1
|
Zhang Y, Zhao L, Wu A, Lin P, Fan J, Chen J, Wang X, Zeng X. Abnormal M1 polarization of placental macrophage induced by IL-15/STAT5 activation in VVC may lead to adverse pregnancy outcomes. Microbes Infect 2024; 26:105232. [PMID: 37802467 DOI: 10.1016/j.micinf.2023.105232] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/20/2023] [Accepted: 09/30/2023] [Indexed: 10/10/2023]
Abstract
Pregnant women with vulvovaginal candidiasis (VVC) may experience adverse pregnancy outcomes such as premature delivery, intrauterine infection, abortion, and neonatal infection. Therefore, finding new treatments for VVC in pregnancy is a public health priority. We aimed to study the adverse consequences of Candida albicans (C. albicans) vaginal infection in pregnant mice and explore the mechanisms by which C. albicans affects macrophages. Our findings contribute to the development of new approaches to treat VVC during pregnancy. We established an animal model of vaginal infection by C. albicans in pregnant mice and observed adverse pregnancy outcomes such as decreased body weight, reduced implantation number, and increased abortion rates. Additionally, we infected mouse macrophage line RAW264.7 cells with C. albicans and established a cell model. We employed RT-qPCR, Western blot, and immunofluorescence staining to verify the changes in the IL-15/STAT5 signaling pathway and the role it played on the M1 polarization of C. albicans-infected macrophages at both the gene and protein levels. Our results indicate that the adverse pregnancy outcomes in VVC may be linked to changes in the IL-15/STAT5 pathway induced by C. albicans, which could impact macrophage M1 polarization.
Collapse
Affiliation(s)
- Yuhan Zhang
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, Jiangsu, PR China
| | - Ling Zhao
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, Jiangsu, PR China
| | - Aiwen Wu
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, Jiangsu, PR China
| | - Pingping Lin
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, Jiangsu, PR China
| | - Jianing Fan
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, Jiangsu, PR China
| | - Jie Chen
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, Jiangsu, PR China
| | - Xinyan Wang
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, Jiangsu, PR China.
| | - Xin Zeng
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, Jiangsu, PR China.
| |
Collapse
|
2
|
Xia W, Liu Y, Jiang X, Li M, Zheng S, Zhang Z, Huang X, Luo S, Khoong Y, Hou M, Zan T. Lean adipose tissue macrophage derived exosome confers immunoregulation to improve wound healing in diabetes. J Nanobiotechnology 2023; 21:128. [PMID: 37046252 PMCID: PMC10091677 DOI: 10.1186/s12951-023-01869-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
Chronic non-healing wounds, a prevalent complication of diabetes, are associated with increased mortality in diabetic patients. Excessive accumulation of M1 macrophages in diabetic wounds promotes inflammation and results in dysregulated tissue repair. Adipose tissue macrophages (ATMs) derived from healthy lean donors have the ability to improve glucose tolerance and insulin sensitivity, as well as modulate inflammation. MicroRNAs (miRs), which can be packaged into exosomes (Exos) and secreted from cells, serve as essential regulators of macrophage polarization. Here, we revealed that ATMs isolated from lean mice secrete miRs-containing Exos, which modulate macrophage polarization and promote rapid diabetic wound healing when administered to diabetes-prone db/db mice. The miRs sequence of tissue samples from wounds treated with Exos secreted by lean ATMs (ExosLean) revealed that miR-222-3p was up-regulated. Further analyses showed that inhibiting miR-222-3p using a miR inhibitor impaired the macrophage-reprogramming effect of ExosLean. In the excisional skin wound mouse model, locally inhibiting miR-222-3p disrupted healing dynamics and failed to modulate macrophage polarization. Mechanistic studies revealed a connection between miR-222-3p, Bcl2l11/Bim, an inflammatory response effector, macrophage polarization, and diabetic wound healing. In summary, ExosLean act as positive regulators of macrophage polarization by regulating miR levels in wounds and accelerating wound healing, and thus have important implications for wound management in diabetes.
Collapse
Affiliation(s)
- Wenzheng Xia
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yunhan Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xingyu Jiang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Minxiong Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Shengwu Zheng
- Department of Burn and Plastic Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Zewei Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Shenying Luo
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yimin Khoong
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Meng Hou
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China.
| | - Tao Zan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
3
|
Zhang Y, Dai F, Yang D, Zheng Y, Zhu R, Wu M, Deng Z, Wang Z, Tan W, Li Z, Li B, Gao L, Cheng Y. Deletion of Insulin-like growth factor II mRNA-binding protein 3 participates in the pathogenesis of recurrent spontaneous abortion by inhibiting IL-10 secretion and inducing M1 polarization. Int Immunopharmacol 2023; 114:109473. [PMID: 36463698 DOI: 10.1016/j.intimp.2022.109473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/28/2022] [Accepted: 11/14/2022] [Indexed: 12/05/2022]
Abstract
Insulin-like growth factor II mRNA-binding protein 3 (IGF2BP3) has been proved to affect trophoblast function and embryonic development, but its role and potential mechanism in recurrent spontaneous abortion (RSA) are not clear. RSA is a complex reproductive disease, causing physical and mental damage to patients. In recent years, many studies have found that immune microenvironment is vital to maintain successful pregnancy in the maternal fetal interface. Therefore, this study aims to explore the role of IGF2BP3 in affecting macrophage polarization and its possible mechanism. In this article, we found that IGF2BP3 expression was decreased in placental villous samples of human and RSA mouse model, and knockdown of IGF2BP3 in HTR8/SVneo cells promotes M1 Mφ polarization. Combining with RNA sequencing analysis, we found that IGF2BP3 may regulate the Mφ polarization by affecting the expression of trophoblast cytokines, especially IL-10 secretion. Further mechanistic studies showed that knockdown of IGF2BP3 decreased expression of IL-10 by activating NF-κB pathway. Moreover, we found that M2 Mφ promote trophoblast invasion not IGF2BP3 dependent. Our study reveals the interaction between trophoblast cells and macrophages at the maternal-fetal interface of RSA patients, and will provide theoretical guidance for its diagnosis and treatment of RSA patients.
Collapse
Affiliation(s)
- Yuwei Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Dongyong Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Yajing Zheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Ronghui Zhu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Mali Wu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Zhimin Deng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Zitao Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Wei Tan
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Zhidian Li
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Bingshu Li
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| | - Ling Gao
- Department of Endocrinology, Renmin Hospital of Wuhan University, 430060, China.
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| |
Collapse
|
4
|
Pan H, Huan C, Zhang W, Hou Y, Zhou Z, Yao J, Gao S. PDZK1 upregulates nitric oxide production through the PI3K/ERK2 pathway to inhibit porcine circovirus type 2 replication. Vet Microbiol 2022; 272:109514. [PMID: 35917623 DOI: 10.1016/j.vetmic.2022.109514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/01/2022] [Accepted: 07/14/2022] [Indexed: 10/17/2022]
Abstract
Porcine circovirus type 2 (PCV2) is the causative agent of porcine circovirus-associated disease. Changes in host cell gene expression are induced by PCV2 infection. Here, we showed that porcine PDZ Domain-Containing 1 (PDZK1) expression was enhanced during PCV2 infection and that overexpression of PDZK1 inhibited the expression of PCV2 Cap protein. PCV2 genomic DNA copy number and viral titers were decreased in PDZK1-overexpressing PK-15B6 cells. PDZK1 knockdown enhanced the replication of PCV2. Overexpression of PDZK1 activated the phosphoinositide 3-kinase (PI3K)/ERK2 signaling pathway to enhance nitric oxide (NO) levels, while PDZK1 knockdown had the opposite effects. A PI3K inhibitor (LY294002) and a NO synthase inhibitor (L-NAME hydrochloride) decreased the activity of PDZK1 in restricting PCV2 replication. ERK2 knockdown enhanced the proliferation of PCV2 by decreasing levels of NO. Levels of interleukin (IL)- 4 mRNA were reduced in PDZK1 knockdown and ERK2 knockdown PK-15B6 cells. Increased IL-4 mRNA levels were unable to decrease NO production in PDZK1-overexpressing cells. Thus, we conclude that PDZK1 affected PCV2 replication by regulating NO production via PI3K/ERK2 signaling. PDZK1 affected IL-4 expression through the PI3K/ERK2 pathway, but PDZK1 modulation of PCV2 replication occurred independently of IL-4. Our results contribute to understanding the biological functions of PDZK1 and provide a theoretical basis for the pathogenic mechanisms of PCV2.
Collapse
Affiliation(s)
- Haochun Pan
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, Jiangsu, China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Changchao Huan
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, Jiangsu, China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Wei Zhang
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, Jiangsu, China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Yutong Hou
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, Jiangsu, China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Ziyan Zhou
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, Jiangsu, China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Jingting Yao
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, Jiangsu, China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Song Gao
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, Jiangsu, China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, China.
| |
Collapse
|
5
|
Zhou J, Zhang S, Guo C. Crosstalk between macrophages and natural killer cells in the tumor microenvironment. Int Immunopharmacol 2021; 101:108374. [PMID: 34824036 DOI: 10.1016/j.intimp.2021.108374] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/17/2022]
Abstract
The tumor microenvironment (TME) is jointly constructed by a variety of cell types, including tumor cells, immune cells, fibroblasts, and epithelial cells, among others. The cells within the TME interact with each other and with tumor cells to influence tumor development and progression. As the most abundant immune cells in the TME, macrophages regulate the immune network by not only secreting a large amount of versatile cytokines but also expressing a series of ligands or receptors on the surface to interact with other cells directly. Due to their strong plasticity, they exert both immunostimulatory and immunosuppressive effects in the complex TME. The major effector cells of the immune system that directly target cancer cells include but are not limited to natural killer cells (NKs), dendritic cells (DCs), macrophages, polymorphonuclear leukocytes, mast cells, and cytotoxic T lymphocytes (CTLs). Among them, NK cells are the predominant innate lymphocyte subsets that mediate antitumor and antiviral responses. The activation and inhibition of NK cells are regulated by cytokines and the balance between activating and inhibitory receptors. There is an inextricable regulatory relationship between macrophages and NK cells. Herein, we systematically elaborate on the regulatory network between macrophages and NK cells through soluble mediator crosstalk and cell-to-cell interactions. We believe that a better understanding of the crosstalk between macrophages and NKs in the TME will benefit the development of novel macrophage- or NK cell-focused therapeutic strategies with superior efficacies in cancer therapy.
Collapse
Affiliation(s)
- Jingping Zhou
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China
| | - Shaolong Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China
| | - Changying Guo
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China.
| |
Collapse
|
6
|
Silva LLDL, Gomes RS, Silva MVT, Joosten LAB, Ribeiro-Dias F. IL-15 enhances the capacity of primary human macrophages to control Leishmania braziliensis infection by IL-32/vitamin D dependent and independent pathways. Parasitol Int 2020; 76:102097. [PMID: 32114085 DOI: 10.1016/j.parint.2020.102097] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 02/07/2020] [Accepted: 02/24/2020] [Indexed: 02/08/2023]
Abstract
How human macrophages can control the intracellular infection with Leishmania is not completely understood. IL-15 and IL-32 are cytokines produced by monocytes/macrophages that can induce antimicrobial mechanisms. Here, we evaluated the effects of recombinant human IL-15 (rhIL-15) on primary human macrophage infection and response to L. braziliensis. Priming with rhIL-15 reduced the phagocytosis of L. braziliensis and increased the killing of the parasites in monocyte-derived macrophages from healthy donors. rhIL-15 induced TNFα and IL-32 in uninfected cells. After infection, the high levels of rhIL-15-induced TNFα and IL-32 were maintained. In addition, there was an increase of NO and an inhibition of the parasite-induced IL-10 production. Inhibition of NO reversed the leishmanicidal effects of rhIL-15. Although rhIL-15 did not increase L. braziliensis-induced reactive oxygen intermediates (ROS) production, inhibition of ROS reversed the control of infection induced by rhIL-15. Treatment of the cells with rhIL-32γ increased microbicidal capacity of macrophages in the presence of high levels of vitamin D (25D3), but not in low concentrations of this vitamin. rhIL-15 together with rhIL-32 lead to the highest control of the L. braziliensis infection in high concentrations of vitamin D. In this condition, NO and ROS mediated rhIL-32γ effects on microbicidal activity. The data showed that priming of human macrophages with rhIL-15 or rhIL-32γ results in the control of L. braziliensis infection through induction of NO and ROS. In addition, rhIL-32γ appears to synergize with rhIL-15 for the control of L. braziliensis infection in a vitamin D-dependent manner.
Collapse
Affiliation(s)
- Lucas Luiz de Lima Silva
- Instituto de Patologia Tropical e Saúde Pública/Laboratório de Imunidade Natural (LIN), Universidade Federal de Goiás, Goiânia, Brazil
| | - Rodrigo Saar Gomes
- Instituto de Patologia Tropical e Saúde Pública/Laboratório de Imunidade Natural (LIN), Universidade Federal de Goiás, Goiânia, Brazil
| | - Muriel Vilela Teodoro Silva
- Instituto de Patologia Tropical e Saúde Pública/Laboratório de Imunidade Natural (LIN), Universidade Federal de Goiás, Goiânia, Brazil
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center of Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Fátima Ribeiro-Dias
- Instituto de Patologia Tropical e Saúde Pública/Laboratório de Imunidade Natural (LIN), Universidade Federal de Goiás, Goiânia, Brazil.
| |
Collapse
|
7
|
Wong PS, Sutejo R, Chen H, Ng SH, Sugrue RJ, Tan BH. A System Based-Approach to Examine Cytokine Response in Poxvirus-Infected Macrophages. Viruses 2018; 10:v10120692. [PMID: 30563103 PMCID: PMC6316232 DOI: 10.3390/v10120692] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/29/2018] [Accepted: 11/30/2018] [Indexed: 02/07/2023] Open
Abstract
The poxviruses are large, linear, double-stranded DNA viruses about 130 to 230 kbp, that have an animal origin and evolved to infect a wide host range. Variola virus (VARV), the causative agent of smallpox, is a poxvirus that infects only humans, but other poxviruses such as monkey poxvirus and cowpox virus (CPXV) have crossed over from animals to infect humans. Therefore understanding the biology of poxviruses can devise antiviral strategies to prevent these human infections. In this study we used a system-based approach to examine the host responses to three orthopoxviruses, CPXV, vaccinia virus (VACV), and ectromelia virus (ECTV) in the murine macrophage RAW 264.7 cell line. Overall, we observed a significant down-regulation of gene expressions for pro-inflammatory cytokines, chemokines, and related receptors. There were also common and virus-specific changes in the immune-regulated gene expressions for each poxvirus-infected RAW cells. Collectively our results showed that the murine macrophage RAW 264.7 cell line is a suitable cell-based model system to study poxvirus host response.
Collapse
Affiliation(s)
- Pui-San Wong
- Defence Medical and Environmental Research Institute, DSO National Labs, Singapore 117510, Singapore.
| | - Richard Sutejo
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
| | - Hui Chen
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
| | - Sock-Hoon Ng
- Defence Medical and Environmental Research Institute, DSO National Labs, Singapore 117510, Singapore.
| | - Richard J Sugrue
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
| | - Boon-Huan Tan
- Defence Medical and Environmental Research Institute, DSO National Labs, Singapore 117510, Singapore.
- Infection and Immunity, LKC School of Medicine, Nanyang Technological University, Singapore 308232, Singapore.
| |
Collapse
|
8
|
Vahedi F, Lee AJ, Collins SE, Chew MV, Lusty E, Chen B, Dubey A, Richards CD, Feld JJ, Russell RS, Mossman KL, Ashkar AA. IL-15 and IFN-γ signal through the ERK pathway to inhibit HCV replication, independent of type I IFN signaling. Cytokine 2018; 124:154439. [PMID: 29908921 DOI: 10.1016/j.cyto.2018.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 05/17/2018] [Accepted: 06/06/2018] [Indexed: 12/18/2022]
Abstract
Despite effective new treatments for Hepatitis C virus (HCV) infection, development of drug resistance, safety concerns and cost are remaining challenges. More importantly, there is no vaccine available against hepatitis C infection. Recent data suggest that there is a strong correlation between spontaneous HCV clearance and human NK cell function, particularly IFN-γ production. Further, IL-15 has innate antiviral activity and is also one of the main factors that activates NK cells to produce IFN-γ. To examine whether IL-15 and IFN-γ have direct antiviral activity against HCV, Huh7.5 cells were treated with either IFN-γ or IL-15 prior to HCV infection. Our data demonstrate that IFN-γ and IL-15 block HCV replication in vitro. Additionally, we show that IL-15 and IFN-γ do not induce anti-HCV effects through the type I interferon signaling pathway or nitric oxide (NO) production. Instead, IL-15 and IFN-γ provide protection against HCV via the ERK pathway. Treatment of Huh7.5 cells with a MEK/ERK inhibitor abrogated the anti-HCV effects of IL-15 and IFN-γ and overexpression of ERK1 prevented HCV replication compared to control transfection. Our in vitro data support the hypothesis that early production of IL-15 and activation of NK cells in the liver lead to control of HCV replication.
Collapse
Affiliation(s)
- Fatemeh Vahedi
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Hamilton, ON, Canada; MG DeGroote Institute for Infectious Disease Research, McMaster Immunology Research Centre, Hamilton, ON L8N 3Z5, Canada
| | - Amanda J Lee
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Hamilton, ON, Canada; MG DeGroote Institute for Infectious Disease Research, McMaster Immunology Research Centre, Hamilton, ON L8N 3Z5, Canada
| | - Susan E Collins
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Hamilton, ON, Canada; MG DeGroote Institute for Infectious Disease Research, McMaster Immunology Research Centre, Hamilton, ON L8N 3Z5, Canada
| | - Marianne V Chew
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Hamilton, ON, Canada; MG DeGroote Institute for Infectious Disease Research, McMaster Immunology Research Centre, Hamilton, ON L8N 3Z5, Canada
| | - Evan Lusty
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Hamilton, ON, Canada; MG DeGroote Institute for Infectious Disease Research, McMaster Immunology Research Centre, Hamilton, ON L8N 3Z5, Canada
| | - Branson Chen
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Hamilton, ON, Canada; MG DeGroote Institute for Infectious Disease Research, McMaster Immunology Research Centre, Hamilton, ON L8N 3Z5, Canada
| | - Anisha Dubey
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Hamilton, ON, Canada; MG DeGroote Institute for Infectious Disease Research, McMaster Immunology Research Centre, Hamilton, ON L8N 3Z5, Canada
| | - Carl D Richards
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Hamilton, ON, Canada; MG DeGroote Institute for Infectious Disease Research, McMaster Immunology Research Centre, Hamilton, ON L8N 3Z5, Canada
| | - Jordan J Feld
- Toronto Centre for Liver Disease, University Health Network, University of Toronto, ON, Canada
| | - Rodney S Russell
- Immunology and Infectious Diseases, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Karen L Mossman
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Hamilton, ON, Canada; MG DeGroote Institute for Infectious Disease Research, McMaster Immunology Research Centre, Hamilton, ON L8N 3Z5, Canada
| | - Ali A Ashkar
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Hamilton, ON, Canada; MG DeGroote Institute for Infectious Disease Research, McMaster Immunology Research Centre, Hamilton, ON L8N 3Z5, Canada.
| |
Collapse
|
9
|
Bortell N, Morsey B, Basova L, Fox HS, Marcondes MCG. Phenotypic changes in the brain of SIV-infected macaques exposed to methamphetamine parallel macrophage activation patterns induced by the common gamma-chain cytokine system. Front Microbiol 2015; 6:900. [PMID: 26441851 PMCID: PMC4568411 DOI: 10.3389/fmicb.2015.00900] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 08/17/2015] [Indexed: 12/12/2022] Open
Abstract
One factor in the development of neuroAIDS is the increase in the migration of pro-inflammatory CD8 T cells across the blood–brain barrier. Typically these cells are involved with keeping the viral load down. However, the persistence of above average numbers of CD8 T cells in the brain, not necessarily specific to viral peptides, is facilitated by the upregulation of IL15 from astrocytes, in the absence of IL2, in the brain environment. Both IL15 and IL2 are common gamma chain (γc) cytokines. Here, using the non-human primate model of neuroAIDS, we have demonstrated that exposure to methamphetamine, a powerful illicit drug that has been associated with HIV exposure and neuroAIDS severity, can cause an increase in molecules of the γc system. Among these molecules, IL15, which is upregulated in astrocytes by methamphetamine, and that induces the proliferation of T cells, may also be involved in driving an inflammatory phenotype in innate immune cells of the brain. Therefore, methamphetamine and IL15 may be critical in the development and aggravation of central nervous system immune-mediated inflammatory pathology in HIV-infected drug abusers.
Collapse
Affiliation(s)
- Nikki Bortell
- Department of Molecular and Cellular Neurosciences, The Scripps Research Institute La Jolla, CA, USA
| | - Brenda Morsey
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center Omaha, NE, USA
| | - Liana Basova
- Department of Molecular and Cellular Neurosciences, The Scripps Research Institute La Jolla, CA, USA
| | - Howard S Fox
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center Omaha, NE, USA
| | | |
Collapse
|
10
|
Modulation of the immune response to respiratory viruses by vitamin D. Nutrients 2015; 7:4240-70. [PMID: 26035247 PMCID: PMC4488782 DOI: 10.3390/nu7064240] [Citation(s) in RCA: 302] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/17/2015] [Accepted: 05/19/2015] [Indexed: 02/06/2023] Open
Abstract
Background: Vitamin D deficiency has been shown to be independently associated with increased risk of viral acute respiratory infection (ARI) in a number of observational studies, and meta-analysis of clinical trials of vitamin D supplementation for prevention of ARI has demonstrated protective effects. Several cellular studies have investigated the effects of vitamin D metabolites on immune responses to respiratory viruses, but syntheses of these reports are lacking. Scope: In this article, we review the literature reporting results of in vitro experiments investigating immunomodulatory actions of vitamin D metabolites in human respiratory epithelial cells infected with respiratory viruses. Key findings: Vitamin D metabolites do not consistently influence replication or clearance of rhinovirus, respiratory syncytial virus (RSV) or influenza A virus in human respiratory epithelial cell culture, although they do modulate expression and secretion of type 1 interferon, chemokines including CXCL8 and CXCL10 and pro-inflammatory cytokines, such as TNF and IL-6. Future research: More studies are needed to clarify the effects of vitamin D metabolites on respiratory virus-induced expression of cell surface markers mediating viral entry and bacterial adhesion to respiratory epithelial cells.
Collapse
|
11
|
Gillgrass A, Gill N, Babian A, Ashkar AA. The absence or overexpression of IL-15 drastically alters breast cancer metastasis via effects on NK cells, CD4 T cells, and macrophages. THE JOURNAL OF IMMUNOLOGY 2014; 193:6184-91. [PMID: 25355926 DOI: 10.4049/jimmunol.1303175] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
IL-15 is a cytokine that can affect many immune cells, including NK cells and CD8 T cells. In several tumor models, IL-15 delays primary tumor formation and can prevent or reduce metastasis. In this study, we have employed a model of breast cancer metastasis to examine the mechanism by which IL-15 affects metastasis. When breast tumor cells were injected i.v. into IL-15(-/-), C57BL/6, IL-15 transgenic (TG) and IL-15/IL-15Rα-treated C57BL/6 mice, there were high levels of metastasis in IL-15(-/-) mice and virtually no metastasis in IL-15 TG or IL-15-treated mice. In fact, IL-15(-/-) mice were 10 times more susceptible to metastasis, whereas IL-15 TG mice were at least 10 times more resistant to metastasis when compared with control C57BL/6 mice. Depletion of NK cells from IL-15 TG mice revealed that these cells were important for protection from metastasis. When NK cells were depleted from control C57BL/6 mice, these mice did not form as many metastatic foci as IL-15(-/-) mice, suggesting that other cell types may be contributing to metastasis in the absence of IL-15. We then examined the role of CD4 T cells and macrophages. In IL-15(-/-) mice, in vivo depletion of CD4 T cells decreased metastasis. The lack of IL-15 in IL-15(-/-) mice, and possibly the Th2-polarized CD4 T cells, was found to promote the formation of M2 macrophages that are thought to contribute to metastasis formation. This study reveals that whereas IL-15 effects on NK cells are important, it also has effects on other immune cells that contribute to metastasis.
Collapse
Affiliation(s)
- Amy Gillgrass
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Navkiran Gill
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Artem Babian
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Ali A Ashkar
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Center, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| |
Collapse
|
12
|
Jayaraman A, Jackson DJ, Message SD, Pearson RM, Aniscenko J, Caramori G, Mallia P, Papi A, Shamji B, Edwards M, Westwick J, Hansel T, Stanciu LA, Johnston SL, Bartlett NW. IL-15 complexes induce NK- and T-cell responses independent of type I IFN signaling during rhinovirus infection. Mucosal Immunol 2014; 7:1151-64. [PMID: 24472849 PMCID: PMC4284198 DOI: 10.1038/mi.2014.2] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 12/23/2013] [Indexed: 02/04/2023]
Abstract
Rhinoviruses are among the most common viruses to infect man, causing a range of serious respiratory diseases including exacerbations of asthma and COPD. Type I IFN and IL-15 are thought to be required for antiviral immunity; however, their function during rhinovirus infection in vivo is undefined. In RV-infected human volunteers, IL-15 protein expression in fluid from the nasal mucosa and in bronchial biopsies was increased. In mice, RV induced type I IFN-dependent expressions of IL-15 and IL-15Rα, which in turn were required for NK- and CD8(+) T-cell responses. Treatment with IL-15-IL-15Rα complexes (IL-15c) boosted RV-induced expression of IL-15, IL-15Rα, IFN-γ, CXCL9, and CXCL10 followed by recruitment of activated, IFN-γ-expressing NK, CD8(+), and CD4(+) T cells. Treating infected IFNAR1(-/-) mice with IL-15c similarly increased IL-15, IL-15Rα, IFN-γ, and CXCL9 (but not CXCL10) expression also followed by NK-, CD8(+)-, and CD4(+)-T-cell recruitment and activation. We have demonstrated that type I IFN-induced IFN-γ and cellular immunity to RV was mediated by IL-15 and IL-15Rα. Importantly, we also show that IL-15 could be induced via a type I IFN-independent mechanism by IL-15 complex treatment, which in turn was sufficient to drive IFN-γ expression and lymphocyte responses.
Collapse
Affiliation(s)
- Annabelle Jayaraman
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College London, London, UK
,MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
,Centre for Respiratory Infections, Imperial College London, London, UK
| | - David J. Jackson
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College London, London, UK
,MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
,Centre for Respiratory Infections, Imperial College London, London, UK
,Imperial College Healthcare National Health Service Trust, London, UK
| | - Simon D. Message
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Rebecca M. Pearson
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College London, London, UK
,MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
,Centre for Respiratory Infections, Imperial College London, London, UK
| | - Julia Aniscenko
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College London, London, UK
,MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
,Centre for Respiratory Infections, Imperial College London, London, UK
| | - Gaetano Caramori
- Sezione di Malattie dell’Apparato Respiratorio, Centro per lo Studio delle Malattie Infiammatorie Croniche delle Vie Aeree e Patologie Fumo Correlate dell’Apparato Respiratorio (CEMICEF), University of Ferrara, Ferrara, Italy
| | - Patrick Mallia
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College London, London, UK
,MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
,Centre for Respiratory Infections, Imperial College London, London, UK
,Imperial College Healthcare National Health Service Trust, London, UK
| | - Alberto Papi
- Sezione di Malattie dell’Apparato Respiratorio, Centro per lo Studio delle Malattie Infiammatorie Croniche delle Vie Aeree e Patologie Fumo Correlate dell’Apparato Respiratorio (CEMICEF), University of Ferrara, Ferrara, Italy
| | | | | | | | - Trevor Hansel
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College London, London, UK
,MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
,Centre for Respiratory Infections, Imperial College London, London, UK
,Imperial College Healthcare National Health Service Trust, London, UK
| | - Luminita A. Stanciu
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College London, London, UK
,MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
,Centre for Respiratory Infections, Imperial College London, London, UK
| | - Sebastian L. Johnston
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College London, London, UK
,MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
,Centre for Respiratory Infections, Imperial College London, London, UK
,Imperial College Healthcare National Health Service Trust, London, UK
| | - Nathan W. Bartlett
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College London, London, UK
,MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
,Centre for Respiratory Infections, Imperial College London, London, UK
,Contact: Dr Nathan Bartlett BSc(Hons)PhD, Airway Disease Infection Section, National Heart and Lung Institute, Imperial College London, St. Mary’s Campus, Norfolk Place, London W2 1PG. UK. tel: +44-207-594-3775. fax: +44-207-262-8913
| |
Collapse
|
13
|
Rodrigues L, Bonorino C. Role of IL-15 and IL-21 in viral immunity: applications for vaccines and therapies. Expert Rev Vaccines 2014; 8:167-77. [DOI: 10.1586/14760584.8.2.167] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
14
|
Yin W, Xu L, Sun R, Wei H, Tian Z. Interleukin-15 suppresses hepatitis B virus replication via IFN-β production in a C57BL/6 mouse model. Liver Int 2012; 32:1306-14. [PMID: 22380514 DOI: 10.1111/j.1478-3231.2012.02773.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 01/29/2012] [Indexed: 02/13/2023]
Abstract
BACKGROUND Interleukin-15 (IL-15) is a pleiotropic cytokine known to modulate both innate and adaptive immunity. It is suggested that IL-15 may play an important role in the regulation of immune response to hepatitis B virus (HBV). AIMS We investigated whether IL-15 could modulate the immune response to HBV. METHODS A mouse model for HBV tolerance was established by hydrodynamical injection of pAAV/HBV1.2 plasmid into C57BL/6 mice. This HBV-carrier mouse was simultaneously hydrodynamically injected with either an IL-15-expression plasmid pLIVE-IL-15 or a mock control vector pLIVE-EGFP. The serum levels of HBsAg and HBeAg were measured by radioimmunoassay. RESULTS Hydrodynamic injection of the plasmid pLIVE-IL-15 resulted in sustained high level of IL-15 in mouse serum, along with the markedly decreased serum HBsAg and HBeAg titres and liver HBV DNA levels. IL-15 also induced anti-HBV activity in T cell- and B cell-deficient Rag1(-/-) mice. Interestingly, despite an increase in NK cell numbers in both spleen and liver of IL-15 treated mice, the anti-HBV effect of IL-15 was neither dependent on presence of NK cells nor on production of IFN-γ. Furthermore, IL-15 could exert anti-HBV function independent of the common IL-2γ(c) R. Lastly, we found that IFN-β expression in the liver and serum was significantly up-regulated by liver expression of IL-15, and blockade of IFN-β function abrogated the anti-HBV activity of IL-15. CONCLUSIONS Liver over-expression of IL-15 may suppress HBV replication in an IFN-β-dependent manner.
Collapse
Affiliation(s)
- Wenwei Yin
- Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | | | | | | | | |
Collapse
|
15
|
Davies E, Reid S, Medina MF, Lichty B, Ashkar AA. IL-15 has innate anti-tumor activity independent of NK and CD8 T cells. J Leukoc Biol 2010; 88:529-36. [PMID: 20538758 DOI: 10.1189/jlb.0909648] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The innate immune system is crucial for host defense and immunosurveillance against pathogens and tumor cells. IL-15 is a pleiotropic cytokine with important effects on cells of the innate and adaptive immune systems. The NK cell- and CD8(+) T cell-mediated functions of IL-15 against tumor cells have been well documented. However, it has not been established whether IL-15 has innate anti-tumor functions independent of these cells. Here, we explored the innate anti-tumor potential of IL-15 using a B16F10 melanoma tumor model. IL-15tg mice exhibited significantly more resistance to tumor growth and metastasis compared to B6 mice, and to IL-15(-/-) mice, which exhibited increased susceptibility to B16F10 challenge. In vivo depletion of NK cells and CD8(+) T cells abrogated the innate resistance to B16F10 cells in B6 but not in IL-15tg mice. In addition, lung macrophages from IL-15tg mice produced significantly higher levels of NO and IL-12 compared with macrophages from B6 or IL-15(-/-) mice. To examine whether IL-15 has innate anti-tumor activity independent of NK cells and CD8(+) T cells, we developed Ad-Op-hIL-15; this resulted in significantly higher levels of biologically active hIL-15. Delivery of Ad-Op-hIL-15 into RAG-2(-/-)/gamma(c)(-/-) mice significantly suppressed tumor burden in the lungs compared with the control adenovirus vector. Our results show that IL-15 can have innate anti-tumor activity independent of NK cells and CD8(+) T cells and the common gamma(c)R.
Collapse
Affiliation(s)
- Elizabeth Davies
- Centre for Gene Therapeutics, Department of Pathology and Molecular Medicine, McMaster University Health Sciences Centre, Hamilton, Ontario, Canada L8N 3Z5
| | | | | | | | | |
Collapse
|
16
|
Foong YY, Jans DA, Rolph MS, Gahan ME, Mahalingam S. Interleukin-15 mediates potent antiviral responses via an interferon-dependent mechanism. Virology 2009; 393:228-37. [PMID: 19729181 DOI: 10.1016/j.virol.2009.07.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 04/20/2009] [Accepted: 07/06/2009] [Indexed: 10/20/2022]
Abstract
Interleukin-15 (IL-15) is a potent growth factor for activated T and natural killer (NK) cells, stimulator of memory T cells and plays an important role in viral immunity. To investigate mechanisms underlying the antiviral activity of IL-15, a recombinant vaccinia virus (rVV) encoding murine IL-15 (VV-IL-15) was constructed. Following infection of mice with VV-IL-15, virus titres in the ovaries were significantly reduced compared to mice infected with control VV. Growth of VV-IL-15 was also reduced in nude athymic mice, indicating the antiviral activity of IL-15 does not require T cells. Additionally, VV-IL-15 augmented the cytolytic activity of natural NK cells in the spleen and enhanced interferon (IFN) mRNA expression and transcription factors associated with IFN induction. Using knockout mice and antibody depletion studies, we showed for the first time that the control of VV-IL-15 replication in mice is dependent on NK cells and IFNs and, in their absence, the protective role of IL-15 is abolished.
Collapse
Affiliation(s)
- Y Y Foong
- Division of Immunology and Genetics, The John Curtin School of Medical Research, Australian National University, Canberra ACT 0200, Australia
| | | | | | | | | |
Collapse
|
17
|
Zhao Z, Ding J, Liu Q, Wang M, Yu J, Zhang W. Immunogenicity of a DNA vaccine expressing the Neospora caninum surface protein NcSRS2 in mice. Acta Vet Hung 2009; 57:51-62. [PMID: 19457773 DOI: 10.1556/avet.57.2009.1.5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The immunogenicity of a DNA vaccine expressing the surface protein NcSRS2 of Neospora caninum was studied in BALB/c mice. The NcSRS2-encoding DNA was obtained by PCR amplification of the NcSRS2 ORF gene from the p43 plasmid encoding the N. caninum surface protein NcSRS2, ligated to the mammalian expression vector pcDNA3.1/Zeo(+) and propagated in E. coli DH5alpha to produce the N. caninum NcSRS2 DNA vaccine. BALB/c mice were immunised by two intramuscular injections of the DNA vaccine with or without complete Freund's adjuvant (CFA). Serum antibody titres and nitric oxide (NO) concentrations, and splenocyte proliferation and cytokine expression were measured after immunisation. The DNA vaccine induced T-cell-mediated immunity as shown by significantly increased NO concentrations, cytokine gene (IL-2 and IFN-gamma) expression, and NcSRS2 protein-stimulated lymphocyte proliferation in mice immunised with the DNA vaccine. The vaccine also induced weak humoral immunity. The immunogenicity of the DNA vaccine was slightly enhanced by CFA. The immune response was specific to NcSRS2. No immune response was observed in mice immunised with the pcDNA3.1/Zeo(+) vector alone.
Collapse
Affiliation(s)
- Zhanzhong Zhao
- 1 China Agricultural University The Parasitology Laboratory, Department of Veterinary Preventive Medicine, College of Veterinary Medicine Beijing 100094 China
| | - Jun Ding
- 1 China Agricultural University The Parasitology Laboratory, Department of Veterinary Preventive Medicine, College of Veterinary Medicine Beijing 100094 China
| | - Qun Liu
- 1 China Agricultural University The Parasitology Laboratory, Department of Veterinary Preventive Medicine, College of Veterinary Medicine Beijing 100094 China
| | - Ming Wang
- 1 China Agricultural University The Parasitology Laboratory, Department of Veterinary Preventive Medicine, College of Veterinary Medicine Beijing 100094 China
| | - Jinshu Yu
- 1 China Agricultural University The Parasitology Laboratory, Department of Veterinary Preventive Medicine, College of Veterinary Medicine Beijing 100094 China
| | - Wei Zhang
- 1 China Agricultural University The Parasitology Laboratory, Department of Veterinary Preventive Medicine, College of Veterinary Medicine Beijing 100094 China
| |
Collapse
|
18
|
Krutzik SR, Hewison M, Liu PT, Robles JA, Stenger S, Adams JS, Modlin RL. IL-15 links TLR2/1-induced macrophage differentiation to the vitamin D-dependent antimicrobial pathway. THE JOURNAL OF IMMUNOLOGY 2008; 181:7115-20. [PMID: 18981132 DOI: 10.4049/jimmunol.181.10.7115] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
An essential function of the innate immune system is to directly trigger antimicrobial mechanisms to defend against invading pathogens. In humans, one such pathway involves activation by TLR2/1L leading to the vitamin D-dependent induction of antimicrobial peptides. In this study, we found that TLR2/1-induced IL-15 was required for induction of CYP27b1, the VDR and the downstream antimicrobial peptide cathelicidin. Although both IL-15 and IL-4 triggered macrophage differentiation, only IL-15 was sufficient by itself to induce CYP27b1 and subsequent bioconversion of 25-hydroxyvitamin D3 (25D3) into bioactive 1,25D3, leading to VDR activation and induction of cathelicidin. Finally, IL-15-differentiated macrophages could be triggered by 25D3 to induce an antimicrobial activity against intracellular Mycobacterium tuberculosis. Therefore, IL-15 links TLR2/1-induced macrophage differentiation to the vitamin D-dependent antimicrobial pathway.
Collapse
Affiliation(s)
- Stephan R Krutzik
- Division of Dermatology, David Geffen School of Medicine at University of California Los Angeles, CA 90095, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Gill N, Ashkar AA. Adaptive immune responses fail to provide protection against genital HSV-2 infection in the absence of IL-15. Eur J Immunol 2007; 37:2529-38. [PMID: 17668897 DOI: 10.1002/eji.200636997] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
IL-15 plays a crucial role in innate defense against viral infections. The role of IL-15 in the generation and function of adaptive immunity, following mucosal immunization, against genital HSV-2 has not been studied. Here, we report that immunized IL-15(-/-) mice were able to generate antibody and T cell-mediated immune responses against HSV-2, comparable to those seen in immunized B6 mice. However, immunized IL-15(-/-) mice were not protected against subsequent HSV-2 challenge, compared to B6 immunized mice, even with a ten times lower challenge dose. We then examined if the adaptive immune responses generated in the absence of IL-15 could provide protection against HSV-2 in an IL-15-positive environment. Adoptive transfer of lymphocytes from immunized IL-15(-/-) to naive mice were able to provide protection against HSV-2 challenge similar to protection with immunized cells from control mice. This suggests that the adaptive immune responses raised in the absence of IL-15 are functional in vivo. Reconstitution of the innate components, particularly IL-15, NK cells and NK cell-derived IFN-gamma, in immunized IL-15(-/-) mice restored their protective adaptive immunity against subsequent genital HSV-2 challenge. Our results clearly suggest that innate antiviral activity of IL-15 is necessary for protective adaptive immunity against genital HSV-2 infection.
Collapse
Affiliation(s)
- Navkiran Gill
- Centre for Gene Therapeutics, Department of Pathology and Molecular Medicine, McMaster University Health Sciences Centre, Hamilton, Ontario, Canada
| | | |
Collapse
|
20
|
Gill N, Deacon PM, Lichty B, Mossman KL, Ashkar AA. Induction of innate immunity against herpes simplex virus type 2 infection via local delivery of Toll-like receptor ligands correlates with beta interferon production. J Virol 2006; 80:9943-50. [PMID: 17005672 PMCID: PMC1617293 DOI: 10.1128/jvi.01036-06] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Toll-like receptors (TLRs) constitute a family of innate receptors that recognize and respond to a wide spectrum of microorganisms, including fungi, bacteria, viruses, and protozoa. Previous studies have demonstrated that ligands for TLR3 and TLR9 induce potent innate antiviral responses against herpes simplex virus type 2 (HSV-2). However, the factor(s) involved in this innate protection is not well-defined. Here we report that production of beta interferon (IFN-beta) but not production of IFN-alpha, IFN-gamma, or tumor necrosis factor alpha (TNF-alpha) strongly correlates with innate protection against HSV-2. Local delivery of poly(I:C) and CpG oligodeoxynucleotides induced significant production of IFN-beta in the genital tract and provided complete protection against intravaginal (IVAG) HSV-2 challenge. There was no detectable IFN-beta in mice treated with ligands for TLR4 or TLR2, and these mice were not protected against subsequent IVAG HSV-2 challenge. There was no correlation between levels of TNF-alpha or IFN-gamma in the genital tract and protection against IVAG HSV-2 challenge following TLR ligand delivery. Both TNF-alpha(-/-) and IFN-gamma(-/-) mice were protected against IVAG HSV-2 challenge following local delivery of poly(I:C). To confirm that type I interferon, particularly IFN-beta, mediates innate protection, mice unresponsive to type I interferons (IFN-alpha/betaR(-/-) mice) and mice lacking IFN regulatory factor-3 (IRF-3(-/-) mice) were treated with poly(I:C) and then challenged with IVAG HSV-2. There was no protection against HSV-2 infection following poly(I:C) treatment of IFN-alpha/betaR(-/-) or IRF-3(-/-) mice. Local delivery of murine recombinant IFN-beta protected C57BL/6 and IRF-3(-/-) mice against IVAG HSV-2 challenge. Results from these in vivo studies clearly suggest a strong correlation between IFN-beta production and innate antiviral immunity against HSV-2.
Collapse
Affiliation(s)
- Navkiran Gill
- Centre for Gene Therapeutics, Department of Pathology and Molecular Medicine, McMaster University Health Sciences Centre, Hamilton L8N 3Z5, Ontario, Canada
| | | | | | | | | |
Collapse
|
21
|
Abstract
Herpesvirus infection leads to the rapid induction of an innate immune response. A central aspect of this host response is the production and secretion of type I interferon. The current model of virus-mediated interferon production includes three stages: sensitization, induction, and amplification. A key mediator of all three stages is the cellular transcription factor interferon regulatory factor 3 (IRF3). Although the precise details of IRF3 activation and interferon production in response to herpesvirus infection are still being elucidated, viral proteins that block components of the interferon pathway, particularly IRF3, have been identified and characterized. In vivo studies have shown that in addition to type I interferon, interleukin-15 (IL-15) and natural killer (NK) cells also play an important role in mediating resistance to herpesvirus infection. Recent investigations have demonstrated a strong association between IRF3, interferon, IL-15, and NK cells. This review will focus on herpesvirus-mediated induction of innate immunity, the central role of the type I interferon response and mechanisms used by herpesviruses to block host antiviral immunity.
Collapse
Affiliation(s)
- Karen L Mossman
- Department of Pathology and Molecular Medicine, Centre for Gene Therapeutics, McMaster University, Hamilton, Ontario, Canada.
| | | |
Collapse
|
22
|
Gill N, Rosenthal KL, Ashkar AA. NK and NKT cell-independent contribution of interleukin-15 to innate protection against mucosal viral infection. J Virol 2005; 79:4470-8. [PMID: 15767447 PMCID: PMC1061577 DOI: 10.1128/jvi.79.7.4470-4478.2005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interleukin-15 (IL-15) is essential for the development, maturation, and function of NK and NKT cells, which are critical components of the innate immune defense against viral infections. We recently showed that mice lacking IL-15 and/or NK/NKT cells are significantly more susceptible to intravaginal (IVAG) herpes simplex virus type 2 (HSV-2) infection than control mice. For this study, we examined whether IL-15 has any direct antiviral activity, independent of NK/NKT cells, in innate protection against HSV-2 infection. A sensitive enzyme-linked immunosorbent assay for murine IL-15 was developed and used to show that IVAG HSV-2 infection induces IL-15 in vaginal washes. Using immunohistochemistry, we detected IL-15-positive cells in the submucosa and vaginal epithelium following IVAG HSV-2 infection. Local, but not systemic, delivery of murine recombinant IL-15 (mrIL-15) to the genital mucosae of IL-15(-/-) and RAG-2(-/-) gamma(c)(-/-) mice, which both lack NK and NKT cells, resulted in significant reductions in HSV-2 titers in genital washes and 60% survival following IVAG HSV-2 challenge. Furthermore, we showed that IL-15 is important for CpG oligodeoxynucleotide (ODN)-induced innate protection against genital HSV-2 infection. While 100% of CpG ODN-treated RAG2(-/-) gamma(c)(-/-) mice, which are capable of producing IL-15 but lack NK/NKT cells, survived an IVAG HSV-2 challenge, only 60% of CpG ODN-treated IL-15(-/-) mice survived, and all of these mice had similar vaginal viral titers to those in control mice by day 3 postchallenge. Lastly, a treatment of RAW264.7 cells with mrIL-15 induced the production of tumor necrosis factor alpha and beta interferon (IFN-beta), but not IFN-alpha, and significantly protected them against HSV-2 infection in vitro. The results of these studies indicate that IL-15 can act independently of NK/NKT cells in mediating the innate defense against viral infection.
Collapse
Affiliation(s)
- Navkiran Gill
- Centre for Gene Therapeutics, Department of Pathology and Molecular Medicine, McMaster University Health Sciences Centre, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
23
|
Shen Y, Nemunaitis J. Fighting Cancer with Vaccinia Virus: Teaching New Tricks to an Old Dog. Mol Ther 2005; 11:180-95. [PMID: 15668130 DOI: 10.1016/j.ymthe.2004.10.015] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Accepted: 10/22/2004] [Indexed: 11/22/2022] Open
Abstract
Vaccinia virus has played a huge part in human beings' victory over smallpox. With smallpox being eradicated and large-scale vaccination stopped worldwide, vaccinia has assumed a new role in our fight against another serious threat to human health: cancer. Recent advances in molecular biology, virology, immunology, and cancer genetics have led to the design of novel cancer therapeutics based on vaccinia virus backbones. With the ability to infect efficiently a wide range of host cells, a genome that can accommodate large DNA inserts and express multiple genes, high immunogenicity, and cytoplasmic replication without the possibility of chromosomal integration, vaccinia virus has become the platform of many exploratory approaches to treat cancer. Vaccinia virus has been used as (1) a delivery vehicle for anti-cancer transgenes, (2) a vaccine carrier for tumor-associated antigens and immunoregulatory molecules in cancer immunotherapy, and (3) an oncolytic agent that selectively replicates in and lyses cancer cells.
Collapse
Affiliation(s)
- Yuqiao Shen
- Mary Crowley Medical Research Center, 1717 Main Street, 60th Floor, Dallas, TX 75201, USA
| | | |
Collapse
|
24
|
Liu G, Zhai Q, Schaffner D, Popova T, Hayford A, Bailey C, Alibek K. Bacillus alcalophilus peptidoglycan induces IFN-alpha-mediated inhibition of vaccinia virus replication. ACTA ACUST UNITED AC 2004; 42:197-204. [PMID: 15364104 DOI: 10.1016/j.femsim.2004.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2003] [Revised: 04/16/2004] [Accepted: 05/10/2004] [Indexed: 01/12/2023]
Abstract
Bacterial products such as cell walls (CW) and peptidoglycan (PGN) are known to activate macrophages and NK cells during microbial infections. In this report, we demonstrated that whole CW and PGN of four Gram-positive bacteria are capable of enhancing the anti-poxviral activity of murine macrophage RAW 264.7 cells. Among the major Bacillus alcalophilus CW components, PGN contributes the most to antiviral activity and induces remarkably higher levels of IFN-alpha. Anti-IFN-alpha/beta antibody, but not anti-IFN-gamma, anti-IFN-gamma receptor, or anti-IL-12, reversed the PGN-induced inhibition of vaccinia virus replication and reduced nitric oxide (NO) production. Our data thus suggest that PGN induce antiviral activity through IFN-alpha and to a lesser extent, through NO production.
Collapse
Affiliation(s)
- Ge Liu
- Advanced Biosystems, Inc., George Mason University, 10900 University Blvd., MSN 1A8 Manassas, VA 20110, USA.
| | | | | | | | | | | | | |
Collapse
|