1
|
Krasnovskaya O, Abramchuk D, Vaneev A, Gorelkin P, Abakumov M, Timoshenko R, Kuzmichev I, Chmelyuk N, Vadehina V, Kuanaeva R, Dubrovin E, Kolmogorov V, Beloglazkina E, Kechko O, Mitkevich V, Varshavskaya K, Salikhov S, Erofeev A. Bifunctional Copper Chelators Capable of Reducing Aβ Aggregation and Aβ-Induced Oxidative Stress. ACS OMEGA 2024; 9:43376-43384. [PMID: 39493999 PMCID: PMC11525521 DOI: 10.1021/acsomega.4c03152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024]
Abstract
Five bifunctional copper chelating agents, Alz-(1-5), designed to prevent beta-amyloid (Aβ) aggregation, were synthesized, and the leader compound (Alz-5) was chosen. Alz-5 acts as a bifunctional chelator that can interact with various Aβ aggregates and reduce their neurotoxicity. Reactive oxygen species measurements provided by the Pt-nanoelectrode technique in single Aβ42-affected human neuroblastoma SH-SY5Y cells revealed significant antioxidant activity of Alz-5. AFM data obtained on Aβ42 fibrils clearly indicate the antiaggregating property of Alz-5. To gain insights into the changes in the physiomechanical properties of Aβ42-affected cells, as well as in order to evaluate the antiaggregating ability of Alz-5, Young's modulus mapping on living SH-SY5Y cells affected consequently by Aβ42 and Alz-5 was conducted, and the ability of Alz-5 to decrease cell rigidity induced by Aβ42 was indisputably proven. Low cell toxicity and antioxidating properties, in conjunction with AFM and SICM-based biophysical provided on Aβ42-affected SH-SY5Y cells, support Alz-5 as a potential inhibitor of Aβ aggregation.
Collapse
Affiliation(s)
- Olga Krasnovskaya
- Chemistry
Department, Lomonosov Moscow State University, Leninskie gory 1,3, Moscow 119991, Russia
| | - Daniil Abramchuk
- Chemistry
Department, Lomonosov Moscow State University, Leninskie gory 1,3, Moscow 119991, Russia
| | - Alexander Vaneev
- Chemistry
Department, Lomonosov Moscow State University, Leninskie gory 1,3, Moscow 119991, Russia
- National
University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
| | - Petr Gorelkin
- National
University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
| | - Maxim Abakumov
- National
University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
- Pirogov
Russian National Research Medical University (RNRMU), Moscow 117997, Russia
| | - Roman Timoshenko
- National
University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
| | - Ilia Kuzmichev
- Serbsky
National Medical Research Center for Psychiatry and Narcology, Moscow 119991, Russia
| | - Nelly Chmelyuk
- National
University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
| | - Veronika Vadehina
- Pirogov
Russian National Research Medical University (RNRMU), Moscow 117997, Russia
- Serbsky
National Medical Research Center for Psychiatry and Narcology, Moscow 119991, Russia
| | - Regina Kuanaeva
- National
University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
| | - Evgeniy Dubrovin
- National
University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
- Faculty
of Physics, Lomonosov Moscow State University, Leninskie Gory 1, 2, Moscow 119991, Russia
| | - Vasilii Kolmogorov
- National
University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
| | - Elena Beloglazkina
- Chemistry
Department, Lomonosov Moscow State University, Leninskie gory 1,3, Moscow 119991, Russia
| | - Olga Kechko
- Engelhardt
Institute of Molecular Biology, Russian
Academy of Sciences, Moscow 119991, Russia
| | - Vladimir Mitkevich
- Engelhardt
Institute of Molecular Biology, Russian
Academy of Sciences, Moscow 119991, Russia
| | - Kseniya Varshavskaya
- Engelhardt
Institute of Molecular Biology, Russian
Academy of Sciences, Moscow 119991, Russia
| | - Sergey Salikhov
- National
University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
| | - Alexander Erofeev
- Chemistry
Department, Lomonosov Moscow State University, Leninskie gory 1,3, Moscow 119991, Russia
- National
University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow 119049, Russia
| |
Collapse
|
2
|
Shukla N, Naik A, Moryani K, Soni M, Shah J, Dave H. TGF-β at the crossroads of multiple prognosis in breast cancer, and beyond. Life Sci 2022; 310:121011. [PMID: 36179816 DOI: 10.1016/j.lfs.2022.121011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/16/2022] [Accepted: 09/25/2022] [Indexed: 10/25/2022]
Abstract
Transforming growth factor β (TGF-β), a pluripotent cytokine and a multifunctional growth factor has a crucial role in varied biological mechanisms like invasion, migration, epithelial-mesenchymal transition, apoptosis, wound healing, and immunosuppression. Moreover, it also has an imperative role both in normal mammary gland development as well as breast carcinogenesis. TGF-β has shown to have a paradoxical role in breast carcinogenesis, by transitioning from a growth inhibitor to a growth promoter with the disease advancement. The inter-communication and crosstalk of TGF-β with different signaling pathways has strengthened the likelihood to explore it as a comprehensive biomarker. In the last two decades, TGF-β has been studied extensively and has been found to be a promising biomarker for early detection, disease monitoring, treatment selection, and tumor progression making it beneficial for disease management. In this review, we focus on the signaling pathways and biological activities of the TGF-β family in breast cancer pathogenesis and its role as a circulatory and independent biomarker for breast cancer progression and metastasis. Moreover, this review highlights TGF-β as a drug target, and the underlying mechanisms through which it is involved in tumorigenesis that will aid in the development of varied therapies targeting the different stages of breast cancer.
Collapse
Affiliation(s)
- Nirali Shukla
- Institute of Science, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Ankit Naik
- Ahmedabad University, Ahmedabad, Gujarat 390009, India
| | - Kamlesh Moryani
- Institute of Science, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Molisha Soni
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Jigna Shah
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Heena Dave
- Institute of Science, Nirma University, Ahmedabad, Gujarat 382481, India.
| |
Collapse
|
3
|
High CD3 and ICOS and low TIM-3 expression predict favourable survival in resected oesophageal squamous cell carcinoma. Sci Rep 2019; 9:20197. [PMID: 31882943 PMCID: PMC6934772 DOI: 10.1038/s41598-019-56828-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 12/04/2019] [Indexed: 12/20/2022] Open
Abstract
With the increasing oncological potential of immunotherapy, several immune checkpoint modulators are being investigated. The value of immune markers, including programmed cell death ligand-1, programmed cell death-1 (PD-1), inducible co-stimulator (ICOS), lymphocyte activation gene-3, T-cell immunoglobulin, and mucin-dominant containing-3 (TIM-3), is not well known. Using tissue microarrays of 396 patients who underwent surgery for oesophageal squamous cell carcinoma (ESCC), infiltrated T-cell subsets (CD3, CD8, and Foxp3) and checkpoint protein expression were scored. With a median follow-up of 24.8 months, CD3+ TIL subsets (50.0%) had longer median recurrence-free survival (RFS, 55.0 vs 21.4 months) and overall survival (OS, 77.7 vs 35.8 months). Patients with high ICOS expression (46.5%) had longer median RFS (53.9 vs 25.3 months) and OS (88.8 vs 36.9 months). For PD-1, RFS (hazard ratio [HR] 0.67) and OS (HR 0.66) were significantly longer in the high-expression group (45.2%). In the multivariate analysis, high TIM-3 expression (50.8%) had a significant relationship with shorter RFS (HR = 1.52) and OS (HR = 1.60). High CD3+ TIL and T-cell ICOS expression were associated with favourable prognosis, whereas high TIM-3 expression suggested a poor prognosis. Our findings may confer new insights to improve ESCC outcomes beyond the application of PD-1 blockade.
Collapse
|
4
|
Bukhtoyarov OV, Samarin DM. Pathogenesis of Cancer: Cancer Reparative Trap. JOURNAL OF CANCER THERAPY 2015; 06:399-412. [DOI: 10.4236/jct.2015.65043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
5
|
DNA vaccine encoding HPV-16 E7 with mutation in L-Y-C-Y-E pRb-binding motif induces potent anti-tumor responses in mice. J Virol Methods 2014; 206:12-8. [PMID: 24880067 DOI: 10.1016/j.jviromet.2014.05.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 05/17/2014] [Accepted: 05/20/2014] [Indexed: 01/11/2023]
Abstract
Cervical cancer is the second most common cancer among women worldwide and remains a clinical problem despite improvements in early detection and therapy. The human papillomavirus (HPV) type 16 (HPV16) E7 oncoprotein expressed in cervical carcinoma cells are considered as attractive tumor-specific antigen targets for immunotherapy. Since the transformation potential of the oncogenes, vaccination based of these oncogenes is not safe. In present study, DNA vaccine expressing the modified variant with mutation in pRb-binding motif of the HPV-16 E7 oncoprotein was generated. A novel modified E7 gene with mutation in LYCYE motif was designed and constructed and the immunogenicity and antitumor effect of therapeutic DNA vaccines encoding the mutant and wild type of E7 gene were investigated. The L-Y-C-Y-E pRb-binding motif of E7 proteins has been involved in the immortalization and transformation of the host cell. The results showed that the mutant and wild type HPV-16 E7 vectors expressed the desired protein. Furthermore, the immunological mechanism behind mutant E7 DNA vaccine can be attributed at least partially to increased cytotoxic T lymphocyte, accompanied by the up-regulation of Th1-cytokine IFN-γ and TNF-β and down-regulation of Th3-cytokine TGF-β. Immunized mice with mutant plasmid demonstrated significantly stronger cell immune responses and higher levels of tumor protection than wild-type E7 DNA vaccine. The results exhibit that modified E7 DNA vaccine may be a promising candidate for development of therapeutic vaccine against HPV-16 cancers.
Collapse
|
6
|
Intratumoral CD4+ T lymphodepletion sensitizes poorly immunogenic melanomas to immunotherapy with an OX40 agonist. J Invest Dermatol 2014; 134:1884-1892. [PMID: 24468748 DOI: 10.1038/jid.2014.42] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 12/08/2013] [Accepted: 12/23/2013] [Indexed: 01/08/2023]
Abstract
Previous studies have shown that the antitumor effects of OX40 agonists depend on the immunogenicity of the tumor and that poorly immunogenic tumors such as B16F10 melanomas do not respond to OX40 agonist treatment. In this study, we have shown that intratumoral CD4+ T lymphodepletion sensitized poorly immunogenic B16F10 melanomas to immunotherapy with an OX40 agonist. CD4+ T lymphodepletion dramatically altered the tumor immune microenvironment, making it more susceptible to the antitumor effects of an OX40 agonist by enhancing the accumulation of CD8+ T cells and natural killer (NK) cells in tumor tissue. However, unexpectedly, the number of CD11b+ Gr-1(+) myeloid-derived suppressor cells (MDSCs) within tumor tissues also significantly increased as a result of CD4+ T lymphodepletion. As a countermeasure against CD8+ T-cell accumulation, CCR2-positive CD11b+ Gr-1(int) (monocytic) MDSCs predominantly increased. Treatment with an OX40 agonist under CD4+ T lymphodepletion neither reduced MDSCs nor increased CD8+ T cells and NK cells, but further enhanced the expression of cytotoxic molecules from tumor-infiltrating effector cells. Our results suggest that combined immunotherapy using both an OX40 agonist and CD4+ T lymphodepletion could be a promising therapeutic strategy for poorly immunogenic tumors and might be more effective if further combined with a therapeutic strategy targeting MDSCs.
Collapse
|
7
|
Reyes D, Salazar L, Espinoza E, Pereda C, Castellón E, Valdevenito R, Huidobro C, Inés Becker M, Lladser A, López MN, Salazar-Onfray F. Tumour cell lysate-loaded dendritic cell vaccine induces biochemical and memory immune response in castration-resistant prostate cancer patients. Br J Cancer 2013; 109:1488-97. [PMID: 23989944 PMCID: PMC3777003 DOI: 10.1038/bjc.2013.494] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Revised: 07/24/2013] [Accepted: 07/30/2013] [Indexed: 12/16/2022] Open
Abstract
Background: Recently, we produced a tumour antigen-presenting cells (TAPCells) vaccine using a melanoma cell lysate, called TRIMEL, as an antigen source and an activation factor. Tumour antigen-presenting cells induced immunological responses and increased melanoma patient survival. Herein, we investigated the effect of TAPCells loaded with prostate cancer cell lysates (PCCL) as an antigen source, and TRIMEL as a dendritic cell (DC) activation factor; which were co-injected with the Concholepas concholepas haemocyanin (CCH) as an adjuvant on castration-resistant prostate cancer (CRPC) patients. Methods: The lysate mix capacity, for inducing T-cell activation, was analysed by flow cytometry and Elispot. Delayed-type hypersensitivity (DTH) reaction against PCCL, frequency of CD8+ memory T cells (Tm) in blood and prostate-specific antigen (PSA) levels in serum were measured in treated patients. Results: The lysate mix induced functional mature DCs that were capable of activating PCCL-specific T cells. No relevant adverse reactions were observed. Six out of 14 patients showed a significant decrease in levels of PSA. DTH+ patients showed a prolonged PSA doubling-time after treatment. Expansion of functional central and effector CD8+ Tm were detected. Conclusion: Treatment of CRPC patients with lysate-loaded TAPCells and CCH as an adjuvant is safe: generating biochemical and memory immune responses. However, the limited number of cases requires confirmation in a phase II clinical trial.
Collapse
Affiliation(s)
- D Reyes
- 1] Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380453, Chile [2] Service of Urology, University of Chile Clinical Hospital, Santiago 8380453, Chile [3] Millennium Institute on Immunology and Immunotherapy, University of Chile, Santiago 8380453 Chile
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Pan P, Wu Y, Guo ZY, Wang R, Wang YJ, Yuan YF. Antitumor activity and immunomodulatory effects of the intraperitoneal administration of Kanglaite in vivo in Lewis lung carcinoma. JOURNAL OF ETHNOPHARMACOLOGY 2012; 143:680-685. [PMID: 22867634 DOI: 10.1016/j.jep.2012.07.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 06/18/2012] [Accepted: 07/23/2012] [Indexed: 06/01/2023]
Abstract
AIMS OF THE STUDY Kanglaite (KLT) is a useful antitumor drug with proven effects when combined with chemotherapy, radiotherapy or surgery. We hypothesize that KLT has antitumor activity and immunomodulatory effects in Lewis lung carcinoma. MATERIALS AND METHODS C57BL/6 mice with Lewis lung carcinoma were divided into four groups: the control group (C), cisplatin group (1 mg/kg, DDP), low KLT group (6.25 ml/kg body weight [L]), and high KLT group (12.5 ml/kg body weight [H]). T cell proliferation was determined by the MTT assay. Nuclear factor-kappa B (NF-κB), inhibitor kappa B alpha (IκBα), IκB kinase (IKK) and epidermal growth factor receptor (EGFR) levels were measured by western blotting. An enzyme-linked immunosorbent assay was used to analyze the expression of interleukin-2 (IL-2). RESULTS Intraperitoneal KLT significantly inhibited the growth of Lewis lung carcinoma, and the spleen index was significantly higher in the L and H groups than in the C group. KLT stimulated T cell proliferation in a dose-dependent manner. Treatment with KLT at either 6.25 or 12.5 ml/kg decreased the level of NF-κB in the nucleus in a dose-dependent manner, and KLT markedly decreased the expression of IκBα, IKK and EGFR in the cytoplasm of tumor cells and overall. IL-2 was significantly increased in the supernatant of splenocytes in the H group. CONCLUSIONS These results demonstrate that KLT has pronounced antitumor and immunostimulatory activities in C57BL/6 mice with Lewis lung carcinoma. These may affect the regulation of NF-κB/IκB expression, in addition to cytokines such as IL-2 and EGFR. Further work needs to investigate the relevant signaling pathway effects, but our findings suggest that KLT may be a promising antitumor drug for clinical use.
Collapse
Affiliation(s)
- Pei Pan
- Department of Pharmacy, NO.3 People's Hospital affiliated to Shanghai Jiao Tong University School of Medicine, No. 280, Mohe road, Baoshan District, Shanghai 201900, China
| | | | | | | | | | | |
Collapse
|
9
|
Wang Y, Wang K, Chao R, Li J, Zhou L, Ma J, Yan J. Neuroprotective Effect of Vaccination with Autoantigen-Pulsed Dendritic Cells After Spinal Cord Injury. J Surg Res 2012; 176:281-92. [DOI: 10.1016/j.jss.2011.06.066] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Revised: 05/15/2011] [Accepted: 06/27/2011] [Indexed: 12/17/2022]
|
10
|
Hunger RE, Kernland Lang K, Markowski CJ, Trachsel S, Møller M, Eriksen JA, Rasmussen AM, Braathen LR, Gaudernack G. Vaccination of patients with cutaneous melanoma with telomerase-specific peptides. Cancer Immunol Immunother 2011; 60:1553-64. [PMID: 21681371 PMCID: PMC11029400 DOI: 10.1007/s00262-011-1061-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 06/04/2011] [Indexed: 12/24/2022]
Abstract
PURPOSE A phase I study was conducted to investigate the safety, tolerability, and immunological responses to vaccination with a combination of telomerase-derived peptides GV1001 (hTERT: 611-626) and p540 (hTERT: 540-548) using granulocyte-macrophage colony-stimulating factor (GM-CSF) or tuberculin as adjuvant in patients with cutaneous melanoma. EXPERIMENTAL DESIGN Ten patients with melanoma stages UICC IIb-IV were vaccinated 8 times intradermally with either 60 or 300 nmole of GV1001 and p540 peptide using GM-CSF as adjuvant. A second group of patients received only 300 nmole GV1001 in combination with tuberculin PPD23 injections. HLA typing was not used as an inclusion criterion. Peptide-specific immune responses were measured by delayed-type hypersensitivity (DTH) reactions, in vitro T cell proliferation assays, and cytotoxicity (51-Chromium release) assays for a selected number of clones subsequently generated. RESULTS Vaccination was well tolerated in all patients. Peptide-specific immune response measured by DTH reactions and in vitro response could be induced in a dose-dependent fashion in 7 of 10 patients. Cloned T cells from the vaccinated patients showed proliferative responses against both vaccine peptides GV1001 and p540. Furthermore, T cell clones were able to specifically lyse p540-pulsed T2 target cells and various pulsed and unpulsed tumor cell lines. CONCLUSION These results demonstrate that immunity to hTERT can be generated safely and effectively in patients with advanced melanoma and therefore encourage further trials.
Collapse
Affiliation(s)
- Robert E Hunger
- Department of Dermatology, University of Berne, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Aguilera R, Saffie C, Tittarelli A, González FE, Ramírez M, Reyes D, Pereda C, Hevia D, García T, Salazar L, Ferreira A, Hermoso M, Mendoza-Naranjo A, Ferrada C, Garrido P, López MN, Salazar-Onfray F. Heat-Shock Induction of Tumor-Derived Danger Signals Mediates Rapid Monocyte Differentiation into Clinically Effective Dendritic Cells. Clin Cancer Res 2011; 17:2474-83. [DOI: 10.1158/1078-0432.ccr-10-2384] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Abstract
Transforming growth factor-beta (TGF-beta) is a multifunctional cytokine that functions to inhibit mammary tumorigenesis by directly inducing mammary epithelial cells (MECs) to undergo cell cycle arrest or apoptosis, and to secrete a variety of cytokines, growth factors, and extracellular matrix proteins that maintain cell and tissue homeostasis. Genetic and epigenetic events that transpire during mammary tumorigenesis typically inactivate the tumor suppressing activities of TGF-beta and ultimately confer this cytokine with tumor promoting activities, including the ability to stimulate breast cancer invasion, metastasis, angiogenesis, and evasion from the immune system. This dramatic conversion in TGF-beta function is known as the "TGF-beta paradox" and reflects a variety of dynamic alterations that occur not only within the developing mammary carcinoma, but also within the cellular and structural composition of its accompanying tumor microenvironment. Recent studies have begun to elucidate the critical importance of mammary tumor microenvironments in manifesting the TGF-beta paradox and influencing the response of developing mammary carcinomas to TGF-beta. Here we highlight recent findings demonstrating the essential function of tumor microenvironments in regulating the oncogenic activities of TGF-beta and its stimulation of metastatic progression during mammary tumorigenesis.
Collapse
Affiliation(s)
- Molly A. Taylor
- Case Comprehensive Cancer Center, Division of General Medical Sciences-Oncology, Case Western Reserve University, Cleveland, OH, USA
| | - Yong-Hun Lee
- Case Comprehensive Cancer Center, Division of General Medical Sciences-Oncology, Case Western Reserve University, Cleveland, OH, USA
| | - William P. Schiemann
- Case Comprehensive Cancer Center, Division of General Medical Sciences-Oncology, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
13
|
Rajesh D, Zhou Y, Jankowska-Gan E, Roenneburg DA, Dart ML, Torrealba J, Burlingham WJ. Th1 and Th17 immunocompetence in humanized NOD/SCID/IL2rgammanull mice. Hum Immunol 2010; 71:551-9. [PMID: 20298731 DOI: 10.1016/j.humimm.2010.02.019] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Revised: 02/16/2010] [Accepted: 02/18/2010] [Indexed: 11/15/2022]
Abstract
We evaluated the immunocompetence of human T cells in humanized NOD-SCID interleukin (IL)-2r-gamma-null (hu-NSG) mice bearing a human thymic organoid, after multilineage reconstitution with isogeneic human leukocytes. Delayed type hypersensitivity (DTH) response was assessed by a direct footpad challenge of the immunized hu-NSG host, or by transfer of splenocytes from immunized hu-NSG, along with antigen, into footpads of C.B-17 scid mice (trans vivo [tv] DTH). Both methods revealed cellular immunity to tetanus toxoid (TT) or collagen type V (ColV). Immunohistochemical analysis of the swollen footpads revealed infiltration of human CD45(+) cells, including CD3(+) T cells, CD68(+) macrophages, and murine Ly6G(+) neutrophils. We observed a significant correlation between the percentage of circulating human CD4(+) cells and the direct DTH swelling response to TT. The tvDTH response to TT was inhibited by anti-interferon-gamma, whereas the tvDTH response to collagen V was inhibited by anti-IL-17 antibody, mimicking the cytokine bias of adult human T cells to these antigens. hu-NSG mice were also capable of mounting a B-cell response (primarily IgM) to TT antigen. The activation of either Th1- or Th17-dependent cellular immune response supports the utility of hu-NSG mice as a surrogate model of allograft rejection and autoimmunity.
Collapse
Affiliation(s)
- Deepika Rajesh
- Department of Surgery, Transplant Division, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Macatangay BJC, Szajnik ME, Whiteside TL, Riddler SA, Rinaldo CR. Regulatory T cell suppression of Gag-specific CD8 T cell polyfunctional response after therapeutic vaccination of HIV-1-infected patients on ART. PLoS One 2010; 5:e9852. [PMID: 20352042 PMCID: PMC2844424 DOI: 10.1371/journal.pone.0009852] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 02/05/2010] [Indexed: 12/12/2022] Open
Abstract
We tested the hypothesis that therapeutic vaccination against HIV-1 can increase the frequency and suppressive function of regulatory, CD4+ T cells (Treg), thereby masking enhancement of HIV-1-specific CD8+ T cell response. HIV-1-infected subjects on antiretroviral therapy (N = 17) enrolled in a phase I therapeutic vaccine trial received 2 doses of autologous dendritic cells (DC) loaded with HIV-1 peptides. The frequency of CD4+CD25hiFOXP3+ Treg in blood was determined prior to and after vaccination in subjects and normal controls. Polyfunctional CD8+ T cell responses were determined pre- and post-vaccine (N = 7) for 5 immune mediators after in vitro stimulation with Gag peptide, staphylococcal enterotoxin B (SEB), or medium alone. Total vaccine response (post-vaccine–pre-vaccine) was compared in the Treg(+) and Treg-depleted (Treg-) sets. After vaccination, 12/17 subjects showed a trend of increased Treg frequency (P = 0.06) from 0.74% to 1.2%. The increased frequency did not correlate with CD8+ T cell vaccine response by enzyme linked immunosorbent assay for interferon γ production. Although there was no significant change in CD8+ T cell polyfunctional response after vaccination, Treg depletion increased the polyfunctionality of the total vaccine response (P = 0.029), with a >2-fold increase in the percentage of CD8+ T cells producing multiple immune mediators. In contrast, depletion of Treg did not enhance polyfunctional T cell response to SEB, implying specificity of suppression to HIV-1 Gag. Therapeutic immunization with a DC-based vaccine against HIV-1 caused a modest increase in Treg frequency and a significant increase in HIV-1-specific, Treg suppressive function. The Treg suppressive effect masked an increase in the vaccine-induced anti-HIV-1-specific polyfunctional response. The role of Treg should be considered in immunotherapeutic trials of HIV-1 infection.
Collapse
Affiliation(s)
- Bernard J C Macatangay
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America.
| | | | | | | | | |
Collapse
|
15
|
Enhanced inhibition of tumor growth with depletion of CD25 regulatory cells and intratumoral immunization with tumor RNA-pulsed dendritic cells in a C57BL/6 pancreatic tumor model. Pancreas 2009; 38:602-4. [PMID: 19550282 DOI: 10.1097/mpa.0b013e3181a11bde] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
|
16
|
López MN, Pereda C, Segal G, Muñoz L, Aguilera R, González FE, Escobar A, Ginesta A, Reyes D, González R, Mendoza-Naranjo A, Larrondo M, Compán A, Ferrada C, Salazar-Onfray F. Prolonged Survival of Dendritic Cell–Vaccinated Melanoma Patients Correlates With Tumor-Specific Delayed Type IV Hypersensitivity Response and Reduction of Tumor Growth Factor β-Expressing T Cells. J Clin Oncol 2009; 27:945-52. [DOI: 10.1200/jco.2008.18.0794] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PurposeThe aim of this work was to assess immunologic response, disease progression, and post-treatment survival of melanoma patients vaccinated with autologous dendritic cells (DCs) pulsed with a novel allogeneic cell lysate (TRIMEL) derived from three melanoma cell lines.Patients and MethodsForty-three stage IV and seven stage III patients were vaccinated four times with TRIMEL/DC vaccine. Specific delayed type IV hypersensitivity (DTH) reaction, ex vivo cytokine production, and regulatory T-cell populations were determined. Overall survival and disease progression rates were analyzed using Kaplan-Meier curves and compared with historical records.ResultsThe overall survival for stage IV patients was 15 months. More than 60% of patients showed DTH-positive reaction against the TRIMEL. Stage IV/DTH-positive patients displayed a median survival of 33 months compared with 11 months observed for DTH-negative patients (P = .0014). All stage III treated patients were DTH positive and remained alive and tumor free for a median follow-up period of 48 months (range, 33 to 64 months). DTH-positive patients showed a marked reduction in the proportion of CD4+ transforming growth factor (TGF) β+ regulatory T cells compared to DTH-negative patients (1.54% v 5.78%; P < .0001).ConclusionOur findings strongly suggest that TRIMEL-pulsed DCs provide a standardized and widely applicable source of melanoma antigens, very effective in evoking antimelanoma immune response. To our knowledge, this is the first report describing a correlation between vaccine-induced reduction of CD4+TGFβ+ regulatory T cells and in vivo antimelanoma immune response associated to improved patient survival and disease stability.
Collapse
Affiliation(s)
- Mercedes N. López
- From the Millennium Nucleus on Immunology and Immunotherapy, Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile; Research Support Office, Clinical Hospital of the University of Chile, Santiago; and the Regional Hospital of Concepción, Concepción, Chile
| | - Cristian Pereda
- From the Millennium Nucleus on Immunology and Immunotherapy, Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile; Research Support Office, Clinical Hospital of the University of Chile, Santiago; and the Regional Hospital of Concepción, Concepción, Chile
| | - Gabriela Segal
- From the Millennium Nucleus on Immunology and Immunotherapy, Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile; Research Support Office, Clinical Hospital of the University of Chile, Santiago; and the Regional Hospital of Concepción, Concepción, Chile
| | - Leonel Muñoz
- From the Millennium Nucleus on Immunology and Immunotherapy, Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile; Research Support Office, Clinical Hospital of the University of Chile, Santiago; and the Regional Hospital of Concepción, Concepción, Chile
| | - Raquel Aguilera
- From the Millennium Nucleus on Immunology and Immunotherapy, Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile; Research Support Office, Clinical Hospital of the University of Chile, Santiago; and the Regional Hospital of Concepción, Concepción, Chile
| | - Fermín E. González
- From the Millennium Nucleus on Immunology and Immunotherapy, Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile; Research Support Office, Clinical Hospital of the University of Chile, Santiago; and the Regional Hospital of Concepción, Concepción, Chile
| | - Alejandro Escobar
- From the Millennium Nucleus on Immunology and Immunotherapy, Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile; Research Support Office, Clinical Hospital of the University of Chile, Santiago; and the Regional Hospital of Concepción, Concepción, Chile
| | - Alexandra Ginesta
- From the Millennium Nucleus on Immunology and Immunotherapy, Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile; Research Support Office, Clinical Hospital of the University of Chile, Santiago; and the Regional Hospital of Concepción, Concepción, Chile
| | - Diego Reyes
- From the Millennium Nucleus on Immunology and Immunotherapy, Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile; Research Support Office, Clinical Hospital of the University of Chile, Santiago; and the Regional Hospital of Concepción, Concepción, Chile
| | - Rodrigo González
- From the Millennium Nucleus on Immunology and Immunotherapy, Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile; Research Support Office, Clinical Hospital of the University of Chile, Santiago; and the Regional Hospital of Concepción, Concepción, Chile
| | - Ariadna Mendoza-Naranjo
- From the Millennium Nucleus on Immunology and Immunotherapy, Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile; Research Support Office, Clinical Hospital of the University of Chile, Santiago; and the Regional Hospital of Concepción, Concepción, Chile
| | - Milton Larrondo
- From the Millennium Nucleus on Immunology and Immunotherapy, Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile; Research Support Office, Clinical Hospital of the University of Chile, Santiago; and the Regional Hospital of Concepción, Concepción, Chile
| | - Alvaro Compán
- From the Millennium Nucleus on Immunology and Immunotherapy, Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile; Research Support Office, Clinical Hospital of the University of Chile, Santiago; and the Regional Hospital of Concepción, Concepción, Chile
| | - Carlos Ferrada
- From the Millennium Nucleus on Immunology and Immunotherapy, Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile; Research Support Office, Clinical Hospital of the University of Chile, Santiago; and the Regional Hospital of Concepción, Concepción, Chile
| | - Flavio Salazar-Onfray
- From the Millennium Nucleus on Immunology and Immunotherapy, Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile; Research Support Office, Clinical Hospital of the University of Chile, Santiago; and the Regional Hospital of Concepción, Concepción, Chile
| |
Collapse
|
17
|
Sheeja K, Kuttan G. Effect ofAndrographis paniculataas an Adjuvant in Combined Chemo-Radio and Whole Body Hyperthermia Treatment—A Preliminary Study. Immunopharmacol Immunotoxicol 2008; 30:181-94. [DOI: 10.1080/08923970701692916] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Salazar L, Aravena O, Abello P, Escobar A, Contreras-Levicoy J, Rojas-Colonelli N, Catalán D, Aguirre A, Zúñiga R, Pesce B, González C, Cepeda R, Cuchacovich M, Molina MC, Salazar-Onfray F, Delgado M, Toes RE, Aguillón JC. Modulation of established murine collagen-induced arthritis by a single inoculation of short-term lipopolysaccharide-stimulated dendritic cells. Ann Rheum Dis 2008; 67:1235-41. [PMID: 18056756 DOI: 10.1136/ard.2007.072199] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND The use of regulatory or immature dendritic cells (DCs) as tools for modulating experimental rheumatoid arthritis is very recent. Tumour necrosis factor (TNF)-stimulated DCs have been shown to restore tolerance in experimental autoimmune encephalomyelitis and collagen-induced arthritis (CIA). OBJECTIVE We investigated the capacity of short-term lipopolysaccharide (LPS)-stimulated DCs pulsed with type II collagen (CII) to induce tolerance against established CIA. METHODS Bone marrow-derived DCs were generated in the presence of granulocyte monocyte colony-stimulating factor (GM-CSF). After CIA induction, mice were injected at day 35 with a single dose of 4- or 24-h LPS-stimulated DCs that had been loaded with CII (4hLPS/CII/DCs or 24hLPS/CII/DCs). Arthritis progression was monitored by clinical and histological evaluations. RESULTS Flow cytometry of 4hLPS/CII/DCs showed intermediate CD40 and CD86 expression, lower than that of 24hLPS/CII/DCs (fully mature) and higher than that of CII/DCs (immature). A functional assay showed that 4hLPS/CII/DCs display increased endocytosis ability with respect to 24hLPS/CII/DCs, indicating a semimature state. The single inoculation of 4hLPS/CII/DCs in mice with established CIA reduced disease severity significantly over time. Histological evaluation of mice treated with 4hLPS/CII/DCs revealed diminished inflammatory synovitis, cartilage damage and fibrosis. Co-cultures of DCs with splenocytes from CIA mice showed that collagen-specific interferon (IFN)gamma production was dramatically inhibited by 4hLPS/CII/DCs. 4hLPS/CII/DCs were high IL10 producers, which could explain the inhibition of arthritis progression in mice receiving this treatment because neither antibodies nor regulatory CD4+CD25+Foxp3+ T lymphocytes were demonstrated to be involved. CONCLUSION Short-term LPS-modulated DCs inoculation interferes with CIA progression when loaded with CII.
Collapse
Affiliation(s)
- L Salazar
- Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ridolfi L, Petrini M, Fiammenghi L, Riccobon A, Ridolfi R. Human embryo immune escape mechanisms rediscovered by the tumor. Immunobiology 2008; 214:61-76. [PMID: 19159828 DOI: 10.1016/j.imbio.2008.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 02/29/2008] [Accepted: 03/10/2008] [Indexed: 01/05/2023]
Abstract
Towards the end of the 1990s, the two opposing theories on immunosurveillance and immunostimulation were extensively studied by researchers in an attempt to understand the complex mechanisms that regulate the relation between tumors and the host's immune system. Both theories probably have elements that would help us to comprehend how the host can induce anti-tumor clinical responses through stimulation of the immune system and which could also give us a deeper insight into the mechanisms of tumor immunosuppression. The model that most resembles the behavior of tumor cells in terms of growth, infiltration and suppression of the immune system of the environment in which they live is undoubtedly that of the embryonic cell. The fetus behaves like an allogenic transplant within the mother's body, using every means it has to escape from and defend itself against the mother's immune system. The majority of these mechanisms are the same as those found in tumor cells: antigenic loss, lack of expression of classic HLA-I molecules, production of immunosuppressive cytokines, induction of lack of expression of co-stimulatory molecules in antigen presenting cells, and induction of apoptosis in infiltrating lymphocytes, with activation of a type Th2 regulatory lymphocyte response. A careful and comparative study of key mechanisms capable of triggering tolerance or cytotoxicity in both embryonic and tumor cells could prove immensely valuable in designing new strategies for anti-tumor immunotherapy.
Collapse
Affiliation(s)
- Laura Ridolfi
- Immunotherapy and Somatic Cell Therapy Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Via Maroncelli 40, Meldola 47014, Italy.
| | | | | | | | | |
Collapse
|
20
|
Kronik N, Kogan Y, Vainstein V, Agur Z. Improving alloreactive CTL immunotherapy for malignant gliomas using a simulation model of their interactive dynamics. Cancer Immunol Immunother 2008; 57:425-39. [PMID: 17823798 PMCID: PMC11030586 DOI: 10.1007/s00262-007-0387-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Accepted: 08/07/2007] [Indexed: 11/30/2022]
Abstract
Glioblastoma (GBM), a highly aggressive (WHO grade IV) primary brain tumor, is refractory to traditional treatments, such as surgery, radiation or chemotherapy. This study aims at aiding in the design of more efficacious GBM therapies. We constructed a mathematical model for glioma and the immune system interactions, that may ensue upon direct intra-tumoral administration of ex vivo activated alloreactive cytotoxic-T-lymphocytes (aCTL). Our model encompasses considerations of the interactive dynamics of aCTL, tumor cells, major histocompatibility complex (MHC) class I and MHC class II molecules, as well as cytokines, such as TGF-beta and IFN-gamma, which dampen or increase the pro-inflammatory environment, respectively. Computer simulations were used for model verification and for retrieving putative treatment scenarios. The mathematical model successfully retrieved clinical trial results of efficacious aCTL immunotherapy for recurrent anaplastic oligodendroglioma and anaplastic astrocytoma (WHO grade III). It predicted that cellular adoptive immunotherapy failed in GBM because the administered dose was 20-fold lower than required for therapeutic efficacy. Model analysis suggests that GBM may be eradicated by new dose-intensive strategies, e.g., 3 x 10(8) aCTL every 4 days for small tumor burden, or 2 x 10(9) aCTL, infused every 5 days for larger tumor burden. Further analysis pinpoints crucial bio-markers relating to tumor growth rate, tumor size, and tumor sensitivity to the immune system, whose estimation enables regimen personalization. We propose that adoptive cellular immunotherapy was prematurely abandoned. It may prove efficacious for GBM, if dose intensity is augmented, as prescribed by the mathematical model. Re-initiation of clinical trials, using calculated individualized regimens for grade III-IV malignant glioma, is suggested.
Collapse
Affiliation(s)
- Natalie Kronik
- Institute for Medical BioMathematics (IMBM), 10 Hate'ena St., PO Box 282, Bene Ataroth 60991, Israel.
| | | | | | | |
Collapse
|
21
|
De Panfilis G, Campanini N, Santini M, Mori G, Tognetti E, Maestri R, Lombardi M, Froio E, Ferrari D, Ricci R. Phase- and Stage-Related Proportions of T Cells Bearing the Transcription Factor FOXP3 Infiltrate Primary Melanoma. J Invest Dermatol 2008; 128:676-84. [PMID: 17851585 DOI: 10.1038/sj.jid.5701046] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although tumor-infiltrating lymphocytes (TILs) of primary cutaneous melanoma (PCM) include cytolytic T cells able to exert anti-PCM immunity, progression of PCM most frequently occurs, raising the hypothesis that the PCM microenvironment may also exert suppressive forces, for example, possibly developed by regulatory T (T(REG)) lymphocytes. The aim of this study was to investigate whether TILs of PCMs include lymphocytes bearing the transcription factor forkhead box protein P3 (FOXP3), which is the T(REG) lineage specification molecule in mice, and is debated to have a similar role in humans. Fourteen patients with PCM were selected, of which four had radial growth phase (RGP) stage I melanoma, five had vertical growth phase (VGP) stage I melanoma, and five had VGP stage III-IV melanoma. Formalin-fixed, paraffin-embedded sections were utilized for immunohistochemical single and double stainings. TILs of PCMs included FOXP3-bearing lymphocytes, which predominantly were CD20- and CD8-negative, but CD3-, CD4-, and CD25-positive, thus consistent with the standard immunophenotypical characteristics of "natural" T(REG) cells. Further, the proportions of FOXP3-bearing lymphocytes were higher in vertical than in RGP (P=0.001), as well as in late than in early melanoma stages (P<0.001). Should these FOXP3-bearing lymphocytes actually exert regulatory capabilities within the PCM microenvironment, they may suppress "in vivo" the local anti-PCM immune response, thus favoring melanoma progression.
Collapse
Affiliation(s)
- Giuseppe De Panfilis
- Section of Dermatology, Department of Surgical Sciences, Parma University, Parma, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Wrzesinski SH, Wan YY, Flavell RA. Transforming growth factor-beta and the immune response: implications for anticancer therapy. Clin Cancer Res 2007; 13:5262-70. [PMID: 17875754 DOI: 10.1158/1078-0432.ccr-07-1157] [Citation(s) in RCA: 342] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Immune homeostasis is a delicate balance between the immune defense against foreign pathogens and suppression of the immune system to maintain self-tolerance and prevent autoimmune disease. Maintenance of this balance involves several crucial networks of cytokines and various cell types. Among these regulators, transforming growth factor-beta (TGF-beta) is a potent cytokine with diverse effects on hematopoietic cells. Its pivotal function within the immune system is to maintain tolerance via the regulation of lymphocyte proliferation, differentiation, and survival. In addition, TGF-beta controls the initiation and resolution of inflammatory responses through the regulation of chemotaxis and activation of leukocytes in the periphery, including lymphocytes, natural killer cells, dendritic cells, macrophages, mast cells, and granulocytes. Through its pleiotropic effects on these immune cells, TGF-beta prevents the development of autoimmune diseases without compromising immune responses to pathogens. However, overactivation of this pathway can lead to several immunopathologies under physiologic conditions including cancer progression, making it an attractive target for antitumor therapies. This review discusses the biological functions of TGF-beta and its effects on the immune system and addresses how immunosuppression by this cytokine can promote tumorigenesis, providing the rationale for evaluating the immune-enhancing and antitumor effects of inhibiting TGF-beta in cancer patients.
Collapse
Affiliation(s)
- Stephen H Wrzesinski
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | |
Collapse
|
23
|
Overcoming immune tolerance against multiple myeloma with lentiviral calnexin-engineered dendritic cells. Mol Ther 2007; 16:269-79. [PMID: 18071334 DOI: 10.1038/sj.mt.6300369] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The key to successful cancer immunotherapy is to induce an effective anticancer immunity that will overcome the acquired cancer-specific immune tolerance. In this study, we found that dendritic cells (DCs) from multiple myeloma (MM) patients suppressed rather than induced a cancer cell-specific immune response. We demonstrated that CD4(+)CD25(high) T cells from MM patients suppressed the proliferation of activated peripheral blood lymphocytes. Further analysis illustrated that MM cell lysates or MM-specific idiotype immunoglobulins (MM Id-Ig) specifically induced the expansion of peripheral CD4(+)CD25(high)FoxP3(high) T regulatory (Treg) cells in vitro. Supraphysiological expression of calnexin (CNX) using lentiviral (LV) vectors in DCs of MM patients overcame the immune suppression and enhanced MM-specific CD4 and CD8 T-cell responses. However, overexpression of CNX did not affect the peripheral expansion of Treg cells stimulated by MM antigens. Thus, the immune suppression effect of Treg cells in cancer patients may be overcome by improving antigen processing in DCs, which in turn may lower the activation threshold of the immune effector cells. This concept of modulating anticancer immunity by genetically engineering cancer patients' DCs may improve immunotherapeutic regimens in cancer treatment.
Collapse
|
24
|
Liao HF, Su SL, Chen YJ, Chou CH, Kuo CD. Norcantharidin preferentially induces apoptosis in human leukemic Jurkat cells without affecting viability of normal blood mononuclear cells. Food Chem Toxicol 2007; 45:1678-87. [PMID: 17442474 DOI: 10.1016/j.fct.2007.03.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Revised: 10/27/2006] [Accepted: 03/02/2007] [Indexed: 01/17/2023]
Abstract
Norcantharidin (NCTD) is known to have anti-cancer potentials. The aim of this study was to assess the apoptosis-inducing effect of NCTD on human leukemic Jurkat cells. We found that NCTD preferentially inhibited the growth of Jurkat cells in a dose- and time-dependent manner, but not the growth of normal blood mononuclear cells (MNC). Pretreatment with agonistic (CH-11) and antagonistic (ZB4) Fas antibodies on Jurkat cells showed that NCTD-induced apoptosis might not involve Fas-FasL signaling. Flow cytometric assay of Jurkat cells treated with NCTD showed a markedly increased sub-G1 DNA phase and cell cycle arrest at S phase. Western blot analysis of NCTD-treated cells showed increased expressions of cytochrome c, active caspase-9 and -3, and cleavage of poly(ADP-ribose) polymerase (PARP), but the expressions of Bcl-2, Bax and apoptosis-inducing factor were not increased. The transcription factor STAT1 was translocated from cytosol to nucleus. Pancaspase inhibitor z-VAD-FMK not only limited the level of sub-G1 phase, but also prevented the degradation of PARP in NCTD-treated cells. The NCTD-induced cell cycle arrest and apoptosis were mediated through the regulation of ataxia-telangiectasia mutated (ATM), rather than P63 protein. The conditioned medium produced from human MNC (NCTD-MNC-CM) increased the percentage of apoptotic cells and the expression of PARP cleavage in Jurkat cells. Protein array assay of NCTD-MNC-CM showed 32.4- and 6.2-folds increases in TNF-alpha and GM-CSF, respectively, and the expression of MCP-1, GRO, RANTES and IL-10 was decreased. We conclude that NCTD can induce apoptosis in human leukemic Jurkat cells via a caspase-dependent pathway without affecting the viability of normal MNC, and that the apoptosis-inducing effect of NCTD can also be achieved by soluble cytokines produced from peripheral MNC.
Collapse
Affiliation(s)
- Hui-Fen Liao
- Laboratory of Biophysics, Department of Research and Education, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | | | | | | | | |
Collapse
|
25
|
Nesburn AB, Bettahi I, Dasgupta G, Chentoufi AA, Zhang X, You S, Morishige N, Wahlert AJ, Brown DJ, Jester JV, Wechsler SL, BenMohamed L. Functional Foxp3+ CD4+ CD25(Bright+) "natural" regulatory T cells are abundant in rabbit conjunctiva and suppress virus-specific CD4+ and CD8+ effector T cells during ocular herpes infection. J Virol 2007; 81:7647-61. [PMID: 17475646 PMCID: PMC1933381 DOI: 10.1128/jvi.00294-07] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We studied the phenotype and distribution of "naturally" occurring CD4(+) CD25(+) T regulatory cells (CD4(+) CD25(+) nT(reg) cells) resident in rabbit conjunctiva, the main T-cell inductive site of the ocular mucosal immune system, and we investigated their suppressive capacities using herpes simplex virus type 1 (HSV-1)-specific effector T (T(eff)) cells induced during ocular infection. The expression of CD4, CD25, CTLA4, GITR, and Foxp3 was examined by reverse transcription-PCR, Western blotting, and fluorescence-activated cell sorter analysis in CD45(+) pan-leukocytes isolated from conjunctiva, spleen, and peripheral blood monocyte cells (PBMC) of HSV-1-infected and uninfected rabbits. Normal conjunctiva showed a higher frequency of CD4(+) CD25((Bright+)) T cells than did spleen and PBMC. These cells expressed high levels of Foxp3, GITR, and CTLA4 molecules. CD4(+) CD25((Bright+)) T cells were localized continuously along the upper and lower palpebral and bulbar conjunctiva, throughout the epithelium and substantia propria. Conjunctiva-derived CD4(+) CD25((Bright+)) T cells, but not CD4(+) CD25((low)) T cells, efficiently suppressed HSV-specific CD4(+) and CD8(+) T(eff) cells. The CD4(+) CD25((Bright+)) T-cell-mediated suppression was effective on both peripheral blood and conjunctiva infiltrating T(eff) cells and was cell-cell contact dependent but independent of interleukin-10 and transforming growth factor beta. Interestingly, during an ocular herpes infection, there was a selective increase in the frequency and suppressive capacity of Foxp3(+) CD4(+) CD25((Bright+)) T cells in conjunctiva but not in the spleen or in peripheral blood. Altogether, these results provide the first evidence that functional Foxp3(+) CD4(+) CD25((Bright+)) T(reg) cells accumulate in the conjunctiva. It remains to be determined whether conjunctiva CD4(+) CD25(+) nT(reg) cells affect the topical/mucosal delivery of subunit vaccines that stimulate the ocular mucosal immune system.
Collapse
Affiliation(s)
- Anthony B Nesburn
- Cellular and Molecular Immunology Laboratory, The Eye Institute, University of California, Irvine, CA 92697-4375, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Salazar-Onfray F, López MN, Mendoza-Naranjo A. Paradoxical effects of cytokines in tumor immune surveillance and tumor immune escape. Cytokine Growth Factor Rev 2007; 18:171-82. [PMID: 17329145 DOI: 10.1016/j.cytogfr.2007.01.015] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The role of cytokines in modulating the formation of new tumors is mediated by their ability to regulate antigen-specific anti-tumor responses and by the activation of non-specific mechanisms, including those involved in the processes of inflammation and innate resistance. Cytokines may influence the growth of tumors by acting directly on tumor cells as growth promoting or growth inhibiting factors or indirectly by attracting inflammatory cell types and affecting angiogenesis. Due to the potency and complexity of cytokine activity against tumor growth, the improvement of cloning techniques and the availability of recombinant forms of different cytokines, a great effort has been made in the recent years to exploit this anti-tumor potential for cancer therapy. This important goal has been difficult to achieve in most cases due to toxicity of most cytokines which could not be dissociated from their anti-tumoral functions. Nevertheless, if well designed, treatment protocols and/or modifications of the cytokine molecules may in some situations augment the anti-tumor effects while limiting the toxicity. One of these molecular approaches could be the design of peptides containing the functional domain of certain cytokines, exemplified by IT9302, a peptide homologous to the functional domain of IL-10, which has demonstrated to increase tumor NK cell sensitivity.
Collapse
Affiliation(s)
- Flavio Salazar-Onfray
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile.
| | | | | |
Collapse
|
27
|
Ralph SJ. An update on malignant melanoma vaccine research: insights into mechanisms for improving the design and potency of melanoma therapeutic vaccines. Am J Clin Dermatol 2007; 8:123-41. [PMID: 17492842 DOI: 10.2165/00128071-200708030-00001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Currently, cancer vaccine therapy for melanoma has a 2-fold focus. On the one hand, advances have been aimed at improving the effectiveness of melanoma vaccines based on a greater understanding of melanoma tumor cell biology. On the other hand, there is increasing evidence that the immune system, our defense against tumors, also inadvertently plays a supportive role in promoting the development and progression of tumors. Hence, two opposing forces 'hanging in the balance' dictate patients' responses to melanoma: tumor cell biology and the status of the immune system. Recent developments in our understanding of both of these aspects have provided new leads and insights for novel ways to improve vaccine design and add to the melanoma vaccine armory. As the focus of immunotherapy shifts its aim towards the tumor microenvironment, we are now developing the ability to program the immune responses raised by vaccination against melanoma. The aim here is to prevent myeloid and regulatory T-cell-mediated immune suppression as well as to counteract tumor-derived factors capable of suppressing immune responses. A redirected strategy for vaccine immunotherapy is proposed based on our greater understanding of tumor immunity. Using a combination therapy of immune-potentiating melanoma vaccines together with adjuvants for overcoming the immunosuppressive forces will allow us to activate protective immunity against melanoma. Other cancer vaccines (i.e. colon or renal) are already offering reasons for hope and expectation that vaccine immunotherapy will also produce successful outcomes for patients with melanoma.
Collapse
Affiliation(s)
- Stephen John Ralph
- School of Medical Science, Griffith University, Gold Coast, Queensland, Australia.
| |
Collapse
|