic mechanism and others by directly penetrating the cell membrane. Although the entry mechanism is still not entirely understood, it seems to be dependent on the peptide type, the peptide concentration, the cargo the peptide transports, and the cell type tested. With new intracellular disease targets being discovered, cell-penetrating peptides offer an exciting approach for delivering drugs to these intracellular targets. There are hundreds of cell-penetrating peptides being studied for drug delivery, and ongoing studies are demonstrating their success both in vitro and in vivo.
Collapse
Affiliation(s)
- Joshua D Ramsey
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078, United States.
| | - Nicholas H Flynn
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078, United States
| |
Collapse
|
16
|
Li X, Dong S. Histone demethylase JMJD2B and JMJD2C induce fibroblast growth factor 2: mediated tumorigenesis of osteosarcoma. Med Oncol 2015; 32:53. [PMID: 25636512 DOI: 10.1007/s12032-015-0503-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 01/23/2015] [Indexed: 10/24/2022]
Abstract
JMJD2B and JMJD2C, histone demethylases, play crucial roles in cancer development and are up-regulated in many cancers. However, the actions of JMJD2B and JMJD2C in osteosarcoma remain unknown. The levels of JMJD2B or JMJD2C were evaluated in osteosarcoma cells and tissues via quantitative real-time PCR and Western Blot. JMJD2B and JMJD2C were up-regulated in osteosarcoma tissues when compared to paired adjacent non-tumor tissues. A higher level of JMJD2B or JMJD2C was related with metastasis of osteosarcoma cells. Fibroblast growth factor 2 (FGF2) is an important factor to maintain immaturity of cells and contributes to osteosarcoma aggressiveness. Elevated levels of FGF2 promoted the proliferation, migration, and invasion of osteosarcoma cell, while FGF2 was up-regulated by JMJD2B or JMJD2C. GST pull-down assay showed that JMJD2B or JMJD2C interacted with FGF2. Thus, JMJD2B and JMJD2C play an important role in the pathology of osteosarcoma via the up-regulation of FGF2. JMJD2B and JMJD2C should be developed potential targets for the therapy of osteosarcoma patients.
Collapse
Affiliation(s)
- Xiaojiang Li
- Orthopedics Department, The Affiliated Hospital to Changchun University of Chinese Medicine, No.1478 of Gongnong Street, Chaoyang District, Changchun, 130021, China,
| | | |
Collapse
|