1
|
Nuijens AC, Oei AL, Franken NAP, Rasch CRN, Stalpers LJA. Towards Personalized Radiotherapy in Pelvic Cancer: Patient-Related Risk Factors for Late Radiation Toxicity. Curr Oncol 2025; 32:47. [PMID: 39851963 PMCID: PMC11763857 DOI: 10.3390/curroncol32010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/10/2025] [Accepted: 01/15/2025] [Indexed: 01/26/2025] Open
Abstract
Normal tissue reactions vary significantly among patients receiving the same radiation treatment regimen, reflecting the multifactorial etiology of late radiation toxicity. Predicting late radiation toxicity is crucial, as it aids in the initial decision-making process regarding the treatment modalities. For patients undergoing radiotherapy, anticipating late toxicity allows for planning adjustments to optimize individualized care. Various dosimetric parameters have been shown to influence the incidence of late toxicity, and the literature available on this topic is extensive. This narrative review examines patient-related determinants of late toxicity following external beam radiotherapy for pelvic tumors, with a focus on prostate and cervical cancer patients. In Part I, we address various methods for quantifying radiation toxicity, providing context for interpreting toxicity data. Part II examines the current insights into the clinical risk factors for late toxicity. While certain factors-such as previous abdominal surgery, smoking behavior, and severe acute toxicity-have consistently been reported, most of the others show inconsistent associations. In Part III, we explore the influence of genetic factors and discuss promising predictive assays. Single-nucleotide polymorphisms (SNPs) likely elevate the risk in specific combinations. Advances in artificial intelligence now allow for the identification of SNP patterns from large datasets, supporting the development of polygenic risk scores. These innovations hold promise for improving personalized treatment strategies and reducing the burden of late toxicity in cancer survivors.
Collapse
Affiliation(s)
- Anna C. Nuijens
- Department of Radiation Oncology, Amsterdam UMC Location University of Amsterdam, Meibergdreef, 1105 AZ Amsterdam, The Netherlands (L.J.A.S.)
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC Location University of Amsterdam, Meibergdreef, 1105 AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Meibergdreef, 1105 AZ Amsterdam, The Netherlands
| | - Arlene L. Oei
- Department of Radiation Oncology, Amsterdam UMC Location University of Amsterdam, Meibergdreef, 1105 AZ Amsterdam, The Netherlands (L.J.A.S.)
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC Location University of Amsterdam, Meibergdreef, 1105 AZ Amsterdam, The Netherlands
| | - Nicolaas A. P. Franken
- Department of Radiation Oncology, Amsterdam UMC Location University of Amsterdam, Meibergdreef, 1105 AZ Amsterdam, The Netherlands (L.J.A.S.)
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC Location University of Amsterdam, Meibergdreef, 1105 AZ Amsterdam, The Netherlands
| | - Coen R. N. Rasch
- Department of Radiation Oncology, Leiden University Medical Center, Albinusdreef, 2333 ZA Leiden, The Netherlands
| | - Lukas J. A. Stalpers
- Department of Radiation Oncology, Amsterdam UMC Location University of Amsterdam, Meibergdreef, 1105 AZ Amsterdam, The Netherlands (L.J.A.S.)
| |
Collapse
|
2
|
Nishibuchi I, Tashiro S. DNA double-strand break repair capacity and normal tissue toxicity induced by radiotherapy. JOURNAL OF RADIATION RESEARCH 2024; 65:i52-i56. [PMID: 39679883 DOI: 10.1093/jrr/rrae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/19/2024] [Indexed: 12/17/2024]
Abstract
Radiation therapy is used in the treatment of various cancers, and advancements in irradiation techniques have further expanded its applicability. For radiation oncologists, predicting adverse events remains a critical challenge, even with these technological advancements. Although numerous studies have been conducted to predict individual radiosensitivity, no biomarkers have been clinically applied thus far. This review focuses on γ-H2AX foci and chromosomal aberrations, providing an overview of their association with normal tissue toxicities.
Collapse
Affiliation(s)
- Ikuno Nishibuchi
- Department of Radiation Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Satoshi Tashiro
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| |
Collapse
|
3
|
Nuijens AC, Oei AL, Koster L, Hoebe RA, Franken NAP, Rasch CRN, Stalpers LJA. Genetic markers of late radiation toxicity in the era of image-guided radiotherapy: lower toxicity rates reduce the predictive value of γ-H2AX foci decay ratio in patients undergoing pelvic radiotherapy. Radiat Oncol 2024; 19:116. [PMID: 39223539 PMCID: PMC11370123 DOI: 10.1186/s13014-024-02501-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND A predictive assay for late radiation toxicity would allow more personalized treatment planning, reducing the burden of toxicity for the more sensitive minority, and improving the therapeutic index for the majority. In a previous study in prostate cancer patients, the γ-H2AX foci decay ratio (γ-FDR) was the strongest predictor of late radiation toxicity. The current study aimed to validate this finding in a more varied group of patients with pelvic cancer. Additionally, the potential correlation between the γ-FDR and patient-reported outcomes was investigated. METHODS Prostate and gynecological cancer patients with ≥ 24 months of follow-up were included in the current analysis. Toxicity was evaluated by physician (CTCAE version 4) and patient (EORTC questionnaires). γ-FDRs were determined in ex vivo irradiated lymphocytes. Correlation between γ-FDR and toxicity was assessed using both linear and logistic regression analyses. The highest toxicity grade recorded during follow-up was used. The association between global quality of life and γ-FDR was tested by comparing the change in quality of life over time in patients with γ-FDR < or ≥ 3.41, a previously established threshold. RESULTS Eighty-eight patients were included. Physician-assessed and patient-reported cumulative grade ≥ 2 toxicity was 25% and 29%, respectively; which is much lower than in the previous cohort (i.e., 51% CTCAE grade ≥ 2). Patients with toxicity exhibited less favorable dose-volume parameters. In men, these parameters showed significant improvement compared to the previous cohort. The proportion of patients with a low γ-FDR increased with severity of toxicity, but this trend was not statistically significant. In addition, a γ-FDR < 3.41 was not correlated with the development of moderate to severe toxicity. Post-treatment decline in global quality of life was minimal, and similar for patients with γ-FDR < or ≥ 3.41. CONCLUSIONS In the present study, the γ-H2AX foci decay ratio could not be validated as a predictor of late radiation toxicity in patients with pelvic cancer. Improved radiotherapy techniques with smaller irradiated bladder and bowel volumes have probably resulted in less toxicities. Future studies on genetic markers of toxicity should be powered on these lower incidences. We further recommend taking persistency, next to severity, into consideration.
Collapse
Affiliation(s)
- Anna C Nuijens
- Department of Radiation Oncology, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Arlene L Oei
- Department of Radiation Oncology, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands.
| | - Lisa Koster
- Department of Radiation Oncology, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Ron A Hoebe
- Department of Medical Biology and Core Facility Cellular Imaging, Van Leeuwenhoek Centre for Advanced Microscopy-Academic Medical Center (LCAM-AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Nicolaas A P Franken
- Department of Radiation Oncology, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands
| | - Coen R N Rasch
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Lukas J A Stalpers
- Department of Radiation Oncology, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Someya M, Hasegawa T, Nakamura AJ, Tsuchiya T, Kitagawa M, Gocho T, Mafune S, Ikeuchi Y, Tauchi H, Sakata KI. Prediction of late adverse events in pelvic cancer patients receiving definitive radiotherapy using radiation-induced gamma-H2AX foci assay. JOURNAL OF RADIATION RESEARCH 2023; 64:948-953. [PMID: 37839163 PMCID: PMC10665300 DOI: 10.1093/jrr/rrad079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/21/2023] [Indexed: 10/17/2023]
Abstract
Radiation can induce DNA double-stranded breaks, which are typically detected by the fluorescence of phosphorylated histone H2AX. In this study, we examined the usefulness of the dynamics of radiation-induced gamma-H2AX foci of peripheral blood lymphocytes (PBLs), as a marker of DNA repair ability, in predicting late adverse events from radiotherapy. A total of 46 patients with cervical, vaginal and anal canal cancers treated with radical radiotherapy between 2014 and 2019 were included in this analysis. Concurrent chemotherapy was administered in 36 cases (78.3%). Peripheral blood was obtained before treatment, and then irradiated ex vivo with 1 Gy X-ray. The ratio of radiation-induced gamma-H2AX foci in PBLs measured at 30 min and at 4 h was defined as the foci decay ratio (FDR). With a median follow-up of 54 months, 9 patients (19.6%) were observed to have late genitourinary or gastrointestinal (GU/GI) toxicity. The FDR ranged from 0.51 to 0.74 (median 0.59), with a significantly higher incidence of Grade 1 or higher late adverse events in the FDR ≥ 0.59 group. In multivariate analysis, FDR ≥ 0.59 and hypertension also emerged as significant factors associated with the development of late toxicities. Overall, our results suggest that measurement of radiation-induced gamma-H2AX foci in PBLs may predict the risk of late GU/GI toxicities from chemoradiotherapy, which can enable tailoring the radiation dose to minimize adverse effects.
Collapse
Affiliation(s)
- Masanori Someya
- Department of Radiology, School of Medicine, Sapporo Medical University, S1W16, Chuo-ku, Sapporo, Hokkaido 060-8543, Japan
| | - Tomokazu Hasegawa
- Department of Radiology, School of Medicine, Sapporo Medical University, S1W16, Chuo-ku, Sapporo, Hokkaido 060-8543, Japan
| | - Asako J Nakamura
- Department of Biological Sciences, College of Sciences, Ibaraki University, Bunkyo 2-1-1, Mito, Ibaraki 310-8512, Japan
| | - Takaaki Tsuchiya
- Department of Radiology, School of Medicine, Sapporo Medical University, S1W16, Chuo-ku, Sapporo, Hokkaido 060-8543, Japan
| | - Mio Kitagawa
- Department of Radiology, School of Medicine, Sapporo Medical University, S1W16, Chuo-ku, Sapporo, Hokkaido 060-8543, Japan
| | - Toshio Gocho
- Department of Radiology, School of Medicine, Sapporo Medical University, S1W16, Chuo-ku, Sapporo, Hokkaido 060-8543, Japan
| | - Sho Mafune
- Department of Radiology, School of Medicine, Sapporo Medical University, S1W16, Chuo-ku, Sapporo, Hokkaido 060-8543, Japan
| | - Yutaro Ikeuchi
- Department of Radiology, School of Medicine, Sapporo Medical University, S1W16, Chuo-ku, Sapporo, Hokkaido 060-8543, Japan
| | - Hiroshi Tauchi
- Department of Biological Sciences, Faculty of Sciences, Ibaraki University, Bunkyo 2-1-1, Mito, Ibaraki 310-8512, Japan
| | - Koh-ichi Sakata
- Department of Radiology, School of Medicine, Sapporo Medical University, S1W16, Chuo-ku, Sapporo, Hokkaido 060-8543, Japan
| |
Collapse
|
5
|
Durdik M, Markova E, Kosik P, Vigasova K, Gulati S, Jakl L, Vrobelova K, Fekete M, Zavacka I, Pobijakova M, Dolinska Z, Belyaev I. Assessment of Individual Radiosensitivity in Breast Cancer Patients Using a Combination of Biomolecular Markers. Biomedicines 2023; 11:biomedicines11041122. [PMID: 37189740 DOI: 10.3390/biomedicines11041122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
About 5% of patients undergoing radiotherapy (RT) develop RT-related side effects. To assess individual radiosensitivity, we collected peripheral blood from breast cancer patients before, during and after the RT, and γH2AX/53BP1 foci, apoptosis, chromosomal aberrations (CAs) and micronuclei (MN) were analyzed and correlated with the healthy tissue side effects assessed by the RTOG/EORTC criteria. The results showed a significantly higher level of γH2AX/53BP1 foci before the RT in radiosensitive (RS) patients in comparison to normal responding patients (NOR). Analysis of apoptosis did not reveal any correlation with side effects. CA and MN assays displayed an increase in genomic instability during and after RT and a higher frequency of MN in the lymphocytes of RS patients. We also studied time kinetics of γH2AX/53BP1 foci and apoptosis after in vitro irradiation of lymphocytes. Higher levels of primary 53BP1 and co-localizing γH2AX/53BP1 foci were detected in cells from RS patients as compared to NOR patients, while no difference in the residual foci or apoptotic response was found. The data suggested impaired DNA damage response in cells from RS patients. We suggest γH2AX/53BP1 foci and MN as potential biomarkers of individual radiosensitivity, but they need to be evaluated with a larger cohort of patients for clinics.
Collapse
Affiliation(s)
- Matus Durdik
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center v.v.i., Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Eva Markova
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center v.v.i., Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Pavol Kosik
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center v.v.i., Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Katarina Vigasova
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center v.v.i., Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Sachin Gulati
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center v.v.i., Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Lukas Jakl
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center v.v.i., Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Katarina Vrobelova
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center v.v.i., Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Marta Fekete
- Department of Radiation Oncology, Radiological Centrum, National Cancer Institute, 812 50 Bratislava, Slovakia
| | - Ingrid Zavacka
- Department of Radiation Oncology, Radiological Centrum, National Cancer Institute, 812 50 Bratislava, Slovakia
| | - Margita Pobijakova
- Department of Radiation Oncology, Radiological Centrum, National Cancer Institute, 812 50 Bratislava, Slovakia
| | - Zuzana Dolinska
- Department of Radiation Oncology, Radiological Centrum, National Cancer Institute, 812 50 Bratislava, Slovakia
| | - Igor Belyaev
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center v.v.i., Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| |
Collapse
|
6
|
Lapierre A, Bourillon L, Larroque M, Gouveia T, Bourgier C, Ozsahin M, Pèlegrin A, Azria D, Brengues M. Improving Patients' Life Quality after Radiotherapy Treatment by Predicting Late Toxicities. Cancers (Basel) 2022; 14:2097. [PMID: 35565227 PMCID: PMC9099838 DOI: 10.3390/cancers14092097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/14/2022] [Accepted: 04/16/2022] [Indexed: 11/26/2022] Open
Abstract
Personalized treatment and precision medicine have become the new standard of care in oncology and radiotherapy. Because treatment outcomes have considerably improved over the last few years, permanent side-effects are becoming an increasingly significant issue for cancer survivors. Five to ten percent of patients will develop severe late toxicity after radiotherapy. Identifying these patients before treatment start would allow for treatment adaptation to minimize definitive side effects that could impair their long-term quality of life. Over the last decades, several tests and biomarkers have been developed to identify these patients. However, out of these, only the Radiation-Induced Lymphocyte Apoptosis (RILA) assay has been prospectively validated in multi-center cohorts. This test, based on a simple blood draught, has been shown to be correlated with late radiation-induced toxicity in breast, prostate, cervical and head and neck cancer. It could therefore greatly improve decision making in precision radiation oncology. This literature review summarizes the development and bases of this assay, as well as its clinical results and compares its results to the other available assays.
Collapse
Affiliation(s)
- Ariane Lapierre
- IRCM, INSERM, University Montpellier, ICM, 34298 Montpellier, France; (A.L.); (L.B.); (M.L.); (T.G.); (C.B.); (A.P.); (D.A.)
- Department of Radiotherapy-Oncology, Lyon-Sud Hospital Center, 69310 Pierre-Bénite, France
| | - Laura Bourillon
- IRCM, INSERM, University Montpellier, ICM, 34298 Montpellier, France; (A.L.); (L.B.); (M.L.); (T.G.); (C.B.); (A.P.); (D.A.)
| | - Marion Larroque
- IRCM, INSERM, University Montpellier, ICM, 34298 Montpellier, France; (A.L.); (L.B.); (M.L.); (T.G.); (C.B.); (A.P.); (D.A.)
| | - Tiphany Gouveia
- IRCM, INSERM, University Montpellier, ICM, 34298 Montpellier, France; (A.L.); (L.B.); (M.L.); (T.G.); (C.B.); (A.P.); (D.A.)
| | - Céline Bourgier
- IRCM, INSERM, University Montpellier, ICM, 34298 Montpellier, France; (A.L.); (L.B.); (M.L.); (T.G.); (C.B.); (A.P.); (D.A.)
| | | | - André Pèlegrin
- IRCM, INSERM, University Montpellier, ICM, 34298 Montpellier, France; (A.L.); (L.B.); (M.L.); (T.G.); (C.B.); (A.P.); (D.A.)
| | - David Azria
- IRCM, INSERM, University Montpellier, ICM, 34298 Montpellier, France; (A.L.); (L.B.); (M.L.); (T.G.); (C.B.); (A.P.); (D.A.)
| | - Muriel Brengues
- IRCM, INSERM, University Montpellier, ICM, 34298 Montpellier, France; (A.L.); (L.B.); (M.L.); (T.G.); (C.B.); (A.P.); (D.A.)
| |
Collapse
|
7
|
A Comparison between Patient- and Physician-Reported Late Radiation Toxicity in Long-Term Prostate Cancer Survivors. Cancers (Basel) 2022; 14:cancers14071670. [PMID: 35406443 PMCID: PMC8996858 DOI: 10.3390/cancers14071670] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Radiotherapy is widely used as treatment for localized prostate cancer. Due to a high incidence and a good survival after treatment, a large number of prostate cancer survivors are at risk of developing late radiation toxicity. Symptoms may significantly affect quality of life; therefore, the monitoring of toxicities and evaluating their impact are increasingly important matters. Toxicities have always been assessed by physicians, but there is a growing interest in the use of questionnaires to be completed by patients themselves, so-called patient-reported outcome measures. The aim of this study was to compare both outcomes in long-term prostate cancer survivors, and to determine which outcome correlates best with a biological predictor of late radiation toxicity. In symptomatic patients, we found a low agreement; patients assigned greater severity to symptoms than the trial physician assistant did. Neither outcome correlated with the biological predictor. Consideration of both perspectives seems warranted to provide the best care. Abstract Patient-reported outcome measures (PROMs) are advocated for the monitoring of toxicity after radiotherapy. However, studies comparing physician- and patient-reported toxicity show low concordance. In this study, we compared physician- and patient-reported toxicity in long-term prostate cancer survivors after radiotherapy, and we determined the correlation with a presumable risk factor for late toxicity: γ-H2AX foci decay ratio (FDR). Patients formerly included in a prospective study were invited to participate in this new study, comprising one questionnaire and one call with a trial physician assistant. Concordance was calculated for seven symptoms. Gamma-H2AX FDRs were determined in ex vivo irradiated lymphocytes in a previous analysis. Associations between FDR and long-term prevalence of toxicity were assessed using univariable logistic regression analyses. The 101 participants had a median follow-up period of 9 years. Outcomes were discordant in 71% of symptomatic patients; in 21%, the physician-assessed toxicity (using CTCAE) was higher, and, in 50%, the patients reported higher toxicity. We did not find a correlation between presence of toxicity at long-term follow-up and FDR. In conclusion, patients assigned greater severity to symptoms than the trial physician assistant did. Consideration of both perspectives may be warranted to provide the best care.
Collapse
|
8
|
Yasmin-Karim S, Ziberi B, Wirtz J, Bih N, Moreau M, Mueller R, Anisworth V, Hesser J, Makrigiorgos GM, Chuong MD, Wei XX, Nguyen PL, Ngwa W. Boosting the Abscopal Effect Using Immunogenic Biomaterials With Varying Radiation Therapy Field Sizes. Int J Radiat Oncol Biol Phys 2022; 112:475-486. [PMID: 34530092 PMCID: PMC8750216 DOI: 10.1016/j.ijrobp.2021.09.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 02/03/2023]
Abstract
PURPOSE Persistent immunosuppression in the tumor microenvironment is a major limitation to boosting the abscopal effect, whereby radiation therapy at 1 site can lead to regression of tumors at distant sites. Here, we investigate the use of radiation and immunogenic biomaterials (IBM) targeting only the gross tumor volume/subvolume for boosting the abscopal effect in immunologically cold tumors. METHODS AND MATERIALS To evaluate the abscopal effect, 2 syngeneic contralateral tumors were implanted in each mouse, where only 1 tumor was treated. IBM was administered to the treated tumor with 1 fraction of radiation and results were compared, including as a function of different radiation therapy field sizes. The IBM was designed similar to fiducial markers using immunogenic polymer components loaded with anti-CD40 agonist. Tumor volumes of both treated and untreated tumors were measured over time, along with survival and corresponding immune cell responses. RESULTS Results showed that radiation with IBM administered to the gross tumor subvolume can effectively boost abscopal responses in both pancreatic and prostate cancers, significantly increasing survival (P < .0001 and P < .001, respectively). Results also showed equal or superior abscopal responses when using field sizes smaller than the gross tumor volume compared with irradiating the whole tumor volume. These results were buttressed by observation of higher infiltration of cytotoxic CD8+ T-lymphocytes in the treated tumors (P < .0001) and untreated tumors (P < .0001) for prostate cancer. Significantly higher infiltration was also observed in treated tumors (P < .0001) and untreated tumors P < .01) for pancreatic cancer. Moreover, the immune responses were accompanied by a positive shift of proinflammatory cytokines in both prostate and pancreatic tumors. CONCLUSIONS The approach targeting gross tumor subvolumes with radiation and IBM offers opportunity for boosting the abscopal effect while significantly minimizing healthy tissue toxicity. This approach proffers a radioimmunotherapy dose-painting strategy that can be developed for overcoming current barriers of immunosuppression especially for immunologically cold tumors.
Collapse
Affiliation(s)
- Sayeda Yasmin-Karim
- Dana Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA,Corresponding author: Name: Sayeda Yasmin-Karim, (S.Y.)
| | - Bashkim Ziberi
- Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA,University of Tetova, Tetova, Republic of North Macedonia
| | - Johanna Wirtz
- Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA,Medical Faculty of University Ulm, Ulm, Germany
| | - Noella Bih
- Dana Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michele Moreau
- Dana Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA,University of Massachusetts, Lowell, Massachusetts, USA
| | - Romy Mueller
- Dana Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA,Data Analysis and Modeling in Medicine, Mannheim Institute for Intelligent Systems in Medicine (MIISM), Heidelberg University, 69117 Heidelberg, Germany
| | - Victoria Anisworth
- Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA,University of Massachusetts, Lowell, Massachusetts, USA
| | - Juergen Hesser
- Data Analysis and Modeling in Medicine, Mannheim Institute for Intelligent Systems in Medicine (MIISM), Heidelberg University, 69117 Heidelberg, Germany
| | - G. Mike Makrigiorgos
- Dana Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael D Chuong
- Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA
| | - Xiao Xiao Wei
- Dana Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Paul L. Nguyen
- Dana Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Wilfred Ngwa
- Dana Farber Cancer Institute, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA,University of Massachusetts, Lowell, Massachusetts, USA
| |
Collapse
|
9
|
Penninckx S, Pariset E, Cekanaviciute E, Costes SV. Quantification of radiation-induced DNA double strand break repair foci to evaluate and predict biological responses to ionizing radiation. NAR Cancer 2021; 3:zcab046. [PMID: 35692378 PMCID: PMC8693576 DOI: 10.1093/narcan/zcab046] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/08/2021] [Accepted: 12/17/2021] [Indexed: 08/08/2023] Open
Abstract
Radiation-induced foci (RIF) are nuclear puncta visualized by immunostaining of proteins that regulate DNA double-strand break (DSB) repair after exposure to ionizing radiation. RIF are a standard metric for measuring DSB formation and repair in clinical, environmental and space radiobiology. The time course and dose dependence of their formation has great potential to predict in vivo responses to ionizing radiation, predisposition to cancer and probability of adverse reactions to radiotherapy. However, increasing complexity of experimentally and therapeutically setups (charged particle, FLASH …) is associated with several confounding factors that must be taken into account when interpreting RIF values. In this review, we discuss the spatiotemporal characteristics of RIF development after irradiation, addressing the common confounding factors, including cell proliferation and foci merging. We also describe the relevant endpoints and mathematical models that enable accurate biological interpretation of RIF formation and resolution. Finally, we discuss the use of RIF as a biomarker for quantification and prediction of in vivo radiation responses, including important caveats relating to the choice of the biological endpoint and the detection method. This review intends to help scientific community design radiobiology experiments using RIF as a key metric and to provide suggestions for their biological interpretation.
Collapse
Affiliation(s)
- Sébastien Penninckx
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Medical Physics Department, Jules Bordet Institute, Université Libre de Bruxelles, 1 Rue Héger-Bordet, 1000 Brussels, Belgium
| | - Eloise Pariset
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
- Universities Space Research Association, 615 National Avenue, Mountain View, CA 94043, USA
| | - Egle Cekanaviciute
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Sylvain V Costes
- To whom correspondence should be addressed. Tel: +1 650 604 5343;
| |
Collapse
|
10
|
Pan D, Du Y, Li R, Shen A, Liu X, Li C, Hu B. miR-29b-3p Increases Radiosensitivity in Stemness Cancer Cells via Modulating Oncogenes Axis. Front Cell Dev Biol 2021; 9:741074. [PMID: 34604239 PMCID: PMC8481616 DOI: 10.3389/fcell.2021.741074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Radioresistance conferred by cancer stem cells (CSCs) is the principal cause of the failure of cancer radiotherapy. Eradication of CSCs is a prime therapeutic target and a requirement for effective radiotherapy. Three dimensional (3D) cell-cultured model could mimic the morphology of cells in vivo and induce CSC properties. Emerging evidence suggests that microRNAs (miRNAs) play crucial roles in the regulation of radiosensitivity in cancers. In this study, we aim to investigate the effects of miRNAs on the radiosensitivity of 3D cultured stem-like cells. Using miRNA microarray analysis in 2D and 3D cell culture models, we found that the expression of miR-29b-3p was downregulated in 3D cultured A549 and MCF7 cells compared with monolayer (2D) cells. Clinic data analysis from The Cancer Genome Atlas database exhibited that miR-29b-3p high expression showed significant advantages in lung adenocarcinoma and breast invasive carcinoma patients’ prognosis. The subsequent experiments proved that miR-29b-3p overexpression decreased the radioresistance of cells in 3D culture and tumors in vivo through interfering kinetics process of DNA damage repair and inhibiting oncogenes RBL1, PIK3R1, AKT2, and Bcl-2. In addition, miR-29b-3p knockdown enhanced cancer cells invasion and migration capability. MiR-29b-3p overexpression decreased the stemness of 3D cultured cells. In conclusion, our results demonstrate that miR-29b-3p could be a sensitizer of radiation killing in CSC-like cells via inhibiting oncogenes expression. MiR-29b-3p could be a novel therapeutic candidate target for radiotherapy.
Collapse
Affiliation(s)
- Dong Pan
- Department of Radiation Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Key Laboratory of Space Radiobiology of Gansu Province, Institute of Modern Physics, Chinese Academy of Sciences (CAS), Lanzhou, China.,Department of Dermatology, Duke University Medical Center, Durham, NC, United States
| | - Yarong Du
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Key Laboratory of Space Radiobiology of Gansu Province, Institute of Modern Physics, Chinese Academy of Sciences (CAS), Lanzhou, China
| | - Rong Li
- Department of Radiation Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Aihua Shen
- Department of Radiation Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Xiaodong Liu
- Department of Radiation Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Chuanyuan Li
- Department of Dermatology, Duke University Medical Center, Durham, NC, United States
| | - Burong Hu
- Department of Radiation Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Key Laboratory of Space Radiobiology of Gansu Province, Institute of Modern Physics, Chinese Academy of Sciences (CAS), Lanzhou, China
| |
Collapse
|
11
|
Nuijens AC, Oei AL, van Oorschot B, Visser J, van Os RM, Moerland PD, Franken NAP, Rasch CRN, Stalpers LJA. Gamma-H2AX Foci Decay Ratio as a Stronger Predictive Factor of Late Radiation Toxicity Than Dose-Volume Parameters in a Prospective Cohort of Prostate Cancer Patients. Int J Radiat Oncol Biol Phys 2021; 112:212-221. [PMID: 34419566 DOI: 10.1016/j.ijrobp.2021.08.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/29/2021] [Accepted: 08/09/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE Late radiation toxicity is a major dose-limiting factor in curative cancer radiation therapy. Previous studies identified several risk factors for late radiation toxicity, including both dose-volume factors and genetic predisposition. Herein, we investigated the contribution of genetic predisposition, particularly compared with dose-volume factors, to the risk of late radiation toxicity in patients treated with highly conformal radiation therapy. METHODS AND MATERIALS We included 179 patients with prostate cancer who underwent treatment with curative external beam radiation therapy between 2009 and 2013. Toxicity was graded according to the Common Terminology Criteria for Adverse Events version 4.0. Transcriptional responsiveness of homologous recombination repair genes and γ-H2AX foci decay ratios (FDRs) were determined in ex vivo irradiated lymphocytes in a previous analysis. Dose-volume parameters were retrieved by delineating the organs at risk (OARs) on CT planning images. Associations between risk factors and grade ≥2 urinary and bowel late radiation toxicities were assessed using univariable and multivariable logistic regression analyses. The analyses were performed using the highest toxicity grade recorded during the follow-up per patient. RESULTS The median follow-up period was 31 months. One hundred and one patients (56%) developed grade ≥2 late radiation toxicity. Cumulative rates for urinary and bowel grade ≥2 late toxicities were 46% and 17%, respectively. In the multivariable analysis, factors significantly associated with grade ≥2 late toxicity were transurethral resection of the prostate (P = .013), γ-H2AX FDR <3.41 (P = .008), and rectum V70 >11.52% (P = .017). CONCLUSIONS Our results suggest that impaired DNA double-strand break repair in lymphocytes, as quantified by γ-H2AX FDR, is the most critical determining factor of late radiation toxicity. The limited influence of dose-volume parameters could be due to the use of increasingly conformal techniques, leading to improved dose-volume parameters of the organs at risk.
Collapse
Affiliation(s)
- Anna C Nuijens
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Meibergdreef, Amsterdam, the Netherlands; Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Meibergdreef, Amsterdam, the Netherlands
| | - Arlene L Oei
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Meibergdreef, Amsterdam, the Netherlands; Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Meibergdreef, Amsterdam, the Netherlands
| | - Bregje van Oorschot
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Meibergdreef, Amsterdam, the Netherlands; Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Meibergdreef, Amsterdam, the Netherlands
| | - Jorrit Visser
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Meibergdreef, Amsterdam, the Netherlands
| | - Rob M van Os
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Meibergdreef, Amsterdam, the Netherlands
| | - Perry D Moerland
- Bioinformatics Laboratory, Department of Epidemiology and Data Science, Amsterdam UMC, University of Amsterdam, Meibergdreef, Amsterdam, the Netherlands
| | - Nicolaas A P Franken
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Meibergdreef, Amsterdam, the Netherlands; Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Meibergdreef, Amsterdam, the Netherlands
| | - Coen R N Rasch
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Lukas J A Stalpers
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Meibergdreef, Amsterdam, the Netherlands.
| |
Collapse
|
12
|
Imano N, Nishibuchi I, Kawabata E, Kinugasa Y, Shi L, Sakai C, Ishida M, Sakane H, Akita T, Ishida T, Kimura T, Murakami Y, Tanaka K, Horikoshi Y, Sun J, Nagata Y, Tashiro S. Evaluating Individual Radiosensitivity for the Prediction of Acute Toxicities of Chemoradiotherapy in Esophageal Cancer Patients. Radiat Res 2021; 195:244-252. [PMID: 33400798 DOI: 10.1667/rade-20-00234.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/16/2020] [Indexed: 11/03/2022]
Abstract
In this work, individual radiosensitivity was evaluated using DNA damage response and chromosomal aberrations (CAs) in peripheral blood lymphocytes (PBLs) for the prediction of acute toxicities of chemoradiotherapy (CRT) in esophageal cancer patients. Eighteen patients with esophageal cancer were enrolled in this prospective study. Prescribed doses were 60 Gy in 11 patients and 50 Gy in seven patients. Patients received 2 Gy radiotherapy five days a week. PBLs were obtained during treatment just before and 15 min after 2 Gy radiation therapy on the days when the cumulative dose reached 2, 20, 40 Gy and 50 or 60 Gy. PBLs were also obtained four weeks and six months after radiotherapy in all and 13 patients, respectively. Dicentric and ring chromosomes in PBLs were counted to evaluate the number of CAs. Gamma-H2AX foci per cell were scored to assess DNA double-strand breaks. We analyzed the association between these factors and adverse events. The number of γ-H2AX foci before radiotherapy showed no significant increase during CRT, while their increment was significantly reduced with the accumulation of radiation dose. The mean number of CAs increased during CRT up to 1.04 per metaphase, and gradually decreased to approximately 60% six months after CRT. Five patients showed grade 3 toxicities during or after CRT (overreactors: OR), while 13 had grade 2 or less toxicities (non-overreactors: NOR). The number of CAs was significantly higher in the OR group than in the NOR group at a cumulative dose of 20 Gy (mean value: 0.63 vs. 0.34, P = 0.02), 40 Gy (mean value: 0.90 vs. 0.52, P = 0.04), and the final day of radiotherapy (mean value: 1.49 vs. 0.84, P = 0.005). These findings suggest that number of CAs could be an index for predicting acute toxicities of CRT for esophageal cancer.
Collapse
Affiliation(s)
- Nobuki Imano
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan.,Department of Radiation Oncology, Graduate School of Biomedical Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ikuno Nishibuchi
- Department of Radiation Oncology, Graduate School of Biomedical Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Emi Kawabata
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yasuha Kinugasa
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Lin Shi
- Institute of Medical Imaging and Digital Medicine, School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
| | - Chiemi Sakai
- Department of Cardiovascular Physiology and Medicine, Graduate School of Biomedical Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Mari Ishida
- Department of Cardiovascular Physiology and Medicine, Graduate School of Biomedical Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroaki Sakane
- Department of Diagnostic Radiology, Graduate School of Biomedical Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomoyuki Akita
- Department of Epidemiology, Infectious Disease Control and Prevention, Graduate School of Biomedical Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takafumi Ishida
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| | - Tomoki Kimura
- Department of Radiation Oncology, Graduate School of Biomedical Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuji Murakami
- Department of Radiation Oncology, Graduate School of Biomedical Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kimio Tanaka
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yasunori Horikoshi
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Jiying Sun
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yasushi Nagata
- Department of Radiation Oncology, Graduate School of Biomedical Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Satoshi Tashiro
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
13
|
Subedi P, Gomolka M, Moertl S, Dietz A. Ionizing Radiation Protein Biomarkers in Normal Tissue and Their Correlation to Radiosensitivity: A Systematic Review. J Pers Med 2021; 11:jpm11020140. [PMID: 33669522 PMCID: PMC7922485 DOI: 10.3390/jpm11020140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/05/2021] [Accepted: 02/14/2021] [Indexed: 12/16/2022] Open
Abstract
Background and objectives: Exposure to ionizing radiation (IR) has increased immensely over the past years, owing to diagnostic and therapeutic reasons. However, certain radiosensitive individuals show toxic enhanced reaction to IR, and it is necessary to specifically protect them from unwanted exposure. Although predicting radiosensitivity is the way forward in the field of personalised medicine, there is limited information on the potential biomarkers. The aim of this systematic review is to identify evidence from a range of literature in order to present the status quo of our knowledge of IR-induced changes in protein expression in normal tissues, which can be correlated to radiosensitivity. Methods: Studies were searched in NCBI Pubmed and in ISI Web of Science databases and field experts were consulted for relevant studies. Primary peer-reviewed studies in English language within the time-frame of 2011 to 2020 were considered. Human non-tumour tissues and human-derived non-tumour model systems that have been exposed to IR were considered if they reported changes in protein levels, which could be correlated to radiosensitivity. At least two reviewers screened the titles, keywords, and abstracts of the studies against the eligibility criteria at the first phase and full texts of potential studies at the second phase. Similarly, at least two reviewers manually extracted the data and accessed the risk of bias (National Toxicology Program/Office for Health Assessment and Translation—NTP/OHAT) for the included studies. Finally, the data were synthesised narratively in accordance to synthesis without meta analyses (SWiM) method. Results: In total, 28 studies were included in this review. Most of the records (16) demonstrated increased residual DNA damage in radiosensitive individuals compared to normo-sensitive individuals based on γH2AX and TP53BP1. Overall, 15 studies included proteins other than DNA repair foci, of which five proteins were selected, Vascular endothelial growth factor (VEGF), Caspase 3, p16INK4A (Cyclin-dependent kinase inhibitor 2A, CDKN2A), Interleukin-6, and Interleukin-1β, that were connected to radiosensitivity in normal tissue and were reported at least in two independent studies. Conclusions and implication of key findings: A majority of studies used repair foci as a tool to predict radiosensitivity. However, its correlation to outcome parameters such as repair deficient cell lines and patients, as well as an association to moderate and severe clinical radiation reactions, still remain contradictory. When IR-induced proteins reported in at least two studies were considered, a protein network was discovered, which provides a direction for further studies to elucidate the mechanisms of radiosensitivity. Although the identification of only a few of the commonly reported proteins might raise a concern, this could be because (i) our eligibility criteria were strict and (ii) radiosensitivity is influenced by multiple factors. Registration: PROSPERO (CRD42020220064).
Collapse
|
14
|
Vinnikov V, Hande MP, Wilkins R, Wojcik A, Zubizarreta E, Belyakov O. Prediction of the Acute or Late Radiation Toxicity Effects in Radiotherapy Patients Using Ex Vivo Induced Biodosimetric Markers: A Review. J Pers Med 2020; 10:E285. [PMID: 33339312 PMCID: PMC7766345 DOI: 10.3390/jpm10040285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/02/2020] [Accepted: 12/11/2020] [Indexed: 12/14/2022] Open
Abstract
A search for effective methods for the assessment of patients' individual response to radiation is one of the important tasks of clinical radiobiology. This review summarizes available data on the use of ex vivo cytogenetic markers, typically used for biodosimetry, for the prediction of individual clinical radiosensitivity (normal tissue toxicity, NTT) in cells of cancer patients undergoing therapeutic irradiation. In approximately 50% of the relevant reports, selected for the analysis in peer-reviewed international journals, the average ex vivo induced yield of these biodosimetric markers was higher in patients with severe reactions than in patients with a lower grade of NTT. Also, a significant correlation was sometimes found between the biodosimetric marker yield and the severity of acute or late NTT reactions at an individual level, but this observation was not unequivocally proven. A similar controversy of published results was found regarding the attempts to apply G2- and γH2AX foci assays for NTT prediction. A correlation between ex vivo cytogenetic biomarker yields and NTT occurred most frequently when chromosome aberrations (not micronuclei) were measured in lymphocytes (not fibroblasts) irradiated to relatively high doses (4-6 Gy, not 2 Gy) in patients with various grades of late (not early) radiotherapy (RT) morbidity. The limitations of existing approaches are discussed, and recommendations on the improvement of the ex vivo cytogenetic testing for NTT prediction are provided. However, the efficiency of these methods still needs to be validated in properly organized clinical trials involving large and verified patient cohorts.
Collapse
Affiliation(s)
- Volodymyr Vinnikov
- S.P. Grigoriev Institute for Medical Radiology and Oncology, National Academy of Medical Science of Ukraine, 61024 Kharkiv, Ukraine
| | - Manoor Prakash Hande
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, MD9, 2 Medical Drive, Singapore 117593, Singapore;
| | - Ruth Wilkins
- Consumer and Clinical Radiation Protection Bureau, Health Canada, 775 Brookfield Road, Ottawa, ON K1A 1C1, Canada;
| | - Andrzej Wojcik
- Centre for Radiation Protection Research, MBW Department, Stockholm University, Svante Arrhenius väg 20C, Room 515, 10691 Stockholm, Sweden;
| | - Eduardo Zubizarreta
- Section of Applied Radiation Biology and Radiotherapy, Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400 Vienna, Austria;
| | - Oleg Belyakov
- Section of Applied Radiation Biology and Radiotherapy, Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400 Vienna, Austria;
| |
Collapse
|
15
|
Lee E, Eum SY, Slifer SH, Martin ER, Takita C, Wright JL, Hines RB, Hu JJ. Association Between Polymorphisms in DNA Damage Repair Genes and Radiation Therapy-Induced Early Adverse Skin Reactions in a Breast Cancer Population: A Polygenic Risk Score Approach. Int J Radiat Oncol Biol Phys 2020; 106:948-957. [PMID: 32007367 DOI: 10.1016/j.ijrobp.2019.12.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 12/16/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE Genetic variations in DNA damage repair (DDR) genes may influence radiation therapy (RT)-induced acute normal tissue toxicity in patients with breast cancer. Identifying an individual or multiple single-nucleotide polymorphisms (SNPs) associated with RT-induced early adverse skin reactions (EASR) is critical for precision medicine in radiation oncology. METHODS AND MATERIALS At the completion of RT, EASR was assessed using the Oncology Nursing Society scale (0-6) in 416 patients with breast cancer, and Oncology Nursing Society score ≥4 was considered RT-induced EASR. PLINK set-based tests and subsequent individual SNP association analyses were conducted to identify genes and SNPs associated with EASR among the 53 DDR genes and 1968 SNPs. A weighted polygenic risk score (PRS) model was constructed to ascertain the association between the joint effect of risk alleles and EASR. RESULTS The study population consisted of 264 Hispanic whites, 86 blacks or African Americans, 55 non-Hispanic whites, and 11 others. A total of 115 patients (27.6%) developed EASR. Five genes (ATM, CHEK1, ERCC2, RAD51C, and TGFB1) were significantly associated with RT-induced EASR. Nine SNPs within these 5 genes were further identified: ATM rs61915066, CHEK1 rs11220184, RAD51C rs302877, rs405684, TBFB1 rs4803455, rs2241714, and ERCC2 rs60152947, rs10404465, rs1799786. In a multivariable-adjusted PRS model, patients in a higher quartile of PRS were more likely to develop EASR compared with patients in the lowest quartile (ORq2 vs.q1 = 1.94, 95% CI, 0.86-4.39; ORq3 vs.q1 = 3.46, 95% CI, 1.57-7.63; ORq4 vs.q1 = 8.64, 95% CI, 3.92-19.02; and Ptrend < .0001). CONCLUSIONS We newly identified the associations between 9 SNPs in ATM, CHEK1, RAD51C, TGFB1, and ERCC2 and RT-induced EASR. PRS modeling showed its potential in identifying populations at risk. Multiple SNPs in DDR genes may jointly contribute to interindividual variation in RT-induced EASR. Validation in an independent external cohort is required to determine the clinical significance of these predictive biomarkers.
Collapse
Affiliation(s)
- Eunkyung Lee
- Department of Health Sciences, University of Central Florida College of Health Professions and Sciences, Orlando, Florida.
| | - Sung Y Eum
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida
| | - Susan H Slifer
- Center for Genetic Epidemiology and Statistical Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida
| | - Eden R Martin
- Dr. John T. Macdonald Department of Human Genetics, Center for Genetic Epidemiology and Statistical Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida
| | - Cristiane Takita
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida; Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida
| | - Jean L Wright
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland
| | - Robert B Hines
- Department of Population Health Sciences, University of Central Florida College of Medicine, Orlando, Florida
| | - Jennifer J Hu
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida; Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, Florida.
| |
Collapse
|
16
|
Gomolka M, Blyth B, Bourguignon M, Badie C, Schmitz A, Talbot C, Hoeschen C, Salomaa S. Potential screening assays for individual radiation sensitivity and susceptibility and their current validation state. Int J Radiat Biol 2019; 96:280-296. [PMID: 31347938 DOI: 10.1080/09553002.2019.1642544] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Purpose: The workshop on 'Individual Radiosensitivity and Radiosusceptibility' organized by MELODI and CONCERT on Malta in 2018, evaluated the current state of assays to identify sensitive and susceptible subgroups. The authors provide an overview on potential screening assays detecting individuals showing moderate to severe early and late radiation reactions or are at increased risk to develop cancer upon radiation exposure.Conclusion: It is necessary to separate clearly between tissue reactions and stochastic effects such as cancer when comparing the existing literature to validate various test systems. Requirements for the assays are set up. The literature is reviewed for assays that are reliable and robust. Sensitivity and specificity of the assays are regarded and scrutinized for modifying factors. Accuracy of an assay system is required to be more than 90% to balance risks of adverse reactions against risk to fail to cure the cancer. No assay/biomarker is in routine use. Assays that have shown predictive potential for radiosensitivity include SNPs, the RILA assay, and the pATM assay. A tree of risk guideline for radiologists is provided to assist medical treatment decisions. Recommendations for effective research include the setup of common retrospective and prospective cohorts/biobanks to validate current and future tests.
Collapse
Affiliation(s)
- Maria Gomolka
- Federal Office for Radiation Protection, Neuherberg, Germany
| | - Benjamin Blyth
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | | | - Christophe Badie
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department Centre for Radiation, Chemical and Environmental Hazards Public Health England, Didcot, United Kingdom
| | - Annette Schmitz
- Institut de Radiobiologie Cellulaire et Moléculaire, Institut de Biologie François Jacob, Direction de la Recherche Fondamentale, CEA, Paris, France
| | - Christopher Talbot
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Christoph Hoeschen
- Faculty of Electrical Engineering and Information Technology, Institute for Medical Technology, Otto-von-Guericke-University, Magdeburg, Germany
| | | |
Collapse
|
17
|
Yin X, Mason J, Lobachevsky PN, Munforte L, Selbie L, Ball DL, Martin RF, Leong T, Siva S, Martin OA. Radiation Therapy Modulates DNA Repair Efficiency in Peripheral Blood Mononuclear Cells of Patients With Non-Small Cell Lung Cancer. Int J Radiat Oncol Biol Phys 2019; 103:521-531. [DOI: 10.1016/j.ijrobp.2018.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 09/18/2018] [Accepted: 10/01/2018] [Indexed: 10/28/2022]
|
18
|
Herschtal A, Martin RF, Leong T, Lobachevsky P, Martin OA. A Bayesian Approach for Prediction of Patient Radiosensitivity. Int J Radiat Oncol Biol Phys 2018; 102:627-634. [PMID: 30244880 DOI: 10.1016/j.ijrobp.2018.06.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/14/2018] [Accepted: 06/24/2018] [Indexed: 12/13/2022]
Abstract
PURPOSE A priori identification of the small proportion of radiation therapy patients who prove to be severely radiosensitive is a long-held goal in radiation oncology. A number of published studies indicate that analysis of the DNA damage response after ex vivo irradiation of peripheral blood lymphocytes, using the γ-H2AX assay to detect DNA damage, provides a basis for a functional assay for identification of the small proportion of severely radiosensitive cancer patients undergoing radiotherapy. METHODS AND MATERIALS We introduce a new, more rigorous, integrated approach to analysis of radiation-induced γ-H2AX response, using Bayesian statistics. RESULTS This approach shows excellent discrimination between radiosensitive and non-radiosensitive patient groups described in a previously reported data set. CONCLUSIONS Bayesian statistical analysis provides a more appropriate and reliable methodology for future prospective studies.
Collapse
Affiliation(s)
- Alan Herschtal
- Centre for Biostatistics and Clinical Trials, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Roger F Martin
- Research Division, Peter MacCallum Cancer Center, Melbourne, Australia; School of Chemistry, The University of Melbourne, Melbourne, Australia
| | - Trevor Leong
- Division of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Pavel Lobachevsky
- Research Division, Peter MacCallum Cancer Center, Melbourne, Australia
| | - Olga A Martin
- Research Division, Peter MacCallum Cancer Center, Melbourne, Australia; Division of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
19
|
Nguyen HQ, To NH, Zadigue P, Kerbrat S, De La Taille A, Le Gouvello S, Belkacemi Y. Ionizing radiation-induced cellular senescence promotes tissue fibrosis after radiotherapy. A review. Crit Rev Oncol Hematol 2018; 129:13-26. [PMID: 30097231 DOI: 10.1016/j.critrevonc.2018.06.012] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 06/08/2018] [Accepted: 06/15/2018] [Indexed: 02/06/2023] Open
Abstract
Ionizing radiation-exposure induces a variety of cellular reactions, such as senescence and apoptosis. Senescence is a permanent arrest state of the cell division, which can be beneficial or detrimental for normal tissue via an inflammatory response and senescence-associated secretion phenotype. Damage to healthy cells and their microenvironment is considered as an important source of early and late complications with an increased risk of morbidity in patients after radiotherapy (RT). In addition, the benefit/risk ratio may depend on the radiation technique/dose used for cancer eradication and the irradiated volume of healthy tissues. For radiation-induced fibrosis risk, the knowledge of mechanisms and potential prevention has become a crucial point to determining radiation parameters and patients' intrinsic radiosensitivity. This review summarizes our understanding of ionizing radiation-induced senescent cell in fibrogenesis. This mechanism may provide new insights for therapeutic modalities for better risk/benefit ratios after RT in the new era of personalized treatments.
Collapse
Affiliation(s)
- Hoang Quy Nguyen
- University of Paris Saclay, University of Paris Est Créteil (UPEC), France, University of Medicine and Pharmacy, Ho Chi Minh City, Viet Nam; INSERM U955 Team 07, Créteil, France
| | - Nhu Hanh To
- INSERM U955 Team 07, Créteil, France; APHP, Department of Radiation Oncology and Henri Mondor Breast Cancer and, Henri Mondor University Hospital, University of Paris Est Créteil (UPEC), France
| | | | - Stéphane Kerbrat
- INSERM U955 Team 04, University of Paris Est Créteil (UPEC), France
| | - Alexandre De La Taille
- INSERM U955 Team 07, Créteil, France; APHP, Department of Urology, Henri Mondor University Hospital, University of Paris Est Créteil (UPEC), Créteil, France
| | - Sabine Le Gouvello
- INSERM U955 Team 04, University of Paris Est Créteil (UPEC), France; APHP, Department of Biology & Pathology, Henri Mondor University Hospital, University of Paris Est Créteil (UPEC), Créteil, France
| | - Yazid Belkacemi
- INSERM U955 Team 07, Créteil, France; APHP, Department of Radiation Oncology and Henri Mondor Breast Cancer and, Henri Mondor University Hospital, University of Paris Est Créteil (UPEC), France.
| |
Collapse
|
20
|
Rajaraman P, Hauptmann M, Bouffler S, Wojcik A. Human individual radiation sensitivity and prospects for prediction. Ann ICRP 2018; 47:126-141. [PMID: 29648458 DOI: 10.1177/0146645318764091] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the past few decades, it has become increasingly evident that sensitivity to ionising radiation is variable. This is true for tissue reactions (deterministic effects) after high doses of radiation, for stochastic effects following moderate and possibly low doses, and conceivably also for non-cancer effects such as cardiovascular disease, the causal pathway(s) of which are not yet fully understood. A high sensitivity to deterministic effects is not necessarily correlated with a high sensitivity to stochastic effects. The concept of individual sensitivity to high and low doses of radiation has long been supported by data from patients with certain rare hereditary conditions. However, these syndromes only affect a small proportion of the general population. More relevant to the majority of the population is the notion that some part of the genetic contribution defining radiation sensitivity may follow a polygenic model, which predicts elevated risk resulting from the inheritance of many low-penetrance risk-modulating alleles. Can the different forms of individual radiation sensitivities be inferred from the reaction of cells exposed ex vivo to ionising radiation? Can they be inferred from analyses of individual genotypes? This paper reviews current evidence from studies of late adverse tissue reactions after radiotherapy in potentially sensitive groups, including data from functional assays, candidate gene approaches, and genome-wide association studies. It focuses on studies published in 2013 or later because a comprehensive review of earlier studies was published previously in a report by the UK Advisory Group on Ionising Radiation.
Collapse
Affiliation(s)
| | - M Hauptmann
- b Netherlands Cancer Institute, The Netherlands
| | | | - A Wojcik
- d Centre for Radiation Protection Research, MBW Department, Stockholm University, Sweden.,e Jan Kochanowski University, Poland
| |
Collapse
|
21
|
Coroglaucigenin enhances the radiosensitivity of human lung cancer cells through Nrf2/ROS pathway. Oncotarget 2018; 8:32807-32820. [PMID: 28415625 PMCID: PMC5464829 DOI: 10.18632/oncotarget.16454] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 03/04/2017] [Indexed: 12/22/2022] Open
Abstract
Seven cardenolides isolated from the ethanol extract of the stems of Calotropis gigantea were evaluated in vitro against human cancer cells and the structure-activity relationships were discussed. The results demonstrated that a compound, named CGN (coroglaucigenin), had better anti-proliferative activity with the IC50 value less than 6 μM among these compounds. Further, we found that CGN displayed much lower cytotoxicity to normal lung epithelial cells (BEAS-2B) than cancer cells (A549). Especially, our results demonstrated that treatment with CGN (1 μM) combined with X-ray irradiation induced higher radiosensitivity in human lung cancer cells (A549, NCI-H460, NCI-H446) but not in BEAS-2B. The expression levels of nuclear transcription factor Nrf2 and Nrf2-driven antioxidant molecule NQO-1 reduced in A549 cells after combined treatment compared to the radiation only. However, CGN had no toxicity and the levels of antioxidant molecules expression were higher in BEAS-2B cells when given the similar treatment as A549 cells. These results suggest that CGN is a very promising potential sensitizer for cancer radiotherapy, which not only inhibits the proliferation of cancer cells but also enhances the radiosensitivity of cancer cells through suppressing the expression of antioxidant molecules while there is no influence for normal cells.
Collapse
|
22
|
Targeting DNA double strand break repair with hyperthermia and DNA-PKcs inhibition to enhance the effect of radiation treatment. Oncotarget 2018; 7:65504-65513. [PMID: 27602767 PMCID: PMC5323171 DOI: 10.18632/oncotarget.11798] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/24/2016] [Indexed: 12/28/2022] Open
Abstract
Radiotherapy is based on the induction of lethal DNA damage, primarily DNA double-strand breaks (DSB). Efficient DSB repair via Non-Homologous End Joining or Homologous Recombination can therefore undermine the efficacy of radiotherapy. By suppressing DNA-DSB repair with hyperthermia (HT) and DNA-PKcs inhibitor NU7441 (DNA-PKcsi), we aim to enhance the effect of radiation. The sensitizing effect of HT for 1 hour at 42°C and DNA-PKcsi [1 μM] to radiation treatment was investigated in cervical and breast cancer cells, primary breast cancer sphere cells (BCSCs) enriched for cancer stem cells, and in an in vivo human tumor model. A significant radio-enhancement effect was observed for all cell types when DNA-PKcsi and HT were applied separately, and when both were combined, HT and DNA-PKcsi enhanced radio-sensitivity to an even greater extent. Strikingly, combined treatment resulted in significantly lower survival rates, 2 to 2.5 fold increase in apoptosis, more residual DNA-DSB 6 h post treatment and a G2-phase arrest. In addition, tumor growth analysis in vivo showed significant reduction in tumor growth and elevated caspase-3 activity when radiation was combined with HT and DNA-PKcsi compared to radiation alone. Importantly, no toxic side effects of HT or DNA-PKcsi were found. In conclusion, inhibiting DNA-DSB repair using HT and DNA-PKcsi before radiotherapy leads to enhanced cytotoxicity in cancer cells. This effect was even noticed in the more radio-resistant BCSCs, which are clearly sensitized by combined treatment. Therefore, the addition of HT and DNA-PKcsi to conventional radiotherapy is promising and might contribute to more efficient tumor control and patient outcome.
Collapse
|
23
|
Potential Role of Single Nucleotide Polymorphisms of XRCC1, XRCC3, and RAD51 in Predicting Acute Toxicity in Rectal Cancer Patients Treated With Preoperative Radiochemotherapy. Am J Clin Oncol 2017; 40:535-542. [PMID: 25811296 DOI: 10.1097/coc.0000000000000182] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
OBJECTIVES To investigate the association between polymorphisms of DNA repair genes and xenobiotic with acute adverse effects in locally advanced rectal cancer patients treated with neoadjuvant radiochemotherapy. METHODS Sixty-seven patients were analyzed for the current study. Genotypes in DNA repair genes XRCC1 (G28152A), XRCC3 (A4541G), XRCC3 (C18067T), RAD51 (G315C), and GSTP1 (A313G) were determined by pyrosequencing technology. RESULTS The observed grade ≥3 acute toxicity rates were 23.8%. Chemotherapy and radiotherapy were interrupted for 46 and 14 days, respectively, due to critical complications. Four patients were hospitalized, 6 patients had been admitted to the ER, and 5 patients received invasive procedures (2 bladder catheters, 2 blood transfusions, and 1 growth factor therapy).RAD51 correlated with acute severe gastrointestinal toxicity in heterozygosity (Aa) and homozygosity (AA) (P=0.036). Grade ≥3 abdominal/pelvis pain toxicity was higher in the Aa group (P=0.017) and in the Aa+AA group (P=0.027) compared with homozygous (aa) patients. Acute skin toxicity of any grade occurred in 55.6% of the mutated patients versus 22.8% in the wild-type group (P=0.04) for RAD51. XRCC1 correlated with skin toxicity of any grade in the Aa+AA group (P=0.03) and in the Aa group alone (P=0.044). Grade ≥3 urinary frequency/urgency was significantly higher in patients with AA (P=0.01), Aa (P=0.022), and Aa+AA (P=0.031) for XRCC3 compared with aa group. CONCLUSIONS Our study suggested that RAD51, XRCC1, and XRCC3 polymorphisms may be predictive factors for radiation-induced acute toxicity in rectal cancer patients treated with preoperative combined therapy.
Collapse
|
24
|
Habash M, Bohorquez LC, Kyriakou E, Kron T, Martin OA, Blyth BJ. Clinical and Functional Assays of Radiosensitivity and Radiation-Induced Second Cancer. Cancers (Basel) 2017; 9:cancers9110147. [PMID: 29077012 PMCID: PMC5704165 DOI: 10.3390/cancers9110147] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 01/10/2023] Open
Abstract
Whilst the near instantaneous physical interaction of radiation energy with living cells leaves little opportunity for inter-individual variation in the initial yield of DNA damage, all the downstream processes in how damage is recognized, repaired or resolved and therefore the ultimate fate of cells can vary across the population. In the clinic, this variability is observed most readily as rare extreme sensitivity to radiotherapy with acute and late tissue toxic reactions. Though some radiosensitivity can be anticipated in individuals with known genetic predispositions manifest through recognizable phenotypes and clinical presentations, others exhibit unexpected radiosensitivity which nevertheless has an underlying genetic cause. Currently, functional assays for cellular radiosensitivity represent a strategy to identify patients with potential radiosensitivity before radiotherapy begins, without needing to discover or evaluate the impact of the precise genetic determinants. Yet, some of the genes responsible for extreme radiosensitivity would also be expected to confer susceptibility to radiation-induced cancer, which can be considered another late adverse event associated with radiotherapy. Here, the utility of functional assays of radiosensitivity for identifying individuals susceptible to radiotherapy-induced second cancer is discussed, considering both the common mechanisms and important differences between stochastic radiation carcinogenesis and the range of deterministic acute and late toxic effects of radiotherapy.
Collapse
Affiliation(s)
- Mohammad Habash
- Cancer Research Division, Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC 3000, Australia.
- Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Luis C Bohorquez
- Physical Sciences, Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC 3000, Australia.
| | - Elizabeth Kyriakou
- Physical Sciences, Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC 3000, Australia.
| | - Tomas Kron
- Physical Sciences, Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC 3000, Australia.
| | - Olga A Martin
- Cancer Research Division, Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC 3000, Australia.
- Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC 3000, Australia.
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Benjamin J Blyth
- Cancer Research Division, Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC 3000, Australia.
- Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC 3000, Australia.
| |
Collapse
|
25
|
Fahrig A, Koch T, Lenhart M, Rieckmann P, Fietkau R, Distel L, Schuster B. Lethal outcome after pelvic salvage radiotherapy in a patient with prostate cancer due to increased radiosensitivity : Case report and literature review. Strahlenther Onkol 2017; 194:60-66. [PMID: 28887683 DOI: 10.1007/s00066-017-1207-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 08/17/2017] [Indexed: 01/30/2023]
Abstract
BACKGROUND In general, late side effects after salvage radiotherapy (RT) for prostate cancer are below 10%. Patients with impaired DNA repair ability and genetic instability can have significantly increased reactions after RT. CASE, CLINICAL FOLLOW-UP, AND EXAMINATION We present a patient who experienced severe side effects after additive RT for prostate cancer and died from the complications 25 months after RT. Imaging (MR) is shown as well as three-color fluorescence in situ hybridization. The blood sample testing revealed that radiosensitivity was increased by 35-55%. We undertook a review of the literature to give an overview over the tests established that are currently considered useful. CONCLUSION This case highlights that the identification of patients with increased radiosensitivity is an important task in radiation protection. Groups of patients who should be screened have to be found and corresponding research facilities have to be set up.
Collapse
Affiliation(s)
- Antje Fahrig
- Klinik und Praxis für Radioonkologie und Strahlentherapie, Klinikum Bamberg, Sozialstiftung Bamberg, Buger Straße 80, 96049, Bamberg, Germany.
| | - T Koch
- Klinik und Praxis für Radioonkologie und Strahlentherapie, Klinikum Bamberg, Sozialstiftung Bamberg, Buger Straße 80, 96049, Bamberg, Germany
| | - M Lenhart
- Klinik für Diagnostische Radiologie, Interventionelle Radiologie und Neuroradiologie, Klinikum Bamberg, Sozialstiftung Bamberg, Buger Straße 80, 96049, Bamberg, Germany
| | - P Rieckmann
- Neurologische Klinik, Klinikum Bamberg, Sozialstiftung Bamberg, Buger Straße 80, 96049, Bamberg, Germany
| | - R Fietkau
- Strahlenklinik, Universitätsklinikum Erlangen, Universitätsstraße 27, 91054, Erlangen, Germany
| | - Luitpold Distel
- Strahlenklinik, Universitätsklinikum Erlangen, Universitätsstraße 27, 91054, Erlangen, Germany
| | - B Schuster
- Strahlenklinik, Universitätsklinikum Erlangen, Universitätsstraße 27, 91054, Erlangen, Germany
| |
Collapse
|
26
|
Tumor heterogeneity determined with a γH2AX foci assay: A study in human head and neck squamous cell carcinoma (hHNSCC) models. Radiother Oncol 2017; 124:379-385. [PMID: 28739384 DOI: 10.1016/j.radonc.2017.06.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/26/2017] [Accepted: 06/28/2017] [Indexed: 11/20/2022]
Abstract
PURPOSE This study aimed to analyze the intra-tumoral heterogeneity of γH2AX foci in tumor specimens following ex vivo radiation to evaluate the potential of γH2AX foci as predictors for radiosensitivity. MATERIAL AND METHODS γH2AX foci were quantified in tumor specimens of 3hHNSCC tumor models with known differences in radiosensitivity after reoxygenation in culture medium (10h, 24h), single dose exposure (0Gy, 4Gy), and fixation 24h post-irradiation. Multiple, equally treated samples of the same tumor were analyzed for foci, normalized and fitted in a linear mixed-effects model. RESULTS The ex vivo reoxygenation time had no significant effect on γH2AX foci counts. A significant intra model heterogeneity could be shown for FaDu (p=0.033) but not for SKX (p=0.167) and UT-SCC-5 (p=0.082) tumors, respectively. All tumor models showed a significant intra-tumoral heterogeneity between specimens of the same tumor (p<0.01) or among microscopic fields of a particular tumor specimen (p<0.0001). CONCLUSION Similar results for ex vivo γH2AX foci between 10h and 24h reoxygenation time support the applicability of the assay in a clinical setting. The high intra-tumoral heterogeneity underlines the necessity of multiple analyzable samples per patient and therewith the need for an automated foci analysis.
Collapse
|
27
|
Chiang PK, Tsai WK, Chen M, Lin WR, Chow YC, Lee CC, Hsu JM, Chen YJ. Zerumbone Regulates DNA Repair Responding to Ionizing Radiation and Enhances Radiosensitivity of Human Prostatic Cancer Cells. Integr Cancer Ther 2017; 17:292-298. [PMID: 28602099 PMCID: PMC6041927 DOI: 10.1177/1534735417712008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Introduction. Radiation therapy using ionizing radiation is widely used for the treatment of prostate cancer. The intrinsic radiation sensitivity of cancer cells could be enhanced by modulating multiple factors including the capacity to repair DNA damage, especially double-strand breaks (DSBs). We aimed to examine the effect of zerumbone on radiation sensitivity and its protective effects against ionizing radiation–induced DSB in human prostate cancer cells. Materials and Methods. The human prostate cancer PC3 and DU145 cell lines were used. A colony formation assay was performed to analyze the radiation survival of cells. DNA histogram and generation of reactive oxygen species (ROS) were examined using flow cytometry. Western blotting was used to examine the expression of regulatory molecules related to DNA damage repair. Results. Pretreatment with zerumbone enhanced the radiation effect on prostate cancer cells. Zerumbone delayed the abrogation of radiation-induced expression of γ-H2AX, an indicator of DNA DSB. Zerumbone pretreatment markedly reduced ionizing radiation–induced upregulated expression of phosphorylated ATM (ataxia telangiectasia-mutated), which was partially reversed by the ATM agonist methyl methanesulfonate. Ionizing radiation augmented and zerumbone pretreatment reduced the expression of Jak2 and Stat3, which are involved in DNA damage repair signaling. No significant effect on the generation of ROS and expression of ATR was noted after zerumbone treatment. Conclusion: Zerumbone sensitized DU145 and PC3 prostatic cancer cells to ionizing radiation by modulating radiation-induced ATM activation during repair of DNA DSBs.
Collapse
Affiliation(s)
- Pai-Kai Chiang
- 1 Mackay Memorial Hospital, Taipei, Taiwan.,2 Mackay Medical College, New Taipei City, Taiwan.,3 Mackay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan
| | - Wei-Kung Tsai
- 1 Mackay Memorial Hospital, Taipei, Taiwan.,2 Mackay Medical College, New Taipei City, Taiwan.,3 Mackay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan
| | - Marcelo Chen
- 1 Mackay Memorial Hospital, Taipei, Taiwan.,2 Mackay Medical College, New Taipei City, Taiwan.,3 Mackay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan
| | - Wun-Rong Lin
- 1 Mackay Memorial Hospital, Taipei, Taiwan.,2 Mackay Medical College, New Taipei City, Taiwan.,3 Mackay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan
| | - Yung-Chiong Chow
- 1 Mackay Memorial Hospital, Taipei, Taiwan.,2 Mackay Medical College, New Taipei City, Taiwan.,3 Mackay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan
| | - Chih-Chiao Lee
- 1 Mackay Memorial Hospital, Taipei, Taiwan.,2 Mackay Medical College, New Taipei City, Taiwan.,3 Mackay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan
| | - Jong-Ming Hsu
- 1 Mackay Memorial Hospital, Taipei, Taiwan.,2 Mackay Medical College, New Taipei City, Taiwan.,3 Mackay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan
| | | |
Collapse
|
28
|
Osman SOS, Horn S, Brady D, McMahon SJ, Yoosuf ABM, Mitchell D, Crowther K, Lyons CA, Hounsell AR, Prise KM, McGarry CK, Jain S, O'Sullivan JM. Prostate cancer treated with brachytherapy; an exploratory study of dose-dependent biomarkers and quality of life. Radiat Oncol 2017; 12:53. [PMID: 28288658 PMCID: PMC5348795 DOI: 10.1186/s13014-017-0792-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/26/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Low-dose-rate permanent prostate brachytherapy (PPB) is an attractive treatment option for patients with localised prostate cancer with excellent outcomes. As standard CT-based post-implant dosimetry often correlates poorly with late treatment-related toxicity, this exploratory (proof of concept) study was conducted to investigate correlations between radiation - induced DNA damage biomarker levels, and acute and late bowel, urinary, and sexual toxicity. METHODS Twelve patients treated with 125I PPB monotherapy (145Gy) for prostate cancer were included in this prospective study. Post-implant CT based dosimetry assessed the minimum dose encompassing 90% (D90%) of the whole prostate volume (global), sub-regions of the prostate (12 sectors) and the near maximum doses (D0.1cc, D2cc) for the rectum and bladder. Six blood samples were collected from each patient; pre-treatment, 1 h (h), 4 h, 24 h post-implant, at 4 weeks (w) and at 3 months (m). DNA double strand breaks were investigated by staining the blood samples with immunofluorescence antibodies to γH2AX and 53BP1 proteins (γH2AX/53BP1). Patient self-scored quality of life from the Expanded Prostate Cancer Index Composite (EPIC) were obtained at baseline, 1 m, 3 m, 6 m, 9 m, 1 year (y), 2y and 3y post-treatment. Spearman's correlation coefficients were used to evaluate correlations between temporal changes in γH2AX/53BP1, dose and toxicity. RESULTS The minimum follow up was 2 years. Population mean prostate D90% was 144.6 ± 12.1 Gy and rectal near maximum dose D0.1cc = 153.0 ± 30.8 Gy and D2cc = 62.7 ± 12.1 Gy and for the bladder D0.1cc = 123.1 ± 27.0 Gy and D2cc = 70.9 ± 11.9 Gy. Changes in EPIC scores from baseline showed high positive correlation between acute toxicity and late toxicity for both urinary and bowel symptoms. Increased production of γH2AX/53BP1 at 24 h relative to baseline positively correlated with late bowel symptoms. Overall, no correlations were observed between dose metrics (prostate global or sector doses) and γH2AX/53BP1 foci counts. CONCLUSIONS Our results show that a prompt increase in γH2AX/53BP1foci at 24 h post-implant relative to baseline may be a useful measure to assess elevated risk of late RT - related toxicities for PPB patients. A subsequent investigation recruiting a larger cohort of patients is warranted to verify our findings.
Collapse
Affiliation(s)
- Sarah O S Osman
- Centre of Cancer Research and Cell Biology, Queen's University Belfast, BT7 1NN, Belfast, UK.
| | - Simon Horn
- Centre of Cancer Research and Cell Biology, Queen's University Belfast, BT7 1NN, Belfast, UK
| | - Darren Brady
- Centre of Cancer Research and Cell Biology, Queen's University Belfast, BT7 1NN, Belfast, UK
| | - Stephen J McMahon
- Centre of Cancer Research and Cell Biology, Queen's University Belfast, BT7 1NN, Belfast, UK
| | - Ahamed B Mohamed Yoosuf
- Radiotherapy Physics, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, UK
| | - Darren Mitchell
- Clinical Oncology, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, UK
| | - Karen Crowther
- Radiotherapy Physics, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, UK
| | - Ciara A Lyons
- Centre of Cancer Research and Cell Biology, Queen's University Belfast, BT7 1NN, Belfast, UK
| | - Alan R Hounsell
- Centre of Cancer Research and Cell Biology, Queen's University Belfast, BT7 1NN, Belfast, UK.,Radiotherapy Physics, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, UK
| | - Kevin M Prise
- Centre of Cancer Research and Cell Biology, Queen's University Belfast, BT7 1NN, Belfast, UK
| | - Conor K McGarry
- Centre of Cancer Research and Cell Biology, Queen's University Belfast, BT7 1NN, Belfast, UK.,Radiotherapy Physics, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, UK
| | - Suneil Jain
- Centre of Cancer Research and Cell Biology, Queen's University Belfast, BT7 1NN, Belfast, UK.,Clinical Oncology, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, UK
| | - Joe M O'Sullivan
- Centre of Cancer Research and Cell Biology, Queen's University Belfast, BT7 1NN, Belfast, UK.,Clinical Oncology, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, UK
| |
Collapse
|
29
|
An Z, Yu JR, Park WY. Rosiglitazone enhances radiosensitivity by inhibiting repair of DNA damage in cervical cancer cells. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2017; 56:89-98. [PMID: 28184999 DOI: 10.1007/s00411-016-0679-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 12/27/2016] [Indexed: 06/06/2023]
Abstract
Radiation therapy (RT) is one of the main treatment modalities for cervical cancer. Rosiglitazone (ROSI) has been reported to have antiproliferative effects against various types of cancer cells and also to induce antioxidant enzymes that can scavenge reactive oxygen species (ROS) and thereby modify radiosensitivity. Here, we explored the effect of ROSI on radiosensitivity and the underlying mechanisms in cervical cancer cells. Three cervical cancer cell lines (ME-180, HeLa, and SiHa) were used. The cells were pretreated with ROSI and then irradiated. Expression of proteins of interest was detected by western blot and immunofluorescence. Intracellular production of ROS was measured by H2DCFDA. Radiosensitivity was assessed by monitoring clonogenic survival. Expression of antioxidant enzymes (catalase, superoxide dismutases) was increased by ROSI in HeLa and SiHa cells, but not in ME-180 cells. With ROSI pre-treatment, cell survival after irradiation remained unchanged in HeLa and SiHa cells, but decreased in ME-180 cells. Radiation-induced expression of γ-H2AX was increased and that of RAD51 was decreased by ROSI pre-treatment in ME-180 cells, but not in HeLa cells. ROSI increases radiosensitivity by inhibiting RAD51-mediated repair of DNA damage in some cervical cancer cell lines; therefore, ROSI is a potential inhibitor of RAD51 that can be used to enhance the effect of RT in the treatment of some cervical cancers.
Collapse
Affiliation(s)
- Zhengzhe An
- Department of Environmental and Tropical Medicine, Konkuk University College of Medicine, Chungju, 380-701, Republic of Korea
| | - Jae-Ran Yu
- Department of Environmental and Tropical Medicine, Konkuk University College of Medicine, Chungju, 380-701, Republic of Korea
| | - Woo-Yoon Park
- Department of Radiation Oncology, Chungbuk National University College of Medicine, 52 Chungdae-ro 1, Seowon-gu, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
30
|
van Oorschot B, Uitterhoeve L, Oomen I, Ten Cate R, Medema JP, Vrieling H, Stalpers LJA, Moerland PD, Franken NAP. Prostate Cancer Patients with Late Radiation Toxicity Exhibit Reduced Expression of Genes Involved in DNA Double-Strand Break Repair and Homologous Recombination. Cancer Res 2017; 77:1485-1491. [PMID: 28108515 DOI: 10.1158/0008-5472.can-16-1966] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/17/2016] [Accepted: 11/18/2016] [Indexed: 11/16/2022]
Abstract
Severe late damage to normal tissue is a major limitation of cancer radiotherapy in prostate cancer patients. In a recent retrospective study, late radiation toxicity was found to relate to a decreased decay of γ-H2AX foci and reduced induction of DNA double-strand break repair genes. Here, we report evidence of prognostic utility in prostate cancer for γ-H2AX foci decay ratios and gene expression profiles derived from ex vivo-irradiated patient lymphocytes. Patients were followed ≥2 years after radiotherapy. Clinical characteristics were assembled, and toxicity was recorded using the Common Terminology Criteria (CTCAE) v4.0. No clinical factor was correlated with late radiation toxicity. The γ-H2AX foci decay ratio correlated negatively with toxicity grade, with a significant difference between grade ≥3 and grade 0 patients (P = 0.02). A threshold foci decay ratio, determined in our retrospective study, correctly classified 23 of 28 patients with grade ≥3 toxicity (sensitivity 82%) and 9 of 14 patients with grade 0 toxicity (specificity 64%). Induction of homologous recombination (HR) repair genes was reduced with increasing toxicity grade. The difference in fold induction of the HR gene set was most pronounced between grade 0 and grade ≥3 toxicity (P = 0.008). Notably, reduced responsiveness of HR repair genes to irradiation and inefficient double-strand break repair correlated with severe late radiation toxicity. Using a decay ratio classifier, we correctly classified 82% of patients with grade ≥3 toxicity, suggesting a prognostic biomarker for cancer patients with a genetically enhanced risk for late radiation toxicity to normal tissues after radiotherapy. Cancer Res; 77(6); 1485-91. ©2017 AACR.
Collapse
Affiliation(s)
- Bregje van Oorschot
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Molecular Medicine (CEMM), Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.
| | - Lon Uitterhoeve
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Molecular Medicine (CEMM), Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Ilja Oomen
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Molecular Medicine (CEMM), Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Rosemarie Ten Cate
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Molecular Medicine (CEMM), Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Jan Paul Medema
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Molecular Medicine (CEMM), Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Harry Vrieling
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Lukas J A Stalpers
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Molecular Medicine (CEMM), Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Perry D Moerland
- Bioinformatics Laboratory, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Nicolaas A P Franken
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Molecular Medicine (CEMM), Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
31
|
Brengues M, Lapierre A, Bourgier C, Pèlegrin A, Özsahin M, Azria D. T lymphocytes to predict radiation-induced late effects in normal tissues. Expert Rev Mol Diagn 2016; 17:119-127. [DOI: 10.1080/14737159.2017.1271715] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Muriel Brengues
- Immunotargeting and Radiobiology in Oncology, IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM, U1194, Montpellier, France
- Department of Radiation Oncology, Institut Cancer Montpellier, Montpellier, France
| | - Ariane Lapierre
- Immunotargeting and Radiobiology in Oncology, IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM, U1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Department of Radiation Oncology, Institut Cancer Montpellier, Montpellier, France
| | - Céline Bourgier
- Immunotargeting and Radiobiology in Oncology, IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM, U1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Department of Radiation Oncology, Institut Cancer Montpellier, Montpellier, France
| | - André Pèlegrin
- Immunotargeting and Radiobiology in Oncology, IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM, U1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Department of Radiation Oncology, Institut Cancer Montpellier, Montpellier, France
| | | | - David Azria
- Immunotargeting and Radiobiology in Oncology, IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- INSERM, U1194, Montpellier, France
- Université de Montpellier, Montpellier, France
- Department of Radiation Oncology, Institut Cancer Montpellier, Montpellier, France
| |
Collapse
|
32
|
Herskind C, Talbot CJ, Kerns SL, Veldwijk MR, Rosenstein BS, West CML. Radiogenomics: A systems biology approach to understanding genetic risk factors for radiotherapy toxicity? Cancer Lett 2016; 382:95-109. [PMID: 26944314 PMCID: PMC5016239 DOI: 10.1016/j.canlet.2016.02.035] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/17/2016] [Accepted: 02/19/2016] [Indexed: 02/06/2023]
Abstract
Adverse reactions in normal tissue after radiotherapy (RT) limit the dose that can be given to tumour cells. Since 80% of individual variation in clinical response is estimated to be caused by patient-related factors, identifying these factors might allow prediction of patients with increased risk of developing severe reactions. While inactivation of cell renewal is considered a major cause of toxicity in early-reacting normal tissues, complex interactions involving multiple cell types, cytokines, and hypoxia seem important for late reactions. Here, we review 'omics' approaches such as screening of genetic polymorphisms or gene expression analysis, and assess the potential of epigenetic factors, posttranslational modification, signal transduction, and metabolism. Furthermore, functional assays have suggested possible associations with clinical risk of adverse reaction. Pathway analysis incorporating different 'omics' approaches may be more efficient in identifying critical pathways than pathway analysis based on single 'omics' data sets. Integrating these pathways with functional assays may be powerful in identifying multiple subgroups of RT patients characterised by different mechanisms. Thus 'omics' and functional approaches may synergise if they are integrated into radiogenomics 'systems biology' to facilitate the goal of individualised radiotherapy.
Collapse
Affiliation(s)
- Carsten Herskind
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany.
| | | | - Sarah L Kerns
- Department of Radiation Oncology, Mount Sinai School of Medicine, New York, USA; Department of Radiation Oncology, University of Rochester Medical Center, Rochester, USA
| | - Marlon R Veldwijk
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Barry S Rosenstein
- Department of Radiation Oncology, Mount Sinai School of Medicine, New York, USA; Department of Radiation Oncology, New York University School of Medicine, USA; Department of Dermatology, Mount Sinai School of Medicine, New York, USA
| | - Catharine M L West
- Institute of Cancer Sciences, University of Manchester, Christie Hospital, Manchester, UK
| |
Collapse
|
33
|
Compromized DNA repair as a basis for identification of cancer radiotherapy patients with extreme radiosensitivity. Cancer Lett 2016; 383:212-219. [PMID: 27693457 DOI: 10.1016/j.canlet.2016.09.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/06/2016] [Accepted: 09/08/2016] [Indexed: 01/09/2023]
Abstract
A small percentage of cancer radiotherapy patients develop abnormally severe side effects as a consequence of intrinsic radiosensitivity. We analysed the γ-H2AX response to ex-vivo irradiation of peripheral blood lymphocytes (PBL) and plucked eyebrow hair follicles from 16 patients who developed severe late radiation toxicity following radiotherapy, and 12 matched control patients. Longer retention of the γ-H2AX signal and lower colocalization efficiency of repair factors in over-responding patients confirmed that DNA repair in these individuals was compromised. Five of the radiosensitive patients harboured LoF mutations in DNA repair genes. An extensive range of quantitative parameters of the γ-H2AX response were studied with the objective to establish a predictor for radiosensitivity status. The most powerful predictor was the combination of the fraction of the unrepairable component of γ-H2AX foci and repair rate in PBL, both derived from non-linear regression analysis of foci repair kinetics. We introduce a visual representation of radiosensitivity status that allocates a position for each patient on a two-dimensional "radiosensitivity map". This analytical approach provides the basis for larger prospective studies to further refine the algorithm, ultimately to triage capability.
Collapse
|
34
|
Nuta O, Somaiah N, Boyle S, Chua MLK, Gothard L, Yarnold J, Rothkamm K, Herskind C. Correlation between the radiation responses of fibroblasts cultured from individual patients and the risk of late reaction after breast radiotherapy. Cancer Lett 2016; 374:324-30. [PMID: 26944319 DOI: 10.1016/j.canlet.2016.02.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/12/2016] [Accepted: 02/23/2016] [Indexed: 10/22/2022]
Abstract
Late normal tissue toxicity varies widely between patients and limits breast radiotherapy dose. Here we aimed to determine its relationship to DNA damage responses of fibroblast cultures from individual patients. Thirty-five breast cancer patients, with minimal or marked breast changes after breast-conserving therapy consented to receive a 4 Gy test irradiation to a small skin field of the left buttock and have punch biopsies taken from irradiated and unirradiated skin. Early-passage fibroblast cultures were established by outgrowth and irradiated in vitro with 0 or 4 Gy. 53BP1 foci, p53 and p21/CDKN1A were detected by immunofluorescence microscopy. Residual 53BP1 foci counts 24 h after in vitro irradiation were significantly higher in fibroblasts from RT-sensitive versus RT-resistant patients. Furthermore, significantly larger fractions of p53- but not p21/CDKN1A-positive fibroblasts were found in cultures from RT-sensitive patients without in vitro irradiation, and 2 h and 6 d post-irradiation. Exploratory analysis showed a stronger p53 response 2 h after irradiation of fibroblasts established from patients with severe reaction. These results associate the radiation response of fibroblasts with late reaction of the breast after RT and suggest a correlation with severity.
Collapse
Affiliation(s)
- Otilia Nuta
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, UK
| | - Navita Somaiah
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London, UK
| | - Sue Boyle
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London, UK
| | - Melvin Lee Kiang Chua
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, UK; National Cancer Centre, Singapore Duke-NUS Graduate Medical School, 11 Hospital Drive, Singapore, 169610
| | - Lone Gothard
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London, UK
| | - John Yarnold
- Division of Radiotherapy and Imaging, Institute of Cancer Research, London, UK
| | - Kai Rothkamm
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, UK; Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Carsten Herskind
- Department of Radiation Oncology, Universitaetsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
35
|
van Oorschot B, Hovingh S, Dekker A, Stalpers LJ, Franken NAP. Predicting Radiosensitivity with Gamma-H2AX Foci Assay after Single High-Dose-Rate and Pulsed Dose-Rate Ionizing Irradiation. Radiat Res 2016; 185:190-8. [PMID: 26789702 DOI: 10.1667/rr14098.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Gamma-H2AX foci detection is the standard method to quantify DNA double-strand break (DSB) induction and repair. In this study, we investigated the induction and decay of γ-H2AX foci of different tumor cell lines and fibroblasts with known mutations in DNA damage repair genes, including ATM, LigIV, DNA-PKcs, Rad51 and Rad54. A radiation dose of 2.4 Gy was used for either an acute single high-dose-rate (sHDR) exposure or a pulsed dose-rate (pDR) exposure over 24 h. The number of γ-H2AX foci was determined at 30 min and 24 h after sHDR irradiation and directly after pDR irradiation. In a similar manner, γ-H2AX foci were also examined in lymphocytes of patients with differences in normal tissue toxicity after a total radiation dose of 1 Gy. In an initial count of the number of foci 30 min after sHDR irradiation, repair-proficient cell types could not be distinguished from repair-deficient cell types. However at 24 h postirradiation, while we observed a large decrease in foci numbers in NHEJ-proficient cells, the amount of γ-H2AX foci in cell types with mutated NHEJ repair remained at high levels. Except for IRS-1SF cells, HR-deficient cell types eventually did show a moderate decrease in foci number over time, albeit to a lesser extent than their corresponding parentals or repair-proficient control cells. In addition, analysis of γ-H2AX foci after sHDR exposure of patients with different sensitivity status clearly showed individual differences in radiation response. Radiosensitive patients could be distinguished from the more radioresistant patients with γ-H2AX foci decay ratios (initial number of foci divided by residual number of foci). Significantly higher decay ratios were observed in patients without toxicities, indicating more proficient repair compared to patients with radiation-induced side effects. After pDR irradiation, no consistent correlation could be found between foci number and radiosensitivity. In conclusion, γ-H2AX formation is a rapid and sensitive cellular response to DNA DSBs. Decay ratios after sHDR exposure elucidated large differences in γ-H2AX foci kinetics between the repair-proficient or -deficient cell types and patients. This assay may be useful for measuring cellular radiosensitivity and could serve as a clinically useful test for predicting radiosensitivity ex vivo before treatment.
Collapse
Affiliation(s)
- Bregje van Oorschot
- Academic Medical Center, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental Molecular Medicine, Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, 1100 DE Amsterdam, The Netherlands
| | - Suzanne Hovingh
- Academic Medical Center, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental Molecular Medicine, Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, 1100 DE Amsterdam, The Netherlands
| | - Annelot Dekker
- Academic Medical Center, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental Molecular Medicine, Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, 1100 DE Amsterdam, The Netherlands
| | - Lukas J Stalpers
- Academic Medical Center, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental Molecular Medicine, Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, 1100 DE Amsterdam, The Netherlands
| | - Nicolaas A P Franken
- Academic Medical Center, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental Molecular Medicine, Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, 1100 DE Amsterdam, The Netherlands
| |
Collapse
|
36
|
Djuzenova CS, Zimmermann M, Katzer A, Fiedler V, Distel LV, Gasser M, Waaga-Gasser AM, Flentje M, Polat B. A prospective study on histone γ-H2AX and 53BP1 foci expression in rectal carcinoma patients: correlation with radiation therapy-induced outcome. BMC Cancer 2015; 15:856. [PMID: 26541290 PMCID: PMC4635621 DOI: 10.1186/s12885-015-1890-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 10/30/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The prognostic value of histone γ-H2AX and 53BP1 proteins to predict the radiotherapy (RT) outcome of patients with rectal carcinoma (RC) was evaluated in a prospective study. High expression of the constitutive histone γ-H2AX is indicative of defective DNA repair pathway and/or genomic instability, whereas 53BP1 (p53-binding protein 1) is a conserved checkpoint protein with properties of a DNA double-strand breaks sensor. METHODS Using fluorescence microscopy, we assessed spontaneous and radiation-induced foci of γ-H2AX and 53BP1 in peripheral blood mononuclear cells derived from unselected RC patients (n = 53) undergoing neoadjuvant chemo- and RT. Cells from apparently healthy donors (n = 12) served as references. RESULTS The γ-H2AX assay of in vitro irradiated lymphocytes revealed significantly higher degree of DNA damage in the group of unselected RC patients with respect to the background, initial (0.5 Gy, 30 min) and residual (0.5 Gy and 2 Gy, 24 h post-radiation) damage compared to the control group. Likewise, the numbers of 53BP1 foci analyzed in the samples from 46 RC patients were significantly higher than in controls except for the background DNA damage. However, both markers were not able to predict tumor stage, gastrointestinal toxicity or tumor regression after curative RT. Interestingly, the mean baseline and induced DNA damage was found to be lower in the group of RC patients with tumor stage IV (n = 7) as compared with the stage III (n = 35). The difference, however, did not reach statistical significance, apparently, because of the limited number of patients. CONCLUSIONS The study shows higher expression of γ-H2AX and 53BP1 foci in rectal cancer patients compared with healthy individuals. Yet the data in vitro were not predictive in regard to the radiotherapy outcome.
Collapse
Affiliation(s)
- Cholpon S Djuzenova
- Department of Radiation Oncology, University Hospital, Josef-Schneider-Strasse 11, 97080, Würzburg, Germany.
| | - Marcus Zimmermann
- Department of Radiation Oncology, University Hospital, Josef-Schneider-Strasse 11, 97080, Würzburg, Germany.
| | - Astrid Katzer
- Department of Radiation Oncology, University Hospital, Josef-Schneider-Strasse 11, 97080, Würzburg, Germany.
| | - Vanessa Fiedler
- Department of Radiation Oncology, University Hospital, Josef-Schneider-Strasse 11, 97080, Würzburg, Germany.
| | - Luitpold V Distel
- Department of Radiation Oncology, University of Erlangen-Nürnberg, Erlangen, Germany.
| | - Martin Gasser
- Department of Surgery I, University Hospital, Würzburg, Germany.
| | | | - Michael Flentje
- Department of Radiation Oncology, University Hospital, Josef-Schneider-Strasse 11, 97080, Würzburg, Germany.
| | - Bülent Polat
- Department of Radiation Oncology, University Hospital, Josef-Schneider-Strasse 11, 97080, Würzburg, Germany.
- Comprehensive Cancer Center Mainfranken, University Hospital, Würzburg, Germany.
| |
Collapse
|
37
|
Willers H, Gheorghiu L, Liu Q, Efstathiou JA, Wirth LJ, Krause M, von Neubeck C. DNA Damage Response Assessments in Human Tumor Samples Provide Functional Biomarkers of Radiosensitivity. Semin Radiat Oncol 2015; 25:237-50. [PMID: 26384272 DOI: 10.1016/j.semradonc.2015.05.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Predictive biomarkers are urgently needed for individualization of radiation therapy and treatment with radiosensitizing anticancer agents. Genomic profiling of human cancers provides us with unprecedented insight into the mutational landscape of genes directly or indirectly involved in the response to radiation-induced DNA damage. However, to what extent this wealth of structural information about the cancer genome produces biomarkers of sensitivity to radiation remains to be seen. Investigators are increasingly studying the subnuclear accumulation (ie, foci) of proteins in the DNA damage response (DDR), such as gamma-H2AX, 53BP1, or RAD51, as a surrogate of treatment sensitivity. Recent findings from preclinical studies have demonstrated the predictive potential of DDR foci by correlating foci with clinically relevant end points such as tumor control probability. Therefore, preclinical investigations of DDR foci responses are increasingly moving into cells and tissues from patients, which is the major focus of this review. The advantage of using DDR foci as functional biomarkers is that they can detect alterations in DNA repair due to various mechanisms. Moreover, they provide a global measurement of DDR network function without needing to know the identities of all the components, many of which remain unknown. Foci assays are thus expected to yield functional insight that may complement or supersede genomic information, thereby giving radiation oncologists unique opportunities to individualize cancer treatments in the near future.
Collapse
Affiliation(s)
- Henning Willers
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA.
| | - Liliana Gheorghiu
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA
| | - Qi Liu
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA
| | - Jason A Efstathiou
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA
| | - Lori J Wirth
- Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Mechthild Krause
- German Cancer Consortium (DKTK) Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology, Germany
| | - Cläre von Neubeck
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| |
Collapse
|
38
|
Pouliliou SE, Lialiaris TS, Dimitriou T, Giatromanolaki A, Papazoglou D, Pappa A, Pistevou K, Kalamida D, Koukourakis MI. Survival Fraction at 2 Gy and γH2AX Expression Kinetics in Peripheral Blood Lymphocytes From Cancer Patients: Relationship With Acute Radiation-Induced Toxicities. Int J Radiat Oncol Biol Phys 2015; 92:667-74. [PMID: 25892583 DOI: 10.1016/j.ijrobp.2015.02.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 02/04/2015] [Accepted: 02/12/2015] [Indexed: 01/24/2023]
Abstract
PURPOSE Predictive assays for acute radiation toxicities would be clinically relevant in radiation oncology. We prospectively examined the predictive role of the survival fraction at 2 Gy (SF2) and of γH2AX (double-strand break [DSB] DNA marker) expression kinetics in peripheral blood mononuclear cells (PBMCs) from cancer patients before radiation therapy. METHODS AND MATERIALS SF2 was measured with Trypan Blue assay in the PBMCs from 89 cancer patients undergoing radiation therapy at 4 hours (SF2[4h]) and 24 hours (SF2[24h]) after ex vivo irradiation. Using Western blot analysis and band densitometry, we further assessed the expression of γH2AX in PBMC DNA at 0 hours, 30 minutes, and 4 hours (33 patients) and 0 hour, 4 hours, and 24 hours (56 patients), following ex vivo irradiation with 2 Gy. Appropriate ratios were used to characterize each patient, and these were retrospectively correlated with early radiation therapy toxicity grade. RESULTS The SF2(4h) was inversely correlated with the toxicity grade (P=.006). The γH2AX-ratio(30min) (band density of irradiated/non-irradiated cells at 30 minutes) revealed, similarly, a significant inverse association (P=.0001). The DSB DNA repair rate from 30 minutes to 4 hours, calculated as the relative RγH2AX-ratio (γH2AX-ratio(4h)/γH2AX-ratio(30min)) showed a significant direct association with high toxicity grade (P=.01). CONCLUSIONS Our results suggest that SF2 is a significant radiation sensitivity index for patients undergoing radiation therapy. γH2AX Western blot densitometry analysis provided 2 important markers of normal tissue radiation sensitivity. Low γH2AX expression at 30 minutes was linked with high toxicity grade, suggesting that poor γH2AX repair activity within a time frame of 30 minutes after irradiation predicts for poor radiation tolerance. On the other hand, rapid γH2AX content restoration at 4 hours after irradiation, compatible with efficient DSB repair ability, predicts for increased radiation tolerance.
Collapse
Affiliation(s)
- Stamatia E Pouliliou
- Department of Radiotherapy/Oncology, Radiobiology and Radiopathology Unit, School of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| | - Theodoros S Lialiaris
- Department of Medical Genetics, School of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| | - Thespis Dimitriou
- Department of Anatomy, School of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| | - Alexandra Giatromanolaki
- Department of Pathology, School of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| | - Dimitrios Papazoglou
- Department of Internal Medicine, School of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| | - Aglaia Pappa
- Department of Molecular Biology and Genetics, School of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| | - Kyriaki Pistevou
- Department of Radiotherapy/Oncology, Aristotle University of Thessalonica, Thessalonica, Greece
| | - Dimitra Kalamida
- Department of Radiotherapy/Oncology, Radiobiology and Radiopathology Unit, School of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| | - Michael I Koukourakis
- Department of Radiotherapy/Oncology, Radiobiology and Radiopathology Unit, School of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece.
| |
Collapse
|
39
|
Haddy N, Tartier L, Koscielny S, Adjadj E, Rubino C, Brugières L, Pacquement H, Diallo I, de Vathaire F, Averbeck D, Hall J, Benhamou S. Repair of ionizing radiation-induced DNA damage and risk of second cancer in childhood cancer survivors. Carcinogenesis 2014; 35:1745-9. [PMID: 24670918 DOI: 10.1093/carcin/bgu077] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The study's purpose was to assess whether individuals who developed a second malignant neoplasm (SMN) after treatment for a first malignant neoplasm (FMN) had a lower ability to repair DNA double-strand breaks (DSBs) using a bioassay with γH2AX intensity as a surrogate endpoint. In a case-control study nested in a cohort of childhood cancer survivors, lymphoblastoid cell lines (LCLs) were established from blood samples collected from 94 cases (SMN) and 94 matched controls (FMN). LCLs were irradiated with ionizing radiation (2 and 5 Gy) and γH2AX intensities measured 1, 3, 5 and 24h post-irradiation. Differences in mean γH2AX intensity between cases and controls were compared using Kruskal-Wallis tests. Generalized linear models for repeated measures and conditional logistic regressions for SMN risk estimates were performed. The mean baseline γH2AX intensity measured without irradiation was 9.1 [95% confidence interval (95% CI): 8.5-9.7] in the LCLs from cases and 6.4 (95% CI: 6.0-6.8) from controls (P < 0.001). Markedly higher γH2AX intensity, particularly at 1 h post-irradiation, was also found in the LCLs from the cases compared with the controls for all FMNs and for different types of FMN. Chemotherapy and radiation doses received by bone marrow and thymus for FMN treatment showed a non-significant effect on γH2AX intensity. This case-control study shows that higher baseline and post-irradiation levels of DNA DSBs, as measured by γH2AX intensity, are associated with the risk of SMN in childhood cancer survivors. Further investigations in a prospective setting are warranted to confirm this association.
Collapse
Affiliation(s)
| | - Laurence Tartier
- Institut Curie-Recherche, Bats 110-112, 91405 Orsay, France, INSERM U612, Institut Curie, Bats 110-112, 91405 Orsay, France
| | | | | | | | | | | | | | | | | | - Janet Hall
- Institut Curie-Recherche, Bats 110-112, 91405 Orsay, France, INSERM U612, Institut Curie, Bats 110-112, 91405 Orsay, France
| | - Simone Benhamou
- INSERM U946, Fondation Jean Dausset, 75010 Paris, France and CNRS UMR8200, Institut Gustave Roussy, 94805 Villejuif, France
| |
Collapse
|
40
|
|