1
|
Vethe Hernes I, Jansdatter A, Nordsteien A, Haraldsen Normann M. Illuminating the hidden cost: A systematic review of cognitive late effects regarding cancer-related fatigue in treated paediatric brain tumors. Tech Innov Patient Support Radiat Oncol 2025; 33:100291. [PMID: 39759484 PMCID: PMC11699426 DOI: 10.1016/j.tipsro.2024.100291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/24/2024] [Accepted: 11/08/2024] [Indexed: 01/07/2025] Open
Abstract
Objective Globally, in 2022, 30,871 children were diagnosed with CNS-tumors. Many have been treated with radiotherapy, and a significant number suffer from chronic late effects, including fatigue. This study aims to investigate previous research on the impact of cancer-related fatigue for neurocognitive function that can be related to radiotherapy in patients who have undergone primary brain radiotherapy before the age of 18. Methods Conducted under PRISMA-S framework, this systematic review searched MEDLINE ALL (Ovid), EMBASE (Ovid), CINAHL (EBSCO), and PsycINFO (Ovid) for relevant studies. Criteria for inclusion were children under 18 who underwent radiotherapy for primary brain cancer, focusing on late cognitive side effects, published 2000-2023. Results From 4,067 records, 10 studies were included, examining Proton Radiation Therapy (n = 4), X-ray Radiation Therapy (n = 3), and their comparisons (n = 3). The studies used various cognitive tests, and late effects that emerged were neurocognitive functions and disorders, intellectual functioning, specific cognitive functions and daily life, social functioning, and performance. These themes can be encompassed by cancer-related fatigue. Conclusions The findings underscore critical need for more in-depth research to understand the health perception variations among children post-primary brain radiotherapy. Furthermore, detailed insights of treatment specifics, disease progression, target volume sizes, and doses to surrounding organs at risk are imperative.
Collapse
Affiliation(s)
| | | | - Anita Nordsteien
- University of South-Eastern, Faculty of Health and Social Sciences, Norway
| | | |
Collapse
|
2
|
Crotty EE, Sato AA, Abdelbaki MS. Integrating MAPK pathway inhibition into standard-of-care therapy for pediatric low-grade glioma. Front Oncol 2025; 15:1520316. [PMID: 40007996 PMCID: PMC11850343 DOI: 10.3389/fonc.2025.1520316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Pediatric low-grade gliomas (pLGG) are a group of tumors largely driven by alterations in a single genetic pathway, known as the RAS-RAF-mitogen-activated protein kinase (MAPK) pathway. Recent biologic insights and therapeutic targeting of MAPK-alterations have dramatically shifted the treatment approach in pLGG. While chemotherapy remains front-line therapy for unresectable pLGG in most scenarios (with the notable exception of BRAF V600E-altered tumors), many patients recur following cytotoxic agents and require further treatment. Inhibitors of the MAPK pathway, primarily MEK and RAF kinase inhibitors, have emerged as effective and tolerable second-line or later therapy for pLGG. As familiarity with these targeted agents increases, their indications for use continue to expand and Phase 3 clinical trials investigating their utility in the front-line setting are ongoing. We have adopted mitigation strategies for their associated toxicities; skin toxicity, in particular, is now managed by prevention strategies and early dermatologic intervention. This review highlights current approaches for the clinical implementation of MEK and RAF kinase inhibitors for pLGG, focusing on the practical aspects of drug administration, toxicity management, response monitoring, and distribution to patients experiencing geographic or financial barriers to care. Additionally, we review important considerations for the off-label use of these agents while contemporaneous clinical trials assessing front-line efficacy are ongoing. We discuss the potential for more expansive or histology-agnostic tumor targeting using MEK inhibitors, harnessing their biologic relevance for other RAS-altered conditions.
Collapse
Affiliation(s)
- Erin E. Crotty
- Ben Towne Center for Childhood Cancer and Blood Disorders Research and the Department of Pediatrics, Seattle Children’s Hospital, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA, United States
| | - Aimee A. Sato
- Ben Towne Center for Childhood Cancer and Blood Disorders Research and the Department of Pediatrics, Seattle Children’s Hospital, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA, United States
- Division of Pediatric Neurology, Department of Neurology, Seattle Children’s Hospital, University of Washington, Seattle, WA, United States
| | - Mohamed S. Abdelbaki
- Division of Hematology, Oncology and Bone Marrow Transplant, St. Louis Children’s Hospital, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
3
|
Donati CM, Medici F, Zamfir AA, Galietta E, Cammelli S, Buwenge M, Masetti R, Prete A, Strigari L, Forlani L, D’Angelo E, Morganti AG. CyberKnife in Pediatric Oncology: A Narrative Review of Treatment Approaches and Outcomes. Curr Oncol 2025; 32:76. [PMID: 39996876 PMCID: PMC11854067 DOI: 10.3390/curroncol32020076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/20/2025] [Accepted: 01/27/2025] [Indexed: 02/26/2025] Open
Abstract
Pediatric cancers, while rare, pose unique challenges due to the heightened sensitivity of developing tissues and the increased risk of long-term radiation-induced effects. Radiotherapy (RT) is a cornerstone in pediatric oncology, but its application is limited by concerns about toxicity, particularly secondary malignancies, growth abnormalities, and cognitive deficits. CyberKnife (CK), an advanced robotic radiosurgery system, has emerged as a promising alternative due to its precision, non-invasiveness, and ability to deliver hypofractionated, high-dose RT while sparing healthy tissues. This narrative review explores the existing evidence on CK application in pediatric patients, synthesizing data from case reports, small series, and larger cohort studies. All the studies analyzed reported cases of tumors located in the skull or in the head and neck region. Findings suggest CK's potential for effective tumor control with favorable toxicity profiles, especially for complex or inoperable tumors. However, the evidence remains limited, with the majority of studies involving small sample sizes and short follow-up periods. Moreover, concerns about the "dose-bath" effect and limited long-term data on stochastic risks warrant cautious adoption. Compared to Linac-based RT and proton therapy, CK offers unique advantages in reducing session numbers and enhancing patient comfort, while its real-time tracking provides superior accuracy. Despite these advantages, CK is associated with significant limitations, including a higher potential for low-dose scatter (often referred to as the "dose-bath" effect), extended treatment times in some protocols, and high costs requiring specialized expertise for operation. Emerging modalities like π radiotherapy further underscore the need for comparative studies to identify the optimal technique for specific pediatric cases. Notably, proton therapy remains the benchmark for minimizing long-term toxicity, but its cost and availability limit its accessibility. This review emphasizes the need for balanced evaluations of CK and highlights the importance of planning prospective studies and long-term follow-ups to refine its role in pediatric oncology. A recent German initiative to establish a CK registry for pediatric CNS lesions holds significant promise for advancing evidence-based applications and optimizing treatment strategies in this vulnerable population.
Collapse
Affiliation(s)
- Costanza M. Donati
- Radiation Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, 40128 Bologna, Italy; (C.M.D.); (E.G.); (S.C.); (A.G.M.)
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40100 Bologna, Italy; (M.B.); (R.M.); (A.P.); (L.F.)
| | - Federica Medici
- Département de Radiothérapie, Gustave Roussy, 94805 Villejuif, France;
| | - Arina A. Zamfir
- Radiation Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, 40128 Bologna, Italy; (C.M.D.); (E.G.); (S.C.); (A.G.M.)
| | - Erika Galietta
- Radiation Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, 40128 Bologna, Italy; (C.M.D.); (E.G.); (S.C.); (A.G.M.)
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40100 Bologna, Italy; (M.B.); (R.M.); (A.P.); (L.F.)
| | - Silvia Cammelli
- Radiation Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, 40128 Bologna, Italy; (C.M.D.); (E.G.); (S.C.); (A.G.M.)
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40100 Bologna, Italy; (M.B.); (R.M.); (A.P.); (L.F.)
| | - Milly Buwenge
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40100 Bologna, Italy; (M.B.); (R.M.); (A.P.); (L.F.)
| | - Riccardo Masetti
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40100 Bologna, Italy; (M.B.); (R.M.); (A.P.); (L.F.)
- Pediatric Oncology and Hematology “Lalla Seràgnoli”, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40128 Bologna, Italy
| | - Arcangelo Prete
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40100 Bologna, Italy; (M.B.); (R.M.); (A.P.); (L.F.)
- Pediatric Oncology and Hematology “Lalla Seràgnoli”, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40128 Bologna, Italy
| | - Lidia Strigari
- Department of Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40128 Bologna, Italy;
| | - Ludovica Forlani
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40100 Bologna, Italy; (M.B.); (R.M.); (A.P.); (L.F.)
| | - Elisa D’Angelo
- Department of Radiation Oncology, Bellaria Hospital-AUSL Bologna, 40139 Bologna, Italy;
| | - Alessio G. Morganti
- Radiation Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni 15, 40128 Bologna, Italy; (C.M.D.); (E.G.); (S.C.); (A.G.M.)
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40100 Bologna, Italy; (M.B.); (R.M.); (A.P.); (L.F.)
| |
Collapse
|
4
|
Brisson RJ, Indelicato DJ, Bradley JA, Aldana PR, Klawinski D, Morris CG, Vega RBM. Long-term outcomes following proton therapy for pediatric spinal low-grade glioma. Pediatr Blood Cancer 2024; 71:e31341. [PMID: 39323035 DOI: 10.1002/pbc.31341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/27/2024]
Abstract
BACKGROUND Due to its rarity, no standard treatment guidelines exist for pediatric spinal low-grade glioma (LGG-S). Proton therapy (PT) offers an attractive modality to minimize toxicity. Herein, we present the first published series of pediatric patients who received PT for progressive LGG-S. PROCEDURES We identified eight consecutive patients with nonmetastatic LGG-S treated with PT. Cumulative incidence method was used to estimate local control (LC), freedom from distant metastases (FFDM), and freedom from progression (FFP). The Kaplan-Meier product limit method assessed overall survival (OS). Toxicity was assessed according to the Common Terminology Criteria for Adverse Events Version 5.0. RESULTS Median age at diagnosis was 4 years. All patients underwent attempted resection and developed recurrence/progression prior to referral for PT, with median duration between initial surgery and PT of 4.4 years. Median age at the start of PT was 8 years. Most patients (n = 5) received PT as ≥third line treatment. Seven patients were treated with PT to the primary tumor. Most patients (n = 7) received between 45-50.4 CGE. Median follow up was 7.8 years. The 10-year estimates for LC, FFDM, FFP, and OS were 85, 88, 73, and 55%, respectively. One patient experienced malignant transformation and two developed pseudoprogression following PT. No pulmonary, gastrointestinal, or musculoskeletal toxicities were observed during or after PT. CONCLUSIONS Despite negative selection bias our experience suggests PT for pediatric LGG-S offers long-term disease control with limited toxicity. The favorable therapeutic ratio of PT suggests it should be considered among first-line therapy in children with nonmetastatic, unresectable LGG-S.
Collapse
Affiliation(s)
- Ryan J Brisson
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, Florida, USA
| | - Daniel J Indelicato
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, Florida, USA
| | - Julie A Bradley
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, Florida, USA
| | - Philipp R Aldana
- Department of Neurosurgery, University of Florida College of Medicine Jacksonville, Jacksonville, Florida, USA
| | - Darren Klawinski
- Department of Pediatrics, Nemours Children's Specialty Clinic, Jacksonville, Florida, USA
| | - Christopher G Morris
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, Florida, USA
| | - Raymond B Mailhot Vega
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, Florida, USA
| |
Collapse
|
5
|
Bansal I, Merchant TE. Radiotherapy for pediatric low-grade glioma. Childs Nerv Syst 2024; 40:3277-3290. [PMID: 38775957 DOI: 10.1007/s00381-024-06460-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/13/2024] [Indexed: 10/26/2024]
Abstract
INTRODUCTION Radiotherapy is a highly effective treatment for pediatric low-grade glioma, serving as the standard for evaluating progression-free and overall survival, as well as vision preservation. Despite its proven efficacy, concerns about treatment complications have led to increased use of chemotherapy and targeted therapy, which are associated with poorer progression-free survival outcomes. METHODS This review by Indu Bansal and Thomas E. Merchant examines the indications, timing, and results of radiotherapy for pediatric low-grade glioma. The authors provide a comprehensive analysis of clinical management strategies, addressing the controversies surrounding the use and timing of radiotherapy compared to other therapies. RESULTS The review highlights that while radiotherapy is essential for certain patients, particularly those who are not candidates for complete resection due to the tumor's infiltrative nature or location, it is often deferred in favor of systemic therapies. This deferral can lead to significant morbidity, including poor visual outcomes. Reports indicate that systemic therapy negatively impacts progression-free survival in patients who eventually undergo radiotherapy. Newer radiotherapy techniques have been developed to minimize complications, offering potential benefits over traditional methods. DISCUSSION The evolving clinical management of pediatric low-grade glioma involves balancing the benefits of radiotherapy with concerns about its side effects. Although systemic therapies are increasingly favored, their associated inferior progression-free survival and potential for significant morbidity underscore the need for careful consideration of radiotherapy, particularly in older children, adolescents, or those with progressive disease post-systemic therapy. The emerging role of targeted therapy presents additional challenges, including uncertainties about long-term side effects and its interaction with radiotherapy. Further research is needed to optimize treatment strategies and improve outcomes for pediatric patients with low-grade glioma.
Collapse
Affiliation(s)
- Indu Bansal
- Department of Radiation Oncology at Paras Health, Gurugram, Haryana, India
| | - Thomas E Merchant
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
6
|
Al-Lami BS, Al-Lami BS, Al-Lami YS. Survival outcomes after using charged particle radiotherapy as a treatment modality for gliomas: A systematic review and meta-analysis. J Med Imaging Radiat Sci 2024; 55:101410. [PMID: 38670903 DOI: 10.1016/j.jmir.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024]
Abstract
INTRODUCTION Charged particle therapy is an emerging radiation treatment for a number of tumors; however, more research is needed to determine its safety and efficacy when treating intra-axial brain tumors (commonly known as gliomas). The overall survival of patients treated with charged particle radiation versus those receiving photon therapy were compared in this systematic review and meta-analysis. METHODS The databases used as part of the search strategy were the following: MEDLINE (PubMed), Google Scholar, Scopus, and Cochrane. The search was conducted in order to find pertinent clinical studies. A random-effect meta-analysis was used to generate pooled estimates of overall survival at 1,3, and 5 years. RESULTS Nineteen studies with a total of 1140 patients were included in this meta-analysis. Following treatment, the patient's follow-up period lasted 44.4 months (range: 14.3 - 91.2 months). At one year (relative risk 1.17, 95% CI 1.07 - 1.28; p = 0.049), three years (relative risk 1.73, 95% CI 1.41 - 2.12; p = 0.001), and five years (relative risk 2.00, 95% CI 1.52 - 2.63; p = 0.005), charged particle radiotherapy had a significantly higher pooled overall survival than photon therapy. CONCLUSION Charged particle therapy could be associated with better clinical outcomes for patients with gliomas compared to photon therapy. More prospective randomized trials and comparative studies are strongly encouraged to enable accurate meta-analysis and a better exploration of prognosis.
Collapse
|
7
|
Körner M, Spohn M, Schüller U, Bockmayr M. Transcriptomics-based characterization of the immuno-stromal microenvironment in pediatric low-grade glioma. Oncoimmunology 2024; 13:2386789. [PMID: 39135890 PMCID: PMC11318680 DOI: 10.1080/2162402x.2024.2386789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/06/2024] [Accepted: 07/26/2024] [Indexed: 08/15/2024] Open
Abstract
Immunologic treatment options are uncommon in low-grade gliomas, although such therapies might be beneficial for inoperable and aggressive cases. Knowledge of the immune and stromal cells in low-grade gliomas is highly relevant for such approaches but still needs to be improved. Published gene-expression data from 400 low-grade gliomas and 193 high-grade gliomas were gathered to quantify 10 microenvironment cell populations with a deconvolution method designed explicitly for brain tumors. First, we investigated general differences in the microenvironment of low- and high-grade gliomas. Lower-grade and high-grade tumors cluster together, respectively, and show a general similarity within and distinct differences between these groups, the main difference being a higher infiltration of fibroblasts and T cells in high-grade gliomas. Among the analyzed entities, gangliogliomas and pleomorphic xanthoastrocytomas presented the highest overall immune cell infiltration. Further analyses of the low-grade gliomas presented three distinct microenvironmental signatures of immune cell infiltration, which can be divided into T-cell/dendritic/natural killer cell-, neutrophilic/B lineage/natural killer cell-, and monocytic/vascular/stromal-cell-dominated immune clusters. These clusters correlated with tumor location, age, and histological diagnosis but not with sex or progression-free survival. A survival analysis showed that the prognosis can be predicted from gene expression, clinical data, and a combination of both with a support vector machine and revealed the negative prognostic relevance of vascular markers. Overall, our work shows that low- and high-grade gliomas can be characterized and differentiated by their immune cell infiltration. Low-grade gliomas cluster into three distinct immunologic tumor microenvironments, which may be of further interest for upcoming immunotherapeutic research.
Collapse
Affiliation(s)
- Meik Körner
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
| | - Michael Spohn
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrich Schüller
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Bockmayr
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
- bAIome - Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
8
|
Marignol L, McMahon SJ. Research Trends in the Study of the Relative Biological Effectiveness: A Bibliometric Study. Radiat Res 2024; 202:177-184. [PMID: 38918000 DOI: 10.1667/rade-24-00023.1.s1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/23/2024] [Indexed: 06/27/2024]
Abstract
The relative biological effectiveness is a mathematical quantity first defined in the 1950s. This has resulted in more than 4,000 scientific papers published to date. Yet defining the correct value of the RBE to use in clinical practice remains a challenge. A scientific analysis in the radiation research literature can provide an understanding of how this mathematical quantity has evolved. The purpose of this study is to investigate documents published since 1950 using bibliometric indicators and network visualization. This analysis seeks to provide an assessment of global research activities, key themes, and RBE research within the radiation-related field. It strives to highlight top-performing authors, organizations, and nations that have made major contributions to this research domain, as well as their interactions. The Scopus Collection was searched for articles and reviews pertaining to RBE in radiation research from 1950 through 2023. Scopus and Bibiometrix analytic tools were used to investigate the most productive countries, researchers, collaboration networks, journals, along with the citation analysis of references and keywords. A total of 4,632 documents were retrieved produced by authors originating from 71 countries. Publication trends could be separated in 20-year groupings beginning with slow accrual from 1950 to 1970, an early rise from 1970-1990, followed by a sharp increase in the years 1990s-2010s that matches the development of charged particle therapy in clinics worldwide and opened discussion on the true value of the RBE in proton beam therapy. Since the 2010s, a steady 200 papers, on average, have been published per year. The United States produced the most publications overall (N = 1,378) and Radiation Research was the most likely journal to have published articles related to the RBE (606 publications during this period). J. Debus was the most prolific author (112 contributions, with 2,900 citations). The RBE has captured the research interest of over 7,000 authors in the past decade alone. This study supports that notion that the growth of the body of evidence surrounding the RBE, which started 75 years ago, is far from reaching its end. Applications to medicine have continuously dominated the field, with physics competing with Biochemistry, Genetics and Molecular Biology for second place over the decades. Future research can be predicted to continue.
Collapse
Affiliation(s)
- L Marignol
- Applied Radiation Therapy Trinity (ARTT), Discipline of Radiation Therapy, School of Medicine, Trinity St. James's Cancer Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - S J McMahon
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland
| |
Collapse
|
9
|
Gorodezki D, Schuhmann MU, Ebinger M, Schittenhelm J. Dissecting the Natural Patterns of Progression and Senescence in Pediatric Low-Grade Glioma: From Cellular Mechanisms to Clinical Implications. Cells 2024; 13:1215. [PMID: 39056798 PMCID: PMC11274692 DOI: 10.3390/cells13141215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Pediatric low-grade gliomas (PLGGs) comprise a heterogeneous set of low-grade glial and glioneuronal tumors, collectively representing the most frequent CNS tumors of childhood and adolescence. Despite excellent overall survival rates, the chronic nature of the disease bears a high risk of long-term disease- and therapy-related morbidity in affected patients. Recent in-depth molecular profiling and studies of the genetic landscape of PLGGs led to the discovery of the paramount role of frequent upregulation of RAS/MAPK and mTOR signaling in tumorigenesis and progression of these tumors. Beyond, the subsequent unveiling of RAS/MAPK-driven oncogene-induced senescence in these tumors may shape the understanding of the molecular mechanisms determining the versatile progression patterns of PLGGs, potentially providing a promising target for novel therapies. Recent in vitro and in vivo studies moreover indicate a strong dependence of PLGG formation and growth on the tumor microenvironment. In this work, we provide an overview of the current understanding of the multilayered cellular mechanisms and clinical factors determining the natural progression patterns and the characteristic biological behavior of these tumors, aiming to provide a foundation for advanced stratification for the management of these tumors within a multimodal treatment approach.
Collapse
Affiliation(s)
- David Gorodezki
- Department of Hematology and Oncology, University Children’s Hospital Tübingen, 72076 Tübingen, Germany;
| | - Martin U. Schuhmann
- Section of Pediatric Neurosurgery, Department of Neurosurgery, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Martin Ebinger
- Department of Hematology and Oncology, University Children’s Hospital Tübingen, 72076 Tübingen, Germany;
| | - Jens Schittenhelm
- Department of Neuropathology, Institute of Pathology, University Hospital Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
10
|
Turner EM, Olsen E, Duvall S. Neurocognition in Pediatric Temporal Lobe Tumor-Related Epilepsy. Dev Neuropsychol 2024; 49:178-189. [PMID: 38753032 DOI: 10.1080/87565641.2024.2354745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
Tumor-related epilepsy is a common and understudied neurological comorbidity among pediatric temporal lobe tumor patients that poses risk for neurocognitive impairment (NCI). Forty-one youth with either TLT+ (n = 23) or nonneoplastic temporal lobe epilepsy (n = 18) ages 6-20 years completed routine neuropsychological evaluations. Rates of NCI were similar across groups; however, NCI was more common in nonneoplastic participants on a task of phonemic fluency, p = .047. Younger age of seizure onset and greater number of antiseizure medications were associated with NCI among TLT+ participants only. Preliminary findings suggest separate prognostic models of cognitive outcomes between TLT+ and nonneoplastic epilepsy populations may be needed.
Collapse
Affiliation(s)
- Elise M Turner
- Section of Neurology, Department of Pediatrics, Children's Hospital Colorado/University of Colorado School of Medicine, Portland, Oregon, USA
| | - Emily Olsen
- Department of Pediatrics, Oregon Health and Science University, Portland, Oregon, USA
| | - Susanne Duvall
- Department of Pediatrics, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
11
|
Joh-Carnella N, Bauman G, Yock TI, Zelcer S, Youkhanna S, Cacciotti C. Case report: Pediatric low-grade gliomas: a fine balance between treatment options, timing of therapy, symptom management and quality of life. Front Oncol 2024; 14:1366251. [PMID: 38912055 PMCID: PMC11190070 DOI: 10.3389/fonc.2024.1366251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/28/2024] [Indexed: 06/25/2024] Open
Abstract
Introduction Pediatric low-grade gliomas (pLGG) are the most common brain tumor in children and encompass a wide range of histologies. Treatment may pose challenges, especially in those incompletely resected or those with multiple recurrence or progression. Case description We report the clinical course of a girl diagnosed with pilocytic astrocytoma and profound hydrocephalus at age 12 years treated with subtotal resection, vinblastine chemotherapy, and focal proton radiotherapy. After radiotherapy the tumor increased in enhancement temporarily with subsequent resolution consistent with pseudoprogression. Despite improvement in imaging and radiographic local control, the patient continues to have challenges with headaches, visual and auditory concerns, stroke-like symptoms, and poor quality of life. Conclusion pLGG have excellent long-term survival; thus, treatments should focus on maintaining disease control and limiting long-term toxicities. Various treatment options exist including surgery, chemotherapy, targeted agents, and radiation therapy. Given the morbidity associated with pLGG, individualized treatment approaches are necessary, with a multi-disciplinary approach to care focused on minimizing treatment side effects, and promoting optimal quality of life for patients.
Collapse
Affiliation(s)
| | - Glenn Bauman
- Division of Radiation Oncology, Department of Oncology, London Health Sciences Centre & Western University, London, ON, Canada
| | - Torunn I. Yock
- Department of Pediatric Radiation Oncology, Massachusetts General Hospital, Boston, MA, United States
| | - Shayna Zelcer
- Division of Hematology/Oncology, Department of Pediatrics, London Health Sciences Centre & Western University, London, ON, Canada
| | - Sabin Youkhanna
- Department Radiation Oncology, London Regional Cancer Centre, London, ON, Canada
| | - Chantel Cacciotti
- Division of Hematology/Oncology, Department of Pediatrics, London Health Sciences Centre & Western University, London, ON, Canada
| |
Collapse
|
12
|
Mahajan A, Stavinoha PL, Rongthong W, Brodin NP, McGovern SL, El Naqa I, Palmer JD, Vennarini S, Indelicato DJ, Aridgides P, Bowers DC, Kremer L, Ronckers C, Constine L, Avanzo M. Neurocognitive Effects and Necrosis in Childhood Cancer Survivors Treated With Radiation Therapy: A PENTEC Comprehensive Review. Int J Radiat Oncol Biol Phys 2024; 119:401-416. [PMID: 33810950 DOI: 10.1016/j.ijrobp.2020.11.073] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/08/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE A PENTEC review of childhood cancer survivors who received brain radiation therapy (RT) was performed to develop models that aid in developing dose constraints for RT-associated central nervous system (CNS) morbidities. METHODS AND MATERIALS A comprehensive literature search, through the PENTEC initiative, was performed to identify published data pertaining to 6 specific CNS toxicities in children treated with brain RT. Treatment and outcome data on survivors were extracted and used to generate normal tissue complication probability (NTCP) models. RESULTS The search identified investigations pertaining to 2 of the 6 predefined CNS outcomes: neurocognition and brain necrosis. For neurocognition, models for 2 post-RT outcomes were developed to (1) calculate the risk for a below-average intelligence quotient (IQ) (IQ <85) and (2) estimate the expected IQ value. The models suggest that there is a 5% risk of a subsequent IQ <85 when 10%, 20%, 50%, or 100% of the brain is irradiated to 35.7, 29.1, 22.2, or 18.1 Gy, respectively (all at 2 Gy/fraction and without methotrexate). Methotrexate (MTX) increased the risk for an IQ <85 similar to a generalized uniform brain dose of 5.9 Gy. The model for predicting expected IQ also includes the effect of dose, age, and MTX. Each of these factors has an independent, but probably cumulative effect on IQ. The necrosis model estimates a 5% risk of necrosis for children after 59.8 Gy or 63.6 Gy (2 Gy/fraction) to any part of the brain if delivered as primary RT or reirradiation, respectively. CONCLUSIONS This PENTEC comprehensive review establishes objective relationships between patient age, RT dose, RT volume, and MTX to subsequent risks of neurocognitive injury and necrosis. A lack of consistent RT data and outcome reporting in the published literature hindered investigation of the other predefined CNS morbidity endpoints.
Collapse
Affiliation(s)
- Anita Mahajan
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota.
| | - Peter L Stavinoha
- Division of Pediatrics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Warissara Rongthong
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - N Patrik Brodin
- Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, New York
| | - Susan L McGovern
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Issam El Naqa
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Joshua D Palmer
- Department of Radiation Oncology, James Cancer Hospital at Ohio State University, Nationwide Children's Hospital, Columbus, Ohio
| | - Sabina Vennarini
- Proton Therapy Center, Azienda Provinciale per I Servizi Sanitari, Trento, Italy
| | - Daniel J Indelicato
- Department of Radiation Oncology, University of Florida, Gainesville, Florida
| | - Paul Aridgides
- Department of Radiation Oncology, SUNY Upstate Medical University, Syracuse, New York
| | - Daniel C Bowers
- Division of Pediatric Hematology and Oncology, University of Texas Southwestern Medical School, Dallas, Texas
| | - Leontien Kremer
- Department of Pediatrics, UMC Amsterdam, Location AMC, Amsterdam, the Netherlands; Department of Pediatric Oncology, Princess Máxima Center for Paediatric Oncology, Utrecht, the Netherlands
| | - Cecile Ronckers
- Department of Pediatrics, UMC Amsterdam, Location AMC, Amsterdam, the Netherlands; Department of Pediatric Oncology, Princess Máxima Center for Paediatric Oncology, Utrecht, the Netherlands; Institute of Biostatistics and Registry Research, Medical University Brandenburg-Theodor Fontane, Neuruppin, Germany
| | - Louis Constine
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York
| | - Michele Avanzo
- Medical Physics Department, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| |
Collapse
|
13
|
Lucke-Wold B, Rangwala BS, Shafique MA, Siddiq MA, Mustafa MS, Danish F, Nasrullah RMU, Zainab N, Haseeb A. Focus on current and emerging treatment options for glioma: A comprehensive review. World J Clin Oncol 2024; 15:482-495. [PMID: 38689623 PMCID: PMC11056857 DOI: 10.5306/wjco.v15.i4.482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/22/2024] [Accepted: 02/28/2024] [Indexed: 04/22/2024] Open
Abstract
This comprehensive review delves into the current updates and challenges associated with the management of low-grade gliomas (LGG), the predominant primary tumors in the central nervous system. With a general incidence rate of 5.81 per 100000, gliomas pose a significant global concern, necessitating advancements in treatment techniques to reduce mortality and morbidity. This review places a particular focus on immunotherapies, discussing promising agents such as Zotiraciclib and Lerapolturev. Zotiraciclib, a CDK9 inhibitor, has demonstrated efficacy in glioblastoma treatment in preclinical and clinical studies, showing its potential as a therapeutic breakthrough. Lerapolturev, a viral immunotherapy, induces inflammation in glioblastoma and displays positive outcomes in both adult and pediatric patients. Exploration of immunotherapy extends to Pembrolizumab, Nivolumab, and Entrectinib, revealing the challenges and variabilities in patient responses. Despite promising preclinical data, the monoclonal antibody Depatuxizumab has proven ineffective in glioblastoma treatment, emphasizing the critical need to understand resistance mechanisms. The review also covers the success of radiation therapy in pediatric LGG, with evolving techniques, such as proton therapy, showing potential improvements in patient quality of life. Surgical treatment is discussed in the context of achieving a balance between preserving the patient's quality of life and attaining gross total resection, with the extent of surgical resection significantly influencing the survival outcomes. In addition to advancements in cancer vaccine development, this review highlights the evolving landscape of LGG treatment, emphasizing a shift toward personalized and targeted therapies. Ongoing research is essential for refining strategies and enhancing outcomes in the management of LGG.
Collapse
Affiliation(s)
- Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, United States
| | | | | | - Mohammad Arham Siddiq
- Department of Neurosurgery, Jinnah Sindh Medical University, Karachi 75510, Pakistan
| | | | - Fnu Danish
- Department of Neurosurgery, Jinnah Sindh Medical University, Karachi 75510, Pakistan
| | | | - Noor Zainab
- Department of Neurosurgery, Army Medical College, Rawalpindi 46000, Pakistan
| | - Abdul Haseeb
- Department of Neurosurgery, Jinnah Sindh Medical University, Karachi 75510, Pakistan
| |
Collapse
|
14
|
Kotecha R, La Rosa A, Mehta MP. How proton therapy fits into the management of adult intracranial tumors. Neuro Oncol 2024; 26:S26-S45. [PMID: 38437667 PMCID: PMC10911801 DOI: 10.1093/neuonc/noad183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Abstract
Intracranial tumors include a challenging array of primary and secondary parenchymal and extra-axial tumors which cause neurologic morbidity consequential to location, disease extent, and proximity to critical neurologic structures. Radiotherapy can be used in the definitive, adjuvant, or salvage setting either with curative or palliative intent. Proton therapy (PT) is a promising advance due to dosimetric advantages compared to conventional photon radiotherapy with regards to normal tissue sparing, as well as distinct physical properties, which yield radiobiologic benefits. In this review, the principles of efficacy and safety of PT for a variety of intracranial tumors are discussed, drawing upon case series, retrospective and prospective cohort studies, and randomized clinical trials. This manuscript explores the potential advantages of PT, including reduced acute and late treatment-related side effects and improved quality of life. The objective is to provide a comprehensive review of the current evidence and clinical outcomes of PT. Given the lack of consensus and directives for its utilization in patients with intracranial tumors, we aim to provide a guide for its judicious use in clinical practice.
Collapse
Affiliation(s)
- Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA
- Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
- Department of Translational Medicine, Hebert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Alonso La Rosa
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA
| | - Minesh P Mehta
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA
- Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| |
Collapse
|
15
|
Wilson JS, Main C, Thorp N, Taylor RE, Majothi S, Kearns PR, English M, Dandapani M, Phillips R, Wheatley K, Pizer B. The effectiveness and safety of proton beam radiation therapy in children and young adults with Central Nervous System (CNS) tumours: a systematic review. J Neurooncol 2024; 167:1-34. [PMID: 38294638 PMCID: PMC10978619 DOI: 10.1007/s11060-023-04510-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/14/2023] [Indexed: 02/01/2024]
Abstract
BACKGROUND Central nervous system (CNS) tumours account for around 25% of childhood neoplasms. With multi-modal therapy, 5-year survival is at around 75% in the UK. Conventional photon radiotherapy has made significant contributions to survival, but can be associated with long-term side effects. Proton beam radiotherapy (PBT) reduces the volume of irradiated tissue outside the tumour target volume which may potentially reduce toxicity. Our aim was to assess the effectiveness and safety of PBT and make recommendations for future research for this evolving treatment. METHODS A systematic review assessing the effects of PBT for treating CNS tumours in children/young adults was undertaken using methods recommended by Cochrane and reported using PRISMA guidelines. Any study design was included where clinical and toxicity outcomes were reported. Searches were to May 2021, with a narrative synthesis employed. RESULTS Thirty-one case series studies involving 1731 patients from 10 PBT centres were included. Eleven studies involved children with medulloblastoma / primitive neuroectodermal tumours (n = 712), five ependymoma (n = 398), four atypical teratoid/rhabdoid tumour (n = 72), six craniopharyngioma (n = 272), three low-grade gliomas (n = 233), one germ cell tumours (n = 22) and one pineoblastoma (n = 22). Clinical outcomes were the most frequently reported with overall survival values ranging from 100 to 28% depending on the tumour type. Endocrine outcomes were the most frequently reported toxicity outcomes with quality of life the least reported. CONCLUSIONS This review highlights areas of uncertainty in this research area. A well-defined, well-funded research agenda is needed to best maximise the potential of PBT. SYSTEMATIC REVIEW REGISTRATION PROSPERO-CRD42016036802.
Collapse
Affiliation(s)
- Jayne S Wilson
- Cancer Research UK Clinical Trials Unit (CRCTU), Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK.
| | - Caroline Main
- Cancer Research UK Clinical Trials Unit (CRCTU), Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Nicky Thorp
- The Clatterbridge Cancer Centre, Liverpool, UK
- The Christie Hospital Foundation Trust Proton Beam Therapy Centre, Manchester, UK
| | | | - Saimma Majothi
- Cancer Research UK Clinical Trials Unit (CRCTU), Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Pamela R Kearns
- Cancer Research UK Clinical Trials Unit (CRCTU), Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, UK
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Martin English
- Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, UK
| | - Madhumita Dandapani
- Children's Brain Tumour Research Centre, University of Nottingham, Nottingham, UK
- Queen's Medical Centre, Nottingham University Hospitals' NHS Trust, Nottingham, UK
| | - Robert Phillips
- Centre for Reviews and Dissemination (CRD), University of York, York, UK
| | - Keith Wheatley
- Cancer Research UK Clinical Trials Unit (CRCTU), Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Barry Pizer
- Alder Hey Children's NHS Foundation Trust, Liverpool, UK
- University of Liverpool, Liverpool, UK
| |
Collapse
|
16
|
Pospisil P, Hynkova L, Hnidakova L, Maistryszinova J, Slampa P, Kazda T. Unilateral hippocampal sparing during whole brain radiotherapy for multiple brain metastases: narrative and critical review. Front Oncol 2024; 14:1298605. [PMID: 38327742 PMCID: PMC10847587 DOI: 10.3389/fonc.2024.1298605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024] Open
Abstract
Background The landscape of brain metastases radiotherapy is evolving, with a shift away from whole-brain radiotherapy (WBRT) toward targeted stereotactic approaches aimed at preserving neurocognitive functions and maintaining overall quality of life. For patients with multiple metastases, especially in cases where targeted radiotherapy is no longer feasible due to widespread dissemination, the concept of hippocampal sparing radiotherapy (HA_WBRT) gains prominence. Methods In this narrative review we explore the role of the hippocampi in memory formation and the implications of their postradiotherapy lateral damage. We also consider the potential advantages of selectively sparing one hippocampus during whole-brain radiotherapy (WBRT). Additionally, by systematic evaluation of relevant papers published on PubMed database over last 20 years, we provide a comprehensive overview of the various changes that can occur in the left or right hippocampus as a consequence of radiotherapy. Results While it is important to note that various neurocognitive functions are interconnected throughout the brain, we can discern certain specialized roles of the hippocampi. The left hippocampus appears to play a predominant role in verbal memory, whereas the right hippocampus is associated more with visuospatial memory. Additionally, the anterior part of the hippocampus is more involved in episodic memory and emotional processing, while the posterior part is primarily responsible for spatial memory and pattern separation. Notably, a substantial body of evidence demonstrates a significant correlation between post-radiotherapy changes in the left hippocampus and subsequent cognitive decline in patients. Conclusion In the context of individualized palliative radiotherapy, sparing the unilateral (specifically, the left, which is dominant in most individuals) hippocampus could expand the repertoire of strategies available for adapted WBRT in cases involving multiple brain metastases where stereotactic radiotherapy is not a viable option. Prospective ongoing studies assessing various memory-sparing radiotherapy techniques will define new standard of radiotherapy care of patients with multiple brain metastases.
Collapse
Affiliation(s)
- Petr Pospisil
- Department of Radiation Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
- Department of Radiation Oncology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Ludmila Hynkova
- Department of Radiation Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
- Department of Radiation Oncology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Lucie Hnidakova
- Department of Radiation Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
- Department of Radiation Oncology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Jana Maistryszinova
- Department of Radiation Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
- Department of Radiation Oncology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Pavel Slampa
- Department of Radiation Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
- Department of Radiation Oncology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Tomas Kazda
- Department of Radiation Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
- Department of Radiation Oncology, Faculty of Medicine, Masaryk University, Brno, Czechia
| |
Collapse
|
17
|
Willmann J, Leiser D, Weber DC. Oncological Outcomes, Long-Term Toxicities, Quality of Life and Sexual Health after Pencil-Beam Scanning Proton Therapy in Patients with Low-Grade Glioma. Cancers (Basel) 2023; 15:5287. [PMID: 37958460 PMCID: PMC10649084 DOI: 10.3390/cancers15215287] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/26/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
PURPOSE To assess oncological outcomes, toxicities, quality of life (QoL) and sexual health (SH) of low-grade glioma (LGG) patients treated with pencil-beam scanning proton therapy (PBS-PT). MATERIAL AND METHODS We retrospectively analyzed 89 patients with LGG (Neurofibromatosis type 1; n = 4 (4.5%) patients) treated with PBS-PT (median dose 54 Gy (RBE)) from 1999 to 2022 at our institution. QoL was prospectively assessed during PBS-PT and yearly during follow-up from 2015 to 2023, while a cross-sectional exploration of SH was conducted in 2023. RESULTS Most LGGs (n = 58; 65.2%) were CNS WHO grade 2 and approximately half (n = 43; 48.3%) were located in the vicinity of the visual apparatus/thalamus. After a median follow-up of 50.2 months, 24 (27%) patients presented with treatment failures and most of these (n = 17/24; 70.8%) were salvaged. The 4-year overall survival was 89.1%. Only 2 (2.2%) and 1 (1.1%) patients presented with CTCAE grade 4 and 3 late radiation-induced toxicity, respectively. No grade 5 late adverse event was observed. The global health as a domain of QoL remained stable and comparable to the reference values during PBS-PT and for six years thereafter. Sexual satisfaction was comparable to the normative population. CONCLUSIONS LGG patients treated with PBS-PT achieved excellent long-term survival and tumor control, with exceptionally low rates of high-grade late toxicity, and favorable QoL and SH.
Collapse
Affiliation(s)
- Jonas Willmann
- Center for Proton Therapy, Paul Scherrer Institute, ETH Domain, 5232 Villigen, Switzerland; (J.W.); (D.L.)
- Department of Radiation Oncology, University Hospital of Zurich, University of Zurich, 8006 Zurich, Switzerland
| | - Dominic Leiser
- Center for Proton Therapy, Paul Scherrer Institute, ETH Domain, 5232 Villigen, Switzerland; (J.W.); (D.L.)
| | - Damien Charles Weber
- Center for Proton Therapy, Paul Scherrer Institute, ETH Domain, 5232 Villigen, Switzerland; (J.W.); (D.L.)
- Department of Radiation Oncology, University Hospital of Zurich, University of Zurich, 8006 Zurich, Switzerland
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
18
|
Panagopoulou P, Athanasiadis D, Αnastasiou Α, Zafeiriou D, Papakonstantinou Ε. Pediatric Optic Pathway Gliomas: A Report From Northern Greece. J Pediatr Hematol Oncol 2023; 45:445-451. [PMID: 37696004 DOI: 10.1097/mph.0000000000002753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/28/2023] [Indexed: 09/13/2023]
Abstract
Optic pathway gliomas (OPGs) are the most common pediatric optic nerve tumors. Their behavior ranges between rapid growth, stability, or spontaneous regression. Τhey are characterized by low mortality albeit with significant morbidity. We present the characteristics, management, and outcome of 23 OPG patients (16 females, median age: 4.8 y) managed in a Pediatric Oncology Department in Northern Greece over a 25-year period. Overall, 57% had a background of neurofibromatosis type 1. Diagnosis was based on imaging (10 patients) or biopsy (13 patients). Presenting symptoms were mostly visual impairment/squint (52%). Proptosis/exophthalmos, raised intracranial pressure, and headache were also noted. In 2 occasions, it was detected with surveillance magnetic resonance imaging in the context of neurofibromatosis type 1. Eight patients had unilateral and 2 bilateral optic nerve tumors (Modified Dodge Classification, stage 1a/1b), 3 had chiasmatic (stage 2a/b), and 10 had multiple tumors (stage 3/4). Predominant histology was pilocytic astrocytoma (77%). Management included: observation (4), chemotherapy only (9), surgery only (3), or various combinations (7). Chemotherapy regimens included vincristine and carboplatin, vinblastine, or bevacizumab with irinotecan. Most patients demonstrated a slow disease course with complete response/partial response to chemotherapy and/or surgery, whereas 39% presented ≥1 recurrences. After a median follow-up of 8.5 years (range to 19 y), 20 patients (87%) are still alive with stable disease, in partial/complete remission, or on treatment.
Collapse
Affiliation(s)
| | | | | | - Dimitrios Zafeiriou
- 1st Department of Pediatrics, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece
| | | |
Collapse
|
19
|
Winter SF, Vaios EJ, Shih HA, Grassberger C, Parsons MW, Gardner MM, Ehret F, Kaul D, Boehmerle W, Endres M, Dietrich J. Mitigating Radiotoxicity in the Central Nervous System: Role of Proton Therapy. Curr Treat Options Oncol 2023; 24:1524-1549. [PMID: 37728819 DOI: 10.1007/s11864-023-01131-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 09/21/2023]
Abstract
OPINION STATEMENT Central nervous system (CNS) radiotoxicity remains a challenge in neuro-oncology. Dose distribution advantages of protons over photons have prompted increased use of brain-directed proton therapy. While well-recognized among pediatric populations, the benefit of proton therapy among adults with CNS malignancies remains controversial. We herein discuss the role of protons in mitigating late CNS radiotoxicities in adult patients. Despite limited clinical trials, evidence suggests toxicity profile advantages of protons over conventional radiotherapy, including retention of neurocognitive function and brain volume. Modelling studies predict superior dose conformality of protons versus state-of-the-art photon techniques reduces late radiogenic vasculopathies, endocrinopathies, and malignancies. Conversely, potentially higher brain tissue necrosis rates following proton therapy highlight a need to resolve uncertainties surrounding the impact of variable biological effectiveness of protons on dose distribution. Clinical trials comparing best photon and particle-based therapy are underway to establish whether protons substantially improve long-term treatment-related outcomes in adults with CNS malignancies.
Collapse
Affiliation(s)
- Sebastian F Winter
- Department of Neurology and MGH Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany.
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Junior Clinician Scientist Program, 10117, Berlin, Germany.
| | - Eugene J Vaios
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Helen A Shih
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Clemens Grassberger
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael W Parsons
- Department of Psychiatry, Psychology Assessment Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Melissa M Gardner
- Department of Psychiatry, Psychology Assessment Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Felix Ehret
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Junior Clinician Scientist Program, 10117, Berlin, Germany
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany; German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David Kaul
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany; German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wolfgang Boehmerle
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
| | - Matthias Endres
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
- Center for Stroke Research Berlin, Berlin, Germany
- ExcellenceCluster NeuroCure, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), partner site Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
| | - Jorg Dietrich
- Department of Neurology and MGH Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
20
|
Singh R, Yu S, Osman M, Inde Z, Fraser C, Cleveland AH, Almanzar N, Lim CB, Joshi GN, Spetz J, Qin X, Toprani SM, Nagel Z, Hocking MC, Cormack RA, Yock TI, Miller JW, Yuan ZM, Gershon T, Sarosiek KA. Radiotherapy-Induced Neurocognitive Impairment Is Driven by Heightened Apoptotic Priming in Early Life and Prevented by Blocking BAX. Cancer Res 2023; 83:3442-3461. [PMID: 37470810 PMCID: PMC10570680 DOI: 10.1158/0008-5472.can-22-1337] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 04/23/2023] [Accepted: 07/17/2023] [Indexed: 07/21/2023]
Abstract
Although external beam radiotherapy (xRT) is commonly used to treat central nervous system (CNS) tumors in patients of all ages, young children treated with xRT frequently experience life-altering and dose-limiting neurocognitive impairment (NI) while adults do not. The lack of understanding of mechanisms responsible for these differences has impeded the development of neuroprotective treatments. Using a newly developed mouse model of xRT-induced NI, we found that neurocognitive function is impaired by ionizing radiation in a dose- and age-dependent manner, with the youngest animals being most affected. Histologic analysis revealed xRT-driven neuronal degeneration and cell death in neurogenic brain regions in young animals but not adults. BH3 profiling showed that neural stem and progenitor cells, neurons, and astrocytes in young mice are highly primed for apoptosis, rendering them hypersensitive to genotoxic damage. Analysis of single-cell RNA sequencing data revealed that neural cell vulnerability stems from heightened expression of proapoptotic genes including BAX, which is associated with developmental and mitogenic signaling by MYC. xRT induced apoptosis in primed neural cells by triggering a p53- and PUMA-initiated, proapoptotic feedback loop requiring cleavage of BID and culminating in BAX oligomerization and caspase activation. Notably, loss of BAX protected against apoptosis induced by proapoptotic signaling in vitro and prevented xRT-induced apoptosis in neural cells in vivo as well as neurocognitive sequelae. On the basis of these findings, preventing xRT-induced apoptosis specifically in immature neural cells by blocking BAX, BIM, or BID via direct or upstream mechanisms is expected to ameliorate NI in pediatric patients with CNS tumor. SIGNIFICANCE Age- and differentiation-dependent apoptotic priming plays a pivotal role in driving radiotherapy-induced neurocognitive impairment and can be targeted for neuroprotection in pediatric patients.
Collapse
Affiliation(s)
- Rumani Singh
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Department of Systems Biology, Harvard Medical School, Boston, Massachusetts
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Stacey Yu
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Department of Systems Biology, Harvard Medical School, Boston, Massachusetts
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Marwa Osman
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Department of Systems Biology, Harvard Medical School, Boston, Massachusetts
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Zintis Inde
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Department of Systems Biology, Harvard Medical School, Boston, Massachusetts
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Cameron Fraser
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Department of Systems Biology, Harvard Medical School, Boston, Massachusetts
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Abigail H. Cleveland
- Department of Neurology, University of North Carolina, Chapel Hill, North Carolina
- Lineberger Comprehensive Cancer Center, North Carolina Cancer Hospital, Chapel Hill, North Carolina
| | - Nicole Almanzar
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Chuan Bian Lim
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Gaurav N. Joshi
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Department of Systems Biology, Harvard Medical School, Boston, Massachusetts
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Johan Spetz
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Department of Systems Biology, Harvard Medical School, Boston, Massachusetts
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Xingping Qin
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Department of Systems Biology, Harvard Medical School, Boston, Massachusetts
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Sneh M. Toprani
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Zachary Nagel
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Matthew C. Hocking
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania
- Cancer Center, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Robert A. Cormack
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Radiation Oncology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Torunn I. Yock
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Pediatric Radiation Oncology, Francis H. Burr Proton Therapy Center, Massachusetts General Hospital, Boston, Massachusetts
| | - Jeffrey W. Miller
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Zhi-Min Yuan
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Timothy Gershon
- Department of Neurology, University of North Carolina, Chapel Hill, North Carolina
- Lineberger Comprehensive Cancer Center, North Carolina Cancer Hospital, Chapel Hill, North Carolina
| | - Kristopher A. Sarosiek
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Department of Systems Biology, Harvard Medical School, Boston, Massachusetts
- Molecular and Integrative Physiological Sciences Program, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Cancer Center, Boston, Massachusetts
| |
Collapse
|
21
|
Pathak B, Lange TE, Lampe K, Hollander E, Oria M, Murphy KP, Salomonis N, Sertorio M, Oria M. Development of a Single-Neurosphere Culture to Assess Radiation Toxicity and Pre-Clinical Cancer Combination Therapy Safety. Cancers (Basel) 2023; 15:4916. [PMID: 37894283 PMCID: PMC10605382 DOI: 10.3390/cancers15204916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Radiation therapy (RT) is a crucial treatment modality for central nervous system (CNS) tumors but toxicity to healthy CNS tissues remains a challenge. Additionally, environmental exposure to radiation during nuclear catastrophes or space travel presents a risk of CNS toxicity. However, the underlying mechanisms of radiation-induced CNS toxicity are not fully understood. Neural progenitor cells (NPCs) are highly radiosensitive, resulting in decreased neurogenesis in the hippocampus. This study aimed to characterize a novel platform utilizing rat NPCs cultured as 3D neurospheres (NSps) to screen the safety and efficacy of experimental drugs with and without radiation exposure. The effect of radiation on NSp growth and differentiation was assessed by measuring sphere volume and the expression of neuronal differentiation markers Nestin and GFAP and proliferation marker Ki67. Radiation exposure inhibited NSp growth, decreased proliferation, and increased GFAP expression, indicating astrocytic differentiation. RNA sequencing analysis supported these findings, showing upregulation of Notch, BMP2/4, S100b, and GFAP gene expression during astrogenesis. By recapitulating radiation-induced toxicity and astrocytic differentiation, this single-NSp culture system provides a high-throughput preclinical model for assessing the effects of various radiation modalities and evaluates the safety and efficacy of potential therapeutic interventions in combination with radiation.
Collapse
Affiliation(s)
- Bedika Pathak
- Center for Fetal and Placental Research, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA; (B.P.); (K.L.)
| | - Taylor E. Lange
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA;
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA
| | - Kristin Lampe
- Center for Fetal and Placental Research, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA; (B.P.); (K.L.)
| | - Ella Hollander
- Center for Fetal and Placental Research, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA; (B.P.); (K.L.)
| | - Marina Oria
- Center for Fetal and Placental Research, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA; (B.P.); (K.L.)
| | - Kendall P. Murphy
- Center for Fetal and Placental Research, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA; (B.P.); (K.L.)
- Department of Orthopedic Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Nathan Salomonis
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA;
- Departments of Pediatrics and Bioinformatics, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Mathieu Sertorio
- University of Cincinnati Cancer Center, Cincinnati, OH 45267, USA;
- Department of Radiation Oncology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Marc Oria
- University of Cincinnati Cancer Center, Cincinnati, OH 45267, USA;
- Department of Radiation Oncology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- University of Cincinnati Brain Tumor Center, Cincinnati, OH 45219, USA
| |
Collapse
|
22
|
Peterson RK, King TZ. A systematic review of pediatric neuropsychological outcomes with proton versus photon radiation therapy: A call for equity in access to treatment. J Int Neuropsychol Soc 2023; 29:798-811. [PMID: 36323679 DOI: 10.1017/s1355617722000819] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE There is increasing interest in the utilization of proton beam radiation therapy (PRT) to treat pediatric brain tumors based upon presumed advantages over traditional photon radiation therapy (XRT). PRT provides more conformal radiation to the tumor with reduced dose to healthy brain parenchyma. Less radiation exposure to brain tissue beyond the tumor is thought to reduce neuropsychological sequelae. This systematic review aimed to provide an overview of published studies comparing neuropsychological outcomes between PRT and XRT. METHOD PubMed, PsychINFO, Embase, Web of Science, Scopus, and Cochrane were systematically searched for peer-reviewed published studies that compared neuropsychological outcomes between PRT and XRT in pediatric brain tumor patients. RESULTS Eight studies were included. Six of the studies utilized retrospective neuropsychological data; the majority were longitudinal studies (n = 5). XRT was found to result in lower neuropsychological functioning across time. PRT was associated with generally stable neuropsychological functioning across time, with the exception of working memory and processing speed, which showed variable outcomes across studies. However, studies inconsistently included or considered medical and sociodemographic differences between treatment groups, which may have impacted neuropsychological outcomes. CONCLUSIONS Despite methodological limitations, including limited baseline neuropsychological evaluations, temporal variability between radiation treatment and first evaluation or initial and follow-up evaluations, and heterogenous samples, there is emerging evidence of sociodemographic inequities in access to PRT. With more institutions dedicating funding towards PRT, there may be the opportunity to objectively evaluate the neuropsychological benefits of patients matched on medical and sociodemographic variables.
Collapse
Affiliation(s)
- Rachel K Peterson
- Department of Neuropsychology, Kennedy Krieger Institute, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Science, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Tricia Z King
- Department of Psychology, Georgia State University, Atlanta, USA
- Neuroscience Institute, Georgia State University, Atlanta, USA
| |
Collapse
|
23
|
Unnikrishnan S, Yip AT, Qian AS, Salans MA, Yu JD, Huynh-Le MP, Reyes A, Stasenko A, McDonald C, Kaner R, Crawford JR, Hattangadi-Gluth JA. Neurocognitive Outcomes in Multiethnic Pediatric Brain Tumor Patients Treated With Proton Versus Photon Radiation. J Pediatr Hematol Oncol 2023; 45:e837-e846. [PMID: 37539987 PMCID: PMC10538429 DOI: 10.1097/mph.0000000000002724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/22/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND We analyzed post-radiation (RT) neurocognitive outcomes in an ethnically diverse pediatric brain tumor population undergoing photon radiotherapy (XRT) and proton radiotherapy (PRT). PROCEDURE Post-RT neurocognitive outcomes from 49 pediatric patients (37% Hispanic/Latino) with primary brain tumors were analyzed. Tests included cognitive outcomes, behavioral outcomes, and overall intelligence. For each outcome, proportion of patients with cognitive impairment (scores <1.5 SD) was calculated. The Fisher exact tests compared proportion of patients with impairment and t tests compared T-scores between XRT (n=32) and PRT (n=17) groups. Linear regression assessed associations between radiation modality and outcomes. RESULTS Median follow-up was 3.2 and 1.8 years in the XRT and PRT groups, respectively. The median RT dose was 54.0 Gy. We found impairment in 16% to 42% of patients across most neurocognitive domains except executive function. There was no difference in scores between XRT and PRT groups. Regression analyses revealed no association of neurocognitive outcomes with radiation modality. Non-Hispanic patients had better Verbal Comprehension Index and General Ability Index scores than Hispanic patients ( P <0.05). CONCLUSIONS Among pediatric patients with brain tumors receiving RT, all cognitive domains were affected except executive function. Radiation modality was not associated with neurocognitive outcomes. Hispanic patients may be more vulnerable to posttreatment cognitive effects that warrant further study.
Collapse
Affiliation(s)
- Soumya Unnikrishnan
- University of California San Diego School of Medicine
- Departments of Radiation Medicine and Applied Sciences
| | - Anthony T Yip
- University of California San Diego School of Medicine
- Departments of Radiation Medicine and Applied Sciences
| | - Alexander S Qian
- University of California San Diego School of Medicine
- Departments of Radiation Medicine and Applied Sciences
| | - Mia A Salans
- University of California San Diego School of Medicine
- Departments of Radiation Medicine and Applied Sciences
| | - Justin D Yu
- Departments of Radiation Medicine and Applied Sciences
| | | | | | | | - Carrie McDonald
- Departments of Radiation Medicine and Applied Sciences
- Psychiatry
| | | | - John R Crawford
- Neurosciences and Pediatrics, University of California San Diego, La Jolla
| | | |
Collapse
|
24
|
Liu KX, Haas-Kogan DA, Elhalawani H. Radiotherapy for Primary Pediatric Central Nervous System Malignancies: Current Treatment Paradigms and Future Directions. Pediatr Neurosurg 2023; 58:356-366. [PMID: 37703864 DOI: 10.1159/000533777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 08/21/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND Central nervous system tumors are the most common solid tumors in childhood. Treatment paradigms for pediatric central nervous system malignancies depend on elements including tumor histology, age of patient, and stage of disease. Radiotherapy is an important modality of treatment for many pediatric central nervous system malignancies. SUMMARY While radiation contributes to excellent overall survival rates for many patients, radiation also carries significant risks of long-term side effects including neurocognitive decline, hearing loss, growth impairment, neuroendocrine dysfunction, strokes, and secondary malignancies. In recent decades, clinical trials have demonstrated that with better imaging and staging along with more sophisticated radiation planning and treatment set-up verification, smaller treatment volumes can be utilized without decrement in survival. Furthermore, the development of intensity-modulated radiotherapy and proton-beam radiotherapy has greatly improved conformality of radiation. KEY MESSAGES Recent changes in radiation treatment paradigms have decreased risks of short- and long-term toxicity for common histologies and in different age groups. Future studies will continue to develop novel radiation regimens to improve outcomes in aggressive central nervous system tumors, integrate molecular subtypes to tailor radiation treatment, and decrease radiation-associated toxicity for long-term survivors.
Collapse
Affiliation(s)
- Kevin X Liu
- Department of Radiation Oncology, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Daphne A Haas-Kogan
- Department of Radiation Oncology, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Hesham Elhalawani
- Department of Radiation Oncology, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
25
|
Al-Jilaihawi S, Lowis S. A Molecular Update and Review of Current Trials in Paediatric Low-Grade Gliomas. Pediatr Neurosurg 2023; 58:290-298. [PMID: 37604126 DOI: 10.1159/000533703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND Paediatric low-grade gliomas (pLGGs) are the most common primary brain tumour in children. Though considered benign, slow-growing lesions with excellent overall survival, their long-term morbidity can be significant, both from the tumour and secondary to treatment. Vast progress has been made in recent years to better understand the molecular biology underlying pLGGs, with promising implications for new targeted therapeutic strategies. SUMMARY A multi-layered classification system of biologic subgroups, integrating distinct molecular and histological features has evolved to further our clinical understanding of these heterogeneous tumours. Though surgery and chemotherapy are the mainstays of treatment for pLGGs, many tumours are not amenable to surgery and/or progress after conventional chemotherapy. Therapies targeting common genetic aberrations in the RAS-mitogen-activated protein kinase (RAS/MAPK) pathway have been the focus of many recent studies and offer new therapeutic possibilities. Here, we summarise the updated molecular classification of pLGGs and provide a review of current treatment strategies, novel agents, and open trials. KEY MESSAGES (1) There is a need for treatment strategies in pLGG that provide lasting tumour control and better quality of survival through minimising toxicity and protecting against neurological, cognitive, and endocrine deficits. (2) The latest World Health Organisation classification of pLGG incorporates a growing wealth of molecular genetic information by grouping tumours into more biologically and molecularly defined entities that may enable better risk stratification of patients, and consideration for targeted therapies in the future. (3) Novel agents and molecular-targeted therapies offer new therapeutic possibilities in pLGG and have been the subject of many recent and currently open clinical studies. (4) Adequate molecular characterisation of pLGG is therefore imperative in today's clinical trials, and treatment responses should not only be evaluated radiologically but also using neurological, visual, and quality of life outcomes to truly understand treatment benefits.
Collapse
Affiliation(s)
- Sarah Al-Jilaihawi
- Department of Paediatric Oncology, Bristol Royal Hospital for Children, Bristol, UK
| | - Stephen Lowis
- Department of Paediatric Oncology, Bristol Royal Hospital for Children, Bristol, UK
| |
Collapse
|
26
|
Perkins SM, Prime S, Watts M, Huang J, Zhao T. Pediatric Experience and Outcomes from the First Single-Vault Compact Proton Therapy Center. Cancers (Basel) 2023; 15:4072. [PMID: 37627100 PMCID: PMC10452472 DOI: 10.3390/cancers15164072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
The first single-vault compact proton therapy center opened in 2013, utilizing a gantry-mounted synchrocylotron. The center was placed within a large academic radiation oncology department with a high priority for pediatric cancer care. Here we performed a retrospective study of pediatric (≤21 years) patients treated with proton therapy at our institution between 2013-2022. Patient, tumor, and treatment characteristics were obtained including race, socioeconomic status, insurance type, distance travelled, need for anesthesia, and outside referrals for proton therapy. In total, 250 pediatric patients were treated with proton therapy comprising 18% of our proton patient volume. Median follow-up was 3.1 years, 38.4% were female and 83% were white. The majority of cases were CNS (69.6%) and a large number of patients (80/250, 32%) required craniospinal irradiation. Anesthesia was required for 39.6% of patients. Average distance travelled for treatment was 111 miles and 23% of patients were referred from outside institutions for proton therapy. Insurance type was private/commercial for 61.2% followed by Medicaid for 32%. We found that 23% of patients lived in census tracts with >25% of people living below the national poverty line. Overall survival at 3 years was excellent at 83.7% with better outcomes for CNS patients compared to non-CNS patients. There were no cases of secondary malignancy at this early time point. As the world's first compact proton therapy center, we found that proton therapy increased our pediatric volume and provided proton therapy to a diverse group of children in our region. These data highlight some of the expected patient and tumor characteristics and necessary resources for providing pediatric proton beam therapy.
Collapse
Affiliation(s)
- Stephanie M. Perkins
- S. Lee Kling Proton Therapy Center, Washington University School of Medicine/Siteman Cancer Center, Saint Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
27
|
Elkatatny A, Ismail M, Ibrahim KMM, Aly MH, Fouda MA. The incidence of radiation-induced moyamoya among pediatric brain tumor patients who received photon radiation versus those who received proton beam therapy: a systematic review. Neurosurg Rev 2023; 46:146. [PMID: 37354243 DOI: 10.1007/s10143-023-02055-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/24/2023] [Accepted: 06/17/2023] [Indexed: 06/26/2023]
Abstract
Cranial irradiation is associated with several adverse events such as endocrinopathy, growth retardation, neurocognitive impairment, secondary malignancies, cerebral vasculopathy, and potential stroke. The better side effects profile of proton beam therapy compared with that of photon radiation therapy is due to its physical properties, mainly the sharp dose fall-off after energy deposition in the Bragg peak. Despite the better toxicity profile of proton beam therapy, the risk of moyamoya syndrome still exists. We conducted a systematic review of the existing literature on moyamoya syndrome after receiving cranial radiation therapy for pediatric brain tumors to investigate the incidence of moyamoya syndrome after receiving photon versus proton radiation therapy. In this review, we report that the incidence of moyamoya syndrome after receiving proton beam therapy is almost double that of photon-induced moyamoya syndrome. Patients who received proton beam therapy for the management of pediatric brain tumors are more likely to develop moyamoya syndrome at the age of less than 5 years. Meanwhile, most patients with proton-induced moyamoya are more likely to be diagnosed within the first 2 years after the completion of their proton beam therapy.
Collapse
Affiliation(s)
- Amr Elkatatny
- Department of Neurological Surgery, Kasr Alainy School of Medicine, Cairo University, Cairo, Egypt
| | - Mohammed Ismail
- Department of Neurological Surgery, Kasr Alainy School of Medicine, Cairo University, Cairo, Egypt
| | | | - Mohammed H Aly
- Department of Neurological Surgery, Kasr Alainy School of Medicine, Cairo University, Cairo, Egypt
| | - Mohammed A Fouda
- Department of Neurological Surgery, New York-Presbyterian Hospital, Weill Cornell Medicine, 525 E 68th Street, Box 99, New York, NY, 10065, USA.
| |
Collapse
|
28
|
Iannalfi A, Riva G, Ciccone L, Orlandi E. The role of particle radiotherapy in the treatment of skull base tumors. Front Oncol 2023; 13:1161752. [PMID: 37350949 PMCID: PMC10283010 DOI: 10.3389/fonc.2023.1161752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/19/2023] [Indexed: 06/24/2023] Open
Abstract
The skull base is an anatomically and functionally critical area surrounded by vital structures such as the brainstem, the spinal cord, blood vessels, and cranial nerves. Due to this complexity, management of skull base tumors requires a multidisciplinary approach involving a team of specialists such as neurosurgeons, otorhinolaryngologists, radiation oncologists, endocrinologists, and medical oncologists. In the case of pediatric patients, cancer management should be performed by a team of pediatric-trained specialists. Radiation therapy may be used alone or in combination with surgery to treat skull base tumors. There are two main types of radiation therapy: photon therapy and particle therapy. Particle radiotherapy uses charged particles (protons or carbon ions) that, due to their peculiar physical properties, permit precise targeting of the tumor with minimal healthy tissue exposure. These characteristics allow for minimizing the potential long-term effects of radiation exposure in terms of neurocognitive impairments, preserving quality of life, and reducing the risk of radio-induced cancer. For these reasons, in children, adolescents, and young adults, proton therapy should be an elective option when available. In radioresistant tumors such as chordomas and sarcomas and previously irradiated recurrent tumors, particle therapy permits the delivery of high biologically effective doses with low, or however acceptable, toxicity. Carbon ion therapy has peculiar and favorable radiobiological characteristics to overcome radioresistance features. In low-grade tumors, proton therapy should be considered in challenging cases due to tumor volume and involvement of critical neural structures. However, particle radiotherapy is still relatively new, and more research is needed to fully understand its effects. Additionally, the availability of particle therapy is limited as it requires specialized equipment and expertise. The purpose of this manuscript is to review the available literature regarding the role of particle radiotherapy in the treatment of skull base tumors.
Collapse
|
29
|
Apps JR, Muller HL, Hankinson TC, Yock TI, Martinez-Barbera JP. Contemporary Biological Insights and Clinical Management of Craniopharyngioma. Endocr Rev 2023; 44:518-538. [PMID: 36574377 DOI: 10.1210/endrev/bnac035] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 11/20/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Craniopharyngiomas (CPs) are clinically aggressive tumors because of their invasive behavior and recalcitrant tendency to recur after therapy. There are 2 types based on their distinct histology and molecular features: the papillary craniopharyngioma (PCP), which is associated with BRAF-V600E mutations and the adamantinomatous craniopharyngioma (ACP), characterized by mutations in CTNNB1 (encoding β-catenin). Patients with craniopharyngioma show symptoms linked to the location of the tumor close to the optic pathways, hypothalamus, and pituitary gland, such as increased intracranial pressure, endocrine deficiencies, and visual defects. Treatment is not specific and mostly noncurative, and frequently includes surgery, which may achieve gross total or partial resection, followed by radiotherapy. In cystic tumors, frequent drainage is often required and intracystic instillation of drugs has been used to help manage cyst refilling. More recently targeted therapies have been used, particularly in PCP, but also now in ACP and clinical trials are underway or in development. Although patient survival is high, the consequences of the tumor and its treatment can lead to severe comorbidities resulting in poor quality of life, in particular for those patients who bear tumors with hypothalamic involvement. Accordingly, in these patients at risk for the development of a hypothalamic syndrome, hypothalamus-sparing treatment strategies such as limited resection followed by irradiation are recommended. In this review, we provide an update on various aspects of CP, with emphasis on recent advances in the understanding of tumor pathogenesis, clinical consequences, management, and therapies.
Collapse
Affiliation(s)
- John Richard Apps
- Institute of Cancer and Genomics Sciences, University of Birmingham, Birmingham, B15 2TT, UK
- Developmental Biology and Cancer, Birth Defects Research Centre, GOS Institute of Child Health, University College London, London, WC1N 1EH, UK
- Oncology Department, Birmingham Women's and Children's NHS Foundation Trust, Birmingham B4 6NH, UK
| | - Hermann Lothar Muller
- Department of Pediatrics and Pediatric Hematology/Oncology, University Children's Hospital, Carl von Ossietzky University, Klinikum Oldenburg AöR, 26133 Oldenburg, Germany
| | - Todd Cameron Hankinson
- Department of Neurosurgery, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
- Department of Pediatric Neurosurgery, Children's Hospital Colorado, University of Colorado, Aurora, Colorado 80045, USA
- Morgan Adams Foundation Pediatric Brain Tumor Program, Aurora, Colorado, USA
| | - Torunn Ingrid Yock
- Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02115, USA
| | - Juan Pedro Martinez-Barbera
- Developmental Biology and Cancer, Birth Defects Research Centre, GOS Institute of Child Health, University College London, London, WC1N 1EH, UK
| |
Collapse
|
30
|
Sait SF, Giantini-Larsen AM, Tringale KR, Souweidane MM, Karajannis MA. Treatment of Pediatric Low-Grade Gliomas. Curr Neurol Neurosci Rep 2023; 23:185-199. [PMID: 36881254 PMCID: PMC10121885 DOI: 10.1007/s11910-023-01257-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2023] [Indexed: 03/08/2023]
Abstract
PURPOSE OF REVIEW Pediatric low-grade gliomas and glioneuronal tumors (pLGG) account for approximately 30% of pediatric CNS neoplasms, encompassing a heterogeneous group of tumors of primarily glial or mixed neuronal-glial histology. This article reviews the treatment of pLGG with emphasis on an individualized approach incorporating multidisciplinary input from surgery, radiation oncology, neuroradiology, neuropathology, and pediatric oncology to carefully weigh the risks and benefits of specific interventions against tumor-related morbidity. Complete surgical resection can be curative for cerebellar and hemispheric lesions, while use of radiotherapy is restricted to older patients or those refractory to medical therapy. Chemotherapy remains the preferred first-line therapy for adjuvant treatment of the majority of recurrent or progressive pLGG. RECENT FINDINGS Technologic advances offer the potential to limit volume of normal brain exposed to low doses of radiation when treating pLGG with either conformal photon or proton RT. Recent neurosurgical techniques such as laser interstitial thermal therapy offer a "dual" diagnostic and therapeutic treatment modality for pLGG in specific surgically inaccessible anatomical locations. The emergence of novel molecular diagnostic tools has enabled scientific discoveries elucidating driver alterations in mitogen-activated protein kinase (MAPK) pathway components and enhanced our understanding of the natural history (oncogenic senescence). Molecular characterization strongly supplements the clinical risk stratification (age, extent of resection, histological grade) to improve diagnostic precision and accuracy, prognostication, and can lead to the identification of patients who stand to benefit from precision medicine treatment approaches. The success of molecular targeted therapy (BRAF inhibitors and/or MEK inhibitors) in the recurrent setting has led to a gradual and yet significant paradigm shift in the treatment of pLGG. Ongoing randomized trials comparing targeted therapy to standard of care chemotherapy are anticipated to further inform the approach to upfront management of pLGG patients.
Collapse
Affiliation(s)
- Sameer Farouk Sait
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Alexandra M Giantini-Larsen
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY, USA
| | - Kathryn R Tringale
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Mark M Souweidane
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY, USA
| | - Matthias A Karajannis
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
31
|
Leblond P, Tresch-Bruneel E, Probst A, Néant N, Solas C, Sterin A, Boulanger T, Aerts I, Faure-Conter C, Bertozzi AI, Chastagner P, Entz-Werlé N, De Carli E, Deley MCL, Bouche G, André N. Phase I Study of a Combination of Fluvastatin and Celecoxib in Children with Relapsing/Refractory Low-Grade or High-Grade Glioma (FLUVABREX). Cancers (Basel) 2023; 15:cancers15072020. [PMID: 37046681 PMCID: PMC10093481 DOI: 10.3390/cancers15072020] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Preclinical data support the activity of celecoxib and fluvastatin in high-grade (HGG) and low-grade gliomas (LGG). A phase I trial (NCT02115074) was designed to evaluate the safety of this combination in children with refractory/relapsed HGG and LGG using four dose levels of fluvastatin with a fixed daily dose of celecoxib. A Continual Reassessment Method was used for fluvastatin dose escalation. Dose-limiting toxicities (DLT) were determined on the first treatment cycle. Twenty patients were included. Ten LGG and ten HGG patients received a median of 3.5 treatment cycles. Two DLTs were reported: one grade 3 maculopapular rash (4 mg/kg dose level) and one grade 4 increase of Creatine Phospho-Kinase (6 mg/kg dose level). We identified the dose of 6 mg/kg/day as the recommended phase II dose (RP2D) of fluvastatin with celecoxib. Four patients with LGG continued treatment beyond 12 cycles because of stable disease, including one patient who received 23 treatment cycles. In children with refractory/relapsed glioma, the RP2D of fluvastatin with celecoxib is 6 mg/kg/day. The long-term stable diseases observed in LGG suggest a possible role of the combination in a maintenance setting, given its good tolerance and low cost for children living in low- and middle-income countries.
Collapse
|
32
|
Gram D, Brodin NP, Björk-Eriksson T, Nysom K, Munck Af Rosenschöld P. The risk of radiation-induced neurocognitive impairment and the impact of sparing the hippocampus during pediatric proton cranial irradiation. Acta Oncol 2023; 62:134-140. [PMID: 36847433 DOI: 10.1080/0284186x.2023.2176253] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
BACKGROUND AND PURPOSE Hippocampus is a central component for neurocognitive function and memory. We investigated the predicted risk of neurocognitive impairment of craniospinal irradiation (CSI) and the deliverability and effects of hippocampal sparing. The risk estimates were derived from published NTCP models. Specifically, we leveraged the estimated benefit of reduced neurocognitive impairment with the risk of reduced tumor control. MATERIAL AND METHODS For this dose planning study, a total of 504 hippocampal sparing intensity modulated proton therapy (HS-IMPT) plans were generated for 24 pediatric patients whom had previously received CSI. Plans were evaluated with respect to target coverage and homogeneity index to target volumes, maximum and mean dose to OARs. Paired t-tests were used to compare hippocampal mean doses and normal tissue complication probability estimates. RESULTS The median mean dose to the hippocampus could be reduced from 31.3 GyRBE to 7.3 GyRBE (p < .001), though 20% of these plans were not considered clinically acceptable as they failed one or more acceptance criterion. Reducing the median mean hippocampus dose to 10.6 GyRBE was possible with all plans considered as clinically acceptable treatment plans. By sparing the hippocampus to the lowest dose level, the risk estimation of neurocognitive impairment could be reduced from 89.6%, 62.1% and 51.1% to 41.0% (p < .001), 20.1% (p < .001) and 29.9% (p < .001) for task efficiency, organization and memory, respectively. Estimated tumor control probability was not adversely affected by HS-IMPT, ranging from 78.5 to 80.5% for all plans. CONCLUSIONS We present estimates of potential clinical benefit in terms of neurocognitive impairment and demonstrate the possibility of considerably reducing neurocognitive adverse effects, minimally compromising target coverage locally using HS-IMPT.
Collapse
Affiliation(s)
- Daniel Gram
- Department of Oncology - Section of Radiotherapy, Rigshospitalet, Copenhagen, Denmark.,Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Oncology and Palliative Care, Radiotherapy, Zealand University Hospital, Næstved, Denmark
| | - N Patrik Brodin
- Institute for Onco-Physics, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Thomas Björk-Eriksson
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Sweden.,Regional Cancer Centre West, Gothenburg, Sweden
| | - Karsten Nysom
- Department of Paediatrics and Adolescent Medicine, The Juliane Marie Center, Rigshospitalet, Copenhagen, Denmark
| | - Per Munck Af Rosenschöld
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.,Radiation Physics - Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden.,Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
33
|
Grippin AJ, McGovern SL. Proton therapy for pediatric diencephalic tumors. Front Oncol 2023; 13:1123082. [PMID: 37213290 PMCID: PMC10196353 DOI: 10.3389/fonc.2023.1123082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/03/2023] [Indexed: 05/23/2023] Open
Abstract
Diencephalic tumors tend to be low grade tumors located near several critical structures, including the optic nerves, optic chiasm, pituitary, hypothalamus, Circle of Willis, and hippocampi. In children, damage to these structures can impact physical and cognitive development over time. Thus, the goal of radiotherapy is to maximize long term survival while minimizing late effects, including endocrine disruption leading to precocious puberty, height loss, hypogonadotropic hypogonadism, and primary amenorrhea; visual disruption including blindness; and vascular damage resulting in cerebral vasculopathy. Compared to photon therapy, proton therapy offers the potential to decrease unnecessary dose to these critical structures while maintaining adequate dose to the tumor. In this article, we review the acute and chronic toxicities associated with radiation for pediatric diencephalic tumors, focusing on the use of proton therapy to minimize treatment-related morbidity. Emerging strategies to further reduce radiation dose to critical structures will also be considered.
Collapse
|
34
|
Jujui-Eam A, Sirachainan N, Hongeng S, Hansasuta A, Boongird A, Tritanon O, Dhanachai M, Swangsilpa T, Ruangkanchanasetr R, Worawongsakul R, Puataweepong P. Long-term treatment outcomes of pediatric low-grade gliomas treated at a university-based hospital. Childs Nerv Syst 2022; 39:1173-1182. [PMID: 36574012 DOI: 10.1007/s00381-022-05809-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/14/2022] [Indexed: 12/28/2022]
Abstract
PURPOSE A multimodality approach is generally considered for pediatric low-grade gliomas (LGG); however, the optimal management remains uncertain. The objective of the study was to evaluate treatment outcomes of pediatric LGG, focusing on long-term survival and factors related to outcomes. METHODS A retrospective review of 77 pediatric LGG cases treated at Ramathibodi Hospital, Thailand between 2000 and 2018 was performed. The inclusion criteria were all pediatric LGG cases aged ≤ 15 years. Diffuse intrinsic pontine gliomas and spinal cord tumors were excluded. RESULTS The median follow-up time was 8.2 years (range, 0.6-19.7). The median age at diagnosis was 6.2 years (interquartile range, 3.6-11.4). Treatments modality included tumor surgery (93%), chemotherapy (40%), and radiation therapy (14%). The 10-year overall survival (OS) and 10-year progression-free survival were 94% and 59%, respectively, for the entire cohort. The 10-year OS was 100% in three subgroups of patients: pilocytic subtype, WHO grade 1 tumors, and recipient of gross total resection. After multivariable analysis, no tumor surgery had a significantly unfavorable influence on overall survival. CONCLUSIONS With a multimodality approach, pediatric LGGs had excellent outcome. Gross total resection is the standard primary treatment. Chemotherapy is the alternative standard treatment in incomplete resection cases, unresectable patients, or patients with progressive disease. Radiation therapy should be reserved as a salvage treatment option because of late complications that usually affect patients' quality of life.
Collapse
Affiliation(s)
- Apisak Jujui-Eam
- Radiation Oncology Unit, Department of Diagnostic and Therapeutic Radiology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, 270 Rama VI Road, Ratchathewi, 10400, Bangkok, Thailand
| | - Nongnuch Sirachainan
- Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Ake Hansasuta
- Department of Surgery, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Atthaporn Boongird
- Department of Surgery, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Oranan Tritanon
- Radiation Oncology Unit, Department of Diagnostic and Therapeutic Radiology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, 270 Rama VI Road, Ratchathewi, 10400, Bangkok, Thailand
| | - Mantana Dhanachai
- Radiation Oncology Unit, Department of Diagnostic and Therapeutic Radiology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, 270 Rama VI Road, Ratchathewi, 10400, Bangkok, Thailand
| | - Thiti Swangsilpa
- Radiation Oncology Unit, Department of Diagnostic and Therapeutic Radiology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, 270 Rama VI Road, Ratchathewi, 10400, Bangkok, Thailand
| | - Rawee Ruangkanchanasetr
- Radiation Oncology Unit, Department of Diagnostic and Therapeutic Radiology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, 270 Rama VI Road, Ratchathewi, 10400, Bangkok, Thailand
| | - Rasin Worawongsakul
- Radiation Oncology Unit, Department of Diagnostic and Therapeutic Radiology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, 270 Rama VI Road, Ratchathewi, 10400, Bangkok, Thailand
| | - Putipun Puataweepong
- Radiation Oncology Unit, Department of Diagnostic and Therapeutic Radiology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, 270 Rama VI Road, Ratchathewi, 10400, Bangkok, Thailand.
| |
Collapse
|
35
|
Manoharan N, Liu KX, Mueller S, Haas-Kogan DA, Bandopadhayay P. Pediatric low-grade glioma: Targeted therapeutics and clinical trials in the molecular era. Neoplasia 2022; 36:100857. [PMID: 36566593 PMCID: PMC9803951 DOI: 10.1016/j.neo.2022.100857] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 12/25/2022] Open
Abstract
pLGGs are a group of tumors for which the era of molecular diagnostics has truly shifted treatment paradigms and patient care. The discovery that this group of tumors is driven by single-gene alterations/fusions in the MAPK pathway has resulted in relatively rapid translation into targeted therapy options for patients with this often chronic disease. This translation has been facilitated through efforts of multiple collaboratives and consortia and has led to the development of clinical trials testing the role of targeted therapies in pLGG. Although these developments represent promise, many questions remain regarding these therapies including their long-term toxicities and their potential effects on the natural history of pLGG.
Collapse
Affiliation(s)
- Neevika Manoharan
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW 2031, Australia,School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia
| | - Kevin X. Liu
- Department of Radiation Oncology, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Sabine Mueller
- Department of Neurology, Neurosurgery and Pediatrics, University of California San Francisco, San Francisco, CA, USA,Department of Pediatrics, University of Zurich, Switzerland
| | - Daphne A. Haas-Kogan
- Department of Radiation Oncology, Brigham and Women's Hospital/Dana-Farber Cancer Institute, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Pratiti Bandopadhayay
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, 450 Brookline Avenue, Boston, MA 02215, USA,Corresponding author.
| |
Collapse
|
36
|
Leclair NK, Lambert W, Roche K, Gillan E, Gell JJ, Lau CC, Wrubel G, Knopf J, Amin S, Anderson M, Martin JE, Bookland MJ, Hersh DS. Early experience with targeted therapy as a first-line adjuvant treatment for pediatric low-grade glioma. Neurosurg Focus 2022; 53:E15. [PMID: 36455272 DOI: 10.3171/2022.9.focus22410] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/19/2022] [Indexed: 12/04/2022]
Abstract
OBJECTIVE Pediatric low-grade gliomas (pLGGs) frequently exhibit dysregulation of the mitogen-activated protein kinase (MAPK) pathway. Targeted therapies, including mutant BRAF inhibitors (dabrafenib) and MEK inhibitors (trametinib), have shown promise in patients in whom conventional chemotherapy has failed. However, few studies have investigated the use of targeted therapy as a first-line treatment for pLGG. Here, the authors reviewed their institutional experience with using a personalized medicine approach to patients with newly diagnosed pLGGs. METHODS All pediatric patients at the authors' institution who had been treated with dabrafenib or trametinib for pLGG without first receiving conventional chemotherapy or radiation were retrospectively reviewed. Demographic, clinical, and radiological data were collected. RESULTS Eight patients underwent targeted therapy as a first-line treatment for pLGG. Five patients had a BRAF alteration (1 with a BRAFV600E mutation, 4 with a KIAA1549:BRAF fusion), and 3 patients had an NF1 mutation. One of the 8 patients was initially treated with dabrafenib, and trametinib was added later. Seven patients were initially treated with trametinib; of these, 2 later transitioned to dual therapy, whereas 5 continued with trametinib monotherapy. Six patients (75%) demonstrated a partial response to therapy during their treatment course, whereas stable disease was identified in the remaining 2 patients (25%). One patient experienced mild disease progression after completing a course of trametinib monotherapy, but ultimately stabilized after a period of close observation. Another patient experienced tumor progression while on dabrafenib, but subsequently responded to dual therapy with dabrafenib and trametinib. The most common adverse reactions to targeted therapy were cutaneous toxicity (100%) and diarrhea (50%). CONCLUSIONS Targeted therapies have the potential to become a standard treatment option for pLGG due to their favorable toxicity profile and oral route of administration. This case series provides preliminary evidence that targeted therapies can induce an early disease response as a first-line adjuvant treatment; however, large-scale studies are required to assess long-term durability and safety.
Collapse
Affiliation(s)
| | | | - Kimberley Roche
- 2Division of Hematology and Oncology, Connecticut Children's, Hartford
| | - Eileen Gillan
- 2Division of Hematology and Oncology, Connecticut Children's, Hartford
| | - Joanna J Gell
- 2Division of Hematology and Oncology, Connecticut Children's, Hartford.,3The Jackson Laboratory for Genomic Medicine, Farmington.,4Department of Pediatrics, UConn School of Medicine; Farmington
| | - Ching C Lau
- 2Division of Hematology and Oncology, Connecticut Children's, Hartford.,3The Jackson Laboratory for Genomic Medicine, Farmington.,4Department of Pediatrics, UConn School of Medicine; Farmington
| | | | - Joshua Knopf
- 1School of Medicine, University of Connecticut, Farmington
| | - Shirali Amin
- 2Division of Hematology and Oncology, Connecticut Children's, Hartford
| | - Megan Anderson
- 6Division of Neurosurgery, Connecticut Children's, Hartford; and
| | - Jonathan E Martin
- 6Division of Neurosurgery, Connecticut Children's, Hartford; and.,7Department of Surgery, UConn School of Medicine, Farmington, Connecticut
| | - Markus J Bookland
- 6Division of Neurosurgery, Connecticut Children's, Hartford; and.,7Department of Surgery, UConn School of Medicine, Farmington, Connecticut
| | - David S Hersh
- 6Division of Neurosurgery, Connecticut Children's, Hartford; and.,7Department of Surgery, UConn School of Medicine, Farmington, Connecticut
| |
Collapse
|
37
|
Wickert R, Tessonnier T, Deng M, Adeberg S, Seidensaal K, Hoeltgen L, Debus J, Herfarth K, Harrabi SB. Radiotherapy with Helium Ions Has the Potential to Improve Both Endocrine and Neurocognitive Outcome in Pediatric Patients with Ependymoma. Cancers (Basel) 2022; 14:cancers14235865. [PMID: 36497348 PMCID: PMC9736041 DOI: 10.3390/cancers14235865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/30/2022] Open
Abstract
Ependymomas are the third most-frequent pediatric brain tumors. To prevent local recurrence, the resection site should be irradiated. Compared to photon radiation treatment, proton therapy often achieves even better results regarding target coverage and organ-sparing. Due to their physical properties, helium ions could further reduce side effects, providing better protection of healthy tissue despite similar target coverage. In our in silico study, 15 pediatric ependymoma patients were considered. All patients underwent adjuvant radiotherapeutic treatment with active-scanned protons at Heidelberg Ion Beam Therapy Center (HIT). Both helium ion and highly conformal IMRT plans were calculated to evaluate the potential dosimetric advantage of ion beam therapy compared to the current state-of-the-art photon-based treatments. To estimate the potential clinical benefit of helium ions, normal tissue complication probabilities (NTCP) were calculated. Target coverage was comparable in all three modalities. As expected, the integral dose absorbed by healthy brain tissue could be significantly reduced with protons by up to -48% vs. IMRT. Even compared to actively scanned protons, relative dose reductions for critical neuronal structures of up to another -39% were achieved when using helium ions. The dose distribution of helium ions is significantly superior when compared to proton therapy and IMRT due to the improved sparing of OAR. In fact, previous studies could clearly demonstrate that the dosimetric advantage of protons translates into a measurable clinical benefit for pediatric patients with brain tumors. Given the dose-response relationship of critical organs at risk combined with NTCP calculation, the results of our study provide a strong rationale that the use of helium ions has the potential to even further reduce the risk for treatment related sequelae.
Collapse
Affiliation(s)
- Ricarda Wickert
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Thomas Tessonnier
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Maximilian Deng
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Sebastian Adeberg
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Katharina Seidensaal
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Line Hoeltgen
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Klaus Herfarth
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Semi B. Harrabi
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
- National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Correspondence:
| |
Collapse
|
38
|
Use of Trametinib in Children and Young Adults With Progressive Low-Grade Glioma and Glioneuronal Tumors. J Pediatr Hematol Oncol 2022; 45:e464-e470. [PMID: 36730221 DOI: 10.1097/mph.0000000000002598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 10/26/2022] [Indexed: 02/03/2023]
Abstract
Low-grade gliomas/glioneuronal tumors comprise one-third of all pediatric-type CNS tumors. These tumors are generally caused by activating mutations in the mitogen-activated protein kinase (MAPK) pathway. Targeted drugs, such as trametinib, have shown promise in other cancers and are being utilized in low-grade gliomas. A retrospective chart review was conducted to evaluate radiographic response, visual outcomes, tolerability, and durability of response in progressive circumscribed low-grade gliomas treated with trametinib. Eleven patients were treated with trametinib. The best radiographic response was 2/11 partial response, 3/11 minor response, 3/11 stable disease, and 3/13 progressive disease. In the patients with partial or minor response, the best response was seen after longer durations of therapy; 4 of 5 best responses occurred after at least 9 months of therapy with a median of 21 months. Patients with optic pathway tumors showed at least stable vision throughout treatment, with 3 having improved vision on treatment. Trametinib is effective and well-tolerated in patients with progressive low-grade glioma. Best responses were seen after a longer duration of therapy in those with a positive response. Patients with optic pathway lesions showed stable to improved vision while on treatment.
Collapse
|
39
|
Management of Optic Pathway Glioma: A Systematic Review and Meta-Analysis. Cancers (Basel) 2022; 14:cancers14194781. [PMID: 36230704 PMCID: PMC9563939 DOI: 10.3390/cancers14194781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Background: OPG accounts for 3−5% of childhood central nervous system (CNS) tumors and about 2% of pediatric glial lesions. Methods: Article selection was performed by searching PubMed, Web of Science, and Cochrane databases. Results: The pooled mortality rate was 0.12 (95%CI 0.09−0.14). Due to the unrepresentative data, improved and not changed outcomes were classified as favorable outcomes and worsened as unfavorable. Meta-analyses were performed to determine the rate of clinical and radiological favorable outcomes. In terms of visual assessment, the pooled rate of a favorable outcome in chemotherapy, radiotherapy, and surgery was 0.74, 0.81, and 0.65, respectively, and the overall pooled rate of the favorable outcome was 0.75 (95%CI 0.70−0.80). In terms of radiological assessment, the rate of a favorable outcome following chemotherapy, radiotherapy, and surgery was 0.71, 0.74, and 0.67, respectively, and the overall pooled rate of the favorable outcome is 0.71 (95%CI 0.65−0.77). The subgroup analysis revealed no significant difference in the rate of clinical and radiological favorable outcomes between the different treatment modalities (p > 0.05). Conclusion: Our analyses showed that each therapeutic modality represents viable treatment options to achieve remission for these patients.
Collapse
|
40
|
Williams MT, Sugimoto C, Regan SL, Pitzer EM, Fritz AL, Sertorio M, Mascia AE, Vatner RE, Perentesis JP, Vorhees CV. Cognitive and behavioral effects of whole brain conventional or high dose rate (FLASH) proton irradiation in a neonatal Sprague Dawley rat model. PLoS One 2022; 17:e0274007. [PMID: 36112695 PMCID: PMC9481014 DOI: 10.1371/journal.pone.0274007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022] Open
Abstract
Recent studies suggest that ultra-high dose rates of proton radiation (>40 Gy/s; FLASH) confer less toxicity to exposed healthy tissue and reduce cognitive decline compared with conventional radiation dose rates (~1 Gy/s), but further preclinical data are required to demonstrate this sparing effect. In this study, postnatal day 11 (P11) rats were treated with whole brain irradiation with protons at a total dose of 0, 5, or 8 Gy, comparing a conventional dose rate of 1 Gy/s vs. a FLASH dose rate of 100 Gy/s. Beginning on P64, rats were tested for locomotor activity, acoustic and tactile startle responses (ASR, TSR) with or without prepulses, novel object recognition (NOR; 4-object version), striatal dependent egocentric learning ([configuration A] Cincinnati water maze (CWM-A)), prefrontal dependent working memory (radial water maze (RWM)), hippocampal dependent spatial learning (Morris water maze (MWM)), amygdala dependent conditioned freezing, and the mirror image CWM [configuration B (CWM-B)]. All groups had deficits in the CWM-A procedure. Weight reductions, decreased center ambulation in the open-field, increased latency on day-1 of RWM, and deficits in CWM-B were observed in all irradiated groups, except the 5 Gy FLASH group. ASR and TSR were reduced in the 8 Gy FLASH group and day-2 latencies in the RWM were increased in the FLASH groups compared with controls. There were no effects on prepulse trials of ASR or TSR, NOR, MWM, or conditioned freezing. The results suggest striatal and prefrontal cortex are sensitive regions at P11 to proton irradiation, with reduced toxicity from FLASH at 5 Gy.
Collapse
Affiliation(s)
- Michael T. Williams
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
- Division of Neurology, Cincinnati Children’s Research Foundation, Cincinnati, OH, United States of America
- Cincinnati Children’s/University of Cincinnati Proton Therapy and Research Center, Cincinnati, OH, United States of America
- * E-mail:
| | - Chiho Sugimoto
- Division of Neurology, Cincinnati Children’s Research Foundation, Cincinnati, OH, United States of America
| | - Samantha L. Regan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
- Division of Neurology, Cincinnati Children’s Research Foundation, Cincinnati, OH, United States of America
| | - Emily M. Pitzer
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
- Division of Neurology, Cincinnati Children’s Research Foundation, Cincinnati, OH, United States of America
| | - Adam L. Fritz
- Division of Neurology, Cincinnati Children’s Research Foundation, Cincinnati, OH, United States of America
| | - Mathieu Sertorio
- Cincinnati Children’s/University of Cincinnati Proton Therapy and Research Center, Cincinnati, OH, United States of America
- Department of Radiation Oncology, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| | - Anthony E. Mascia
- Cincinnati Children’s/University of Cincinnati Proton Therapy and Research Center, Cincinnati, OH, United States of America
- Department of Radiation Oncology, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| | - Ralph E. Vatner
- Cincinnati Children’s/University of Cincinnati Proton Therapy and Research Center, Cincinnati, OH, United States of America
- Department of Radiation Oncology, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| | - John P. Perentesis
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
- Cincinnati Children’s/University of Cincinnati Proton Therapy and Research Center, Cincinnati, OH, United States of America
- Division of Oncology, Cincinnati Children’s Research Foundation, Cincinnati, OH, United States of America
| | - Charles V. Vorhees
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
- Division of Neurology, Cincinnati Children’s Research Foundation, Cincinnati, OH, United States of America
- Cincinnati Children’s/University of Cincinnati Proton Therapy and Research Center, Cincinnati, OH, United States of America
| |
Collapse
|
41
|
Li F, Bondra KM, Ghilu S, Studebaker A, Liu Q, Michalek JE, Kogiso M, Li XN, Kalapurakal JA, James CD, Burma S, Kurmasheva RT, Houghton PJ. Regulation of TORC1 by MAPK Signaling Determines Sensitivity and Acquired Resistance to Trametinib in Pediatric BRAFV600E Brain Tumor Models. Clin Cancer Res 2022; 28:3836-3849. [PMID: 35797217 PMCID: PMC10230442 DOI: 10.1158/1078-0432.ccr-22-1052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/29/2022] [Accepted: 07/05/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE We investigated why three patient-derived xenograft (PDX) childhood BRAFV600E-mutant brain tumor models are highly sensitive to trametinib. Mechanisms of acquired resistance selected in situ, and approaches to prevent resistance were also examined, which may translate to both low-grade glioma (LGG) molecular subtypes. EXPERIMENTAL DESIGN Sensitivity to trametinib [MEK inhibitor (MEKi)] alone or in combination with rapamycin (TORC1 inhibitor), was evaluated in pediatric PDX models. The effect of combined treatment of trametinib with rapamycin on development of trametinib resistance in vivo was examined. PDX tissue and tumor cells from trametinib-resistant xenografts were characterized. RESULTS In pediatric models TORC1 is activated through ERK-mediated inactivation of the tuberous sclerosis complex (TSC): consequently inhibition of MEK also suppressed TORC1 signaling. Trametinib-induced tumor regression correlated with dual inhibition of MAPK/TORC1 signaling, and decoupling TORC1 regulation from BRAF/MAPK control conferred trametinib resistance. In mice, acquired resistance to trametinib developed within three cycles of therapy in all three PDX models. Resistance to trametinib developed in situ is tumor-cell-intrinsic and the mechanism was tumor line specific. Rapamycin retarded or blocked development of resistance. CONCLUSIONS In these three pediatric BRAF-mutant brain tumors, TORC1 signaling is controlled by the MAPK cascade. Trametinib suppressed both MAPK/TORC1 pathways leading to tumor regression. While low-dose intermittent rapamycin to enhance inhibition of TORC1 only modestly enhanced the antitumor activity of trametinib, it prevented or retarded development of trametinib resistance, suggesting future therapeutic approaches using rapamycin analogs in combination with MEKis that may be therapeutically beneficial in both KIAA1549::BRAF- and BRAFV600E-driven gliomas.
Collapse
Affiliation(s)
- Fuyang Li
- Greehey Children’s Cancer Research Institute, UT Health, San Antonio, Texas
| | - Kathryn M. Bondra
- Greehey Children’s Cancer Research Institute, UT Health, San Antonio, Texas
| | - Samson Ghilu
- Greehey Children’s Cancer Research Institute, UT Health, San Antonio, Texas
| | - Adam Studebaker
- Center for Childhood Cancer and Blood Diseases, Nationwide Children’s Hospital, Columbus, Ohio
| | - Qianqian Liu
- Department of Epidemiology and Biostatistics, UT Health, San Antonio, Texas
| | - Joel E. Michalek
- Department of Epidemiology and Biostatistics, UT Health, San Antonio, Texas
| | - Mari Kogiso
- Department of Pediatrics, Baylor College of Medicine, Texas Children’s Cancer Center, Houston, Texas
| | - Xiao-Nan Li
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - John A. Kalapurakal
- Department of Radiation Oncology and Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - C. David James
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Sandeep Burma
- Department of Neurosurgery, UT Health, San Antonio, Texas
- Department of Biochemistry and Structural Biology, UT Health, San Antonio, Texas
| | | | - Peter J. Houghton
- Greehey Children’s Cancer Research Institute, UT Health, San Antonio, Texas
| |
Collapse
|
42
|
The Current State of Radiotherapy for Pediatric Brain Tumors: An Overview of Post-Radiotherapy Neurocognitive Decline and Outcomes. J Pers Med 2022; 12:jpm12071050. [PMID: 35887547 PMCID: PMC9315742 DOI: 10.3390/jpm12071050] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
Tumors of the central nervous system are the most common solid malignancies diagnosed in children. While common, they are also found to have some of the lowest survival rates of all malignancies. Treatment of childhood brain tumors often consists of operative gross total resection with adjuvant chemotherapy or radiotherapy. The current body of literature is largely inconclusive regarding the overall benefit of adjuvant chemo- or radiotherapy. However, it is known that both are associated with conditions that lower the quality of life in children who undergo those treatments. Chemotherapy is often associated with nausea, emesis, significant fatigue, immunosuppression, and alopecia. While radiotherapy can be effective for achieving local control, it is associated with late effects such as endocrine dysfunction, secondary malignancy, and neurocognitive decline. Advancements in radiotherapy grant both an increase in lifetime survival and an increased lifetime for survivors to contend with these late effects. In this review, the authors examined all the published literature, analyzing the results of clinical trials, case series, and technical notes on patients undergoing radiotherapy for the treatment of tumors of the central nervous system with a focus on neurocognitive decline and survival outcomes.
Collapse
|
43
|
Kline C, Stoller S, Byer L, Samuel D, Lupo JM, Morrison MA, Rauschecker AM, Nedelec P, Faig W, Dubal DB, Fullerton HJ, Mueller S. An Integrated Analysis of Clinical, Genomic, and Imaging Features Reveals Predictors of Neurocognitive Outcomes in a Longitudinal Cohort of Pediatric Cancer Survivors, Enriched with CNS Tumors (Rad ART Pro). Front Oncol 2022; 12:874317. [PMID: 35814456 PMCID: PMC9259981 DOI: 10.3389/fonc.2022.874317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Background Neurocognitive deficits in pediatric cancer survivors occur frequently; however, individual outcomes are unpredictable. We investigate clinical, genetic, and imaging predictors of neurocognition in pediatric cancer survivors, with a focus on survivors of central nervous system (CNS) tumors exposed to radiation. Methods One hundred eighteen patients with benign or malignant cancers (median diagnosis age: 7; 32% embryonal CNS tumors) were selected from an existing multi-institutional cohort (RadART Pro) if they had: 1) neurocognitive evaluation; 2) available DNA; 3) standard imaging. Utilizing RadART Pro, we collected clinical history, genomic sequencing, CNS imaging, and neurocognitive outcomes. We performed single nucleotide polymorphism (SNP) genotyping for candidate genes associated with neurocognition: COMT, BDNF, KIBRA, APOE, KLOTHO. Longitudinal neurocognitive testing were performed using validated computer-based CogState batteries. The imaging cohort was made of patients with available iron-sensitive (n = 28) and/or T2 FLAIR (n = 41) sequences. Cerebral microbleeds (CMB) were identified using a semi-automated algorithm. Volume of T2 FLAIR white matter lesions (WML) was measured using an automated method based on a convolutional neural network. Summary statistics were performed for patient characteristics, neurocognitive assessments, and imaging. Linear mixed effects and hierarchical models assessed patient characteristics and SNP relationship with neurocognition over time. Nested case-control analysis was performed to compare candidate gene carriers to non-carriers. Results CMB presence at baseline correlated with worse performance in 3 of 7 domains, including executive function. Higher baseline WML volumes correlated with worse performance in executive function and verbal learning. No candidate gene reliably predicted neurocognitive outcomes; however, APOE ϵ4 carriers trended toward worse neurocognitive function over time compared to other candidate genes and carried the highest odds of low neurocognitive performance across all domains (odds ratio 2.85, P=0.002). Hydrocephalus and seizures at diagnosis were the clinical characteristics most frequently associated with worse performance in neurocognitive domains (5 of 7 domains). Overall, executive function and verbal learning were the most frequently negatively impacted neurocognitive domains. Conclusion Presence of CMB, APOE ϵ4 carrier status, hydrocephalus, and seizures correlate with worse neurocognitive outcomes in pediatric cancer survivors, enriched with CNS tumors exposed to radiation. Ongoing research is underway to verify trends in larger cohorts.
Collapse
Affiliation(s)
- Cassie Kline
- Division of Oncology, Department of Pediatrics, Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
- Division of Child Neurology, Department of Neurology, University of California, San Francisco, United States
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| | - Schuyler Stoller
- Division of Child Neurology, Department of Neurology, University of California, San Francisco, United States
| | - Lennox Byer
- UCSF School of Medicine, University of California, San Francisco, United States
| | - David Samuel
- Division of Pediatric Hematology/Oncology, Valley Children’s Hospital, Madera, CA, United States
| | - Janine M. Lupo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, United States
| | - Melanie A. Morrison
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, United States
| | - Andreas M. Rauschecker
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, United States
| | - Pierre Nedelec
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, United States
| | - Walter Faig
- Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Dena B. Dubal
- Department of Neurology, University of California, San Francisco, CA, United States
| | - Heather J. Fullerton
- Division of Child Neurology, Department of Neurology, University of California, San Francisco, United States
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| | - Sabine Mueller
- Division of Child Neurology, Department of Neurology, University of California, San Francisco, United States
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
- Department of Neurological Surgery, University of California, San Francisco, CA, United States
- *Correspondence: Sabine Mueller,
| |
Collapse
|
44
|
Natsume A, Arakawa Y, Narita Y, Sugiyama K, Hata N, Muragaki Y, Shinojima N, Kumabe T, Saito R, Motomura K, Mineharu Y, Miyakita Y, Yamasaki F, Matsushita Y, Ichimura K, Ito K, Tachibana M, Kakurai Y, Okamoto N, Asahi T, Nishijima S, Yamaguchi T, Tsubouchi H, Nakamura H, Nishikawa R. The first-in-human phase I study of a brain-penetrant mutant IDH1 inhibitor DS-1001 in patients with recurrent or progressive IDH1-mutant gliomas. Neuro Oncol 2022; 25:326-336. [PMID: 35722822 PMCID: PMC9925696 DOI: 10.1093/neuonc/noac155] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Approximately 70% of lower-grade gliomas harbor isocitrate dehydrogenase 1 (IDH1) mutations, resulting in the accumulation of oncometabolite D-2-hydroxyglutarate (D-2-HG); this leads to epigenetic dysregulation, oncogenesis, and subsequent clonal expansion. DS-1001 is an oral brain-penetrant mutant IDH1 selective inhibitor. This first-in-human study investigated the safety, pharmacokinetics, pharmacodynamics, and efficacy of DS-1001. METHODS This was a multicenter, open-label, dose-escalation, phase I study of DS-1001 for recurrent/progressive IDH1-mutant (R132) glioma (N = 47) (NCT03030066). DS-1001 was administered orally at 125-1400 mg twice daily. Dose-escalation used a modified continual reassessment method. RESULTS The maximum tolerated dose was not reached. Eight patients were continuing treatment at the data cutoff. Most adverse events (AEs) were grade 1-2. Twenty patients (42.6%) experienced at least 1 grade 3 AE. No grade 4 or 5 AEs or serious drug-related AEs were reported. Common AEs (>20%) were skin hyperpigmentation, diarrhea, pruritus, alopecia, arthralgia, nausea, headache, rash, and dry skin. The objective response rates were 17.1% for enhancing tumors and 33.3% for non-enhancing tumors. Median progression-free survival was 10.4 months (95% confidence interval [CI], 6.1 to 17.7 months) and not reached (95% CI, 24.1 to not reached) for the enhancing and non-enhancing glioma cohorts, respectively. Seven on-treatment brain tumor samples showed a significantly lower amount of D-2-HG compared with pre-study archived samples. CONCLUSIONS DS-1001 was well tolerated with a favorable brain distribution. Recurrent/progressive IDH1-mutant glioma patients responded to treatment. A study of DS-1001 in patients with chemotherapy- and radiotherapy-naïve IDH1-mutated WHO grade 2 glioma is ongoing (NCT04458272).
Collapse
Affiliation(s)
- Atsushi Natsume
- Corresponding Author: Atsushi Natsume, MD, PhD, The Institute of Innovation for Future Society, Nagoya University, NIC Room 803, Furo-Cho, Chikusa-Ku, Nagoya 464-8601, Japan ()
| | | | | | | | - Nobuhiro Hata
- Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Muragaki
- Graduate School of Medicine, Tokyo Women’s Medical University, Tokyo, Japan
| | | | | | - Ryuta Saito
- Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | - Yohei Mineharu
- Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | - Hideo Nakamura
- Department of Neurosurgery, Kurume University School of Medicine, Fukuoka, Japan
| | - Ryo Nishikawa
- Saitama Medical University International Medical Center, Hidaka, Japan
| |
Collapse
|
45
|
Sager O, Dincoglan F, Demiral S, Uysal B, Gamsiz H, Gumustepe E, Ozcan F, Colak O, Gursoy AT, Dursun CU, Tugcu AO, Dogru GD, Arslan R, Elcim Y, Gundem E, Dirican B, Beyzadeoglu M. Concise review of radiosurgery for contemporary management of pilocytic astrocytomas in children and adults. World J Exp Med 2022; 12:36-43. [PMID: 35765513 PMCID: PMC9168785 DOI: 10.5493/wjem.v12.i3.36] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/09/2022] [Accepted: 04/21/2022] [Indexed: 02/06/2023] Open
Abstract
Pilocytic astrocytoma (PA) may be seen in both adults and children as a distinct histologic and biologic subset of low-grade glioma. Surgery is the principal treatment for the management of PAs; however, selected patients may benefit from irradiation particularly in the setting of inoperability, incomplete resection, or recurrent disease. While conventionally fractionated radiation therapy has been traditionally utilized for radiotherapeutic management, stereotactic irradiation strategies have been introduced more recently to improve the toxicity profile of radiation delivery without compromising tumor control. PAs may be suitable for radiosurgical management due to their typical appearance as well circumscribed lesions. Focused and precise targeting of these well-defined lesions under stereotactic immobilization and image guidance may offer great potential for achieving an improved therapeutic ratio by virtue of radiosurgical techniques. Given the high conformality along with steep dose gradients around the target volume allowing for reduced normal tissue exposure, radiosurgery may be considered a viable modality of radiotherapeutic management. Another advantage of radiosurgery may be the completion of therapy in a usually shorter overall treatment time, which may be particularly well suited for children with requirement of anesthesia during irradiation. Several studies have addressed the utility of radiosurgery particularly as an adjuvant or salvage treatment modality for PA. Nevertheless, despite the growing body of evidence supporting the use of radiosurgery, there is need for a high level of evidence to dictate treatment decisions and establish its optimal role in the management of PA. Herein, we provide a concise review of radiosurgery for PA in light of the literature.
Collapse
Affiliation(s)
- Omer Sager
- Department of Radiation Oncology, Gulhane Medical Faculty, University of Health Sciences, Ankara 0090, Turkey
| | - Ferrat Dincoglan
- Department of Radiation Oncology, Gulhane Medical Faculty, University of Health Sciences, Ankara 0090, Turkey
| | - Selcuk Demiral
- Department of Radiation Oncology, Gulhane Medical Faculty, University of Health Sciences, Ankara 0090, Turkey
| | - Bora Uysal
- Department of Radiation Oncology, Gulhane Medical Faculty, University of Health Sciences, Ankara 0090, Turkey
| | - Hakan Gamsiz
- Department of Radiation Oncology, Gulhane Medical Faculty, University of Health Sciences, Ankara 0090, Turkey
| | - Esra Gumustepe
- Department of Radiation Oncology, Gulhane Medical Faculty, University of Health Sciences, Ankara 0090, Turkey
| | - Fatih Ozcan
- Department of Radiation Oncology, Gulhane Medical Faculty, University of Health Sciences, Ankara 0090, Turkey
| | - Onurhan Colak
- Department of Radiation Oncology, Gulhane Medical Faculty, University of Health Sciences, Ankara 0090, Turkey
| | - Ahmet Tarik Gursoy
- Department of Radiation Oncology, Gulhane Medical Faculty, University of Health Sciences, Ankara 0090, Turkey
| | - Cemal Ugur Dursun
- Department of Radiation Oncology, Gulhane Medical Faculty, University of Health Sciences, Ankara 0090, Turkey
| | - Ahmet Oguz Tugcu
- Department of Radiation Oncology, Gulhane Medical Faculty, University of Health Sciences, Ankara 0090, Turkey
| | - Galip Dogukan Dogru
- Department of Radiation Oncology, Gulhane Medical Faculty, University of Health Sciences, Ankara 0090, Turkey
| | - Rukiyye Arslan
- Department of Radiation Oncology, Gulhane Medical Faculty, University of Health Sciences, Ankara 0090, Turkey
| | - Yelda Elcim
- Department of Radiation Oncology, Gulhane Medical Faculty, University of Health Sciences, Ankara 0090, Turkey
| | - Esin Gundem
- Department of Radiation Oncology, Gulhane Medical Faculty, University of Health Sciences, Ankara 0090, Turkey
| | - Bahar Dirican
- Department of Radiation Oncology, Gulhane Medical Faculty, University of Health Sciences, Ankara 0090, Turkey
| | - Murat Beyzadeoglu
- Department of Radiation Oncology, Gulhane Medical Faculty, University of Health Sciences, Ankara 0090, Turkey
| |
Collapse
|
46
|
Kim N, Lim DH. Recent Updates on Radiation Therapy for Pediatric Optic Pathway Glioma. Brain Tumor Res Treat 2022; 10:94-100. [PMID: 35545828 PMCID: PMC9098980 DOI: 10.14791/btrt.2022.0003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 11/25/2022] Open
Abstract
Optic pathway glioma (OPG) is a rare tumor located in optic nerve, optic tract, or optic chiasm. Treatment options for OPG include surgery, radiation therapy (RT), and chemotherapy. Although RT may provide favorable long-term outcomes in manner of either adjuvant or salvage aim, chemotherapy-first approach is increasingly performed due to possible late effects of RT. Proton beam RT may allow normal tissue sparing of radiation exposure compared to conventional X-ray treatment. Therefore, proton beam RT is expected to reduce complications from RT. This review discusses the recent updates on oncologic outcomes of OPG, late toxicities following RT, and compares the outcomes between X-ray treatment and proton beam RT.
Collapse
Affiliation(s)
- Nalee Kim
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Do Hoon Lim
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
47
|
Nogueira LM, Sineshaw HM, Jemal A, Pollack CE, Efstathiou JA, Yabroff KR. Association of Race With Receipt of Proton Beam Therapy for Patients With Newly Diagnosed Cancer in the US, 2004-2018. JAMA Netw Open 2022; 5:e228970. [PMID: 35471569 PMCID: PMC9044116 DOI: 10.1001/jamanetworkopen.2022.8970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
IMPORTANCE Black patients are less likely than White patients to receive guideline-concordant cancer care in the US. Proton beam therapy (PBT) is a potentially superior technology to photon radiotherapy for tumors with complex anatomy, tumors surrounded by sensitive tissues, and childhood cancers. OBJECTIVE To evaluate whether there are racial disparities in the receipt of PBT among Black and White individuals diagnosed with all PBT-eligible cancers in the US. DESIGN, SETTING, AND PARTICIPANTS This cross-sectional study evaluated Black and White individuals diagnosed with PBT-eligible cancers between January 1, 2004, and December 31, 2018, in the National Cancer Database, a nationwide hospital-based cancer registry that collects data on radiation treatment, even when it is received outside the reporting facility. American Society of Radiation Oncology model policies were used to classify patients into those for whom PBT is the recommended radiation therapy modality (group 1) and those for whom evidence of PBT efficacy is still under investigation (group 2). Propensity score matching was used to ensure comparability of Black and White patients' clinical characteristics and regional availability of PBT according to the National Academy of Medicine's definition of disparities. Data analysis was performed from October 4, 2021, to February 22, 2022. EXPOSURE Patients' self-identified race was ascertained from medical records. MAIN OUTCOMES AND MEASURES The main outcome was receipt of PBT, with disparities in this therapy's use evaluated with logistic regression analysis. RESULTS Of the 5 225 929 patients who were eligible to receive PBT and included in the study, 13.6% were Black, 86.4% were White, and 54.3% were female. The mean (SD) age at diagnosis was 63.2 (12.4) years. Black patients were less likely to be treated with PBT than their White counterparts (0.3% vs 0.5%; odds ratio [OR], 0.67; 95% CI, 0.64-0.71). Racial disparities were greater for group 1 cancers (0.4% vs 0.8%; OR, 0.49; 95% CI, 0.44-0.55) than group 2 cancers (0.3% vs 0.4%; OR, 0.75; 95% CI, 0.70-0.80). Racial disparities in PBT receipt among group 1 cancers increased over time (annual percent change = 0.09, P < .001) and were greatest in 2018, the most recent year of available data. CONCLUSIONS AND RELEVANCE In this cross-sectional study, Black patients were less likely to receive PBT than their White counterparts, and disparities were greatest for cancers for which PBT was the recommended radiation therapy modality. These findings suggest that efforts other than increasing the number of facilities that provide PBT will be needed to eliminate disparities.
Collapse
Affiliation(s)
- Leticia M. Nogueira
- Department of Surveillance and Health Equity Science, American Cancer Society, Atlanta, Georgia
| | - Helmneh M. Sineshaw
- Department of Surveillance and Health Equity Science, American Cancer Society, Atlanta, Georgia
| | - Ahmedin Jemal
- Department of Surveillance and Health Equity Science, American Cancer Society, Atlanta, Georgia
| | - Craig E. Pollack
- Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health and Johns Hopkins School of Nursing, Baltimore, Maryland
| | | | - K. Robin Yabroff
- Department of Surveillance and Health Equity Science, American Cancer Society, Atlanta, Georgia
| |
Collapse
|
48
|
Youn SH, Kim H, Lee SH, Kim JY. Regression and pseudoprogression of pediatric optic pathway glioma in patients treated with proton beam therapy. Pediatr Blood Cancer 2022; 69:e29434. [PMID: 34766717 DOI: 10.1002/pbc.29434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 11/09/2022]
Abstract
PURPOSE We examined regression patterns in pediatric optic pathway gliomas (OPGs) after proton beam therapy (PBT) and evaluated local control and visual outcomes. METHODS A total of 42 brain magnetic resonance imaging (MRI) scans from seven consecutive sporadic OPGs that were initially treated with chemotherapy and received PBT between June 2007 and September 2016 at the National Cancer Center, Korea were analyzed. Patients underwent brain MRI regularly before and after PBT. Total tumor, cystic lesion, and solid enhancing lesion area delineation and volume calculations were performed on gadolinium-enhanced T1-weighted MRI using Eclipse version 13, Varian. RESULTS The median follow-up period after PBT was 70 months (range 47-88). The median age at the time of PBT was 7 years (range 4-16) and the median duration of chemotherapy before referral to PBT center was 25 months (range 3-70). The median time to the greatest increase in cystic volume was 32 months (range 12-43) after PBT. Solid enhancing lesion volume gradually decreased throughout the follow-up period. On an individual basis, total volume change was varied. However, on average, it regressed, although at a slower rate than solid enhancing lesion volume did. The local control rate was 85.7% (5-year progression-free survival rate, 80%; 5-year overall survival rate, 100%) and the rate of vision preservation was 71.4% (five of seven patients). CONCLUSION The regression patterns in pediatric OPGs after PBT involve significant cystic change. Therefore, total volume is not appropriate for evaluating response. Care by a multidisciplinary team is necessary to manage clinical symptoms related to radiologic changes.
Collapse
Affiliation(s)
- Sang Hee Youn
- Proton Therapy Center, National Cancer Center, Goyang-si, Republic of Korea
| | - Haksoo Kim
- Proton Therapy Center, National Cancer Center, Goyang-si, Republic of Korea
| | - Sang Hyeon Lee
- Department of Radiology, National Cancer Center, Goyang-si, Republic of Korea
| | - Joo-Young Kim
- Proton Therapy Center, National Cancer Center, Goyang-si, Republic of Korea
| |
Collapse
|
49
|
Upadhyay R, Liao K, Grosshans DR, McGovern SL, Frances McAleer M, Zaky W, Chintagumpala MM, Mahajan A, Nana Yeboa D, Paulino AC. Quantifying the risk and dosimetric variables of symptomatic brainstem injury after proton beam radiation in pediatric brain tumors. Neuro Oncol 2022; 24:1571-1581. [PMID: 35157767 PMCID: PMC9435496 DOI: 10.1093/neuonc/noac044] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Brainstem toxicity after radiation therapy (RT) is a devastating complication and a particular concern with proton radiation (PBT). We investigated the incidence and clinical correlates of brainstem injury in pediatric brain tumors treated with PBT. METHODS All patients <21 years with brain tumors treated with PBT at our institution from 2007-2019, with a brainstem Dmean >30 Gy and/or Dmax >50.4 Gy were included. Symptomatic brainstem injury (SBI) was defined as any new or progressive cranial neuropathy, ataxia, and/or motor weakness with corresponding radiographic abnormality within brainstem. RESULTS A total of 595 patients were reviewed and 468 (medulloblastoma = 200, gliomas = 114, ependymoma = 87, ATRT = 43) met our inclusion criteria. Median age at RT was 6.3 years and median prescribed RT dose was 54Gy [RBE]. Fifteen patients (3.2%) developed SBI, at a median of 4 months after RT. Grades 2, 3, 4, and 5 brainstem injuries were seen in 7, 5, 1, and 2 patients respectively. Asymptomatic radiographic changes were seen in 51 patients (10.9%). SBI was significantly higher in patients with age ≤3 years, female gender, ATRT histology, patients receiving high-dose chemotherapy with stem cell rescue, and those not receiving craniospinal irradiation. Patients with SBI had a significantly higher V50-52. In 2014, our institution started using strict brainstem dose constraints (Dmax ≤57 Gy, Dmean ≤52.4 Gy, and V54≤10%). There was a trend towards decrease in SBI from 4.4% (2007-2013) to 1.5% (2014-2019) (P = .089) without affecting survival. CONCLUSION Our results suggest a low risk of SBI after PBT for pediatric brain tumors, comparable to photon therapy. A lower risk was seen after adopting strict brainstem dose constraints.
Collapse
Affiliation(s)
- Rituraj Upadhyay
- Department of Radiation Oncology, The James Cancer Centre Ohio State University, Columbus, Ohio, USA
| | - Kaiping Liao
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - David R Grosshans
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Susan L McGovern
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mary Frances McAleer
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Wafik Zaky
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Anita Mahajan
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Debra Nana Yeboa
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Arnold C Paulino
- Corresponding Author: Arnold C. Paulino, MD, Department of Radiation Oncology, MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 0097, Houston, TX 77030, USA ()
| |
Collapse
|
50
|
Greuter L, Guzman R, Soleman J. Pediatric and Adult Low-Grade Gliomas: Where Do the Differences Lie? CHILDREN (BASEL, SWITZERLAND) 2021; 8:1075. [PMID: 34828788 PMCID: PMC8624473 DOI: 10.3390/children8111075] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 12/21/2022]
Abstract
Two thirds of pediatric gliomas are classified as low-grade (LGG), while in adults only around 20% of gliomas are low-grade. However, these tumors do not only differ in their incidence but also in their location, behavior and, subsequently, treatment. Pediatric LGG constitute 65% of pilocytic astrocytomas, while in adults the most commonly found histology is diffuse low-grade glioma (WHO II), which mostly occurs in eloquent regions of the brain, while its pediatric counterpart is frequently found in the infratentorial compartment. The different tumor locations require different skillsets from neurosurgeons. In adult LGG, a common practice is awake surgery, which is rarely performed on children. On the other hand, pediatric neurosurgeons are more commonly confronted with infratentorial tumors causing hydrocephalus, which more often require endoscopic or shunt procedures to restore the cerebrospinal fluid flow. In adult and pediatric LGG surgery, gross total excision is the primary treatment strategy. Only tumor recurrences or progression warrant adjuvant therapy with either chemo- or radiotherapy. In pediatric LGG, MEK inhibitors have shown promising initial results in treating recurrent LGG and several ongoing trials are investigating their role and safety. Moreover, predisposition syndromes, such as neurofibromatosis or tuberous sclerosis complex, can increase the risk of developing LGG in children, while in adults, usually no tumor growth in these syndromes is observed. In this review, we discuss and compare the differences between pediatric and adult LGG, emphasizing that pediatric LGG should not be approached and managed in the same way as adult LCG.
Collapse
Affiliation(s)
- Ladina Greuter
- Department of Neurosurgery, University Hospital of Basel, 4031 Basel, Switzerland; (R.G.); (J.S.)
- Department of Neurosurgery, King’s College Hospital, NHS Foundation Trust, London SE5 9RS, UK
| | - Raphael Guzman
- Department of Neurosurgery, University Hospital of Basel, 4031 Basel, Switzerland; (R.G.); (J.S.)
- Division of Pediatric Neurosurgery, University Children’s Hospital of Basel, 4056 Basel, Switzerland
- Faculty of Medicine, University of Basel, 4056 Basel, Switzerland
| | - Jehuda Soleman
- Department of Neurosurgery, University Hospital of Basel, 4031 Basel, Switzerland; (R.G.); (J.S.)
- Division of Pediatric Neurosurgery, University Children’s Hospital of Basel, 4056 Basel, Switzerland
- Faculty of Medicine, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|