1
|
Hayes BW, Choi HW, Rathore APS, Bao C, Shi J, Huh Y, Kim MW, Mencarelli A, Bist P, Ng LG, Shi C, Nho JH, Kim A, Yoon H, Lim D, Hannan JL, Todd Purves J, Hughes FM, Ji RR, Abraham SN. Recurrent infections drive persistent bladder dysfunction and pain via sensory nerve sprouting and mast cell activity. Sci Immunol 2024; 9:eadi5578. [PMID: 38427717 PMCID: PMC11149582 DOI: 10.1126/sciimmunol.adi5578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 02/07/2024] [Indexed: 03/03/2024]
Abstract
Urinary tract infections (UTIs) account for almost 25% of infections in women. Many are recurrent (rUTI), with patients frequently experiencing chronic pelvic pain and urinary frequency despite clearance of bacteriuria after antibiotics. To elucidate the basis for these bacteria-independent bladder symptoms, we examined the bladders of patients with rUTI. We noticed a notable increase in neuropeptide content in the lamina propria and indications of enhanced nociceptive activity. In mice subjected to rUTI, we observed sensory nerve sprouting that was associated with nerve growth factor (NGF) produced by recruited monocytes and tissue-resident mast cells. Treatment of rUTI mice with an NGF-neutralizing antibody prevented sprouting and alleviated pelvic sensitivity, whereas instillation of native NGF into naïve mice bladders mimicked nerve sprouting and pain behavior. Nerve activation, pain, and urinary frequency were each linked to the presence of proximal mast cells, because mast cell deficiency or treatment with antagonists against receptors of several direct or indirect mast cell products was each effective therapeutically. Thus, our findings suggest that NGF-driven sensory sprouting in the bladder coupled with chronic mast cell activation represents an underlying mechanism driving bacteria-independent pain and voiding defects experienced by patients with rUTI.
Collapse
Affiliation(s)
- Byron W Hayes
- Department of Pathology, Duke University Medical Center; Durham, NC, USA
| | - Hae Woong Choi
- Division of Life Sciences, Korea University; Seoul, 02841, South Korea
| | - Abhay PS Rathore
- Department of Pathology, Duke University Medical Center; Durham, NC, USA
- Program in Emerging Infectious Diseases, Duke-National University of Singapore; Singapore 169857, Singapore
| | - Chunjing Bao
- Department of Pathology, Duke University Medical Center; Durham, NC, USA
| | - Jianling Shi
- Department of Pathology, Duke University Medical Center; Durham, NC, USA
| | - Yul Huh
- Department of Cell Biology, Duke University Medical Center; Durham, NC, USA
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center; Durham, NC, US
| | - Michael W Kim
- Department of Pathology, Duke University Medical Center; Durham, NC, USA
| | - Andrea Mencarelli
- Program in Emerging Infectious Diseases, Duke-National University of Singapore; Singapore 169857, Singapore
| | - Pradeep Bist
- Program in Emerging Infectious Diseases, Duke-National University of Singapore; Singapore 169857, Singapore
| | - Lai Guan Ng
- Singapore Immunology Network, Agency for Science, Technology and Research, Immunos, Biopolis; 138648, Singapore
- Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changming Shi
- Shanghai Immune Therapy Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Joo Hwan Nho
- Division of Life Sciences, Korea University; Seoul, 02841, South Korea
| | - Aram Kim
- Department of Urology, Konkuk University Hospital, Konkuk University School of Medicine; Seoul, 05029, South Korea
| | - Hana Yoon
- Department of Urology, Ewha Womans University, College of Medicine; Seoul, 07804, South Korea
| | - Donghoon Lim
- Department of Urology, Chosun University School of Medicine; Gwangju, Korea
| | - Johanna L Hannan
- Department of Physiology, Brody School of Medicine, East Carolina University; Greenville, NC, USA
| | - J Todd Purves
- Department of Surgery, Division of Urology, Duke University Medical Center; Durham, NC, USA
| | - Francis M Hughes
- Department of Surgery, Division of Urology, Duke University Medical Center; Durham, NC, USA
| | - Ru-Rong Ji
- Department of Cell Biology, Duke University Medical Center; Durham, NC, USA
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center; Durham, NC, US
- Department of Neurobiology, Duke University Medical Center; Durham, North Carolina, USA
| | - Soman N Abraham
- Department of Pathology, Duke University Medical Center; Durham, NC, USA
- Department of Cell Biology, Duke University Medical Center; Durham, NC, USA
- Program in Emerging Infectious Diseases, Duke-National University of Singapore; Singapore 169857, Singapore
- Department of Immunology, Duke University Medical Center; Durham, NC, USA
- Department of Molecular Genetics & Microbiology, Duke University Medical Center; Durham, NC, USA
| |
Collapse
|
2
|
Valent P, Akin C, Hartmann K, Nilsson G, Reiter A, Hermine O, Sotlar K, Sperr WR, Escribano L, George TI, Kluin-Nelemans HC, Ustun C, Triggiani M, Brockow K, Gotlib J, Orfao A, Kovanen PT, Hadzijusufovic E, Sadovnik I, Horny HP, Arock M, Schwartz LB, Austen KF, Metcalfe DD, Galli SJ. Mast cells as a unique hematopoietic lineage and cell system: From Paul Ehrlich's visions to precision medicine concepts. Am J Cancer Res 2020; 10:10743-10768. [PMID: 32929378 PMCID: PMC7482799 DOI: 10.7150/thno.46719] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023] Open
Abstract
The origin and functions of mast cells (MCs) have been debated since their description by Paul Ehrlich in 1879. MCs have long been considered 'reactive bystanders' and 'amplifiers' in inflammatory processes, allergic reactions, and host responses to infectious diseases. However, knowledge about the origin, phenotypes and functions of MCs has increased substantially over the past 50 years. MCs are now known to be derived from multipotent hematopoietic progenitors, which, through a process of differentiation and maturation, form a unique hematopoietic lineage residing in multiple organs. In particular, MCs are distinguishable from basophils and other hematopoietic cells by their unique phenotype, origin(s), and spectrum of functions, both in innate and adaptive immune responses and in other settings. The concept of a unique MC lineage is further supported by the development of a distinct group of neoplasms, collectively referred to as mastocytosis, in which MC precursors expand as clonal cells. The clinical consequences of the expansion and/or activation of MCs are best established in mastocytosis and in allergic inflammation. However, MCs have also been implicated as important participants in a number of additional pathologic conditions and physiological processes. In this article, we review concepts regarding MC development, factors controlling MC expansion and activation, and some of the fundamental roles MCs may play in both health and disease. We also discuss new concepts for suppressing MC expansion and/or activation using molecularly-targeted drugs.
Collapse
|
3
|
Ching C, Schwartz L, Spencer JD, Becknell B. Innate immunity and urinary tract infection. Pediatr Nephrol 2020; 35:1183-1192. [PMID: 31197473 PMCID: PMC6908784 DOI: 10.1007/s00467-019-04269-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/17/2019] [Accepted: 04/25/2019] [Indexed: 01/31/2023]
Abstract
Urinary tract infections are a severe public health problem. The emergence and spread of antimicrobial resistance among uropathogens threaten to further compromise the quality of life and health of people who develop acute and recurrent upper and lower urinary tract infections. The host defense mechanisms that prevent invasive bacterial infection are not entirely delineated. However, recent evidence suggests that versatile innate immune defenses play a key role in shielding the urinary tract from invading uropathogens. Over the last decade, considerable advances have been made in defining the innate mechanisms that maintain immune homeostasis in the kidney and urinary tract. When these innate defenses are compromised or dysregulated, pathogen susceptibility increases. The objective of this review is to provide an overview of how basic science discoveries are elucidating essential innate host defenses in the kidney and urinary tract. In doing so, we highlight how these findings may ultimately translate into the clinic as new biomarkers or therapies for urinary tract infection.
Collapse
Affiliation(s)
- Christina Ching
- Nephrology and Urology Research Affinity Group, Nationwide Children's Hospital, Columbus, OH, USA
- Center of Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Division of Urology, Nationwide Children's Hospital, Columbus, OH, USA
| | - Laura Schwartz
- Nephrology and Urology Research Affinity Group, Nationwide Children's Hospital, Columbus, OH, USA
- Center of Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - John David Spencer
- Nephrology and Urology Research Affinity Group, Nationwide Children's Hospital, Columbus, OH, USA
- Center of Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Division of Pediatric Nephrology, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA
| | - Brian Becknell
- Nephrology and Urology Research Affinity Group, Nationwide Children's Hospital, Columbus, OH, USA.
- Center of Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.
- Division of Pediatric Nephrology, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA.
| |
Collapse
|
4
|
Patras KA, Coady A, Babu P, Shing SR, Ha AD, Rooholfada E, Brandt SL, Geriak M, Gallo RL, Nizet V. Host Cathelicidin Exacerbates Group B Streptococcus Urinary Tract Infection. mSphere 2020; 5:e00932-19. [PMID: 32321824 PMCID: PMC7178553 DOI: 10.1128/msphere.00932-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/06/2020] [Indexed: 12/12/2022] Open
Abstract
Group B Streptococcus (GBS) causes frequent urinary tract infection (UTI) in susceptible populations, including individuals with type 2 diabetes and pregnant women; however, specific host factors responsible for increased GBS susceptibility in these populations are not well characterized. Here, we investigate cathelicidin, a cationic antimicrobial peptide, known to be critical for defense during UTI with uropathogenic Escherichia coli (UPEC). We observed a loss of antimicrobial activity of human and mouse cathelicidins against GBS and UPEC in synthetic urine and no evidence for increased cathelicidin resistance in GBS urinary isolates. Furthermore, we found that GBS degrades cathelicidin in a protease-dependent manner. Surprisingly, in a UTI model, cathelicidin-deficient (Camp-/-) mice showed decreased GBS burdens and mast cell recruitment in the bladder compared to levels in wild-type (WT) mice. Pharmacologic inhibition of mast cells reduced GBS burdens and histamine release in WT but not Camp-/- mice. Streptozotocin-induced diabetic mice had increased bladder cathelicidin production and mast cell recruitment at 24 h postinfection with GBS compared to levels in nondiabetic controls. We propose that cathelicidin is an important immune regulator but ineffective antimicrobial peptide against GBS in urine. Combined, our findings may in part explain the increased frequency of GBS UTI in diabetic and pregnant individuals.IMPORTANCE Certain populations such as diabetic individuals are at increased risk for developing urinary tract infections (UTI), although the underlying reasons for this susceptibility are not fully known. Additionally, diabetics are more likely to become infected with certain types of bacteria, such as group B Streptococcus (GBS). In this study, we find that an antimicrobial peptide called cathelicidin, which is thought to protect the bladder from infection, is ineffective in controlling GBS and alters the type of immune cells that migrate to the bladder during infection. Using a mouse model of diabetes, we observe that diabetic mice are more susceptible to GBS infection even though they also have more infiltrating immune cells and increased production of cathelicidin. Taken together, our findings identify this antimicrobial peptide as a potential contributor to increased susceptibility of diabetic individuals to GBS UTI.
Collapse
Affiliation(s)
- Kathryn A Patras
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Alison Coady
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Priyanka Babu
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Samuel R Shing
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Albert D Ha
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Emma Rooholfada
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Stephanie L Brandt
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | | | - Richard L Gallo
- Department of Dermatology, University of California, San Diego, La Jolla, California, USA
| | - Victor Nizet
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
5
|
Liang D, McHugh KM, Brophy PD, Shaikh N, Manak JR, Andrews P, Hakker I, Wang Z, Schwaderer AL, Hains DS. DNA copy number variations in children with vesicoureteral reflux and urinary tract infections. PLoS One 2019; 14:e0220617. [PMID: 31404082 PMCID: PMC6690579 DOI: 10.1371/journal.pone.0220617] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 07/19/2019] [Indexed: 11/18/2022] Open
Abstract
Vesicoureteral reflux (VUR) is a complex, heritable disorder. Genome-wide linkage analyses of families affected by VUR have revealed multiple genomic loci linked to VUR. These loci normally harbor a number of genes whose biologically functional variant is yet to be identified. DNA copy number variations (CNVs) have not been extensively studied at high resolution in VUR patients. In this study, we performed array comparative genomic hybridization (aCGH) on a cohort of patients with a history of both VUR and urinary tract infection (UTI) with the objective of identifying genetic variations responsible for VUR and/or UTI susceptibility. UTI/VUR-associated CNVs were identified by aCGH results from the 192 Randomized Intervention for Children With Vesicoureteral Reflux (RIVUR) patients compared to 683 controls. Rare, large CNVs that are likely pathogenic and lead to VUR development were identified using stringent analysis criteria. Because UTI is a common affliction with multiple risk factors, we utilized standard analysis to identify potential disease-modifying CNVs that can contribute to UTI risk. Gene ontology analysis identified that CNVs in innate immunity and development genes were enriched in RIVUR patients. CNVs affecting innate immune genes may contribute to UTI susceptibility in VUR patients and may provide the first step in assisting clinical medicine in determining adverse outcome risk in children with VUR.
Collapse
Affiliation(s)
- Dong Liang
- Department of Pediatrics, Indiana University, Indianapolis, IN, United States of America
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Kirk M. McHugh
- Division of Anatomy, The Ohio State University, Columbus, OH, United States of America
| | - Pat D. Brophy
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Nader Shaikh
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - J. Robert Manak
- Departments of Biology and Pediatrics, University of Iowa, Iowa City, IA, United States of America
| | - Peter Andrews
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States of America
| | - Inessa Hakker
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States of America
| | - Zihua Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States of America
| | - Andrew L. Schwaderer
- Department of Pediatrics, Indiana University, Indianapolis, IN, United States of America
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States of America
- Riley Hospital for Children at Indiana University Health, Indianapolis, IN, United States of America
| | - David S. Hains
- Department of Pediatrics, Indiana University, Indianapolis, IN, United States of America
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States of America
- Riley Hospital for Children at Indiana University Health, Indianapolis, IN, United States of America
| |
Collapse
|
6
|
Piliponsky AM, Acharya M, Shubin NJ. Mast Cells in Viral, Bacterial, and Fungal Infection Immunity. Int J Mol Sci 2019; 20:ijms20122851. [PMID: 31212724 PMCID: PMC6627964 DOI: 10.3390/ijms20122851] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/31/2019] [Accepted: 06/11/2019] [Indexed: 01/01/2023] Open
Abstract
Mast cells are granule-rich immune cells that are distributed throughout the body in areas where microorganisms typically reside, such as mucosal tissues and the skin, as well as connective tissues. It is well known that mast cells have significant roles in IgE-mediated conditions, such as anaphylaxis, but, because of their location, it is also thought that mast cells act as innate immune cells against pathogens and initiate defensive immune responses. In this review, we discuss recent studies focused on mast cell interactions with flaviviruses and Candida albicans, and mast cell function in the cecal ligation and puncture model of sepsis. We selected these studies because they are clear examples of how mast cells can either promote host resistance to infection, as previously proposed, or contribute to a dysregulated host response that can increase host morbidity and mortality. Importantly, we can distill from these studies that the contribution of mast cells to infection outcomes depends in part on the infection model, including the genetic approach used to assess the influence of mast cells on host immunity, the species in which mast cells are studied, and the differential contribution of mast cell subtypes to immunity. Accordingly, we think that this review highlights the complexity of mast cell biology in the context of innate immune responses.
Collapse
Affiliation(s)
- Adrian M Piliponsky
- Departments of Pediatrics and Pathology, University of Washington, Seattle, WA 98195, USA.
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA.
| | - Manasa Acharya
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA.
| | - Nicholas J Shubin
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA.
| |
Collapse
|
7
|
Fritscher J, Amberger D, Dyckhoff S, Bewersdorf JP, Masouris I, Voelk S, Hammerschmidt S, Schmetzer HM, Klein M, Pfister HW, Koedel U. Mast Cells Are Activated by Streptococcus pneumoniae In Vitro but Dispensable for the Host Defense Against Pneumococcal Central Nervous System Infection In Vivo. Front Immunol 2018; 9:550. [PMID: 29616039 PMCID: PMC5867309 DOI: 10.3389/fimmu.2018.00550] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 03/05/2018] [Indexed: 01/01/2023] Open
Abstract
Mast cells reside on and near the cerebral vasculature, the predominant site of pneumococcal entry into the central nervous system (CNS). Although mast cells have been reported to be crucial in protecting from systemic bacterial infections, their role in bacterial infections of the CNS remained elusive. Here, we assessed the role of mast cells in pneumococcal infection in vitro and in vivo. In introductory experiments using mouse bone marrow-derived mast cells (BMMC), we found that (i) BMMC degranulate and release selected cytokines upon exposure to Streptococcus pneumoniae, (ii) the response of BMMC varies between different pneumococcal serotypes and (iii) is dependent on pneumolysin. Intriguingly though, apart from a slight enhancement of cerebrospinal fluid (CSF) pleocytosis, neither two different mast cell-deficient Kit mutant mouse strains (WBB6F1-KitW/Wv and C57BL/6 KitW-sh/W-sh mice) nor pharmacologic mast cell stabilization with cromoglycate had any significant impact on the disease phenotype of experimental pneumococcal meningitis. The incomplete reversal of the enhanced CSF pleocytosis by local mast cell engraftment suggests that this phenomenon is caused by other c-Kit mutation-related mechanisms than mast cell deficiency. In conclusion, our study suggests that mast cells can be activated by S. pneumoniae in vitro. However, mast cells do not play a significant role as sentinels of pneumococcal CSF invasion and initiators of innate immunity in vivo.
Collapse
Affiliation(s)
- Johanna Fritscher
- Department of Neurology, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Daniel Amberger
- Department of Internal Medicine III (Oncology), University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Susanne Dyckhoff
- Department of Neurology, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Jan Philipp Bewersdorf
- Department of Neurology, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Ilias Masouris
- Department of Neurology, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Stefanie Voelk
- Department of Neurology, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, Ernst Moritz Arndt University Greifswald, Greifswald, Germany
| | - Helga Maria Schmetzer
- Department of Internal Medicine III (Oncology), University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Matthias Klein
- Department of Neurology, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Hans-Walter Pfister
- Department of Neurology, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Uwe Koedel
- Department of Neurology, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
8
|
Abstract
Mast cells are hematopoietic progenitor-derived, granule-containing immune cells that are widely distributed in tissues that interact with the external environment, such as the skin and mucosal tissues. It is well-known that mast cells are significantly involved in IgE-mediated allergic reactions, but because of their location, it has also been long hypothesized that mast cells can act as sentinel cells that sense pathogens and initiate protective immune responses. Using mast cell or mast cell protease-deficient murine models, recent studies by our groups and others indicate that mast cells have pleiotropic regulatory roles in immunological responses against pathogens. In this review, we discuss studies that demonstrate that mast cells can either promote host resistance to infections caused by bacteria and fungi or contribute to dysregulated immune responses that can increase host morbidity and mortality. Overall, these studies indicate that mast cells can influence innate immune responses against bacterial and fungal infections via multiple mechanisms. Importantly, the contribution of mast cells to infection outcomes depends in part on the infection model, including the genetic approach used to assess the influence of mast cells on host immunity, hence highlighting the complexity of mast cell biology in the context of innate immune responses.
Collapse
Affiliation(s)
- Adrian M Piliponsky
- Departments of Pediatrics and Pathology, University of Washington, Seattle, WA, USA
- Seattle Children's Research Institute, Seattle, WA, USA
| | - Luigina Romani
- Pathology Section, Department of Experimental Medicine, University of Perugia, Perugia, Italy
- Center of functional genomics (C.U.R.Ge.F.), Department of Experimental Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
9
|
Abstract
Urinary tract infections (UTI) are among the most common bacterial infections in humans, affecting millions of people every year. UTI cause significant morbidity in women throughout their lifespan, in infant boys, in older men, in individuals with underlying urinary tract abnormalities, and in those that require long-term urethral catheterization, such as patients with spinal cord injuries or incapacitated individuals living in nursing homes. Serious sequelae include frequent recurrences, pyelonephritis with sepsis, renal damage in young children, pre-term birth, and complications of frequent antimicrobial use including high-level antibiotic resistance and Clostridium difficile colitis. Uropathogenic E. coli (UPEC) cause the vast majority of UTI, but less common pathogens such as Enterococcus faecalis and other enterococci frequently take advantage of an abnormal or catheterized urinary tract to cause opportunistic infections. While antibiotic therapy has historically been very successful in controlling UTI, the high rate of recurrence remains a major problem, and many individuals suffer from chronically recurring UTI, requiring long-term prophylactic antibiotic regimens to prevent recurrent UTI. Furthermore, the global emergence of multi-drug resistant UPEC in the past ten years spotlights the need for alternative therapeutic and preventative strategies to combat UTI, including anti-infective drug therapies and vaccines. In this chapter, we review recent advances in the field of UTI pathogenesis, with an emphasis on the identification of promising drug and vaccine targets. We then discuss the development of new UTI drugs and vaccines, highlighting the challenges these approaches face and the need for a greater understanding of urinary tract mucosal immunity.
Collapse
|
10
|
Choi HW, Bowen SE, Miao Y, Chan CY, Miao EA, Abrink M, Moeser AJ, Abraham SN. Loss of Bladder Epithelium Induced by Cytolytic Mast Cell Granules. Immunity 2016; 45:1258-1269. [PMID: 27939674 DOI: 10.1016/j.immuni.2016.11.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 08/20/2016] [Accepted: 09/13/2016] [Indexed: 01/09/2023]
Abstract
Programmed death and shedding of epithelial cells is a powerful defense mechanism to reduce bacterial burden during infection but this activity cannot be indiscriminate because of the critical barrier function of the epithelium. We report that during cystitis, shedding of infected bladder epithelial cells (BECs) was preceded by the recruitment of mast cells (MCs) directly underneath the superficial epithelium where they docked and extruded their granules. MCs were responding to interleukin-1β (IL-1β) secreted by BECs after inflammasome and caspase-1 signaling. Upon uptake of granule-associated chymase (mouse MC protease 4 [mMCPT4]), BECs underwent caspase-1-associated cytolysis and exfoliation. Thus, infected epithelial cells require a specific cue for cytolysis from recruited sentinel inflammatory cells before shedding.
Collapse
Affiliation(s)
- Hae Woong Choi
- Department of Pathology, Duke University, Durham, NC 27710, USA.
| | - Samantha E Bowen
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
| | - Yuxuan Miao
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
| | - Cheryl Y Chan
- Program in Emerging Infectious Diseases, Duke-National University of Singapore, Singapore 169857, Singapore
| | - Edward A Miao
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Magnus Abrink
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Adam J Moeser
- Departments of Large Animal Clinical Sciences and Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Soman N Abraham
- Department of Pathology, Duke University, Durham, NC 27710, USA; Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA; Department of Immunology, Duke University, Durham, NC 27710, USA; Program in Emerging Infectious Diseases, Duke-National University of Singapore, Singapore 169857, Singapore
| |
Collapse
|
11
|
Sugitharini V, Shahana P, Prema A, Berla Thangam E. TLR2 and TLR4 co-activation utilizes distinct signaling pathways for the production of Th1/Th2/Th17 cytokines in neonatal immune cells. Cytokine 2016; 85:191-200. [DOI: 10.1016/j.cyto.2016.06.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/20/2016] [Accepted: 06/21/2016] [Indexed: 12/30/2022]
|
12
|
Why Serological Responses during Cystitis are Limited. Pathogens 2016; 5:pathogens5010019. [PMID: 26907352 PMCID: PMC4810140 DOI: 10.3390/pathogens5010019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 02/02/2016] [Indexed: 11/17/2022] Open
Abstract
The high frequency of urinary tract infections (UTIs), some of which appear to be endogenous relapses rather than reinfections by new isolates, point to defects in the host's memory immune response. It has been known for many decades that, whereas kidney infections evoked an antibody response to the infecting bacteria, infections limited to the bladder failed to do so. We have identified the existence of a broadly immunosuppressive transcriptional program associated with the bladder, but not the kidneys, during infection of the urinary tract that is dependent on bladder mast cells. This involves the localized secretion of IL-10 and results in the suppression of humoral immune responses in the bladder. Mast cell-mediated immune suppression could suggest a role for these cells in critically balancing the needs to clear infections with the imperative to prevent harmful immune reactions in the host.
Collapse
|
13
|
Johnzon CF, Rönnberg E, Pejler G. The Role of Mast Cells in Bacterial Infection. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:4-14. [DOI: 10.1016/j.ajpath.2015.06.024] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/17/2015] [Accepted: 06/24/2015] [Indexed: 01/21/2023]
|
14
|
Michishita M, Tomita KI, Yano K, Kasahara KI. Mast Cell Accumulation and Degranulation in Rat Bladder with Partial Outlet Obstruction. Adv Ther 2015; 32 Suppl 1:16-28. [PMID: 26507185 DOI: 10.1007/s12325-015-0243-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Benign prostatic hyperplasia causes partial bladder outlet obstruction (pBOO), and many patients with pBOO are affected by not only voiding symptoms but also storage symptoms. We previously suggested that enhancement of 5-hydroxytryptamine (5-HT)-induced bladder contraction in the pBOO bladder may be one cause of storage symptoms. However, little is known about the presence of 5-HT in rat bladders. In this study, we hypothesized that mast cells are a source of 5-HT and investigated the distribution of mast cells and 5-HT in the bladders of rats with pBOO. METHODS The bladders of female Sprague-Dawley rats were subjected to pBOO and sham operations for 1 week, were isolated, and were fixed for light or electron microscopy. Mast cells and 5-HT in the bladders were detected by toluidine blue staining and immunohistochemical staining, respectively. The mast cells were counted under a light microscope. Degranulated mast cells were observed under an electron microscope and counted under a light microscope. RESULTS Mast cells were present in the mucosa/submucosa region in sham rat bladders. Their number was increased in the detrusor muscle/subserosa/serosa region, especially the subserosal layer, in pBOO rat bladders. The localization of mast cells almost matched that of 5-HT-positive cells in consecutive sections. Degranulated mast cells were present in sham and pBOO rat bladders, but the proportion of degranulated mast cells was significantly increased in every region in pBOO rat bladders compared with that in sham rat bladders. CONCLUSION These results suggest that mast cells contain 5-HT and are more abundant locally in the subserosal layer of pBOO rat bladders. 5-HT released from mast cells could stimulate 5-HT2 receptors on the detrusor muscle, and this may underlie storage symptoms. FUNDING Asahi Kasei Pharma Corp.
Collapse
Affiliation(s)
- Mai Michishita
- Laboratory for Pharmacology, Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, 632-1, Mifuku, Izunokuni-shi, Shizuoka, 410-2321, Japan
| | - Ken-Ichi Tomita
- Laboratory for Pharmacology, Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, 632-1, Mifuku, Izunokuni-shi, Shizuoka, 410-2321, Japan
| | - Kazuo Yano
- Laboratory for Pharmacology, Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, 632-1, Mifuku, Izunokuni-shi, Shizuoka, 410-2321, Japan
| | - Ken-Ichi Kasahara
- Laboratory for Pharmacology, Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, 632-1, Mifuku, Izunokuni-shi, Shizuoka, 410-2321, Japan.
| |
Collapse
|
15
|
Are you experienced? Understanding bladder innate immunity in the context of recurrent urinary tract infection. Curr Opin Infect Dis 2015; 28:97-105. [PMID: 25517222 DOI: 10.1097/qco.0000000000000130] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW Recurrent urinary tract infection (rUTI) is a serious clinical problem, yet effective therapeutic options are limited, especially against multidrug-resistant uropathogens. In this review, we explore the development of a clinically relevant model of rUTI in previously infected mice and review recent developments in bladder innate immunity that may affect susceptibility to rUTI. RECENT FINDINGS Chronic bladder inflammation during prolonged bacterial cystitis in mice causes bladder mucosal remodelling that sensitizes the host to rUTI. Although constitutive defenses help prevent bacterial colonization of the urinary bladder, once infection occurs, induced cytokine and myeloid cell responses predominate and the balance of immune cell defense and bladder immunopathology is critical for determining disease outcome, in both naïve and experienced mice. In particular, the maintenance of the epithelial barrier appears to be essential for preventing severe infection. SUMMARY The innate immune response plays a key role in determining susceptibility to rUTI. Future studies should be directed towards understanding how the innate immune response changes as a result of bladder mucosal remodelling in previously infected mice, and validating these findings in human clinical specimens. New therapeutics targeting the immune response should selectively target the induced innate responses that cause bladder immunopathology, while leaving protective defenses intact.
Collapse
|
16
|
Reber LL, Sibilano R, Mukai K, Galli SJ. Potential effector and immunoregulatory functions of mast cells in mucosal immunity. Mucosal Immunol 2015; 8:444-63. [PMID: 25669149 PMCID: PMC4739802 DOI: 10.1038/mi.2014.131] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 11/27/2014] [Indexed: 02/04/2023]
Abstract
Mast cells (MCs) are cells of hematopoietic origin that normally reside in mucosal tissues, often near epithelial cells, glands, smooth muscle cells, and nerves. Best known for their contributions to pathology during IgE-associated disorders such as food allergy, asthma, and anaphylaxis, MCs are also thought to mediate IgE-associated effector functions during certain parasite infections. However, various MC populations also can be activated to express functional programs--such as secreting preformed and/or newly synthesized biologically active products--in response to encounters with products derived from diverse pathogens, other host cells (including leukocytes and structural cells), damaged tissue, or the activation of the complement or coagulation systems, as well as by signals derived from the external environment (including animal toxins, plant products, and physical agents). In this review, we will discuss evidence suggesting that MCs can perform diverse effector and immunoregulatory roles that contribute to homeostasis or pathology in mucosal tissues.
Collapse
Affiliation(s)
- Laurent L Reber
- Department of Pathology, Stanford University, School of Medicine, Stanford, California 94305-5324, USA
| | - Riccardo Sibilano
- Department of Pathology, Stanford University, School of Medicine, Stanford, California 94305-5324, USA
| | - Kaori Mukai
- Department of Pathology, Stanford University, School of Medicine, Stanford, California 94305-5324, USA
| | - Stephen J Galli
- Department of Pathology, Stanford University, School of Medicine, Stanford, California 94305-5324, USA,Department of Microbiology & Immunology, Stanford University, School of Medicine, Stanford, California 94305-5324, USA
| |
Collapse
|
17
|
Rönnberg E, Johnzon CF, Calounova G, Garcia Faroldi G, Grujic M, Hartmann K, Roers A, Guss B, Lundequist A, Pejler G. Mast cells are activated by Staphylococcus aureus in vitro but do not influence the outcome of intraperitoneal S. aureus infection in vivo. Immunology 2014; 143:155-63. [PMID: 24689370 DOI: 10.1111/imm.12297] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 03/24/2014] [Accepted: 03/27/2014] [Indexed: 12/17/2022] Open
Abstract
Staphylococcus aureus is a major pathogen that can cause a broad spectrum of serious infections including skin infections, pneumonia and sepsis. Peritoneal mast cells have been implicated in the host response towards various bacterial insults and to provide mechanistic insight into the role of mast cells in intraperitoneal bacterial infection we here studied the global effects of S. aureus on mast cell gene expression. After co-culture of peritoneal mast cells with live S. aureus we found by gene array analysis that they up-regulate a number of genes. Many of these corresponded to pro-inflammatory cytokines, including interleukin-3, interleukin-13 and tumour necrosis factor-α. The cytokine induction in response to S. aureus was confirmed by ELISA. To study the role of peritoneal mast cells during in vivo infection with S. aureus we used newly developed Mcpt5-Cre(+) × R-DTA mice in which mast cell deficiency is independent of c-Kit. This is in contrast to previous studies in which an impact of mast cells on bacterial infection has been proposed based on the use of mice whose mast cell deficiency is a consequence of defective c-Kit signalling. Staphylococcus aureus was injected intraperitoneally into mast-cell-deficient Mcpt5-Cre(+) × R-DTA mice using littermate mast-cell-sufficient mice as controls. We did not observe any difference between mast-cell-deficient and control mice with regard to weight loss, bacterial clearance, inflammation or cytokine production. We conclude that, despite peritoneal mast cells being activated by S. aureus in vitro, they do not influence the in vivo manifestations of intraperitoneal S. aureus infection.
Collapse
Affiliation(s)
- Elin Rönnberg
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Inflammatory Response to Escherichia coli Urinary Tract Infection in the Neurogenic Bladder of the Spinal Cord Injured Host. J Urol 2014; 191:1454-61. [DOI: 10.1016/j.juro.2013.12.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2013] [Indexed: 01/03/2023]
|
19
|
Wesolowski J, Paumet F. Escherichia coli exposure inhibits exocytic SNARE-mediated membrane fusion in mast cells. Traffic 2014; 15:516-30. [PMID: 24494924 DOI: 10.1111/tra.12159] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 01/24/2014] [Accepted: 02/04/2014] [Indexed: 12/11/2022]
Abstract
Mast cells orchestrate the allergic response through the release of proinflammatory mediators, which is driven by the fusion of cytoplasmic secretory granules with the plasma membrane. During this process, SNARE proteins including Syntaxin4, SNAP23 and VAMP8 play a key role. Following stimulation, the kinase IKKβ interacts with and phosphorylates the t-SNARE SNAP23. Phosphorylated SNAP23 then associates with Syntaxin4 and the v-SNARE VAMP8 to form a ternary SNARE complex, which drives membrane fusion and mediator release. Interestingly, mast cell degranulation is impaired following exposure to bacteria such as Escherichia coli. However, the molecular mechanism(s) by which this occurs is unknown. Here, we show that E. coli exposure rapidly and additively inhibits degranulation in the RBL-2H3 rat mast cell line. Following co-culture with E. coli, the interaction between IKKβ and SNAP23 is disrupted, resulting in the hypophosphorylation of SNAP23. Subsequent formation of the ternary SNARE complex between SNAP23, Syntaxin4 and VAMP8 is strongly reduced. Collectively, these results demonstrate that E. coli exposure inhibits the formation of VAMP8-containing exocytic SNARE complexes and thus the release of VAMP8-dependent granules by interfering with SNAP23 phosphorylation.
Collapse
Affiliation(s)
- Jordan Wesolowski
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, USA
| | | |
Collapse
|
20
|
Trivedi NH, Guentzel MN, Rodriguez AR, Yu JJ, Forsthuber TG, Arulanandam BP. Mast cells: multitalented facilitators of protection against bacterial pathogens. Expert Rev Clin Immunol 2013; 9:129-38. [PMID: 23390944 DOI: 10.1586/eci.12.95] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mast cells are crucial effector cells evoking immune responses against bacterial pathogens. The positioning of mast cells at the host-environment interface, and the multitude of pathogen-recognition receptors and preformed mediator granules make these cells potentially the earliest to respond to an invading pathogen. In this review, the authors summarize the receptors used by mast cells to recognize invading bacteria and discuss the function of immune mediators released by mast cells in control of bacterial infection. The interaction of mast cells with other immune cells, including macrophages, dendritic cells and T cells, to induce protective immunity is highlighted. The authors also discuss mast cell-based vaccine strategies and the potential application in control of bacterial disease.
Collapse
Affiliation(s)
- Nikita H Trivedi
- South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | | | | | | | | | | |
Collapse
|
21
|
Mast cell interleukin-10 drives localized tolerance in chronic bladder infection. Immunity 2013; 38:349-59. [PMID: 23415912 DOI: 10.1016/j.immuni.2012.10.019] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 10/09/2012] [Indexed: 01/13/2023]
Abstract
The lower urinary tract's virtually inevitable exposure to external microbial pathogens warrants efficient tissue-specialized defenses to maintain sterility. The observation that the bladder can become chronically infected in combination with clinical observations that antibody responses after bladder infections are not detectable suggest defects in the formation of adaptive immunity and immunological memory. We have identified a broadly immunosuppressive transcriptional program specific to the bladder, but not the kidney, during infection of the urinary tract that is dependent on tissue-resident mast cells (MCs). This involves localized production of interleukin-10 and results in suppressed humoral and cell-mediated responses and bacterial persistence. Therefore, in addition to the previously described role of MCs orchestrating the early innate immunity during bladder infection, they subsequently play a tissue-specific immunosuppressive role. These findings may explain the prevalent recurrence of bladder infections and suggest the bladder as a site exhibiting an intrinsic degree of MC-maintained immune privilege.
Collapse
|
22
|
Hannan TJ, Totsika M, Mansfield KJ, Moore KH, Schembri MA, Hultgren SJ. Host-pathogen checkpoints and population bottlenecks in persistent and intracellular uropathogenic Escherichia coli bladder infection. FEMS Microbiol Rev 2012; 36:616-48. [PMID: 22404313 DOI: 10.1111/j.1574-6976.2012.00339.x] [Citation(s) in RCA: 238] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Bladder infections affect millions of people yearly, and recurrent symptomatic infections (cystitis) are very common. The rapid increase in infections caused by multidrug-resistant uropathogens threatens to make recurrent cystitis an increasingly troubling public health concern. Uropathogenic Escherichia coli (UPEC) cause the vast majority of bladder infections. Upon entry into the lower urinary tract, UPEC face obstacles to colonization that constitute population bottlenecks, reducing diversity, and selecting for fit clones. A critical mucosal barrier to bladder infection is the epithelium (urothelium). UPEC bypass this barrier when they invade urothelial cells and form intracellular bacterial communities (IBCs), a process which requires type 1 pili. IBCs are transient in nature, occurring primarily during acute infection. Chronic bladder infection is common and can be either latent, in the form of the quiescent intracellular reservoir (QIR), or active, in the form of asymptomatic bacteriuria (ASB/ABU) or chronic cystitis. In mice, the fate of bladder infection, QIR, ASB, or chronic cystitis, is determined within the first 24 h of infection and constitutes a putative host-pathogen mucosal checkpoint that contributes to susceptibility to recurrent cystitis. Knowledge of these checkpoints and bottlenecks is critical for our understanding of bladder infection and efforts to devise novel therapeutic strategies.
Collapse
Affiliation(s)
- Thomas J Hannan
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
23
|
Rodriguez AR, Yu JJ, Guentzel MN, Navara CS, Klose KE, Forsthuber TG, Chambers JP, Berton MT, Arulanandam BP. Mast cell TLR2 signaling is crucial for effective killing of Francisella tularensis. THE JOURNAL OF IMMUNOLOGY 2012; 188:5604-11. [PMID: 22529298 DOI: 10.4049/jimmunol.1200039] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TLR signaling is critical for early host defense against pathogens, but the contributions of mast cell TLR-mediated mechanisms and subsequent effector functions during pulmonary infection are largely unknown. We have previously demonstrated that mast cells, through the production of IL-4, effectively control Francisella tularensis replication. In this study, the highly human virulent strain of F. tularensis SCHU S4 and the live vaccine strain were used to investigate the contribution of mast cell/TLR regulation of Francisella. Mast cells required TLR2 for effective bacterial killing, regulation of the hydrolytic enzyme cathepsin L, and for coordination and trafficking of MHC class II and lysosomal-associated membrane protein 2. Infected TLR2(-/-) mast cells, in contrast to wild-type and TLR4(-/-) cells, lacked detectable IL-4 and displayed increased cell death with a 2-3 log increase of F. tularensis replication, but could be rescued with rIL-4 treatment. Importantly, MHC class II and lysosomal-associated membrane protein 2 localization with labeled F. tularensis in the lungs was greater in wild-type than in TLR2(-/-) mice. These results provide evidence for the important effector contribution of mast cells and TLR2-mediated signaling on early innate processes in the lung following pulmonary F. tularensis infection and provide additional insight into possible mechanisms by which intracellular pathogens modulate respiratory immune defenses.
Collapse
Affiliation(s)
- Annette R Rodriguez
- South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Shelburne CP, Abraham SN. The mast cell in innate and adaptive immunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 716:162-85. [PMID: 21713657 DOI: 10.1007/978-1-4419-9533-9_10] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mast cells (MCs) were once considered only as effector cells in pathogenic IgE- and IgG-mediated responses such as allergy. However, developments over the last 15 years have suggested that MCs have evolved in vertebrates as beneficial effector cells that are involved in the very first inflammatory responses generated during infection. This pro-inflammatory environment has been demonstrated to be important for initiating innate responses in many different models of infection and more recently, in the development of adaptive immunity as well. Interestingly this latter finding has led to the discovery that small MC-activating compounds can behave as adjuvants in vaccine formulations. Thus, our continued understanding of the MC in the context of infectious disease is likely to not only expand our scope of the MC in the normal processes of immunity, but provide new therapeutic targets to combat disease.
Collapse
|
25
|
Hannan TJ, Mysorekar IU, Hung CS, Isaacson-Schmid ML, Hultgren SJ. Early severe inflammatory responses to uropathogenic E. coli predispose to chronic and recurrent urinary tract infection. PLoS Pathog 2010; 6:e1001042. [PMID: 20811584 PMCID: PMC2930321 DOI: 10.1371/journal.ppat.1001042] [Citation(s) in RCA: 210] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 07/13/2010] [Indexed: 01/10/2023] Open
Abstract
Chronic infections are an increasing problem due to the aging population and the increase in antibiotic resistant organisms. Therefore, understanding the host-pathogen interactions that result in chronic infection is of great importance. Here, we investigate the molecular basis of chronic bacterial cystitis. We establish that introduction of uropathogenic E. coli (UPEC) into the bladders of C3H mice results in two distinct disease outcomes: resolution of acute infection or development of chronic cystitis lasting months. The incidence of chronic cystitis is both host strain and infectious dose-dependent. Further, development of chronic cystitis is preceded by biomarkers of local and systemic acute inflammation at 24 hours post-infection, including severe pyuria and bladder inflammation with mucosal injury, and a distinct serum cytokine signature consisting of elevated IL-5, IL-6, G-CSF, and the IL-8 analog KC. Mice deficient in TLR4 signaling or lymphocytes lack these innate responses and are resistant, to varying degrees, to developing chronic cystitis. Treatment of C3H mice with the glucocorticoid anti-inflammatory drug dexamethasone prior to UPEC infection also suppresses the development of chronic cystitis. Finally, individuals with a history of chronic cystitis, lasting at least 14 days, are significantly more susceptible to redeveloping severe, chronic cystitis upon bacterial challenge. Thus, we have discovered that the development of chronic cystitis in C3H mice by UPEC is facilitated by severe acute inflammatory responses early in infection, which subsequently are predisposing to recurrent cystitis, an insidious problem in women. Overall, these results have significant implications for our understanding of how early host-pathogen interactions at the mucosal surface determines the fate of disease.
Collapse
Affiliation(s)
- Thomas J. Hannan
- Department of Molecular Microbiology and Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Indira U. Mysorekar
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Chia S. Hung
- Department of Molecular Microbiology and Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Megan L. Isaacson-Schmid
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Scott J. Hultgren
- Department of Molecular Microbiology and Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
26
|
Thai KH, Thathireddy A, Hsieh MH. Transurethral induction of mouse urinary tract infection. J Vis Exp 2010:2070. [PMID: 20729806 DOI: 10.3791/2070] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Uropathogenic bacterial strains of interest are grown on agar. Generally, uropathogenic E. coli (UPEC) and other strains can be grown overnight on Luria-Bertani (LB) agar at 37 degrees C in ambient air. UPEC strains grow as yellowish-white translucent colonies on LB agar. Following confirmation of appropriate colony morphology, single colonies are then picked to be cultured in broth. LB broth can be used for most uropathogenic bacterial strains. Two serial, overnight LB broth cultures can be employed to enhance expression of type I pili, a well-defined virulence factor for uropathogenic bacteria. Broth cultures are diluted to the desired concentration in phosphate buffered saline (PBS). Eight to 12 week old female mice are placed under isoflurane anesthesia and transurethrally inoculated with bacteria using polyethylene tubing-covered 30 gauge syringes. Typical inocula, which must be empirically determined for each bacterial/mouse strain combination, are 10(6) to 10(8) cfu per mouse in 10 to 50 microliters of PBS. After the desired infection period (one day to several weeks), urine samples and the bladder and both kidneys are harvested. Each organ is minced, placed in PBS, and homogenized in a Blue Bullet homogenizer. Urine and tissue homogenates are serially diluted in PBS and cultured on appropriate agar. The following day, colony forming units are counted.
Collapse
Affiliation(s)
- Kim H Thai
- Earth Systems Program, School of Earth Sciences, Stanford University, USA
| | | | | |
Collapse
|
27
|
Abstract
Although mast cells were discovered more than a century ago, their functions beyond their role in allergic responses remained elusive until recently. However, there is a growing appreciation that an important physiological function of these cells is the recognition of pathogens and modulation of appropriate immune responses. Because of their ability to instantly release several pro-inflammatory mediators from intracellular stores and their location at the host-environment interface, mast cells have been shown to be crucial for optimal immune responses during infection. Mast cells seem to exert these effects by altering the inflammatory environment after detection of a pathogen and by mobilizing various immune cells to the site of infection and to draining lymph nodes. Interestingly, the character and timing of these responses can vary depending on the type of pathogen stimulus, location of pathogen recognition and sensitization state of the responding mast cells. Recent studies using mast cell activators as effective vaccine adjuvants show the potential of harnessing these cells to confer protective immunity against microbial pathogens.
Collapse
Affiliation(s)
- Soman N Abraham
- Department of Immunology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
28
|
Abstract
Urinary tract infections (UTIs) inflict extreme pain and discomfort to those affected and have profound medical and socioeconomic impact. Although acute UTIs are often treatable with antibiotics, a large proportion of patients suffer from multiple recurrent infections. Here, we describe and provide a protocol for a robust murine UTI model that allows for the study of uropathogens in an ideal setting. The infections in the urinary tract can be monitored quantitatively by determining the bacterial loads at different times post-infection. In addition, the simple bladder architecture allows observation of disease progression and the uropathogenic virulence cascade using a variety of microscopic techniques. This mouse UTI model is extremely flexible, allowing the study of different bacterial strains and species of uropathogens in a broad range of mouse genetic backgrounds. We have used this protocol to identify important aspects of the host-pathogen interaction that determine the outcome of infection. The time required to complete the entire procedure will depend on the number of bacterial strains and mice included in the study. Nevertheless, one should expect 4 h of hands-on time, including inoculum preparation on the day of infection, transurethral inoculation, tissue harvest and post-harvest processing for a small group of mice (e.g., 5 mice).
Collapse
Affiliation(s)
- Chia-Suei Hung
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | |
Collapse
|
29
|
Kulka M, Fukuishi N, Metcalfe DD. Human mast cells synthesize and release angiogenin, a member of the ribonuclease A (RNase A) superfamily. J Leukoc Biol 2009; 86:1217-26. [PMID: 19625371 DOI: 10.1189/jlb.0908517] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
ANG is a plasma protein with angiogenic and ribonucleolytic activity implicated in tumor growth, heart failure, wound healing, asthma, and the composition of the adult gut microflora. Human mast cells (HuMC) are similarly associated with modulation of vascular permeability, angiogenic processes, wound healing, and asthma. We hypothesized that HuMC express and secrete ANG in response to divergent stimuli. ANG expression was evaluated in the LAD2 HMC, the HMC-1, and CD34+-derived HuMC, following exposure to live Escherichia coli, TLR ligands, or neuropeptides and following FcepsilonRI aggregation. Expression and production of ANG were determined by microarray analysis, qRT-PCR, confocal microscopy, and ELISA. Microarray analysis showed that ANG is up-regulated by LAD2 cells exposed to live E. coli. qRT-PCR analysis revealed that LAD2, HMC-1, and HuMC constitutively expressed ANG mRNA and that it was up-regulated by exposure to E. coli. Activation of HuMC by FcepsilonRI aggregation resulted in release of small amounts of ANG (<100 pg/mL), whereas compound 48/80, NGF, LPS, PGN, and flagellin activated HuMC to secrete >160 pg/mL ANG. These observations demonstrate that HuMC store and secrete ANG to a variety of stimuli and suggest that MC-derived ANG is available in the subsequent inflammatory response.
Collapse
Affiliation(s)
- Marianna Kulka
- National Research Council, 550 University Ave., Charlottetown, PE, Canada.
| | | | | |
Collapse
|
30
|
McGowen AL, Hale LP, Shelburne CP, Abraham SN, Staats HF. The mast cell activator compound 48/80 is safe and effective when used as an adjuvant for intradermal immunization with Bacillus anthracis protective antigen. Vaccine 2009; 27:3544-52. [PMID: 19464533 PMCID: PMC2743390 DOI: 10.1016/j.vaccine.2009.03.069] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 03/20/2009] [Accepted: 03/24/2009] [Indexed: 11/18/2022]
Abstract
We evaluated the safety and efficacy of the mast cell activator compound 48/80 (C48/80) when used as an adjuvant delivered intradermally (ID) with recombinant anthrax protective antigen (rPA) in comparison with two well-known adjuvants. Mice were vaccinated in the ear pinnae with rPA or rPA+C48/80, CpG oligodeoxynucleotides (CpG), or cholera toxin (CT). All adjuvants induced similar increases in serum anti-rPA IgG and lethal toxin neutralizing antibodies. C48/80 induced a balanced cytokine production (Th1/Th2/Th17) by antigen-restimulated splenocytes, minimal injection site inflammation, and no antigen-specific IgE. Histological analysis demonstrated that vaccination with C48/80 reduced the number of resident mast cells and induced an injection site neutrophil influx within 24h. Our data demonstrate that C48/80 is a safe and effective adjuvant, when used by the intradermal route, to induce protective antibody and balanced Th1/Th2/Th17 responses.
Collapse
Affiliation(s)
- Afton L. McGowen
- Department of Pathology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Laura P. Hale
- Department of Pathology, Duke University Medical Center, Durham, North Carolina 27710, USA
- The Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | - Soman N. Abraham
- Department of Pathology, Duke University Medical Center, Durham, North Carolina 27710, USA
- Department of Immunology, Duke University Medical Center, Durham, North Carolina 27710, USA
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Herman F. Staats
- Department of Pathology, Duke University Medical Center, Durham, North Carolina 27710, USA
- Department of Immunology, Duke University Medical Center, Durham, North Carolina 27710, USA
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
- The Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
31
|
Dybowski B, Jabłońska O, Radziszewski P, Gromadzka-Ostrowska J, Borkowski A. Ciprofloxacin and furagin in acute cystitis: comparison of early immune and microbiological results. Int J Antimicrob Agents 2008; 31:130-4. [DOI: 10.1016/j.ijantimicag.2007.08.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 08/23/2007] [Accepted: 08/28/2007] [Indexed: 11/24/2022]
|
32
|
Phagocytosis-independent antimicrobial activity of mast cells by means of extracellular trap formation. Blood 2008; 111:3070-80. [PMID: 18182576 DOI: 10.1182/blood-2007-07-104018] [Citation(s) in RCA: 420] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
These days it has been increasingly recognized that mast cells (MCs) are critical components of host defense against pathogens. In this study, we have provided the first evidence that MCs can kill bacteria by entrapping them in extracellular structures similar to the extracellular traps described for neutrophils (NETs). We took advantage of the ability of MCs to kill the human pathogen Streptococcus pyogenes by a phagocytosis-independent mechanism in order to characterize the extracellular antimicrobial activity of MCs. Close contact of bacteria and MCs was required for full antimicrobial activity. Immunofluorescence and electron microscopy revealed that S pyogenes was entrapped by extracellular structures produced by MCs (MCETs), which are composed of DNA, histones, tryptase, and the antimicrobial peptide LL-37. Disruption of MCETs significantly reduced the antimicrobial effect of MCs, suggesting that intact extracellular webs are critical for effective inhibition of bacterial growth. Similar to NETs, production of MCETs was mediated by a reactive oxygen species (ROS)-dependent cell death mechanism accompanied by disruption of the nuclear envelope, which can be induced after stimulation of MCs with phorbol-12-myristate-13-acetate (PMA), H(2)O(2), or bacterial pathogens. Our study provides the first experimental evidence of antimicrobial extracellular traps formation by an immune cell population other than neutrophils.
Collapse
|
33
|
Zareie M, Fabbrini P, Hekking LHP, Keuning ED, Ter Wee PM, Beelen RHJ, van den Born J. Novel role for mast cells in omental tissue remodeling and cell recruitment in experimental peritoneal dialysis. J Am Soc Nephrol 2006; 17:3447-57. [PMID: 17065241 DOI: 10.1681/asn.2005111173] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Because of its dynamic structure, the omentum plays a key role in the immunity of the peritoneal cavity by orchestrating peritoneal cell recruitment. Because mast cells accumulate in the omentum upon experimental peritoneal dialysis (PD) and may produce angiogenic/profibrotic factors, it was hypothesized that mast cells mediate omental tissue remodeling during PD. Daily treatment with conventional PD fluid (PDF) for 5 wk resulted in a strong omental remodeling response, characterized by an approximately 10-fold increase in mast cell density (P < 0.01), an approximately 20-fold increase in vessel density (P < 0.02), an approximately 20-fold increase in the number of milky spots (P < 0.01), and a four-fold increase in submesothelial matrix thickness (P < 0.0003) in wild-type rats. In contrast, all PDF-induced omental changes were significantly reduced in mast cell-deficient Ws/Ws rats or in wild-type rats that were treated orally with a mast cell stabilizer cromoglycate. A time-course experiment showed mast cell accumulation immediately before the formation of blood vessels and milky spots. Functionally, PDF evoked a peritoneal cell influx, which was significantly reduced in Ws/Ws rats (P < 0.04) and in wild-type rats that were treated with cromoglycate (P < 0.03). Cromoglycate treatment also completely prevented PDF-induced omental adhesions to the catheter tip (P = 0.0002). Mesothelial damage, angiogenesis, and fibrosis of mesentery and parietal peritoneum as well as glucose absorption rate and ultrafiltration capacity proved to be mast cell independent. Data strongly support the hypothesis that mast cells mediate PDF-induced omental tissue remodeling and, subsequently, peritoneal cell influx and adhesion formation, providing therapeutic possibilities of modulating omental function.
Collapse
Affiliation(s)
- Mohammad Zareie
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, PO Box 7057, 1007 MB Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
The past decade has confronted us with a striking abundance of novel findings regarding the roles of mast cells in immune responses in health and disease. Newly developed models and techniques have enabled clear-cut dissection of the mast cell contribution in these settings. We now understand that mast cells possess critical effector functions not only within the traditional context of allergic reactions. It is likely that mast cells played pivotal roles in primitive immune systems, yet these functions have been masked in the recent eras by newer immune functions, such as adaptive immunity. Conceivably, mast cells should be refocused on so as to obtain new insights about diverse pathologic conditions, ultimately leading to novel therapeutic approaches targeting these fascinating cells.
Collapse
Affiliation(s)
- Ido Bachelet
- Department of Pharmacology, School of Pharmacy, The Faculty of Medicine, The Hebrew University of Jerusalem, Ein-Kerem, Jerusalem 91120, Israel
| | | | | |
Collapse
|
35
|
Horton JR, Sawada K, Nishibori M, Cheng X. Structural basis for inhibition of histamine N-methyltransferase by diverse drugs. J Mol Biol 2005; 353:334-344. [PMID: 16168438 PMCID: PMC4021489 DOI: 10.1016/j.jmb.2005.08.040] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Revised: 08/11/2005] [Accepted: 08/18/2005] [Indexed: 12/17/2022]
Abstract
In mammals, histamine action is terminated through metabolic inactivation by histamine N-methyltransferase (HNMT) and diamine oxidase. In addition to three well-studied pharmacological functions, smooth muscle contraction, increased vascular permeability, and stimulation of gastric acid secretion, histamine plays important roles in neurotransmission, immunomodulation, and regulation of cell proliferation. The histamine receptor H1 antagonist diphenhydramine, the antimalarial drug amodiaquine, the antifolate drug metoprine, and the anticholinesterase drug tacrine (an early drug for Alzheimer's disease) are surprisingly all potent HNMT inhibitors, having inhibition constants in the range of 10-100nM. We have determined the structural mode of interaction of these four inhibitors with HNMT. Despite their structural diversity, they all occupy the histamine-binding site, thus blocking access to the enzyme's active site. Near the N terminus of HNMT, several aromatic residues (Phe9, Tyr15, and Phe19) adopt different rotamer conformations or become disordered in the enzyme-inhibitor complexes, accommodating the diverse, rigid hydrophobic groups of the inhibitors. The maximized shape complementarity between the protein aromatic side-chains and aromatic ring(s) of the inhibitors are responsible for the tight binding of these varied inhibitors.
Collapse
Affiliation(s)
- John R. Horton
- Department of Biochemistry Emory University School of Medicine, 1510 Clifton Road Atlanta, GA 30322, USA
| | - Ken Sawada
- Department of Biochemistry Emory University School of Medicine, 1510 Clifton Road Atlanta, GA 30322, USA
| | - Masahiro Nishibori
- Department of Pharmacology Okayama University Medical School, 2-5-1 Shikata-cho Okayama 700-5885, Japan
| | - Xiaodong Cheng
- Department of Biochemistry Emory University School of Medicine, 1510 Clifton Road Atlanta, GA 30322, USA
- Corresponding author
| |
Collapse
|
36
|
RE: MODULATING BLADDER NEURO-INFLAMMATION: RDP58, A NOVEL ANTI-INFLAMMATORY PEPTIDE, DECREASES INFLAMMATION AND NERVE GROWTH FACTOR PRODUCTION IN EXPERIMENTAL CYSTITIS. J Urol 2005. [DOI: 10.1016/s0022-5347(01)68399-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Abstract
Mast cells have mainly been studied in the setting of allergic disease, but the importance of mast cells for host defence against several pathogens has now been well established. The location of mast cells, which are found closely associated with blood vessels, allows them to have a crucial sentinel role in host defence. The mast cell has a unique 'armamentarium' of receptor systems and mediators for responding to pathogen-associated signals. Studies of this intriguing immune-effector cell provide important insights into the complex mechanisms by which appropriate innate and acquired immune responses are initiated.
Collapse
Affiliation(s)
- Jean S Marshall
- Dalhousie Inflammation Group, Department of Microbiology and Immunology, Dalhousie University, Sir Charles Tupper Medical Building, College Street, Halifax, Nova Scotia B3H 1X5, Canada.
| |
Collapse
|