1
|
Karimbayova GN, Gasimov EK, Mahmudov FR, Rzayev FH, Khalilov R, Eftekhari A, Baran A. Ultrastructural characteristics of leishmania (L.)tropica (Wright, 1903) and cell-parasite relationships in cutaneous leishmaniasis. Light and electron microscopic study. Exp Parasitol 2025; 269:108887. [PMID: 39743192 DOI: 10.1016/j.exppara.2024.108887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/11/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
A light and electron microscopic study of skin biopsies taken from 9 patients with ulcerative leishmaniasis of both sexes aged from 14 to 26 years in the territory of the Republic of Azerbaijan was carried out. Based on clinical, morphological and electron microscopic parameters, all patients were diagnosed with ulcerative cutaneous anthroponotic leishmaniasis (Leishmania (L.) tropica). Stained and unstained ultrathin (50-70 nm) sections were viewed and photographed using a JEM-1400 transmission electron microscope at an accelerating voltage of 80-120 kV. Analysis of data from light and electron microscopic studies at the ultrastructural level made it possible to describe the structure and identify the morphometric parameters of the amastigote form of the intracellular parasite. Besides, it was found that the distance between the plasmalemmas of the parasitophorous vacuoles and the parasite L. (L.) tropica is only 1 nm. This facilitates the passage of the necessary nutrients for the survival of this parasite. One of the important factors in the chronic course and relapse of leishmaniasis caused by L.(L.) tropica is the penetration of the amastigote stage into the cytoplasm along with macrophages, and also into fibroblasts with low phagocytic activity. Pathological changes (deformed nucleus, damage to plasmalemma, focal destruction of the cytoplasm structures, vacuolization, etc.) in the parasite L. (L.) tropica, localized in macrophages, were identified and described.
Collapse
Affiliation(s)
| | - Eldar K Gasimov
- Department of Cytology, Embryology and Histology, Azerbaijan Medical University, Baku, Azerbaijan.
| | - Farid R Mahmudov
- Department of Dermatovenereology, Azerbaijan Medical University, Baku, Azerbaijan
| | - Fuad H Rzayev
- Department of Electron Microscopy, Scientific Research Center, Azerbaijan Medical University, Baku, Azerbaijan; Laboratory of Parasitology, Institute of Zoology, Ministry of Science and Education, Baku, Azerbaijan; Western Caspian University, Istiglaliyyat Street 31, AZ1001, Baku, Azerbaijan
| | - Rovshan Khalilov
- Department of Biophysics and Biochemistry, Baku State University, Baku, Azerbaijan
| | - Aziz Eftekhari
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry, Faculty of Science, Ege University, Izmir 35040, Turkey; Engineered Biomaterials Research Center, Department of Life Sciences, Khazar University, Baku, Azerbaijan.
| | - Ayşe Baran
- Department of Biology, Graduate Education Institute, Mardin Artuklu University, Mardin, Türkiye
| |
Collapse
|
2
|
Lee SH, Sacks DL. Resilience of dermis resident macrophages to inflammatory challenges. Exp Mol Med 2024; 56:2105-2112. [PMID: 39349826 PMCID: PMC11542019 DOI: 10.1038/s12276-024-01313-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/24/2024] [Accepted: 07/04/2024] [Indexed: 10/03/2024] Open
Abstract
The skin serves as a complex barrier organ populated by tissue-resident macrophages (TRMs), which play critical roles in defense, homeostasis, and tissue repair. This review examines the functions of dermis resident TRMs in different inflammatory settings, their embryonic origins, and their long-term self-renewal capabilities. We highlight the M2-like phenotype of dermal TRMs and their specialized functions in perivascular and perineuronal niches. Their interactions with type 2 immune cells, autocrine cytokines such as IL-10, and their phagocytic clearance of apoptotic cells have been explored as mechanisms for M2-like dermal TRM self-maintenance and function. In conclusion, we address the need to bridge murine models with human studies, with the possibility of targeting TRMs to promote skin immunity or restrain cutaneous pathology.
Collapse
Affiliation(s)
- Sang Hun Lee
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David L Sacks
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
Baars I, Jaedtka M, Dewitz LA, Fu Y, Franz T, Mohr J, Gintschel P, Berlin H, Degen A, Freier S, Rygol S, Schraven B, Kahlfuß S, van Zandbergen G, Müller AJ. Leishmania major drives host phagocyte death and cell-to-cell transfer depending on intracellular pathogen proliferation rate. JCI Insight 2023; 8:e169020. [PMID: 37310793 PMCID: PMC10443809 DOI: 10.1172/jci.insight.169020] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/05/2023] [Indexed: 06/15/2023] Open
Abstract
The virulence of intracellular pathogens relies largely on the ability to survive and replicate within phagocytes but also on release and transfer into new host cells. Such cell-to-cell transfer could represent a target for counteracting microbial pathogenesis. However, our understanding of the underlying cellular and molecular processes remains woefully insufficient. Using intravital 2-photon microscopy of caspase-3 activation in the Leishmania major-infected (L. major-infected) live skin, we showed increased apoptosis in cells infected by the parasite. Also, transfer of the parasite to new host cells occurred directly without a detectable extracellular state and was associated with concomitant uptake of cellular material from the original host cell. These in vivo findings were fully recapitulated in infections of isolated human phagocytes. Furthermore, we observed that high pathogen proliferation increased cell death in infected cells, and long-term residency within an infected host cell was only possible for slowly proliferating parasites. Our results therefore suggest that L. major drives its own dissemination to new phagocytes by inducing host cell death in a proliferation-dependent manner.
Collapse
Affiliation(s)
- Iris Baars
- Experimental Immunodynamics, Institute of Molecular and Clinical Immunology, Medical Faculty, and
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty and Center for Health and Medical Prevention (CHaMP), Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Moritz Jaedtka
- Division of Immunology, Paul Ehrlich Institute, Langen, Germany
- Institute for Immunology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Leon-Alexander Dewitz
- Experimental Immunodynamics, Institute of Molecular and Clinical Immunology, Medical Faculty, and
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty and Center for Health and Medical Prevention (CHaMP), Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Yan Fu
- Experimental Immunodynamics, Institute of Molecular and Clinical Immunology, Medical Faculty, and
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty and Center for Health and Medical Prevention (CHaMP), Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Tobias Franz
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty and Center for Health and Medical Prevention (CHaMP), Otto von Guericke University Magdeburg, Magdeburg, Germany
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Juliane Mohr
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty and Center for Health and Medical Prevention (CHaMP), Otto von Guericke University Magdeburg, Magdeburg, Germany
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Patricia Gintschel
- Experimental Immunodynamics, Institute of Molecular and Clinical Immunology, Medical Faculty, and
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty and Center for Health and Medical Prevention (CHaMP), Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Hannes Berlin
- Experimental Immunodynamics, Institute of Molecular and Clinical Immunology, Medical Faculty, and
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty and Center for Health and Medical Prevention (CHaMP), Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Angelina Degen
- Experimental Immunodynamics, Institute of Molecular and Clinical Immunology, Medical Faculty, and
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty and Center for Health and Medical Prevention (CHaMP), Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Sandra Freier
- Experimental Immunodynamics, Institute of Molecular and Clinical Immunology, Medical Faculty, and
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty and Center for Health and Medical Prevention (CHaMP), Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Stefan Rygol
- Experimental Immunodynamics, Institute of Molecular and Clinical Immunology, Medical Faculty, and
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty and Center for Health and Medical Prevention (CHaMP), Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Burkhart Schraven
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty and Center for Health and Medical Prevention (CHaMP), Otto von Guericke University Magdeburg, Magdeburg, Germany
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Sascha Kahlfuß
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty and Center for Health and Medical Prevention (CHaMP), Otto von Guericke University Magdeburg, Magdeburg, Germany
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Ger van Zandbergen
- Division of Immunology, Paul Ehrlich Institute, Langen, Germany
- Institute for Immunology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Andreas J. Müller
- Experimental Immunodynamics, Institute of Molecular and Clinical Immunology, Medical Faculty, and
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty and Center for Health and Medical Prevention (CHaMP), Otto von Guericke University Magdeburg, Magdeburg, Germany
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
4
|
Valadares DG, Clay OS, Chen Y, Scorza BM, Cassel SL, Sutterwala FS, Wilson ME. NLRP12-expressing dendritic cells mediate both dissemination of infection and adaptive immune responses in visceral leishmaniasis. iScience 2023; 26:106163. [PMID: 36879824 PMCID: PMC9985045 DOI: 10.1016/j.isci.2023.106163] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/26/2022] [Accepted: 01/02/2023] [Indexed: 02/10/2023] Open
Abstract
The NLR protein NLRP12 contributes to innate immunity, but the mechanism remains elusive. Infection of Nlrp12 -/- or wild-type mice with Leishmania infantum led to aberrant parasite tropism. Parasites replicated to higher levels in livers of Nlrp12 -/- mice than in the livers of WT mice and failed to disseminate to spleens. Most retained liver parasites resided in dendritic cells (DCs), with correspondingly fewer infected DCs in spleens. Furthermore, Nlrp12 -/- DCs expressed lower CCR7 than WT DCs, failed to migrate toward CCL19 or CCL21 in chemotaxis assays, and migrated poorly to draining lymph nodes after sterile inflammation. Leishmania-infected Nlpr12 -/- DCs were significantly less effective at transporting parasites to lymph nodes than WT DCs. Consistently, adaptive immune responses were also impaired in infected Nlrp12 -/- mice. We hypothesize that Nlrp12-expressing DCs are required for efficient dissemination and immune clearance of L. infantum from the site of initial infection. This is at least partly due to the defective expression of CCR7.
Collapse
Affiliation(s)
- Diogo Garcia Valadares
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Owen Scott Clay
- Department of Pediatrics, Division of Pediatric Rheumatology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Yani Chen
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Breanna Mary Scorza
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA 52242, USA
| | - Suzanne Louise Cassel
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Fayyaz Shiraz Sutterwala
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Mary Edythe Wilson
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA 52242, USA
- Veterans’ Affairs Medical Center, Iowa City, IA 52246, USA
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
5
|
Valigurová A, Kolářová I. Unrevealing the Mystery of Latent Leishmaniasis: What Cells Can Host Leishmania? Pathogens 2023; 12:pathogens12020246. [PMID: 36839518 PMCID: PMC9967396 DOI: 10.3390/pathogens12020246] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Leishmania spp. (Kinetoplastida) are unicellular parasites causing leishmaniases, neglected tropical diseases of medical and veterinary importance. In the vertebrate host, Leishmania parasites multiply intracellularly in professional phagocytes, such as monocytes and macrophages. However, their close relative with intracellular development-Trypanosoma cruzi-can unlock even non-professional phagocytes. Since Leishmania and T. cruzi have similar organelle equipment, is it possible that Leishmania can invade and even proliferate in cells other than the professional phagocytes? Additionally, could these cells play a role in the long-term persistence of Leishmania in the host, even in cured individuals? In this review, we provide (i) an overview of non-canonical Leishmania host cells and (ii) an insight into the strategies that Leishmania may use to enter them. Many studies point to fibroblasts as already established host cells that are important in latent leishmaniasis and disease epidemiology, as they support Leishmania transformation into amastigotes and even their multiplication. To invade them, Leishmania causes damage to their plasma membrane and exploits the subsequent repair mechanism via lysosome-triggered endocytosis. Unrevealing the interactions between Leishmania and its non-canonical host cells may shed light on the persistence of these parasites in vertebrate hosts, a way to control latent leishmaniasis.
Collapse
Affiliation(s)
- Andrea Valigurová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
- Correspondence: (A.V.); (I.K.)
| | - Iva Kolářová
- Department of Parasitology, Faculty of Science, Charles University, Albertov 6, 128 44 Prague, Czech Republic
- Correspondence: (A.V.); (I.K.)
| |
Collapse
|
6
|
Genetic Iron Overload Hampers Development of Cutaneous Leishmaniasis in Mice. Int J Mol Sci 2023; 24:ijms24021669. [PMID: 36675185 PMCID: PMC9864902 DOI: 10.3390/ijms24021669] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
The survival, growth, and virulence of Leishmania spp., a group of protozoan parasites, depends on the proper access and regulation of iron. Macrophages, Leishmania's host cell, may divert iron traffic by reducing uptake or by increasing the efflux of iron via the exporter ferroportin. This parasite has adapted by inhibiting the synthesis and inducing the degradation of ferroportin. To study the role of iron in leishmaniasis, we employed Hjv-/- mice, a model of hemochromatosis. The disruption of hemojuvelin (Hjv) abrogates the expression of the iron hormone hepcidin. This allows unrestricted iron entry into the plasma from ferroportin-expressing intestinal epithelial cells and tissue macrophages, resulting in systemic iron overload. Mice were injected with Leishmania major in hind footpads or intraperitoneally. Compared with wild-type controls, Hjv-/- mice displayed transient delayed growth of L. major in hind footpads, with a significant difference in parasite burden 4 weeks post-infection. Following acute intraperitoneal exposure to L. major, Hjv-/- peritoneal cells manifested increased expression of inflammatory cytokines and chemokines (Il1b, Tnfa, Cxcl2, and Ccl2). In response to infection with L. infantum, the causative agent of visceral leishmaniasis, Hjv-/- and control mice developed similar liver and splenic parasite burden despite vastly different tissue iron content and ferroportin expression. Thus, genetic iron overload due to hemojuvelin deficiency appears to mitigate the early development of only cutaneous leishmaniasis.
Collapse
|
7
|
Osorio EY, Uscanga-Palomeque A, Patterson GT, Cordova E, Travi BL, Soong L, Melby PC. Malnutrition-related parasite dissemination from the skin in visceral leishmaniasis is driven by PGE2-mediated amplification of CCR7-related trafficking of infected inflammatory monocytes. PLoS Negl Trop Dis 2023; 17:e0011040. [PMID: 36630476 PMCID: PMC9873180 DOI: 10.1371/journal.pntd.0011040] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 01/24/2023] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
People are infected with Leishmania donovani when the parasite is deposited in the dermis during the blood meal of the sand fly vector. Most infected people develop a subclinical latent infection, but some develop progressive visceral leishmaniasis. Malnutrition is a risk factor for the development of active VL. We previously demonstrated increased parasite dissemination from the skin to visceral organs in a murine model of malnutrition. Here we investigated the mechanism of early parasite dissemination. After delivery of L. donovani to the skin, we found enhanced capture of parasites by inflammatory monocytes and neutrophils in the skin of malnourished mice. However, parasite dissemination in malnourished mice was driven primarily by infected inflammatory monocytes, which showed increased CCR7 expression, greater intrinsic migratory capacity, and increased trafficking from skin to spleen. PGE2 production, which was increased at the site of skin infection, increased monocyte CCR7 expression and promoted CCR7-related monocyte-mediated early parasite dissemination in malnourished mice. Parasite dissemination in monocytes was reduced by inhibition of PGE2, knockdown or silencing of CCR7 in monocytes, and depletion of inflammatory monocytes through administration of diphtheria toxin to CSFR1-DTR transgenic mice that have monocyte-specific DT receptor expression. CCR7-driven trafficking of infected inflammatory monocytes through the lymph node was accompanied by increased expression of its ligands CCL19 and CCL21. These results show that the CCR7/PGE2 axis is responsible for the increased trafficking of L. donovani-infected inflammatory monocytes from the skin to the spleen in the malnourished host. Undernutrition and production of PGE2 are potential targets to reduce the risk of people developing VL. Nutritional interventions that target improved immune function and reduced PGE2 synthesis should be studied in people at risk of developing VL.
Collapse
Affiliation(s)
- E. Yaneth Osorio
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail: (PCM); (EYO)
| | - Ashanti Uscanga-Palomeque
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Grace T. Patterson
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Erika Cordova
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Bruno L. Travi
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Tropical Diseases and Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Lynn Soong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Tropical Diseases and Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Peter C. Melby
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Tropical Diseases and Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail: (PCM); (EYO)
| |
Collapse
|
8
|
Quintela-Carvalho G, Goicochea AMC, Mançur-Santos V, Viana SDM, Luz YDS, Dias BRS, Lázaro-Souza M, Suarez M, de Oliveira CI, Saraiva EM, Brodskyn CI, Veras PT, de Menezes JP, Andrade BB, Lima JB, Descoteaux A, Borges VM. Leishmania infantum Defective in Lipophosphoglycan Biosynthesis Interferes With Activation of Human Neutrophils. Front Cell Infect Microbiol 2022; 12:788196. [PMID: 35463648 PMCID: PMC9019130 DOI: 10.3389/fcimb.2022.788196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 03/10/2022] [Indexed: 11/13/2022] Open
Abstract
Visceral leishmaniasis (VL) is often associated with hematologic manifestations that may interfere with neutrophil response. Lipophosphoglycan (LPG) is a major molecule on the surface of Leishmania promastigotes, which has been associated with several aspects of the parasite–vector–host interplay. Here, we investigated how LPG from Leishmania (L.) infantum, the principal etiological agent of VL in the New World, influences the initial establishment of infection during interaction with human neutrophils in an experimental setting in vitro. Human neutrophils obtained from peripheral blood samples were infected with either the wild-type L. infantum (WT) strain or LPG-deficient mutant (∆lpg1). In this setting, ∆lpg1 parasites displayed reduced viability compared to WT L. infantum; such finding was reverted in the complemented ∆lpg1+LPG1 parasites at 3- and 6-h post-infection. Confocal microscopy experiments indicated that this decreased survival was related to enhanced lysosomal fusion. In fact, LPG-deficient L. infantum parasites more frequently died inside neutrophil acidic compartments, a phenomenon that was reverted when host cells were treated with Wortmannin. We also observed an increase in the secretion of the neutrophil collagenase matrix metalloproteinase-8 (MMP-8) by cells infected with ∆lpg1 L. infantum compared to those that were infected with WT parasites. Furthermore, collagen I matrix degradation was found to be significantly increased in ∆lpg1 parasite-infected cells but not in WT-infected controls. Flow cytometry analysis revealed a substantial boost in production of reactive oxygen species (ROS) during infection with either WT or ∆lpg1 L. infantum. In addition, killing of ∆lpg1 parasites was shown to be more dependent on the ROS production than that of WT L. infantum. Notably, inhibition of the oxidative stress with Apocynin potentially fueled ∆lpg1 L. infantum fitness as it increased the intracellular parasite viability. Thus, our observations demonstrate that LPG may be a critical molecule fostering parasite survival in human neutrophils through a mechanism that involves cellular activation and generation of free radicals.
Collapse
Affiliation(s)
- Graziele Quintela-Carvalho
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia (UFBA), Salvador, Brazil
- Instituto Federal de Educação, Ciência e Tecnologia Baiano (IFBaiano), Alagoinhas, Brazil
| | - Astrid Madeleine Calero Goicochea
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Vanessa Mançur-Santos
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Sayonara de Melo Viana
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Yasmin da Silva Luz
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Beatriz Rocha Simões Dias
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Milena Lázaro-Souza
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Martha Suarez
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Camila Indiani de Oliveira
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Elvira M. Saraiva
- Departamento de Imunologia, Laboratório de Imunobiologia das Leishmanioses, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cláudia I. Brodskyn
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Patrícia T. Veras
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Juliana P.B. de Menezes
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Bruno B. Andrade
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia (UFBA), Salvador, Brazil
- Escola Bahiana de Medicina e Saúde Pública, Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
- Curso de Medicina, Faculdade de Tecnologia e Ciências, Salvador, Brazil
- Universidade Salvador (UNIFACS), Laureate Universities, Salvador, Brazil
| | - Jonilson Berlink Lima
- Núcleo de Agentes Infecciosos e Vetores (NAIVE), Universidade Federal do Oeste da Bahia (UFOB), Barreiras, Brazil
| | - Albert Descoteaux
- Institut National de la Recherche Scientifique (INRS)–Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada
- *Correspondence: Valéria M. Borges, ; Albert Descoteaux,
| | - Valéria M. Borges
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia (UFBA), Salvador, Brazil
- *Correspondence: Valéria M. Borges, ; Albert Descoteaux,
| |
Collapse
|
9
|
Osero BO, Cele Z, Aruleba RT, Maine RA, Ozturk M, Lutz MB, Brombacher F, Hurdayal R. Interleukin-4 Responsive Dendritic Cells Are Dispensable to Host Resistance Against Leishmania mexicana Infection. Front Immunol 2022; 12:759021. [PMID: 35154068 PMCID: PMC8831752 DOI: 10.3389/fimmu.2021.759021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
IL-4 and IL-13 cytokines have been associated with a non-healing phenotype in murine leishmaniasis in L. mexicana -infected BALB/c mice as demonstrated in IL-4−/−, IL-13−/− and IL-4Rα-/- global knockout mouse studies. However, it is unclear from the studies which cell-type-specific IL-4/IL-13 signaling mediates protection to L. mexicana. Previous studies have ruled out a role for IL-4-mediated protection on CD4+ T cells during L. mexicana infections. A candidate for this role may be non-lymphocyte cells, particularly DCs, as was previously shown in L. major infections, where IL-4 production drives dendritic cell-IL-12 production thereby mediating a type 1 immune response. However, it is unclear if this IL-4-instruction of type 1 immunity also occurs in CL caused by L. mexicana, since the outcome of cutaneous leishmaniasis often depends on the infecting Leishmania species. Thus, BALB/c mice with cell-specific deletion of the IL-4Rα on CD11c+ DCs (CD11ccreIL-4Rα-/lox) were infected with L. mexicana promastigotes in the footpad and the clinical phenotype, humoral and cellular immune responses were investigated, compared to the littermate control. Our results show that CL disease progression in BALB/c mice is independent of IL-4Rα signaling on DCs as CD11ccreIL-4Rα-/lox mice had similar footpad lesion progression, parasite loads, humoral responses (IgE, IgG1, IgG 2a/b), and IFN-γ cytokine secretion in comparison to littermate controls. Despite this comparable phenotype, surprisingly, IL-4 production in CD11ccreIL-4Rα-/lox mice was significantly increased with an increasing trend of IL-13 when compared to littermate controls. Moreover, the absence of IL-4Rα signaling did not significantly alter the frequency of CD4 and CD8 lymphocytes nor their activation, or memory phenotype compared to littermate controls. However, these populations were significantly increased in CD11ccreIL-4Rα-/lox mice due to greater total cell infiltration into the lymph node. A similar trend was observed for B cells whereas the recruitment of myeloid populations (macrophages, DCs, neutrophils, and Mo-DCs) into LN was comparable to littermate IL-4Rα-/lox mice. Interestingly, IL-4Rα-deficient bone marrow-derived dendritic cells (BMDCs), stimulated with LPS or L. mexicana promastigotes in presence of IL-4, showed similar levels of IL-12p70 and IL-10 to littermate controls highlighting that IL-4-mediated DC instruction was not impaired in response to L. mexicana. Similarly, IL-4 stimulation did not affect the maturation or activation of IL-4Rα-deficient BMDCs during L. mexicana infection nor their effector functions in production of nitrite and arginine-derived metabolite (urea). Together, this study suggests that IL-4 Rα signaling on DCs is not key in the regulation of immune-mediated protection in mice against L. mexicana infection.
Collapse
Affiliation(s)
- Bernard Ong’ondo Osero
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine (IDM), South African Medical Research Council (SAMRC) on Immunology of Infectious Diseases, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa
- Faculty of Health Sciences, Wellcome Centre for Infectious Diseases Research in Africa (CIDRI), Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, Kenya
| | - Zama Cele
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Raphael Taiwo Aruleba
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Rebeng A. Maine
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Mumin Ozturk
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine (IDM), South African Medical Research Council (SAMRC) on Immunology of Infectious Diseases, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa
- Faculty of Health Sciences, Wellcome Centre for Infectious Diseases Research in Africa (CIDRI), Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Manfred B. Lutz
- Institute of Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Frank Brombacher
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine (IDM), South African Medical Research Council (SAMRC) on Immunology of Infectious Diseases, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa
- Faculty of Health Sciences, Wellcome Centre for Infectious Diseases Research in Africa (CIDRI), Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
- *Correspondence: Frank Brombacher, ; Ramona Hurdayal,
| | - Ramona Hurdayal
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine (IDM), South African Medical Research Council (SAMRC) on Immunology of Infectious Diseases, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa
- Faculty of Health Sciences, Wellcome Centre for Infectious Diseases Research in Africa (CIDRI), Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
- *Correspondence: Frank Brombacher, ; Ramona Hurdayal,
| |
Collapse
|
10
|
Kolářová I, Valigurová A. Hide-and-Seek: A Game Played between Parasitic Protists and Their Hosts. Microorganisms 2021; 9:2434. [PMID: 34946036 PMCID: PMC8707157 DOI: 10.3390/microorganisms9122434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/17/2021] [Accepted: 11/20/2021] [Indexed: 11/17/2022] Open
Abstract
After invading the host organism, a battle occurs between the parasitic protists and the host's immune system, the result of which determines not only whether and how well the host survives and recovers, but also the fate of the parasite itself. The exact weaponry of this battle depends, among others, on the parasite localisation. While some parasitic protists do not invade the host cell at all (extracellular parasites), others have developed successful intracellular lifestyles (intracellular parasites) or attack only the surface of the host cell (epicellular parasites). Epicellular and intracellular protist parasites have developed various mechanisms to hijack host cell functions to escape cellular defences and immune responses, and, finally, to gain access to host nutrients. They use various evasion tactics to secure the tight contact with the host cell and the direct nutrient supply. This review focuses on the adaptations and evasion strategies of parasitic protists on the example of two very successful parasites of medical significance, Cryptosporidium and Leishmania, while discussing different localisation (epicellular vs. intracellular) with respect to the host cell.
Collapse
Affiliation(s)
- Iva Kolářová
- Laboratory of Vector Biology, Department of Parasitology, Faculty of Science, Charles University, Albertov 6, 128 44 Prague, Czech Republic
| | - Andrea Valigurová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| |
Collapse
|
11
|
Pona MN, Dietrich JM, Silva JMD, Silva HALD, Hueb M, Damazo AS. Analysis of annexin-A1 in the macrophages and apoptotic cells of patients with cutaneous leishmaniasis. Rev Soc Bras Med Trop 2021; 54:e07562020. [PMID: 34431955 PMCID: PMC8405212 DOI: 10.1590/0037-8682-0756-2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 06/09/2021] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION This study aimed to determine the number of macrophages and apoptotic cells and perform annexin-A1 detection in patients with leishmaniasis. METHODS Patients with Leishmania infection were admitted to Júlio Müller University Hospital. RESULTS The number of apoptotic cells was higher in the exudative granulomatous reaction. The exudative cellular reaction displayed higher levels of annexin-A1 detection in macrophages and apoptotic cells. The correlation between annexin-A1 detection in apoptotic cells and macrophages was observed in exudative necrotic reaction and exudative necrotic-granulomatous reaction. CONCLUSIONS: Our data demonstrate the relevance of annexin-A1 in the regulation of apoptosis and phagocytosis in leishmaniasis.
Collapse
Affiliation(s)
| | | | - Joselina Maria da Silva
- Universidade Federal de Mato Grosso, Programa de Pós-Graduação em Ciências da Saúde, Cuiabá, MT, Brasil.,Universidade Federal de Mato Grosso, Faculdade de Medicina, Departamento de Ciências Básicas em Saúde, Cuiabá, MT, Brasil
| | | | - Marcia Hueb
- Universidade Federal de Mato Grosso, Faculdade de Medicina, Departamento de Clínica Médica, Cuiabá, MT, Brasil
| | - Amilcar Sabino Damazo
- Universidade Federal de Mato Grosso, Programa de Pós-Graduação em Ciências da Saúde, Cuiabá, MT, Brasil.,Universidade Federal de Mato Grosso, Faculdade de Medicina, Departamento de Ciências Básicas em Saúde, Cuiabá, MT, Brasil
| |
Collapse
|
12
|
Vozza EG, Mulcahy ME, McLoughlin RM. Making the Most of the Host; Targeting the Autophagy Pathway Facilitates Staphylococcus aureus Intracellular Survival in Neutrophils. Front Immunol 2021; 12:667387. [PMID: 34220813 PMCID: PMC8242348 DOI: 10.3389/fimmu.2021.667387] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/28/2021] [Indexed: 12/21/2022] Open
Abstract
The success of Staphylococcus aureus as a human commensal and an opportunistic pathogen relies on its ability to adapt to several niches within the host. The innate immune response plays a key role in protecting the host against S. aureus infection; however, S. aureus adeptness at evading the innate immune system is indisputably evident. The “Trojan horse” theory has been postulated to describe a mechanism by which S. aureus takes advantage of phagocytes as a survival niche within the host to facilitate dissemination of S. aureus to secondary sites during systemic infection. Several studies have determined that S. aureus can parasitize both professional and non-professional phagocytes by manipulating the host autophagy pathway in order to create an intracellular survival niche. Neutrophils represent a critical cell type in S. aureus infection as demonstrated by the increased risk of infection among patients with congenital neutrophil disorders. However, S. aureus has been repeatedly shown to survive intracellularly within neutrophils with evidence now supporting a pathogenic role of host autophagy. By manipulating this pathway, S. aureus can also alter the apoptotic fate of the neutrophil and potentially skew other important signalling pathways for its own gain. Understanding these critical host-pathogen interactions could lead to the development of new host directed therapeutics for the treatment of S. aureus infection by removing its intracellular niche and restoring host bactericidal functions. This review discusses the current findings surrounding intracellular survival of S. aureus within neutrophils, the pathogenic role autophagy plays in this process and considers the therapeutic potential for targeting this immune evasion mechanism.
Collapse
Affiliation(s)
- Emilio G Vozza
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Michelle E Mulcahy
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Rachel M McLoughlin
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
13
|
Abdullahi IN, Emeribe AU, Adekola HA, Muhammad HY, Ahmad AEF, Anka AU, Mohammed Y, Haruna S, Oderinde BS, Shuwa HA, Babayo A. Leucocytes and Th-associated Cytokine Profile of HIV-Leishmaniasis Co-Infected Persons Attending Abuja Teaching Hospital, Nigeria. Eurasian J Med 2020; 52:271-276. [PMID: 33209080 DOI: 10.5152/eurasianjmed.2020.20008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Objective T-helper cells (Th)-1& -2 cytokines homeostasis control or predict clinical outcome of infected persons, especially those with HIV /AIDS. This case-control study evaluated the leucocytes differentials, TNF-alpha, interleukin (IL)-2 and -10 levels among HIV infected persons with serological evidence of leishmaniasis attending University of Abuja Teaching Hospital, Nigeria. Materials and Methods Blood samples from 28 HIV infected persons who had Leishmania donovani rK39 and Immunoglobulin-G (IgG) positive (group 1), 30 age- & -sex matched HIV infected persons without Leishmania antibodies (group 2) and 30 apparently healthy persons without HIV and Leishmania antibodies (group 3). Full blood counts, TNF alpha, IL-2 and -10 levels were analyzed using automated hematology analyzer and ELISA, respectively. Structured questionnaires were used to collate biodata and clinical presentations of participants. Results Ten (35.7%) participants in group 1 were on ART, 15 (50%) in group 2 were on ART, while group 3 were ART naïve. There were significantly higher values in basophil (4.4±2.5%) and eosinophil counts (12.9±3.8%) in HIV/leishmania coinfected persons (p<0.005). However, other white cells subpopulation was significantly lower in HIV/leishmania co-infected participants (p<0.05). There was significantly reduced CD4+ T cell counts ([119±26 versus 348±63 versus 605±116 cells/mm3]), TNF-alpha ([36.82±8.21 versus 64.67±12.54 versus 254.98±65.59 pg/mL]) and IL-2 levels ([142.14±20.91 versus 507.6±84.42 versus 486.62±167.87 pg/mL]) among HIV/Leishmania co-infected participants compared to group 2 and group 3 participants, respectively. However, higher IL-10 level (80.35±14.57 pg/mL) was found in HIV/Leishmania co-infected participants as opposed to the HIV monoinfected (62.2±10.43 pg/mL) and apparently healthy persons (23.97±4.88 pg/mL) (p<0.001). Conclusion Eosinophil, basophil counts and serum IL-10 level were high in HIV/Leishmania coinfected persons, demonstrating parasite-induced hypersensitivity and immunosuppression.
Collapse
Affiliation(s)
- Idris Nasir Abdullahi
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, Ahmadu Bello University, Zaria, Nigeria
| | | | | | | | - Abdurrahman El-Fulaty Ahmad
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Abubakar Umar Anka
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Yusuf Mohammed
- Department of Medical Microbiology and Parasitology, Bayero University, Kano, Nigeria
| | - Shamsuddeen Haruna
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Bamidele Soji Oderinde
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, University of Maiduguri, Maiduguri, Nigeria
| | - Halima Ali Shuwa
- Department of Community Health, Federal University Dutse, Jigawa State, Nigeria
| | - Adamu Babayo
- Department of Medical Microbiology and Parasitology, Bayero University, Kano, Nigeria
| |
Collapse
|
14
|
Chaves MM, Lee SH, Kamenyeva O, Ghosh K, Peters NC, Sacks D. The role of dermis resident macrophages and their interaction with neutrophils in the early establishment of Leishmania major infection transmitted by sand fly bite. PLoS Pathog 2020; 16:e1008674. [PMID: 33137149 PMCID: PMC7660907 DOI: 10.1371/journal.ppat.1008674] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 11/12/2020] [Accepted: 09/24/2020] [Indexed: 11/18/2022] Open
Abstract
There is substantial experimental evidence to indicate that Leishmania infections that are transmitted naturally by the bites of infected sand flies differ in fundamental ways from those initiated by needle inocula. We have used flow cytometry and intravital microscopy (IVM) to reveal the heterogeneity of sand fly transmission sites with respect to the subsets of phagocytes in the skin that harbor L. major within the first hours and days after infection. By flow cytometry analysis, dermis resident macrophages (TRMs) were on average the predominant infected cell type at 1 hr and 24 hr. By confocal IVM, the co-localization of L. major and neutrophils varied depending on the proximity of deposited parasites to the presumed site of vascular damage, defined by the highly localized swarming of neutrophils. Some of the dermal TRMs could be visualized acquiring their infections via transfer from or efferocytosis of parasitized neutrophils, providing direct evidence for the "Trojan Horse" model. The role of neutrophil engulfment by dermal TRMs and the involvement of the Tyro3/Axl/Mertk family of receptor tyrosine kinases in these interactions and in sustaining the anti-inflammatory program of dermal TRMs was supported by the effects observed in neutrophil depleted and in Axl-/-Mertk-/- mice. The Axl-/-Mertk-/- mice also displayed reduced parasite burdens but more severe pathology following L. major infection transmitted by sand fly bite.
Collapse
Affiliation(s)
- Mariana M. Chaves
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, Unites States of America
| | - Sang Hun Lee
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, Unites States of America
- * E-mail: (SHL); (DS)
| | - Olena Kamenyeva
- Biological Imaging Section, Research Technology Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, Unites States of America
| | - Kashinath Ghosh
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, Unites States of America
| | - Nathan C. Peters
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, Unites States of America
| | - David Sacks
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, Unites States of America
- * E-mail: (SHL); (DS)
| |
Collapse
|
15
|
Cardoso FDO, Zaverucha-do-Valle T, Almeida-Souza F, Abreu-Silva AL, Calabrese KDS. Modulation of Cytokines and Extracellular Matrix Proteins Expression by Leishmania amazonensis in Susceptible and Resistant Mice. Front Microbiol 2020; 11:1986. [PMID: 32983013 PMCID: PMC7487551 DOI: 10.3389/fmicb.2020.01986] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/27/2020] [Indexed: 12/24/2022] Open
Abstract
Leishmaniases are a complex of diseases with a broad spectrum of clinical forms, which depend on the parasite species, immunological status, and genetic background of the host. In the Leishmania major model, susceptibility is associated with the Th2 pattern of cytokines production, while resistance is associated with Th1 response. However, the same dichotomy does not occur in L. amazonensis-infected mice. Cytokines are key players in these diseases progression, while the extracellular matrix (ECM) components participate in the process of parasite invasion as well as lesion healing. In this article, we analyzed the influence of host genetics on the expression of cytokines, inducible nitric oxide synthase (iNOS), and ECM proteins, as well as the parasite load in mice with different genetic backgrounds infected by L. amazonensis. C57BL/10 and C3H/He mice were subcutaneously infected with 106L. amazonensis promastigotes. Lesion kinetics, parasite load, cytokines, iNOS, and ECM proteins expression were measured by quantitative PCR (qPCR) in the footpad, draining lymph nodes, liver, and spleen at early (24 h and 30 days) and late phase (120 and 180 days) of infection. Analysis of lesion kinetics showed that C57BL/10 mice developed ulcerative lesions at the inoculation site after L. amazonensis infection, while C3H/He showed slight swelling in the footpad 180 days after infection. C57BL/10 showed progressive enhancement of parasite load in all analyzed organs, while C3H/He mice showed extremely low parasite loads. Susceptible C57BL/10 mice showed high levels of TGF-β mRNA in the footpad early in infection and high levels of proinflammatory cytokines mRNA (IL-12, TNF-α, and IFN-γ) and iNOS in the late phase of the infection. There is an association between increased expression of fibronectin, laminin, collagen III and IV, and TGF-β. On the other hand, resistant C3H/He mice presented a lower repertory of cytokines mRNA expression when compared with susceptible C57BL/10 mice, basically producing TNF-α, collagen IV, and laminin early in infection. The findings of our study indicate that L. amazonensis infection induces different cytokine expression in resistant and susceptible mice but not like the L. major model. An organ-compartmentalized cytokine response was observed in our model. Host genetics determine this response, which modulates ECM proteins expression.
Collapse
Affiliation(s)
- Flávia de Oliveira Cardoso
- Laboratório de Imunomodulação e Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Tânia Zaverucha-do-Valle
- Laboratório de Imunomodulação e Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Fernando Almeida-Souza
- Laboratório de Imunomodulação e Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Laboratório de Anatomopatologia, Departamento de Patologia, Universidade Estadual do Maranhão, São Luís, Brazil
| | - Ana Lúcia Abreu-Silva
- Laboratório de Anatomopatologia, Departamento de Patologia, Universidade Estadual do Maranhão, São Luís, Brazil
| | - Kátia da Silva Calabrese
- Laboratório de Imunomodulação e Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
16
|
Th1 concomitant immune response mediated by IFN-γ protects against sand fly delivered Leishmania infection: Implications for vaccine design. Cytokine 2020; 147:155247. [PMID: 32873468 DOI: 10.1016/j.cyto.2020.155247] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/26/2020] [Accepted: 08/08/2020] [Indexed: 02/07/2023]
Abstract
Leishmaniasis is an unresolved global health problem with a high socio-economic impact. Data generated in mouse models has revealed that the Th1 response, with IL-12, IFN-γ, TNF-α, and IL-2 as prominent cytokines, predominantly controls the disease progression. Premised on these findings, all examined vaccine formulations have been aimed at generating a long-lived memory Th1 response. However, all vaccine formulations with the exception of live Leishmania inoculation (leishmanization) have failed to sufficiently protect against sand fly delivered infection. It has been recently unraveled that sand fly dependent factors may compromise pre-existing Th1 memory. Further scrutinizing the immune response after leishmanization has uncovered the prominent role of early (within hours) and robust IFN-γ production (Th1 concomitant immunity) in controlling the sand fly delivered secondary infection. The response is dependent upon parasite persistence and subclinical ongoing primary infection. The immune correlates of concomitant immunity (Resident Memory T cells and Effector T subsets) mitigate the early effects of sand fly delivered infection and help to control the disease. In this review, we have described the early events after sand fly challenge and the role of Th1 concomitant immunity in the protective immune response in leishmanized resistant mouse model, although leishmanization is under debate for human use. Undoubtedly, the lessons we learn from leishmanization must be further implemented in alternative vaccine approaches.
Collapse
|
17
|
Ndlovu LN, Peetluk L, Moodley S, Nhamoyebonde S, Ngoepe AT, Mazibuko M, Khan K, Karim F, Pym AS, Maruri F, Moosa MYS, van der Heijden YF, Sterling TR, Leslie A. Increased Neutrophil Count and Decreased Neutrophil CD15 Expression Correlate With TB Disease Severity and Treatment Response Irrespective of HIV Co-infection. Front Immunol 2020; 11:1872. [PMID: 32983107 PMCID: PMC7485225 DOI: 10.3389/fimmu.2020.01872] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis remains a leading cause of death globally despite curative treatment, partly due to the difficulty of identifying patients who will not respond to therapy. Simple host biomarkers that correlate with response to drug treatment would facilitate improvement in outcomes and the evaluation of novel therapies. In a prospective longitudinal cohort study, we evaluated neutrophil count and phenotype at baseline, as well as during TB treatment in 79 patients [50 (63%) HIV-positive] with microbiologically confirmed drug susceptible TB undergoing standard treatment. At time of diagnosis, blood neutrophils were highly expanded and surface expression of the neutrophil marker CD15 greatly reduced compared to controls. Both measures changed rapidly with the commencement of drug treatment and returned to levels seen in healthy control by treatment completion. Additionally, at the time of diagnosis, high neutrophil count, and low CD15 expression was associated with higher sputum bacterial load and more severe lung damage on chest x-ray, two clinically relevant markers of disease severity. Furthermore, CD15 expression level at diagnosis was associated with TB culture conversion after 2 months of therapy (OR: 0.14, 95% CI: 0.02, 0.89), a standard measure of early TB treatment success. Importantly, our data was not significantly impacted by HIV co-infection. These data suggest that blood neutrophil metrics could potentially be exploited to develop a simple and rapid test to help determine TB disease severity, monitor drug treatment response, and identify subjects at diagnosis who may respond poorly to treatment.
Collapse
Affiliation(s)
- Lerato N Ndlovu
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa.,Department of Infectious Diseases, University of KwaZulu-Natal, Durban, South Africa
| | - Lauren Peetluk
- Vanderbilt Tuberculosis Center, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Sashen Moodley
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Shepherd Nhamoyebonde
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa.,Department of Infectious Diseases, University of KwaZulu-Natal, Durban, South Africa
| | - Abigail T Ngoepe
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Matilda Mazibuko
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Khadija Khan
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Farina Karim
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Alexander S Pym
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Fernanda Maruri
- Vanderbilt Tuberculosis Center, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Mahomed-Yunus S Moosa
- Department of Infectious Diseases, University of KwaZulu-Natal, Durban, South Africa
| | - Yuri F van der Heijden
- Vanderbilt Tuberculosis Center, Vanderbilt University School of Medicine, Nashville, TN, United States.,Global Division, The Aurum Institute, Johannesburg, South Africa
| | - Timothy R Sterling
- Vanderbilt Tuberculosis Center, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Alasdair Leslie
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa.,Department of Infectious Diseases, University of KwaZulu-Natal, Durban, South Africa.,Department of Infection and Immunity, University College London, London, United Kingdom
| |
Collapse
|
18
|
Fingerhut L, Dolz G, de Buhr N. What Is the Evolutionary Fingerprint in Neutrophil Granulocytes? Int J Mol Sci 2020; 21:E4523. [PMID: 32630520 PMCID: PMC7350212 DOI: 10.3390/ijms21124523] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 01/18/2023] Open
Abstract
Over the years of evolution, thousands of different animal species have evolved. All these species require an immune system to defend themselves against invading pathogens. Nevertheless, the immune systems of different species are obviously counteracting against the same pathogen with different efficiency. Therefore, the question arises if the process that was leading to the clades of vertebrates in the animal kingdom-namely mammals, birds, amphibians, reptiles, and fish-was also leading to different functions of immune cells. One cell type of the innate immune system that is transmigrating as first line of defense in infected tissue and counteracts against pathogens is the neutrophil granulocyte. During the host-pathogen interaction they can undergo phagocytosis, apoptosis, degranulation, and form neutrophil extracellular traps (NETs). In this review, we summarize a wide spectrum of information about neutrophils in humans and animals, with a focus on vertebrates. Special attention is kept on the development, morphology, composition, and functions of these cells, but also on dysfunctions and options for cell culture or storage.
Collapse
Affiliation(s)
- Leonie Fingerhut
- Department of Physiological Chemistry, Department of Infectious Diseases, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- Clinic for Horses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Gaby Dolz
- Escuela de Medicina Veterinaria, Universidad Nacional, Heredia 40104, Costa Rica;
| | - Nicole de Buhr
- Department of Physiological Chemistry, Department of Infectious Diseases, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| |
Collapse
|
19
|
Zabala-Peñafiel A, Todd D, Daneshvar H, Burchmore R. The potential of live attenuated vaccines against Cutaneous Leishmaniasis. Exp Parasitol 2020; 210:107849. [PMID: 32027892 DOI: 10.1016/j.exppara.2020.107849] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/03/2019] [Accepted: 02/01/2020] [Indexed: 12/11/2022]
Abstract
Cutaneous Leishmaniasis is a serious public health problem, typically affecting poor populations with limited access to health care. Control is largely dependent on chemotherapies that are inefficient, costly and challenging to deliver. Vaccination is an attractive and feasible alternative because long-term protection is typical in patients who recover from the disease. No human vaccine is yet approved for use, but several candidates are at various stages of testing. Live attenuated parasites, which stimulate long-term immune protection, have potential as effective vaccines, and their challenges relating to safety, formulation and delivery can be overcome. Here we review current data on the potential of live attenuated Leishmania vaccines and discuss possible routes to regulatory approval.
Collapse
Affiliation(s)
- A Zabala-Peñafiel
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - D Todd
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - H Daneshvar
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - R Burchmore
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
20
|
Wanderley JLM, DaMatta RA, Barcinski MA. Apoptotic mimicry as a strategy for the establishment of parasitic infections: parasite- and host-derived phosphatidylserine as key molecule. Cell Commun Signal 2020; 18:10. [PMID: 31941500 PMCID: PMC6964003 DOI: 10.1186/s12964-019-0482-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/11/2019] [Indexed: 12/14/2022] Open
Abstract
The establishment of parasitic infection is dependent on the development of efficient strategies to evade the host defense mechanisms. Phosphatidylserine (PS) molecules are pivotal for apoptotic cell recognition and clearance by professional phagocytes. Moreover, PS receptors are able to trigger anti-inflammatory and immunosuppressive responses by phagocytes, either by coupled enzymes or through the induction of regulatory cytokine secretion. These PS-dependent events are exploited by parasites in a mechanism called apoptotic mimicry. Generally, apoptotic mimicry refers to the effects of PS recognition for the initiation and maintenance of pathogenic infections. However, in this context, PS molecules can be recognized on the surface of the infectious agent or in the surface of apoptotic host debris, leading to the respective denomination of classical and non-classical apoptotic mimicry. In this review, we discuss the role of PS in the pathogenesis of several human infections caused by protozoan parasites. Video Abstract
Collapse
Affiliation(s)
- João Luiz Mendes Wanderley
- Laboratório de Imunoparasitologia, Campus UFRJ Macaé, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Renato Augusto DaMatta
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual Norte-Fluminense, Campos dos Goytacazes, RJ, Brazil
| | - Marcello André Barcinski
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
21
|
Wang K, Lei Y, Xia D, Xu P, Zhu T, Jiang Z, Ma Y. Neutrophil membranes coated, antibiotic agent loaded nanoparticles targeting to the lung inflammation. Colloids Surf B Biointerfaces 2019; 188:110755. [PMID: 31887646 DOI: 10.1016/j.colsurfb.2019.110755] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/28/2019] [Accepted: 12/22/2019] [Indexed: 01/24/2023]
Abstract
Natural cellular membranes, with the outstanding qualities of biocompatibility and specificity, have gained growing attentions in the system of drug delivery. Nanoparticles coated with cellular membranes are starting to be applied as drug-loaded-vehicles to target tumors. Here, neutrophil membranes were selected to apply in the treatment of inflammation because neutrophils can participate in various inflammatory responses and accumulate at inflammatory sites to eliminate pathogens. Through extracting neutrophil membranes from natural neutrophils without affecting their biological properties, nanoparticles loaded with sparfloxacin (SPX) were coated with these membranes and disguised as neutrophils. Compared with traditional nano-medicines, the neutrophil membrane-coated nanoparticles (NM-NP-SPX) possessed precise targeting ability just like the neutrophils could accumulate at inflammatory sites when inflammation burst. In addition, NM-NP-SPX could prolong the circulation time and had the property of controlled-release. Through in vivo experiments, we found that the concentration of three representative inflammatory cytokines in blood, bacteria and inflammatory cells in lungs of the mice with pneumonia reduced significantly in the initial 24 h after the injection of NM-NP-SPX, which meant that NM-NP-SPX could greatly reduce the risk of death for the patients with inflammation. Moreover, the infected lungs could recover rapidly without any side effects to other organs due to the low cytotoxicity of NM-NP-SPX against normal cells. Therefore, our developed drug delivery system has enormous advantages in treating inflammations. Not only that, this kind of bionic method may have greater value and application prospects in curing the inflammations arisen from cancers.
Collapse
Affiliation(s)
- Kaiyu Wang
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China; Key Laboratory of Micro-nano Electric Sensing Technology and Bionic Devices, College of Electronic and Information Engineering, Yili Normal University, Yining, China
| | - Yiteng Lei
- Key Laboratory of Micro-nano Electric Sensing Technology and Bionic Devices, College of Electronic and Information Engineering, Yili Normal University, Yining, China
| | - Donglin Xia
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, China
| | - Peipei Xu
- Department of Hematology, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Tao Zhu
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China.
| | - Zhongying Jiang
- Key Laboratory of Micro-nano Electric Sensing Technology and Bionic Devices, College of Electronic and Information Engineering, Yili Normal University, Yining, China.
| | - Yuqiang Ma
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China.
| |
Collapse
|
22
|
Seyed N, Rafati S, Department of Immunotherapy and leishmania vaccine research, Department of Immunotherapy and Leishmania vaccine research. Resolution and pro-resolving lipid mediators in Leishmania infection. JOURNAL OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASES 2019. [DOI: 10.29252/jommid.7.3.61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
23
|
Zamboni DS, Sacks DL. Inflammasomes and Leishmania: in good times or bad, in sickness or in health. Curr Opin Microbiol 2019; 52:70-76. [PMID: 31229882 DOI: 10.1016/j.mib.2019.05.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/13/2019] [Accepted: 05/17/2019] [Indexed: 12/12/2022]
Abstract
The inflammasomes are multi-molecular platforms that are activated in host cell cytoplasm when the innate immune cells are infected with pathogens or exposed to damage signals. Many independent groups reported that Leishmania infection trigger activation of the NLRP3 inflammasome in macrophages for restriction of intracellular parasite replication. Accordingly, Leishmania can dampen NLRP3 activation as an evasion strategy. In vivo, the NLRP3 inflammasome can promote parasite clearance, but the failure to eliminate parasites in the tissues together with sustained inflammasome activation can promote IL-1β-mediated disease pathology. In this review, we discuss the recent data regarding activation of the NLRP3 inflammasome in response to Leishmania and the beneficial and detrimental effects of the inflammasome during development of Leishmaniasis.
Collapse
Affiliation(s)
- Dario S Zamboni
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - David L Sacks
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
24
|
Gutiérrez-Jiménez C, Mora-Cartín R, Altamirano-Silva P, Chacón-Díaz C, Chaves-Olarte E, Moreno E, Barquero-Calvo E. Neutrophils as Trojan Horse Vehicles for Brucella abortus Macrophage Infection. Front Immunol 2019; 10:1012. [PMID: 31134082 PMCID: PMC6514781 DOI: 10.3389/fimmu.2019.01012] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/23/2019] [Indexed: 01/18/2023] Open
Abstract
Brucella abortus is a stealthy intracellular bacterial pathogen of animals and humans. This bacterium promotes the premature cell death of neutrophils (PMN) and resists the killing action of these leukocytes. B. abortus-infected PMNs presented phosphatidylserine (PS) as “eat me” signal on the cell surface. This signal promoted direct contacts between PMNs and macrophages (Mϕs) and favored the phagocytosis of the infected dying PMNs. Once inside Mϕs, B. abortus replicated within Mϕs at significantly higher numbers than when Mϕs were infected with bacteria alone. The high levels of the regulatory IL-10 and the lower levels of proinflammatory TNF-α released by the B. abortus-PMN infected Mϕs, at the initial stages of the infection, suggested a non-phlogistic phagocytosis mechanism. Thereafter, the levels of proinflammatory cytokines increased in the B. abortus-PMN-infected Mϕs. Still, the efficient bacterial replication proceeded, regardless of the cytokine levels and Mϕ type. Blockage of PS with Annexin V on the surface of B. abortus-infected PMNs hindered their contact with Mϕs and hampered the association, internalization, and replication of B. abortus within these cells. We propose that B. abortus infected PMNs serve as “Trojan horse” vehicles for the efficient dispersion and replication of the bacterium within the host.
Collapse
Affiliation(s)
- Cristina Gutiérrez-Jiménez
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | - Ricardo Mora-Cartín
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | - Pamela Altamirano-Silva
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Carlos Chacón-Díaz
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Esteban Chaves-Olarte
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Edgardo Moreno
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | - Elías Barquero-Calvo
- Programa de Investigación en Enfermedades Tropicales, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| |
Collapse
|
25
|
Valério-Bolas A, Pereira M, Alexandre-Pires G, Santos-Mateus D, Rodrigues A, Rafael-Fernandes M, Gabriel A, Passero F, Santos-Gomes G. Intracellular and extracellular effector activity of mouse neutrophils in response to cutaneous and visceral Leishmania parasites. Cell Immunol 2019; 335:76-84. [DOI: 10.1016/j.cellimm.2018.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/06/2018] [Accepted: 11/06/2018] [Indexed: 02/04/2023]
|
26
|
Guimarães-Pinto K, Nascimento DO, Corrêa-Ferreira A, Morrot A, Freire-de-Lima CG, Lopes MF, DosReis GA, Filardy AA. Trypanosoma cruzi Infection Induces Cellular Stress Response and Senescence-Like Phenotype in Murine Fibroblasts. Front Immunol 2018; 9:1569. [PMID: 30038622 PMCID: PMC6047053 DOI: 10.3389/fimmu.2018.01569] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/25/2018] [Indexed: 12/20/2022] Open
Abstract
Trypanosoma cruzi infects and replicates within a wide variety of immune and non-immune cells. Here, we investigated early cellular responses induced in NIH-3T3 fibroblasts upon infection with trypomastigote forms of T. cruzi. We show that fibroblasts were susceptible to T. cruzi infection and started to release trypomastigotes to the culture medium after 4 days of infection. Also, we found that T. cruzi infection reduced the number of fibroblasts in 3-day cell cultures, by altering fibroblast proliferation. Infected fibroblasts displayed distinctive phenotypic alterations, including enlarged and flattened morphology with a nuclei accumulation of senescence-associated heterochromatin foci. In addition, infection induced an overexpression of the enzyme senescence-associated β-galactosidase (SA-β-gal), an activation marker of the cellular senescence program, as well as the production of cytokines and chemokines involved with the senescence-associated secretory phenotype (SASP) such as IL-6, TNF-α, IL-1β, and MCP-1. Infected fibroblasts released increased amounts of stress-associated factors nitric oxide (NO) and reactive oxygen species (ROS), and the treatment with antioxidants deferoxamine (DFO) and N-acetylcysteine reduced ROS generation, secretion of SASP-related cytokine IL-6, SA-β-gal activity, and parasite load by infected fibroblasts. Taken together, our data suggest that T. cruzi infection triggers a rapid cellular stress response followed by induction of a senescent-like phenotype in NIH-3T3 fibroblasts, enabling them to act as reservoirs of parasites during the early stages of the Chagas disease.
Collapse
Affiliation(s)
- Kamila Guimarães-Pinto
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Antonia Corrêa-Ferreira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandre Morrot
- Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Celio G Freire-de-Lima
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcela F Lopes
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - George A DosReis
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional para Pesquisa Translacional em Saúde e Ambiente na Região Amazônica, Conselho Nacional de Desenvolvimento Científico e Tecnológico, Rio de Janeiro, Brazil
| | - Alessandra A Filardy
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
27
|
Martínez-López M, Soto M, Iborra S, Sancho D. Leishmania Hijacks Myeloid Cells for Immune Escape. Front Microbiol 2018; 9:883. [PMID: 29867798 PMCID: PMC5949370 DOI: 10.3389/fmicb.2018.00883] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 04/17/2018] [Indexed: 12/23/2022] Open
Abstract
Protozoan parasites of the Leishmania genus are the causative agents of leishmaniasis, a group of neglected tropical diseases whose clinical manifestations vary depending on the infectious Leishmania species but also on host factors. Recognition of the parasite by host myeloid immune cells is a key to trigger an effective Leishmania-specific immunity. However, the parasite is able to persist in host myeloid cells by evading, delaying and manipulating host immunity in order to escape host resistance and ensure its transmission. Neutrophils are first in infiltrating infection sites and could act either favoring or protecting against infection, depending on factors such as the genetic background of the host or the parasite species. Macrophages are the main host cells where the parasites grow and divide. However, macrophages are also the main effector population involved in parasite clearance. Parasite elimination by macrophages requires the priming and development of an effector Th1 adaptive immunity driven by specific subtypes of dendritic cells. Herein, we will provide a comprehensive outline of how myeloid cells regulate innate and adaptive immunity against Leishmania, and the mechanisms used by the parasites to promote their evasion and sabotage. Understanding the interactions between Leishmania and the host myeloid cells may lead to the development of new therapeutic approaches and improved vaccination to leishmaniases, an important worldwide health problem in which current therapeutic or preventive approaches are limited.
Collapse
Affiliation(s)
- María Martínez-López
- Immunobiology Laboratory, Fundación Centro Nacional de Investigaciones Cardiovasculares "Carlos III", Madrid, Spain
| | - Manuel Soto
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa - Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Salvador Iborra
- Immunobiology Laboratory, Fundación Centro Nacional de Investigaciones Cardiovasculares "Carlos III", Madrid, Spain.,Department of Immunology, Complutense University School of Medicine and 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - David Sancho
- Immunobiology Laboratory, Fundación Centro Nacional de Investigaciones Cardiovasculares "Carlos III", Madrid, Spain
| |
Collapse
|
28
|
Coxiella burnetii Inhibits Neutrophil Apoptosis by Exploiting Survival Pathways and Antiapoptotic Protein Mcl-1. Infect Immun 2018; 86:IAI.00504-17. [PMID: 29311244 DOI: 10.1128/iai.00504-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 12/18/2017] [Indexed: 12/26/2022] Open
Abstract
Our previous study demonstrated that neutrophils play an important role in host defense against Coxiella burnetii infection in mice. In this study, avirulent strain C. burnetii Nine Mile phase II (NMII) was used to examine if C. burnetii can modulate mouse bone marrow-derived neutrophil apoptosis. The results indicated that NMII can inhibit neutrophil apoptosis. Western blotting demonstrated that caspase-3 cleavage was decreased in NMII-infected neutrophils, while phosphorylated mitogen-activated protein kinase (MAPK) p38 and extracellular signal-regulated kinase 1 (Erk1) were increased. Additionally, p38, Erk1/2, phosphoinositide 3-kinase (PI3K), or NF-κB inhibitors reduced the ability of NMII to inhibit neutrophil apoptosis. These results suggest that NMII-mediated inhibition of neutrophil apoptosis depends on its ability to activate neutrophil MAPK pathways. Antiapoptotic protein myeloid cell leukemia-1 (Mcl-1) was significantly increased in NMII-infected neutrophils, and an Mcl-1 inhibitor significantly reduced the ability of NMII to inhibit neutrophil apoptosis. Mcl-1 protein stability was enhanced by phosphorylation at Thr-163 by Erk, and the protein levels were regulated by p38, Erk, PI3K, and NF-κB. Furthermore, the observation that a type IV secretion system (T4SS)-deficient dotA mutant showed a significantly reduced ability to inhibit neutrophil apoptosis compared to wild-type (WT) NMII suggests that T4SS-secreted factors may be involved in NMII-induced inhibition of neutrophil apoptosis. Collectively, these results demonstrate that NMII inhibits neutrophil apoptosis through inhibition of caspase-3 cleavage and activation of MAPK survival pathways with subsequent expression and stabilization of antiapoptotic protein Mcl-1, a process that may partially require the T4SS.
Collapse
|
29
|
Naumenko V, Turk M, Jenne CN, Kim SJ. Neutrophils in viral infection. Cell Tissue Res 2018; 371:505-516. [PMID: 29327081 DOI: 10.1007/s00441-017-2763-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 11/28/2017] [Indexed: 12/20/2022]
Abstract
Neutrophils are the first wave of recruited immune cells to sites of injury or infection and are crucial players in controlling bacterial and fungal infections. Although the role of neutrophils during bacterial or fungal infections is well understood, their impact on antiviral immunity is much less studied. Furthermore, neutrophil function in tumor pathogenesis and cancer treatment has recently received much attention, particularly within the context of oncolytic virus infection where neutrophils produce antitumor cytokines and enhance oncolysis. In this review, multiple functions of neutrophils in viral infections and immunity are discussed. Understanding the role of neutrophils during viral infection may provide insight into the pathogenesis of virus infections and the outcome of virus-based therapies.
Collapse
Affiliation(s)
- Victor Naumenko
- Department of Microbiology, Immunology and Infectious Diseases, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, HRIC 3330 Hospital Drive N.W, Calgary, Alberta, T2N 4N1, Canada.,National University of Science and Technology "MISIS", Leninskiy prospect 4, 119991, Moscow, Russia
| | - Madison Turk
- Department of Microbiology, Immunology and Infectious Diseases, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, HRIC 3330 Hospital Drive N.W, Calgary, Alberta, T2N 4N1, Canada
| | - Craig N Jenne
- Department of Microbiology, Immunology and Infectious Diseases, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, HRIC 3330 Hospital Drive N.W, Calgary, Alberta, T2N 4N1, Canada. .,Calvin, Phoebe & Joan Snyder Institute for Chronic Diseases, Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, HRIC 2C26, 3280 Hospital Drive N.W., Calgary, Alberta, T2N 4N1, Canada.
| | - Seok-Joo Kim
- Department of Microbiology, Immunology and Infectious Diseases, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, HRIC 3330 Hospital Drive N.W, Calgary, Alberta, T2N 4N1, Canada. .,Calvin, Phoebe & Joan Snyder Institute for Chronic Diseases, Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, HRIC 4C49, 3280 Hospital Drive N.W., Calgary, Alberta, T2N 4N1, Canada.
| |
Collapse
|
30
|
Soulat D, Bogdan C. Function of Macrophage and Parasite Phosphatases in Leishmaniasis. Front Immunol 2017; 8:1838. [PMID: 29312331 PMCID: PMC5743797 DOI: 10.3389/fimmu.2017.01838] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 12/05/2017] [Indexed: 01/23/2023] Open
Abstract
The kinetoplastid protozoan parasites belonging to the genus Leishmania are the causative agents of different clinical forms of leishmaniasis, a vector-borne infectious disease with worldwide prevalence. The protective host immune response against Leishmania parasites relies on myeloid cells such as dendritic cells and macrophages in which upon stimulation by cytokines (e.g., interferon-γ) a complex network of signaling pathways is switched on leading to strong antimicrobial activities directed against the intracellular parasite stage. The regulation of these pathways classically depends on post-translational modifications of proteins, with phosphorylation events playing a cardinal role. Leishmania parasites deactivate their phagocytic host cells by inducing specific mammalian phosphatases that are capable to impede signaling. On the other hand, there is now also evidence that Leishmania spp. themselves express phosphatases that might target host cell molecules and thereby facilitate the intracellular survival of the parasite. This review will present an overview on the modulation of host phosphatases by Leishmania parasites as well as on the known families of Leishmania phosphatases and their possible function as virulence factors. A more detailed understanding of the role of phosphatases in Leishmania–host cell interactions might open new avenues for the treatment of non-healing, progressive forms of leishmaniasis.
Collapse
Affiliation(s)
- Didier Soulat
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany.,Medical Immunology Campus Erlangen, Interdisciplinary Center of the FAU, Erlangen, Germany
| | - Christian Bogdan
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany.,Medical Immunology Campus Erlangen, Interdisciplinary Center of the FAU, Erlangen, Germany
| |
Collapse
|
31
|
Magalhães LMD, Viana A, de Jesus AC, Chiari E, Galvão L, Gomes JA, Gollob KJ, Dutra WO. Distinct Trypanosoma cruzi isolates induce activation and apoptosis of human neutrophils. PLoS One 2017; 12:e0188083. [PMID: 29176759 PMCID: PMC5703490 DOI: 10.1371/journal.pone.0188083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 10/31/2017] [Indexed: 11/18/2022] Open
Abstract
Neutrophils are critical players in the first line of defense against pathogens and in the activation of subsequent cellular responses. We aimed to determine the effects of the interaction of Trypanosoma cruzi with human neutrophils, using isolates of the two major discrete type units (DTUs) associated with Chagas’ disease in Latin America (clone Col1.7G2 and Y strain, DTU I and II, respectively). Thus, we used CFSE-stained trypomastigotes to measure neutrophil-T. cruzi interaction, neutrophil activation, cytokine expression and death, after infection with Col1.7G2 and Y strain. Our results show that the frequency of CFSE+ neutrophils, indicative of interaction, and CFSE intensity on a cell-per-cell basis were similar when comparing Col1.7G2 and Y strains. Interaction with T. cruzi increased neutrophil activation, as measured by CD282, CD284, TNF and IL-12 expression, although at different levels between the two strains. No change in IL-10 expression was observed after interaction of neutrophils with either strain. We observed that exposure to Y and Col1.7G2 caused marked neutrophil death. This was specific to neutrophils, since interaction of either strain with monocytes did not cause death. Our further analysis showed that neutrophil death was a result of apoptosis, which was associated with an upregulation of TNF-receptor, TNF and FasLigand, but not of Fas. Induction of TNF-associated neutrophil apoptosis by the different T. cruzi isolates may act as an effective common mechanism to decrease the host’s immune response and favor parasite survival.
Collapse
Affiliation(s)
- Luísa M. D. Magalhães
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Agostinho Viana
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Augusto C. de Jesus
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Egler Chiari
- Laboratório de Biologia do Trypanosoma cruzi e doença de Chagas, Departamento de Parasitologia, Instituto de Ciências Biológicas, Belo Horizonte, Minas Gerais, Brazil
| | - Lúcia Galvão
- Laboratório de Biologia do Trypanosoma cruzi e doença de Chagas, Departamento de Parasitologia, Instituto de Ciências Biológicas, Belo Horizonte, Minas Gerais, Brazil
| | - Juliana A. Gomes
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Kenneth J. Gollob
- Núcleo de Ensino e Pesquisa, Instituto Mario Pena, Belo Horizonte, Minas Gerais, Brazil
- BRISA Diagnósticos, Belo Horizonte, Minas Gerais, Brazil
- AC Camargo Cancer Center, International Center for Research, São Paulo, São Paulo, Brazil
- INCT-DT, Belo Horizonte, Minas Gerais, Brazil
| | - Walderez O. Dutra
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- INCT-DT, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
32
|
Gonçalves-de-Albuquerque SDC, Pessoa-e-Silva R, Trajano-Silva LAM, de Goes TC, de Morais RCS, da C. Oliveira CN, de Lorena VMB, de Paiva-Cavalcanti M. The Equivocal Role of Th17 Cells and Neutrophils on Immunopathogenesis of Leishmaniasis. Front Immunol 2017; 8:1437. [PMID: 29163510 PMCID: PMC5670345 DOI: 10.3389/fimmu.2017.01437] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/16/2017] [Indexed: 01/17/2023] Open
Abstract
Advances in the understanding of leishmaniasis progression indicate that cellular interactions more complex than the Th1/Th2 paradigm define the course of infection. Th17 cells are a crucial modulator of adaptive immunity against Leishmania parasites acting mainly on neutrophil recruitment and playing a dual role at the site of infection. This review describes the roles of both these cell types in linking innate defense responses to the establishment of specific immunity. We focus on the Th17-neutrophil interaction as a crucial component of anti-Leishmania immunity, and the clinical evolution of cutaneous or visceral leishmaniasis. To date, information obtained through experimental models and patient evaluations suggests that the influence of the presence of interleukin (IL)-17 (the main cytokine produced by Th17 cells) and neutrophils during Leishmania infections is strictly dependent on the tissue (skin or liver/spleen) and parasite species. Also, the time at which neutrophils are recruited, and the persistence of IL-17 in the infection microenvironment, may also be significant. A clearer understanding of these interactions will enable better measurement of the influence of IL-17 and its regulators, and contribute to the identification of disease/resistance biomarkers.
Collapse
Affiliation(s)
| | - Rômulo Pessoa-e-Silva
- Department of Microbiology, Aggeu Magalhães Research Center, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
| | - Lays A. M. Trajano-Silva
- Department of Microbiology, Aggeu Magalhães Research Center, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
| | - Tayná Correia de Goes
- Department of Microbiology, Aggeu Magalhães Research Center, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
| | - Rayana C. S. de Morais
- Department of Microbiology, Aggeu Magalhães Research Center, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
| | - Cíntia N. da C. Oliveira
- Department of Microbiology, Aggeu Magalhães Research Center, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
| | - Virgínia M. B. de Lorena
- Department of Microbiology, Aggeu Magalhães Research Center, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
| | - Milena de Paiva-Cavalcanti
- Department of Microbiology, Aggeu Magalhães Research Center, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
| |
Collapse
|
33
|
Caffeic acid combined with autoclaved Leishmania major boosted the protection of infected BALB/c mice by enhancing IgG2 production, IFN-γ/TGF-β and iNO synthase/arginase1 ratios, and the death of infected phagocytes. Inflammopharmacology 2017; 26:621-634. [DOI: 10.1007/s10787-017-0399-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 09/12/2017] [Indexed: 12/19/2022]
|
34
|
Pocock JM, Storisteanu DML, Reeves MB, Juss JK, Wills MR, Cowburn AS, Chilvers ER. Human Cytomegalovirus Delays Neutrophil Apoptosis and Stimulates the Release of a Prosurvival Secretome. Front Immunol 2017; 8:1185. [PMID: 28993776 PMCID: PMC5622148 DOI: 10.3389/fimmu.2017.01185] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 09/07/2017] [Indexed: 12/24/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a major cause of viral disease in the young and the immune-suppressed. At sites of infection, HCMV recruits the neutrophil, a cell with a key role in orchestrating the initial immune response. Herein, we report a profound survival response in human neutrophils exposed to the clinical HCMV isolate Merlin, but not evident with the attenuated strain AD169, through suppression of apoptosis. The initial survival event, which is independent of viral gene expression and involves activation of the ERK/MAPK and NF-κB pathways, is augmented by HCMV-stimulated release of a secretory cytokine profile that further prolongs neutrophil lifespan. As aberrant neutrophil survival contributes to tissue damage, we predict that this may be relevant to the immune pathology of HCMV, and the presence of this effect in clinical HCMV strains and its absence in attenuated strains implies a beneficial effect to the virus in pathogenesis and/or dissemination. In addition, we show that HCMV-exposed neutrophils release factors that enhance monocyte recruitment and drive monocyte differentiation to a HCMV-permissive phenotype in an IL-6-dependent manner, thus providing an ideal vehicle for viral dissemination. This study increases understanding of HCMV-neutrophil interactions, highlighting the potential role of neutrophil recruitment as a virulence mechanism to promote HCMV pathology in the host and influence the dissemination of HCMV infection. Targeting these mechanisms may lead to new antiviral strategies aimed at limiting host damage and inhibiting viral spread.
Collapse
Affiliation(s)
- Joanna M. Pocock
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke’s and Papworth Hospitals, Cambridge, United Kingdom
| | - Daniel M. L. Storisteanu
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke’s and Papworth Hospitals, Cambridge, United Kingdom
| | - Matthew B. Reeves
- Department of Virology, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Jatinder K. Juss
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke’s and Papworth Hospitals, Cambridge, United Kingdom
| | - Mark R. Wills
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke’s and Papworth Hospitals, Cambridge, United Kingdom
| | - Andrew S. Cowburn
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke’s and Papworth Hospitals, Cambridge, United Kingdom
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Edwin R. Chilvers
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke’s and Papworth Hospitals, Cambridge, United Kingdom
| |
Collapse
|
35
|
Belkhelfa-Slimani R, Djerdjouri B. Caffeic acid and quercetin exert caspases-independent apoptotic effects on Leishmania major promastigotes, and reactivate the death of infected phagocytes derived from BALB/c mice. Asian Pac J Trop Biomed 2017. [DOI: 10.1016/j.apjtb.2017.01.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
36
|
Wound healing in cutaneous leishmaniasis: A double edged sword of IL-10 and TGF-β. Comp Immunol Microbiol Infect Dis 2017; 51:15-26. [PMID: 28504090 DOI: 10.1016/j.cimid.2017.02.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 01/16/2017] [Accepted: 02/08/2017] [Indexed: 01/05/2023]
Abstract
Immune responses have a crucial role during the wound healing process in cutaneous leishmaniasis (CL). However, there are several paradoxes in immunity against CL. On the one hand, regulatory cytokines interleukin (IL)-10 and transforming growth factor beta (TGF-β) increase susceptibility to CL through suppression of several proinflammatory cytokines that require for defense against CL. On the other hand, these cytokines play a pivotal role in the acceleration of wound healing process. This review discusses about the dual role of IL-10 and TGF-β during the wound healing process and immunity against CL to offer a new insight about wound healing in CL.
Collapse
|
37
|
Figueiredo ABD, Souza-Testasicca MC, Afonso LCC. Purinergic signaling and infection by Leishmania: A new approach to evasion of the immune response. Biomed J 2016; 39:244-250. [PMID: 27793266 PMCID: PMC6139394 DOI: 10.1016/j.bj.2016.08.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/18/2016] [Accepted: 08/02/2016] [Indexed: 12/20/2022] Open
Abstract
Infection by protozoan parasites is part of the most common Tropical Neglected Diseases. In the case of leishmaniasis, several millions of people are at risk of contracting the disease. In spite of innumerous studies that elucidated the immune response capable of killing the parasite, the understanding of the evasion mechanisms utilized by the parasite to survive within the very cell responsible for its destruction is still incomplete. In this review, we offer a new approach to the control of the immune response against the parasite. The ability of the parasite to modulate the levels of extracellular ATP and adenosine either by directly acting on the levels of these molecules or by inducing the expression of CD39 and CD73 on the infected cell may influence the magnitude of the immune response against the parasite contributing to its growth and survival.
Collapse
Affiliation(s)
- Amanda Braga de Figueiredo
- Immunoparasitology Laboratory, Department of Biological Sciences, ICEB/NUPEB, Federal University of Ouro Preto, Brazil
| | | | - Luis Carlos Crocco Afonso
- Immunoparasitology Laboratory, Department of Biological Sciences, ICEB/NUPEB, Federal University of Ouro Preto, Brazil.
| |
Collapse
|
38
|
Dos-Santos A, Carvalho-Kelly L, Dick C, Meyer-Fernandes J. Innate immunomodulation to trypanosomatid parasite infections. Exp Parasitol 2016; 167:67-75. [DOI: 10.1016/j.exppara.2016.05.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 05/13/2016] [Accepted: 05/21/2016] [Indexed: 01/05/2023]
|
39
|
Different Leishmania Species Drive Distinct Neutrophil Functions. Trends Parasitol 2016; 32:392-401. [DOI: 10.1016/j.pt.2016.02.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/04/2016] [Accepted: 02/08/2016] [Indexed: 01/06/2023]
|
40
|
Chow SH, Deo P, Naderer T. Macrophage cell death in microbial infections. Cell Microbiol 2016; 18:466-74. [PMID: 26833712 DOI: 10.1111/cmi.12573] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/21/2016] [Accepted: 01/27/2016] [Indexed: 12/26/2022]
Abstract
Macrophages can respond to microbial infections with programmed cell death. The major cell death pathways of apoptosis, pyroptosis and necroptosis are tightly regulated to ensure adequate immune reactions to virulent and persistent invaders. Macrophage death eliminates the replicative niche of intracellular pathogens and induces immune attack. Not surprisingly, successful pathogens have evolved strategies to modulate macrophage cell death pathways to enable microbial survival and replication. Uncontrolled macrophage death can also lead to tissue damage, which may augment bacterial dissemination and pathology. In this review, we highlight how pathogens hijack macrophage cell death signals to promote microbial survival and immune evasion.
Collapse
Affiliation(s)
- Seong H Chow
- Department of Biochemistry and Molecular Biology and the Biomedicine Discovery Institute, Monash University, Clayton, 3800, VIC, Australia
| | - Pankaj Deo
- Department of Biochemistry and Molecular Biology and the Biomedicine Discovery Institute, Monash University, Clayton, 3800, VIC, Australia
| | - Thomas Naderer
- Department of Biochemistry and Molecular Biology and the Biomedicine Discovery Institute, Monash University, Clayton, 3800, VIC, Australia
| |
Collapse
|
41
|
Charmoy M, Hurrell BP, Romano A, Lee SH, Ribeiro-Gomes F, Riteau N, Mayer-Barber K, Tacchini-Cottier F, Sacks DL. The Nlrp3 inflammasome, IL-1β, and neutrophil recruitment are required for susceptibility to a nonhealing strain of Leishmania major in C57BL/6 mice. Eur J Immunol 2016; 46:897-911. [PMID: 26689285 DOI: 10.1002/eji.201546015] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/23/2015] [Accepted: 12/16/2015] [Indexed: 01/12/2023]
Abstract
Infection of C57BL/6 mice with most Leishmania major strains results in a healing lesion and clearance of parasites from the skin. Infection of C57BL/6 mice with the L. major Seidman strain (LmSd), isolated from a patient with chronic lesions, despite eliciting a strong Th1 response, results in a nonhealing lesion, poor parasite clearance, and complete destruction of the ear dermis. We show here that in comparison to a healing strain, LmSd elicited early upregulation of IL-1β mRNA and IL-1β-producing dermal cells and prominent neutrophil recruitment to the infected skin. Mice deficient in Nlrp3, apoptosis-associated speck-like protein containing a caspase recruitment domain, or caspase-1/11, or lacking IL-1β or IL-1 receptor signaling, developed healing lesions and cleared LmSd from the infection site. Mice resistant to LmSd had a stronger antigen-specific Th1 response. The possibility that IL-1β might act through neutrophil recruitment to locally suppress immunity was supported by the healing observed in neutropenic Genista mice. Secretion of mature IL-1β by LmSd-infected macrophages in vitro was dependent on activation of the Nlrp3 inflammasome and caspase-1. These data reveal that Nlrp3 inflammasome-dependent IL-1β, associated with localized neutrophil recruitment, plays a crucial role in the development of a nonhealing form of cutaneous leishmaniasis in conventionally resistant mice.
Collapse
Affiliation(s)
- Melanie Charmoy
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin P Hurrell
- Department of Biochemistry, WHO-Immunology Research and Training Center, University of Lausanne, Lausanne, Switzerland
| | - Audrey Romano
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sang Hun Lee
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Flavia Ribeiro-Gomes
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nicolas Riteau
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Katrin Mayer-Barber
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Fabienne Tacchini-Cottier
- Department of Biochemistry, WHO-Immunology Research and Training Center, University of Lausanne, Lausanne, Switzerland
| | - David L Sacks
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
42
|
Fox S, Ryan KA, Berger AH, Petro K, Das S, Crowe SE, Ernst PB. The role of C1q in recognition of apoptotic epithelial cells and inflammatory cytokine production by phagocytes during Helicobacter pylori infection. JOURNAL OF INFLAMMATION-LONDON 2015; 12:51. [PMID: 26357509 PMCID: PMC4563842 DOI: 10.1186/s12950-015-0098-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 08/28/2015] [Indexed: 12/11/2022]
Abstract
Background Gastric epithelial cells (GECs) undergo apoptosis during H. pylori infection and phagocytes within the mucosa engulf these cells. The recognition and clearance of apoptotic cells is a multifactorial process, enhanced by the presence of various bridging molecules and opsonins which are abundant in serum. However, it is not clear how recognition or clearance may differ in the context of H. pylori infection induced apoptosis. In addition, efferocytosis of sterile apoptotic cells is known to confer anti-inflammatory properties in the engulfing phagocyte, however it is unknown if this is maintained when phagocytes encounter H. pylori-infected cells. Thus, the ability of macrophages to bind and engulf gastric epithelial cells rendered apoptotic by H. pylori infection and the association of these interactions to the modulation of phagocyte inflammatory responses was investigated in the absence and presence of serum with a particular focus on the role of serum protein C1q. Methods Control (uninfected) or H. pylori-infected AGS cells were co-cultured with THP-1 macrophages in the presence or absence of serum or serum free conditions + C1q protein (40–80 μg/mL). Binding of AGS cells to THP-1 macrophages was assessed by microscopy and cytokine (IL-6 and TNF-α) release from LPS stimulated THP-1 macrophages was quantified by ELISA. Results We show that macrophages bound preferentially to cells undergoing apoptosis subsequent to infection with H. pylori. Binding of apoptotic AGS to THP-1 macrophages was significantly inhibited when studied in the absence of serum and reconstitution of serum-free medium with purified human C1q restored binding of macrophages to apoptotic cells. Co-culture of sterile apoptotic and H. pylori-infected AGS cells both attenuated LPS-stimulated cytokine production by THP-1 macrophages. Further, direct treatment of THP-1 macrophages with C1q attenuated LPS stimulated TNF-α production. Conclusions These studies suggest that C1q opsonizes GECs rendered apoptotic by H. pylori. No differences existed in the ability of infected or sterile apoptotic cells to attenuate macrophage cytokine production, however, there may be a direct role for C1q in modulating macrophage inflammatory cytokine production to infectious stimuli. Electronic supplementary material The online version of this article (doi:10.1186/s12950-015-0098-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sarah Fox
- Department of Pathology, University of California, La Jolla, San Diego, CA USA
| | - Kieran A Ryan
- Division of Gastroenterology and Hepatology, University of Virginia, Charlottesville, VA USA ; National University Ireland, Galway, Ireland
| | - Alice H Berger
- Division of Gastroenterology and Hepatology, University of Virginia, Charlottesville, VA USA ; Broad Institute of MIT and Harvard, Boston, MA USA
| | - Katie Petro
- Division of Gastroenterology and Hepatology, University of Virginia, Charlottesville, VA USA ; Athersys, Inc, Cleveland, OH USA
| | - Soumita Das
- Department of Pathology, University of California, La Jolla, San Diego, CA USA ; Division of Gastroenterology and Hepatology, University of Virginia, Charlottesville, VA USA
| | - Sheila E Crowe
- Department of Pathology, University of California, La Jolla, San Diego, CA USA ; Division of Gastroenterology and Hepatology, University of Virginia, Charlottesville, VA USA
| | - Peter B Ernst
- Department of Pathology, University of California, La Jolla, San Diego, CA USA ; Division of Gastroenterology and Hepatology, University of Virginia, Charlottesville, VA USA
| |
Collapse
|
43
|
Simultaneous Host-Pathogen Transcriptome Analysis during Granulibacter bethesdensis Infection of Neutrophils from Healthy Subjects and Patients with Chronic Granulomatous Disease. Infect Immun 2015; 83:4277-92. [PMID: 26283340 DOI: 10.1128/iai.00778-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/11/2015] [Indexed: 11/20/2022] Open
Abstract
Polymorphonuclear leukocytes (PMN) from patients with chronic granulomatous disease (CGD) fail to produce microbicidal concentrations of reactive oxygen species (ROS) due to mutations in NOX2. Patients with CGD suffer from severe, life-threatening infections and inflammatory complications. Granulibacter bethesdensis is an emerging Gram-negative pathogen in CGD that resists killing by PMN of CGD patients (CGD PMN) and inhibits PMN apoptosis through unknown mechanisms. Microarray analysis was used to study mRNA expression in PMN from healthy subjects (normal PMN) and CGD PMN during incubation with G. bethesdensis and, simultaneously, in G. bethesdensis with normal and CGD PMN. We detected upregulation of antiapoptotic genes (e.g., XIAP and GADD45B) and downregulation of proapoptotic genes (e.g., CASP8 and APAF1) in infected PMN. Transcript and protein levels of inflammation- and immunity-related genes were also altered. Upon interaction with PMN, G. bethesdensis altered the expression of ROS resistance genes in the presence of normal but not CGD PMN. Levels of bacterial stress response genes, including the ClpB gene, increased during phagocytosis by both normal and CGD PMN demonstrating responses to oxygen-independent PMN antimicrobial systems. Antisense knockdown demonstrated that ClpB is dispensable for extracellular growth but is essential for bacterial resistance to both normal and CGD PMN. Metabolic adaptation of Granulibacter growth in PMN included the upregulation of pyruvate dehydrogenase. Pharmacological inhibition of pyruvate dehydrogenase by triphenylbismuthdichloride was lethal to Granulibacter. This study expands knowledge of microbial pathogenesis of Granulibacter in cells from permissive (CGD) and nonpermissive (normal) hosts and identifies potentially druggable microbial factors, such as pyruvate dehydrogenase and ClpB, to help combat this antibiotic-resistant pathogen.
Collapse
|
44
|
Morgado FN, Nascimento MTC, Saraiva EM, de Oliveira-Ribeiro C, Madeira MDF, da Costa-Santos M, Vasconcellos ECF, F. Pimentel MI, Rosandiski Lyra M, Schubach ADO, Conceição-Silva F. Are Neutrophil Extracellular Traps Playing a Role in the Parasite Control in Active American Tegumentary Leishmaniasis Lesions? PLoS One 2015; 10:e0133063. [PMID: 26192752 PMCID: PMC4508047 DOI: 10.1371/journal.pone.0133063] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 06/22/2015] [Indexed: 12/25/2022] Open
Abstract
Neutrophil extracellular traps (NETs) have been described as a network of extracellular fibers composed by DNA, histones and various proteins/enzymes. Studies have demonstrated that NETs could be responsible for the trapping and elimination of a variety of infectious agents. In order to verify the presence of NETs in American tegumentary leishmaniasis (ATL) and their relationship with the presence of amastigotes we evaluated active cutaneous lesions of 35 patients before treatment by the detection of parasites, neutrophils (neutrophil elastase) and histones through immunohistochemistry and confocal immunofluorescence. Intact neutrophils could be detected in all ATL lesions. NETs were present in 27 patients (median 1.1; range from 0.1 to 23.5/mm2) with lesion duration ranging from one to seven months. NETs were in close proximity with neutrophils (r = 0.586; p = 0.0001) and amastigotes (r = 0.710; p = 0.0001). Two patterns of NET formation were detected: small homogeneously distributed networks observed in all lesions; and large structures that could be visualized at a lower magnification in lesions presenting at least 20% of neutrophils. Lesions presenting the larger NET formation showed high parasite detection. A correlation between NET size and the number of intact amastigotes was observed (p=0.02). As we detected an association between NET and amastigotes, our results suggest that neutrophil migration and NET formation could be stimulated and maintained by stimuli derived from the parasite burden/parasite antigen in the extracellular environment. The observation of areas containing only antigens not intermingled with NETs (elastase and histone) suggests that the involvement of these structures in the control of parasite burden is a dynamic process in which the formation of NETs is exhausted with the destruction of the parasites. Since NETs were also associated with granulomas, this trapping would favor the activity of macrophages in order to control the parasite burden.
Collapse
Affiliation(s)
- Fernanda Nazaré Morgado
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz IOC/FIOCRUZ, Rio de Janeiro, Brazil
| | - Michelle T. C. Nascimento
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Elvira M. Saraiva
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Carla de Oliveira-Ribeiro
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz IOC/FIOCRUZ, Rio de Janeiro, Brazil
- Laboratório de Vigilância em Leishmanioses—VigiLeish, Instituto Nacional de Infectologia Evandro Chagas INI/FIOCRUZ, Rio de Janeiro, Brazil
| | - Maria de Fátima Madeira
- Laboratório de Vigilância em Leishmanioses—VigiLeish, Instituto Nacional de Infectologia Evandro Chagas INI/FIOCRUZ, Rio de Janeiro, Brazil
| | - Marcela da Costa-Santos
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz IOC/FIOCRUZ, Rio de Janeiro, Brazil
| | - Erica C. F. Vasconcellos
- Laboratório de Vigilância em Leishmanioses—VigiLeish, Instituto Nacional de Infectologia Evandro Chagas INI/FIOCRUZ, Rio de Janeiro, Brazil
| | - Maria Ines F. Pimentel
- Laboratório de Vigilância em Leishmanioses—VigiLeish, Instituto Nacional de Infectologia Evandro Chagas INI/FIOCRUZ, Rio de Janeiro, Brazil
| | - Marcelo Rosandiski Lyra
- Laboratório de Vigilância em Leishmanioses—VigiLeish, Instituto Nacional de Infectologia Evandro Chagas INI/FIOCRUZ, Rio de Janeiro, Brazil
| | - Armando de Oliveira Schubach
- Laboratório de Vigilância em Leishmanioses—VigiLeish, Instituto Nacional de Infectologia Evandro Chagas INI/FIOCRUZ, Rio de Janeiro, Brazil
| | - Fátima Conceição-Silva
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz IOC/FIOCRUZ, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
45
|
Polymorphonuclear leukocyte apoptosis is accelerated by sulfatides or sulfatides-treated Salmonella Typhimurium bacteria. BIOMED RESEARCH INTERNATIONAL 2015; 2015:381232. [PMID: 25883957 PMCID: PMC4391312 DOI: 10.1155/2015/381232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 02/25/2015] [Accepted: 02/26/2015] [Indexed: 01/12/2023]
Abstract
Neutrophils die by apoptosis following activation and uptake of microbes or enter apoptosis spontaneously at the end of their lifespan if they do not encounter a pathogen. Here we report that sulfatides or sulfatides-treated Salmonella Typhimurium bacteria accelerated human neutrophil apoptosis. Neutrophil apoptosis was examined by flow cytometry. Sulfatides caused prominent increase in percentage of apoptotic cells after 2.5 hrs of incubation. Salmonella Typhimurium bacteria by themselves did not affect the basal level of apoptosis in neutrophil population. When neutrophils were added to S. Typhimurium "opsonized" by sulfatides, apoptotic index significantly increased, whereas the number of phagocyting cells was not influenced. Sulfatides' proapoptotic effect was strongly dependent on the activity of β-galactosidase; inhibition of this enzyme impaired its potency to accelerate apoptosis. These data support the mechanism of neutrophil apoptosis triggering based on sulfatides' ability to accumulate in intracellular compartments and mediate successive increase in ceramide content resulting from β-galactosidase activity.
Collapse
|
46
|
Falcão SAC, Weinkopff T, Hurrell BP, Celes FS, Curvelo RP, Prates DB, Barral A, Borges VM, Tacchini-Cottier F, de Oliveira CI. Exposure to Leishmania braziliensis triggers neutrophil activation and apoptosis. PLoS Negl Trop Dis 2015; 9:e0003601. [PMID: 25756874 PMCID: PMC4354905 DOI: 10.1371/journal.pntd.0003601] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 02/06/2015] [Indexed: 11/21/2022] Open
Abstract
Background Neutrophils are the first line of defense against invading pathogens and are rapidly recruited to the sites of Leishmania inoculation. During Leishmania braziliensis infection, depletion of inflammatory cells significantly increases the parasite load whereas co-inoculation of neutrophils plus L. braziliensis had an opposite effect. Moreover, the co-culture of infected macrophages and neutrophils also induced parasite killing leading us to ask how neutrophils alone respond to an L. braziliensis exposure. Herein we focused on understanding the interaction between neutrophils and L. braziliensis, exploring cell activation and apoptotic fate. Methods and Findings Inoculation of serum-opsonized L. braziliensis promastigotes in mice induced neutrophil accumulation in vivo, peaking at 24 h. In vitro, exposure of thyoglycollate-elicited inflammatory or bone marrow neutrophils to L. braziliensis modulated the expression of surface molecules such as CD18 and CD62L, and induced the oxidative burst. Using mCherry-expressing L. braziliensis, we determined that such effects were mainly observed in infected and not in bystander cells. Neutrophil activation following contact with L. braziliensis was also confirmed by the release of TNF-α and neutrophil elastase. Lastly, neutrophils infected with L. braziliensis but not with L. major displayed markers of early apoptosis. Conclusions We show that L. braziliensis induces neutrophil recruitment in vivo and that neutrophils exposed to the parasite in vitro respond through activation and release of inflammatory mediators. This outcome may impact on parasite elimination, particularly at the early stages of infection. Leishmania is the parasite responsible for the disease leishmaniasis, present in all continents. Leishmania parasites are spread through infected sand-flies and, during transmission into the vertebrate host, neutrophils are among the first cells to arrive at the infection site. Since neutrophils are key players at the frontline of defense against invading organisms, we investigated their response to Leishmania braziliensis. Importantly, L. braziliensis causes both Cutaneous and Mucocutaneous Leishmaniasis, two clinical manifestations characterized by their chronic development and by the presence of skin lesions with tissue destruction. Upon inoculation of mice with L. braziliensis, neutrophils rapidly arrive at the site of infection. We then observed that culture of mouse neutrophils with L. braziliensis induced the expression of adhesion molecules, production of Reactive Oxygen Species and secretion of elastase and TNF-α, two important inflammatory mediators. Also, infection with L. braziliensis induced neutrophil apoptosis, a cell death mechanism key for regulating inflammation. Our results show that neutrophils respond to presence of the L. braziliensis parasites by becoming activated and undergoing apoptosis. We suggest that this outcome modifies the local environment at the site of parasite inoculation and thus contributes with parasite killing in the infected host.
Collapse
Affiliation(s)
| | - Tiffany Weinkopff
- Department of Biochemistry, and WHO-Immunology Research and Training Center, University of Lausanne, Epalinges, Switzerland
| | - Benjamin P. Hurrell
- Department of Biochemistry, and WHO-Immunology Research and Training Center, University of Lausanne, Epalinges, Switzerland
| | - Fabiana S. Celes
- Centro de Pesquisas Gonçalo Moniz, FIOCRUZ, Salvador, Bahia, Brazil
| | | | - Deboraci B. Prates
- Departamento de Biomorfologia, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Aldina Barral
- Centro de Pesquisas Gonçalo Moniz, FIOCRUZ, Salvador, Bahia, Brazil
- Instituto de Investigação em Imunologia, Salvador, Bahia, Brazil
| | - Valeria M. Borges
- Centro de Pesquisas Gonçalo Moniz, FIOCRUZ, Salvador, Bahia, Brazil
- Instituto de Investigação em Imunologia, Salvador, Bahia, Brazil
| | - Fabienne Tacchini-Cottier
- Department of Biochemistry, and WHO-Immunology Research and Training Center, University of Lausanne, Epalinges, Switzerland
| | - Camila I. de Oliveira
- Centro de Pesquisas Gonçalo Moniz, FIOCRUZ, Salvador, Bahia, Brazil
- Instituto de Investigação em Imunologia, Salvador, Bahia, Brazil
- * E-mail:
| |
Collapse
|
47
|
Qian F, Guo X, Wang X, Yuan X, Chen S, Malawista SE, Bockenstedt LK, Allore HG, Montgomery RR. Reduced bioenergetics and toll-like receptor 1 function in human polymorphonuclear leukocytes in aging. Aging (Albany NY) 2014; 6:131-9. [PMID: 24595889 PMCID: PMC3969281 DOI: 10.18632/aging.100642] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aging is associated with a progressive decline in immune function (immunosenescence) resulting in an increased susceptibility to viral and bacterial infections. Here we show reduced expression of Toll-like receptor 1 (TLR1) in polymorphonuclear leukocytes (PMN) and an underlying age-dependent deficiency in PMN bioenergetics. In older (>65 years) adults, stimulation through TLR1 led to lower activation of integrins (CD11b and CD18), lower production of the chemokine IL-8, and lower levels of the phosphorylated signaling intermediate p38 MAP kinase than in PMN from younger donors (21-30 years). In addition, loss of CD62L, a marker of PMN activation, was reduced in PMN of older adults stimulated through multiple pathways. Rescue of PMN from apoptosis by stimulation with TLR1 was reduced in PMN from older adults. In seeking an explanation for effects of aging across multiple pathways, we examined PMN energy utilization and found that glucose uptake after stimulation through TLR1 was dramatically lower in PMN of older adults. Our results demonstrate a reduction in TLR1 expression and TLR1-mediated responses in PMN with aging, and reduced efficiency of bioenergetics in PMN. These changes likely contribute to reduced PMN efficiency in aging through multiple aspects of PMN function and suggest potential therapeutic opportunities.
Collapse
Affiliation(s)
- Feng Qian
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
McCartney-Francis N, Jin W, Belkaid Y, McGrady G, Wahl SM. Aberrant host defense against Leishmania major in the absence of SLPI. J Leukoc Biol 2014; 96:917-29. [PMID: 25030421 DOI: 10.1189/jlb.4a0612-295rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
SLPI, a potent epithelial and myeloid-derived serine protease inhibitor with antimicrobial and anti-inflammatory functions, is induced by the intracellular parasite Leishmania major, and increased SLPI expression is evident within lesions that follow L. major infection. In contrast to self-resolving infection in C57Bl/6 WT mice, Slpi(-/-) mice launch a strong Th1 response to L. major, yet fail to control infection and develop destructive, nonhealing lesions with systemic spread of parasites. Because SLPI is both produced by murine macrophages and antagonizes their function, we examined the contribution of macrophage polarization to the defective host response in the absence of SLPI. Slpi(-/-) and Slpi(+/+) macrophages were first primed with either IFNγ or IL-4 to generate classically activated M1 or alternatively activated M2 macrophages. After infection with L. major, Slpi(-/-) M1 macrophages expressed elevated iNOS RNA, whereas arginase was more highly expressed in WT than Slpi(-/-) M2 macrophages. After in vivo infection, we found that both IFNγ and iNOS were persistently overexpressed in chronic lesions in Slpi(-/-) mice, but surprisingly, IL-4 and arginase concomitantly remained elevated. Moreover, overexpression of the negative regulators SOCS1 and IL-27 provided insight into the failure of IFNγ to clear L. major from the dermal lesions. Notably, adenoviral delivery of SLPI to L. major-infected Slpi(-/-) mice significantly limited the progression of infection. These studies suggest that convergence of M1 and M2 macrophage responses may influence the outcome of innate host defense against intracellular parasites and that SLPI is critical for coordinating resistance to chronic leishmaniasis.
Collapse
Affiliation(s)
- Nancy McCartney-Francis
- Cellular Immunology Section, Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research
| | - Wenwen Jin
- Cellular Immunology Section, Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research
| | - Yasmine Belkaid
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, Bethesda, MD, USA
| | - George McGrady
- Cellular Immunology Section, Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research
| | - Sharon M Wahl
- Cellular Immunology Section, Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research,
| |
Collapse
|
49
|
Mac-Daniel L, Buckwalter MR, Berthet M, Virk Y, Yui K, Albert ML, Gueirard P, Ménard R. Local immune response to injection of Plasmodium sporozoites into the skin. THE JOURNAL OF IMMUNOLOGY 2014; 193:1246-57. [PMID: 24981449 DOI: 10.4049/jimmunol.1302669] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Malarial infection is initiated when the sporozoite form of the Plasmodium parasite is inoculated into the skin by a mosquito. Sporozoites invade hepatocytes in the liver and develop into the erythrocyte-infecting form of the parasite, the cause of clinical blood infection. Protection against parasite development in the liver can be induced by injection of live attenuated parasites that do not develop in the liver and thus do not cause blood infection. Radiation-attenuated sporozoites (RAS) and genetically attenuated parasites are now considered as lead candidates for vaccination of humans against malaria. Although the skin appears as the preferable administration route, most studies in rodents, which have served as model systems, have been performed after i.v. injection of attenuated sporozoites. In this study, we analyzed the early response to Plasmodium berghei RAS or wild-type sporozoites (WTS) injected intradermally into C57BL/6 mice. We show that RAS have a similar in vivo distribution to WTS and that both induce a similar inflammatory response consisting of a biphasic recruitment of polymorphonuclear neutrophils and inflammatory monocytes in the skin injection site and proximal draining lymph node (dLN). Both WTS and RAS associate with neutrophils and resident myeloid cells in the skin and the dLN, transform inside CD11b(+) cells, and induce a Th1 cytokine profile in the dLN. WTS and RAS are also similarly capable of priming parasite-specific CD8(+) T cells. These studies delineate the early and local response to sporozoite injection into the skin, and suggest that WTS and RAS prime the host immune system in a similar fashion.
Collapse
Affiliation(s)
- Laura Mac-Daniel
- Unité de Biologie et Génétique du Paludisme, Institut Pasteur, 75724 Paris Cedex 15, France
| | - Matthew R Buckwalter
- Unité d'Immunobiologie des Cellules Dendritiques, Institut Pasteur, 75724 Paris Cedex 15, France; and
| | - Michèle Berthet
- Unité de Biologie et Génétique du Paludisme, Institut Pasteur, 75724 Paris Cedex 15, France
| | - Yasemin Virk
- Unité d'Immunobiologie des Cellules Dendritiques, Institut Pasteur, 75724 Paris Cedex 15, France; and
| | - Katsuyuki Yui
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Matthew L Albert
- Unité d'Immunobiologie des Cellules Dendritiques, Institut Pasteur, 75724 Paris Cedex 15, France; and
| | - Pascale Gueirard
- Unité de Biologie et Génétique du Paludisme, Institut Pasteur, 75724 Paris Cedex 15, France
| | - Robert Ménard
- Unité de Biologie et Génétique du Paludisme, Institut Pasteur, 75724 Paris Cedex 15, France;
| |
Collapse
|
50
|
Singh OP, Sundar S. Immunotherapy and targeted therapies in treatment of visceral leishmaniasis: current status and future prospects. Front Immunol 2014; 5:296. [PMID: 25183962 PMCID: PMC4135235 DOI: 10.3389/fimmu.2014.00296] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 06/07/2014] [Indexed: 11/13/2022] Open
Abstract
Visceral leishmaniasis (VL) is a vector-borne chronic infectious disease caused by the protozoan parasite Leishmania donovani or Leishmania infantum. VL is a serious public health problem, causing high morbidity and mortality in the developing world with an estimated 0.2-0.4 million new cases each year. In the absence of a vaccine, chemotherapy remains the favored option for disease control, but is limited by a narrow therapeutic index, significant toxicities, and frequently acquired resistance. Improved understanding of VL pathogenesis offers the development and deployment of immune based treatment options either alone or in combination with chemotherapy. Modulations of host immune response include the inhibition of molecular pathways that are crucial for parasite growth and maintenance; and stimulation of host effectors immune responses that restore the impaired effector functions. In this review, we highlight the challenges in treatment of VL with a particular emphasis on immunotherapy and targeted therapies to improve clinical outcomes.
Collapse
Affiliation(s)
- Om Prakash Singh
- Infectious Disease Research Laboratory, Department of Medicine, Institute of Medical Sciences, Banaras Hindu University , Varanasi , Uttar Pradesh, India
| | - Shyam Sundar
- Infectious Disease Research Laboratory, Department of Medicine, Institute of Medical Sciences, Banaras Hindu University , Varanasi , Uttar Pradesh, India
| |
Collapse
|