1
|
Li J, Mali R, Gan GN, Lominska C, Guida K, Juloori A, Chen MWR, Li W, Setianegara J, Wang C, Lin Y, Li Q, Chen W, Gao H. Patient-specific modeling of radiation-induced lymphopenia for head and neck cancer. Med Phys 2025. [PMID: 40229136 DOI: 10.1002/mp.17829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/20/2025] [Accepted: 03/31/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND Radiation-induced lymphopenia (RIL) is a frequent complication in head and neck cancer (HNC) patients undergoing radiotherapy (RT), and its severity is associated with poorer survival outcomes. PURPOSE This work aims to develop a patient-specific modeling method to simulate lymphocyte kinetics during and after RT and evaluate the lymphocyte-sparing effects across different RT treatment regimens. METHODS A cohort of 17 HNC patients receiving unilateral irradiation with protons or photons were included in this study. The dose to circulating lymphocytes was calculated using the HEDOS model, considering lymph nodes on the irradiated side, the esophagus, auto-segmented bilateral carotid arteries and jugular veins, skeletal muscle, fat, skin, compact bone, spongy bone, red marrow, and other skeleton. A patient-specific model was developed to simulate lymphocyte kinetics that account for radiation-induced damage to both circulating lymphocytes and lymph nodes. The weekly absolute lymphocyte counts (ALC) before, during and after RT, were assembled to estimate the patient-specific parameters. Four different RT treatment regimens-conventional fractionation, hypofractionation, stereotactic body radiotherapy (SBRT), and FLASH-were evaluated to compare their lymphocyte-sparing effects. RESULTS Patients treated with protons had 17.1% less grade 3 and 4 RIL compared to photons. The mean dose to circulating lymphocytes was 1.28 ± 0.37 Gy(RBE) for proton therapy and 3.12 ± 0.75 Gy for photon therapy. The patient-specific model captured three distinct patterns of ALC kinetics: plateau phase, normal recovery, and incomplete recovery, with a mean squared error (MSE) of 0.024 ± 0.025 (mean ± SD) between the simulated and observed ALC values. On average, 42.72% of circulating lymphocytes received more than 0.1 Gy(RBE) in proton FLASH, significantly less than the 81.94% in photon FLASH. Hypofractionated RT, SBRT, and FLASH were 6.5%, 20.2%, and 29.9%, respectively, higher than conventional RT in term of ALC levels 3 months post-RT. At 1 year post-RT, most patients achieved at least 70% recovery of baseline ALC for all treatment regimens. CONCLUSION A patient-specific method has been developed for modeling lymphocyte dynamics over the course of RT and the subsequent follow-up period for HNC patients.
Collapse
Affiliation(s)
- Jiaxin Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, USA
| | - Rahul Mali
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, USA
| | - Gregory N Gan
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, USA
| | - Christopher Lominska
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, USA
| | - Kenny Guida
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, USA
| | - Aditya Juloori
- Department of Radiation Oncology, University of Chicago, Chicago, USA
| | - Matthew Wen-Ruey Chen
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, USA
| | - Wangyao Li
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, USA
| | - Jufri Setianegara
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, USA
| | - Chao Wang
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, USA
| | - Yuting Lin
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, USA
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Weiqiang Chen
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hao Gao
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, USA
| |
Collapse
|
2
|
Kulesh V, Peskov K, Helmlinger G, Bocharov G. Systematic review and quantitative meta-analysis of age-dependent human T-lymphocyte homeostasis. Front Immunol 2025; 16:1475871. [PMID: 39931065 PMCID: PMC11808020 DOI: 10.3389/fimmu.2025.1475871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 01/07/2025] [Indexed: 02/13/2025] Open
Abstract
Objective To evaluate and quantitatively describe age-dependent homeostasis for a broad range of total T-cells and specific T-lymphocyte subpopulations in healthy human subjects. Methods A systematic literature review was performed to identify and collect relevant quantitative information on T-lymphocyte counts in human blood and various organs. Both individual subject and grouped (aggregated) data on T-lymphocyte observations in absolute and relative values were digitized and curated; cell phenotypes, gating strategies for flow cytometry analyses, organs from which observations were obtained, subjects' number and age were also systematically inventoried. Age-dependent homeostasis of each T-lymphocyte subpopulation was evaluated via a weighted average calculation within pre-specified age intervals, using a piece-wise equal-effect meta-analysis methodology. Results In total, 124 studies comprising 11722 unique observations from healthy subjects encompassing 20 different T-lymphocyte subpopulations - total CD45+ and CD3+ lymphocytes, as well as specific CD4+ and CD8+ naïve, recent thymic emigrants, activated, effector and various subpopulations of memory T-lymphocytes (total-memory, central-memory, effector-memory, resident-memory) - were systematically collected and included in the final database for a comprehensive analysis. Blood counts of most T-lymphocyte subpopulations demonstrate a decline with age, with a pronounced decrease within the first 10 years of life. Conversely, memory T-lymphocytes display a tendency to increase in older age groups, particularly after ~50 years of age. Notably, an increase in T-lymphocyte numbers is observed in neonates and infants (0 - 1 year of age) towards less differentiated T-lymphocyte subpopulations, while an increase into more differentiated subpopulations emerges later (1 - 5 years of age). Conclusion A comprehensive systematic review and meta-analysis of T-lymphocyte age-dependent homeostasis in healthy humans was performed, to evaluate immune T-cell profiles as a function of age and to characterize generalized estimates of T-lymphocyte counts across age groups. Our study introduces a quantitative description of the fundamental parameters characterizing the maintenance and evolution of T-cell subsets with age, based on a comprehensive integration of available organ-specific and systems-level flow cytometry datasets. Overall, it provides the most up-to-date view of physiological T-cell dynamics and its variance and may be used as a consistent reference for gaining further mechanistic understanding of the human immune status in health and disease.
Collapse
Affiliation(s)
- Victoria Kulesh
- Research Center of Model-Informed Drug Development, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences (INM RAS), Moscow, Russia
| | - Kirill Peskov
- Research Center of Model-Informed Drug Development, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences (INM RAS), Moscow, Russia
- Modeling & Simulation Decisions FZ-LLC, Dubai, United Arab Emirates
| | | | - Gennady Bocharov
- Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences (INM RAS), Moscow, Russia
- Institute for Computer Science and Mathematical Modelling, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Moscow Center of Fundamental and Applied Mathematics at INM RAS, Moscow, Russia
| |
Collapse
|
3
|
Xiao X, Ding Z, Shi Y, Zhang Q. Causal Role of Immune Cells in Chronic Obstructive Pulmonary Disease: A Two-Sample Mendelian Randomization Study. COPD 2024; 21:2327352. [PMID: 38573027 DOI: 10.1080/15412555.2024.2327352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/27/2024] [Indexed: 04/05/2024]
Abstract
Accumulating evidence has highlighted the importance of immune cells in the pathogenesis of chronic obstructive pulmonary disease (COPD). However, the understanding of the causal association between immunity and COPD remains incomplete due to the existence of confounding variables. In this study, we employed a two-sample Mendelian randomization (MR) analysis, utilizing the genome-wide association study database, to investigate the causal association between 731 immune-cell signatures and the susceptibility to COPD from a host genetics perspective. To validate the consistency of our findings, we utilized MR analysis results of lung function data to assess directional concordance. Furthermore, we employed MR-Egger intercept tests, Cochrane's Q test, MR-PRESSO global test, and "leave-one-out" sensitivity analyses to evaluate the presence of horizontal pleiotropy, heterogeneity, and stability, respectively. Inverse variance weighting results showed that seven immune phenotypes were associated with the risk of COPD. Analyses of heterogeneity and pleiotropy analysis confirmed the reliability of MR results. These results highlight the interactions between the immune system and the lungs. Further investigations into their mechanisms are necessary and will contribute to inform targeted prevention strategies for COPD.
Collapse
Affiliation(s)
- Xinru Xiao
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou NO.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Ziqi Ding
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou NO.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Yujia Shi
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou NO.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Qian Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Changzhou NO.2 People's Hospital of Nanjing Medical University, Changzhou, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| |
Collapse
|
4
|
Gaudian K, Koh MJ, Koh MJ, Jermain P, Khan I, Kallam D, Lee Z, Collins RR, Zwart Z, Danner M, Zwart A, Kumar D, Atkins MB, Suy S, Collins SP. Late radiation-related lymphopenia after prostate stereotactic body radiation therapy plus or minus supplemental pelvic irradiation. Front Oncol 2024; 14:1459732. [PMID: 39640284 PMCID: PMC11617573 DOI: 10.3389/fonc.2024.1459732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/11/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction Prior studies suggest lymphopenia following radiation therapy may impact toxicity and cancer control. Chronic radiation-related lymphopenia (RRL) has been noted in prostate cancer patients treated with conventionally fractionated pelvic radiation therapy. The impact of utilizing hypofractionated high integral dose therapies such as stereotactic body radiation therapy (SBRT) on RRL is less well characterized. This prospective study sought to evaluate the impact of prostate SBRT plus or minus supplemental pelvic nodal radiation (PNI) on RRL. Methods Between 2012 and 2023, serial serum absolute lymphocyte counts (ALCs) were measured in 226 men treated at MedStar Georgetown with robotic SBRT using the CyberKnife® (CK) (36.25 Gy in 5 fractions) alone or CK (19.5 Gy in 3 fractions) followed by supplemental PNI using VMAT (37.5-45.0 Gy in 15-25 fractions) per an institutional protocol (IRB#: 2012-1175). Baseline ALC (k/μL) was measured 1-2 hours prior to robotic SBRT and at each follow-up appointment (1, 3, 6, 9, 12, 18, and 24 months post-treatment). Lymphopenia was graded using the CTCAEv.4: Grade 1 (0.8-1.0 k/μL), Grade 2 (0.5-0.8 k/μL), Grade 3 (0.2-0.5 k/μL) and Grade 4 (<0.2 k/μL). To compare two different treatment groups, the Wilcoxon signed-rank test was used. A p-value of < 0.05 determined statistical significance. Results Of 226 patients (SBRT alone: n = 169, SBRT + PNI: n = 57), the median age was 72 years and 45% of patients were non-white. Baseline lymphopenia was uncommon and of low grade. In the SBRT alone group, the baseline ALC of 1.7 k/μl decreased by 21% to 1.4 k/μL at 3 months and then stabilized. 38% of these men experienced lymphopenia in the two years following SBRT, however, no patient presented with Grade 3 lymphopenia. Patients who received SBRT + PNI had a lower baseline ALC (1.5 k/μl), and a significantly greater decrease in ALC relative to individual baseline value throughout the 2-year follow-up period, decreasing by 57% to 0.6 k/μL at 3 months and recovering to a 36% decrease from baseline (1.0 k/μL) at 24 months. Notably, 12% of the men treated with SBRT + PNI experienced Grade 3 lymphopenia. No patient in either cohort experienced Grade 4 lymphopenia. Discussion The low incidence of high-grade lymphopenia within this elderly patient population further supports the safety of prostate SBRT plus or minus PNI for the treatment of prostate cancer. However, RRL was more severe when PNI was utilized. The effect of SBRT and PNI on lymphocytes in prostate cancer patients could act as a model for other cancers, specifically those involving treatment with immunomodulatory agents. Future studies should focus on the clinical implications of RRL and the effects of specifically irradiating lymphoid tissues on lymphocyte biology.
Collapse
Affiliation(s)
- Kelly Gaudian
- Washington University School of Medicine in St. Louis, St. Louis, MO, United States
- Department of Radiation Medicine, Georgetown University Hospital, Washington, DC, United States
| | - Min Jung Koh
- Department of Radiation Medicine, Georgetown University Hospital, Washington, DC, United States
| | - Min Ji Koh
- Department of Radiation Medicine, Georgetown University Hospital, Washington, DC, United States
| | - Peter Jermain
- Department of Radiation Medicine, Georgetown University Hospital, Washington, DC, United States
| | - Irfan Khan
- Department of Radiation Medicine, Georgetown University Hospital, Washington, DC, United States
| | - Diya Kallam
- College of Medicine, George Washington University, Washington, DC, United States
| | - Zach Lee
- Department of Radiation Medicine, Georgetown University Hospital, Washington, DC, United States
| | - Ryan R. Collins
- Department of Radiation Medicine, Georgetown University Hospital, Washington, DC, United States
- Department of Radiation Oncology, University of South Florida (USF) Health Morsani College of Medicine, Tampa, FL, United States
| | - Zoya Zwart
- Department of Radiation Medicine, Georgetown University Hospital, Washington, DC, United States
| | - Malika Danner
- Department of Radiation Medicine, Georgetown University Hospital, Washington, DC, United States
- Department of Radiation Oncology, University of South Florida (USF) Health Morsani College of Medicine, Tampa, FL, United States
| | - Alan Zwart
- Department of Radiation Medicine, Georgetown University Hospital, Washington, DC, United States
| | - Deepak Kumar
- Biotechnology Research Institute, North Carolina Central University, Durham, NC, United States
| | - Michael B. Atkins
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States
| | - Simeng Suy
- Department of Radiation Medicine, Georgetown University Hospital, Washington, DC, United States
- Department of Radiation Oncology, University of South Florida (USF) Health Morsani College of Medicine, Tampa, FL, United States
| | - Sean P. Collins
- Department of Radiation Medicine, Georgetown University Hospital, Washington, DC, United States
- Department of Radiation Oncology, University of South Florida (USF) Health Morsani College of Medicine, Tampa, FL, United States
| |
Collapse
|
5
|
Xiong N, Han W, Yu Z. ABO Blood Type and Pretreatment Systemic Inflammatory Response Index Associated with Lymph Node Metastasis in Patients with Breast Cancer. Int J Gen Med 2024; 17:4823-4833. [PMID: 39465189 PMCID: PMC11512788 DOI: 10.2147/ijgm.s486873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024] Open
Abstract
Background Lymph node metastasis (LNM) is an important prognostic factor for breast cancer. Inflammatory stimulation can change tumor microenvironment and lead to LNM, but the relationship between LNM and peripheral immunoinflammatory indices has not been clarified in breast cancer. Methods The clinical information of 1918 patients with breast cancer admitted to Meizhou People's Hospital from October 2017 to December 2023 were retrospectively analyzed. The relationship of clinicopathological features (age, body mass index (BMI), ABO blood types, family history of cancer, tumor site, disease stage, LNM, distant metastasis, and molecular subtypes) and peripheral immunoinflammatory indices (pan-immune inflammation value (PIV), systemic immune inflammation index (SII), and system inflammation response index (SIRI)) were analyzed. Results There were 935 (48.7%) patients had no LNM and 983 (51.3%) had LNM. There were statistically significant differences in the distributions of ABO blood groups (p=0.022) and molecular subtypes (p<0.001) between the two groups. PIV, SII, and SIRI levels in patients with LNM were significantly higher than those without LNM (all p<0.05). The proportions of LNM in patients with high PIV, SII, and SIRI levels were higher than those with low PIV, SII, and SIRI levels, respectively. Logistic regression analysis showed that non-O blood type (non-O blood type vs O blood type, odds ratio (OR): 1.327, 95% confidence interval (CI): 1.056-1.667, p=0.015), luminal B subtype (luminal B vs luminal A, OR: 2.939, 95% CI: 2.147-4.022, p<0.001), HER2+ subtype (HER2+ vs luminal A, OR: 2.044, 95% CI: 1.388-3.009, p<0.001), and high SIRI level (≥0.875 vs <0.875, OR: 1.572, 95% CI: 1.092-2.265, p=0.015) were independently associated with LNM. Conclusion Non-O blood type, luminal B and HER2+ subtypes, and high SIRI level (≥0.875) have potential role in predicting the status of LNM in breast cancer patients.
Collapse
Affiliation(s)
- Nating Xiong
- Department of Blood Transfusion, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Wendao Han
- Department of Blood Transfusion, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Zhikang Yu
- Institute of Basic Medical Sciences, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
- Guangdong Engineering Technological Research Center of Clinical Molecular Diagnosis and Antibody Drugs, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| |
Collapse
|
6
|
Kim S, Byun HK, Shin J, Lee IJ, Sung W. Normal Tissue Complication Probability Modeling of Severe Radiation-Induced Lymphopenia Using Blood Dose for Patients With Hepatocellular Carcinoma. Int J Radiat Oncol Biol Phys 2024; 119:1011-1020. [PMID: 38056776 DOI: 10.1016/j.ijrobp.2023.11.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/24/2023] [Accepted: 11/25/2023] [Indexed: 12/08/2023]
Abstract
PURPOSE This study aimed to develop a normal tissue complication probability (NTCP) model to estimate the risk of severe radiation-induced lymphopenia (SRIL; absolute lymphocyte count [ALC] < 500/μL) by using the blood dose of patients with hepatocellular carcinoma (HCC). METHODS AND MATERIALS We retrospectively collected data from 75 patients with HCC who received radiation therapy (RT) between 2015 and 2018. The hematological dose framework calculated blood dose-volume histograms (DVHs) using a predefined blood flow model, organ DVHs, the number of treatment fractions, and beam delivery time. A Lyman-Kutcher-Burman model with a generalized equivalent dose was used to establish the NTCP model, reflecting the whole-blood DVHs. Optimization of the Lyman-Kutcher-Burman parameters was conducted by minimizing a negative log-likelihood function. RESULTS There were 6, 4, 18, 33, and 14 patients in the groups with radiation-induced lymphopenia grades 0, 1, 2, 3, and 4, respectively. The median pre- and post-RT ALC values were 1410/μL (range, 520-3710/μL) and 470/μL (range, 60-1760/μL), respectively. There was a correlation between mean blood dose and ALC depletion (Pearson r = -0.664; P < .001). The average mean blood doses in each radiation-induced lymphopenia group were 2.90 Gy (95% CI, 1.96-3.85 Gy) for grade 0 to 1, 5.29 Gy (95% CI, 4.12-6.45 Gy) for grade 2, 8.81 Gy (95% CI, 7.55-10.07 Gy) for grade 3, and 11.69 Gy (95% CI, 9.82-17.57 Gy) for grade 4. When applying the developed NTCP model to predict SRIL, the area under the receiver operating characteristic curve and Brier score values were 0.89 and 0.12, respectively. CONCLUSIONS We developed the first NTCP model based on whole-blood DVHs for estimating SRIL after abdominal RT in patients with HCC. Our results showed a strong correlation between blood dose and ALC depletion, suggesting the potential to predict the risk of SRIL occurrence using blood dose.
Collapse
Affiliation(s)
- Seohan Kim
- Deparments of Biomedical Engineering and Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hwa Kyung Byun
- Department of Radiation Oncology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, South Korea
| | - Jungwook Shin
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - Ik Jae Lee
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea.
| | - Wonmo Sung
- Deparments of Biomedical Engineering and Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
| |
Collapse
|
7
|
Qi F, Wei Y, Wu M, Sun Y, Xie Y, Lin N, Liu W, Wang W, Song Y, Zhu J. Immunotyping of peripheral blood lymphocytes by flow cytometry reveals Th cell as a potential prognostic biomarker for extranodal NK/T-cell lymphoma. Ann Hematol 2024; 103:1643-1653. [PMID: 38191717 DOI: 10.1007/s00277-023-05605-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/21/2023] [Indexed: 01/10/2024]
Abstract
This study aimed to explore the distribution, characteristics and prognostic value of baseline peripheral blood lymphocyte subsets in patients with extranodal NK/T-cell lymphoma (NKTCL). We conducted this cross-sectional study of 205 newly-diagnosed NKTCL patients receiving first-line chemotherapy and radiation at our institute between 2010 and 2020. Baseline peripheral blood lymphocytes were detected using flow cytometry, and the clinical value was analyzed. Compared with healthy controls, patients with NKTCL presented with a distinct peripheral immunity with higher levels of cytotoxic CD8+ T cells (33.230 ± 12.090% vs. 27.060 ± 4.010%, p < 0.001) and NKT cells (7.697 ± 7.219% vs. 3.550 ± 2.088%, p < 0.001) but lower proportions of suppressive regulatory T cells (Treg, 2.999 ± 1.949% vs. 3.420 ± 1.051%, p = 0.003) and CD4+ helper T cells (Th, 33.084 ± 11.361% vs. 37.650 ± 3.153%, p < 0.001). Peripheral lymphocytes were differentially distributed according to age, stage, and primary site in patients with NKTCL. The proportion of Th cells/lymphocytes was associated with tumor burden reflected by stage (p = 0.037), serum lactate dehydrogenase (p = 0.0420), primary tumor invasion (p = 0.025), and prognostic index for NK/T-cell lymphoma (PINK) score (p = 0.041). Furthermore, elevated proportions of T cells (58.9% vs. 76.4%, p = 0.005), Th cells (56.3% vs. 68.8%, p = 0.047), or Treg cells (49.5% vs. 68.9%, p = 0.040) were associated with inferior 5-year progression-free survivals (PFS) via univariable survival analysis. Multivariate cox regression revealed elevated Th cells as an independent predictor for unfavorable PFS (HR = 2.333, 95% CI, 1.030-5.288, p = 0.042) in NKTCL. These results suggested the proportion of Th cells positively correlated with tumor burden and was a potential non-invasive biomarker for inferior survival for patients with NKTCL.
Collapse
Affiliation(s)
- Fei Qi
- General Department, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Lymphoma, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Yuce Wei
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Meng Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Lymphoma, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Yan Sun
- Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Yan Xie
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Lymphoma, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Ningjing Lin
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Lymphoma, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Weiping Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Lymphoma, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Weihu Wang
- Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Yuqin Song
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Lymphoma, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China.
| | - Jun Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Lymphoma, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China.
| |
Collapse
|
8
|
Pham TN, Coupey J, Toutain J, Candéias SM, Simonin G, Rousseau M, Touzani O, Thariat J, Valable S. Early effects of different brain radiotherapy modalities on circulating leucocyte subpopulations in rodents. Int J Radiat Biol 2024; 100:744-755. [PMID: 38466699 DOI: 10.1080/09553002.2024.2324471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/09/2024] [Indexed: 03/13/2024]
Abstract
PURPOSES Lymphopenia is extensively studied, but not circulating leucocyte subpopulations, which however have distinct roles in tumor tolerance. Proton therapy has been shown to have a lesser impact on the immune system than conventional X-ray radiotherapy through lower dose exposure to healthy tissues. We explored the differential effects of brain X-ray and proton irradiation on circulating leucocyte subpopulations. MATERIALS AND METHODS Leucocyte subpopulation counts from tumor-free mice were obtained 12 hours after 4 fractions of 2.5 Gy. The relationships between irradiation type (X-rays or protons), irradiated volume (whole-brain/hemi-brain) and dose rate (1 or 2 Gy/min) with circulating leucocyte subpopulations (T-CD4+, T-CD8+, B, and NK-cells, neutrophils, and monocytes) were investigated using linear regression and tree-based modeling approaches. Relationships between dose maps (brain, vessels, lymph nodes (LNs)) and leucocyte subpopulations were analyzed and applied to construct the blood dose model, assessing the hypothesis of a direct lymphocyte-killing effect in radiation-induced lymphopenia. RESULTS Radiation-induced lymphopenia occurred after X-ray but not proton brain irradiation in lymphoid subpopulations (T-CD4+, T-CD8+, B, and NK-cells). There was an increase in neutrophil counts following protons but not X-rays. Monocytes remained unchanged under both X-rays and protons. Besides irradiation type, irradiated volume and dose rate had a significant impact on NK-cell, neutrophil and monocyte levels but not T-CD4+, T-CD8+, and B-cells. The dose to the blood had a heterogeneous impact on leucocyte subpopulations: neutrophil counts remained stable with increasing dose to the blood, while lymphocyte counts decreased with increasing dose (T-CD8+-cells > T-CD4+-cells > B-cells > NK-cells). Direct cell-killing effect of the dose to the blood mildly contributed to radiation-induced lymphopenia. LN exposure significantly contributed to lymphopenia and partially explained the distinct impact of irradiation type on circulating lymphocytes. CONCLUSIONS Leucocyte subpopulations reacted differently to X-ray or proton brain irradiation. This difference could be partly explained by LN exposure to radiation dose. Further researches and analyses on other biological processes and interactions between leucocyte subpopulations are ongoing. The various mechanisms underlying leucocyte subpopulation changes under different irradiation modalities may have implications for the choice of radiotherapy modalities and their combination with immunotherapy in brain cancer treatment.
Collapse
Affiliation(s)
- Thao-Nguyen Pham
- Normandie Univ, UNICAEN, CNRS, ISTCT, GIP Cyceron, Caen, France
- Laboratoire de physique corpusculaire UMR6534 IN2P3/ENSICAEN, France - Normandie Université, France
| | - Julie Coupey
- Normandie Univ, UNICAEN, CNRS, ISTCT, GIP Cyceron, Caen, France
| | - Jérôme Toutain
- Normandie Univ, UNICAEN, CNRS, ISTCT, GIP Cyceron, Caen, France
| | - Serge M Candéias
- Univ. Grenoble Alpes, CEA, CNRS, IRIG-LCBM-UMR5249, Grenoble, France
| | - Gaël Simonin
- CNRS, IPHC, UMR 7178, Strasbourg University, Strasbourg, France
| | - Marc Rousseau
- CNRS, IPHC, UMR 7178, Strasbourg University, Strasbourg, France
| | - Omar Touzani
- Normandie Univ, UNICAEN, CNRS, ISTCT, GIP Cyceron, Caen, France
| | - Juliette Thariat
- Laboratoire de physique corpusculaire UMR6534 IN2P3/ENSICAEN, France - Normandie Université, France
- Department of Radiation Oncology, Centre François Baclesse, Caen, Normandy, France
| | - Samuel Valable
- Normandie Univ, UNICAEN, CNRS, ISTCT, GIP Cyceron, Caen, France
| |
Collapse
|
9
|
Matsuda K, Maeda K. HIV Reservoirs and Treatment Strategies toward Curing HIV Infection. Int J Mol Sci 2024; 25:2621. [PMID: 38473868 DOI: 10.3390/ijms25052621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/08/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Combination antiretroviral therapy (cART) has significantly improved the prognosis of individuals living with human immunodeficiency virus (HIV). Acquired immunodeficiency syndrome has transformed from a fatal disease to a treatable chronic infection. Currently, effective and safe anti-HIV drugs are available. Although cART can reduce viral production in the body of the patient to below the detection limit, it cannot eliminate the HIV provirus integrated into the host cell genome; hence, the virus will be produced again after cART discontinuation. Therefore, research into a cure (or remission) for HIV has been widely conducted. In this review, we focus on drug development targeting cells latently infected with HIV and assess the progress including our current studies, particularly in terms of the "Shock and Kill", and "Block and Lock" strategies.
Collapse
Affiliation(s)
- Kouki Matsuda
- Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima 890-8544, Japan
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Kenji Maeda
- Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima 890-8544, Japan
| |
Collapse
|
10
|
Joslyn LR, Huang W, Miles D, Hosseini I, Ramanujan S. "Digital twins elucidate critical role of T scm in clinical persistence of TCR-engineered cell therapy". NPJ Syst Biol Appl 2024; 10:11. [PMID: 38278838 PMCID: PMC10817974 DOI: 10.1038/s41540-024-00335-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/11/2024] [Indexed: 01/28/2024] Open
Abstract
Despite recent progress in adoptive T cell therapy for cancer, understanding and predicting the kinetics of infused T cells remains a challenge. Multiple factors can impact the distribution, expansion, and decay or persistence of infused T cells in patients. We have developed a novel quantitative systems pharmacology (QSP) model of TCR-transgenic T cell therapy in patients with solid tumors to describe the kinetics of endogenous T cells and multiple memory subsets of engineered T cells after infusion. These T cells undergo lymphodepletion, proliferation, trafficking, differentiation, and apoptosis in blood, lymph nodes, tumor site, and other peripheral tissues. Using the model, we generated patient-matched digital twins that recapitulate the circulating T cell kinetics reported from a clinical trial of TCR-engineered T cells targeting E7 in patients with metastatic HPV-associated epithelial cancers. Analyses of key parameters influencing cell kinetics and differences among digital twins identify stem cell-like memory T cells (Tscm) cells as an important determinant of both expansion and persistence and suggest that Tscm-related differences contribute significantly to the observed variability in cellular kinetics among patients. We simulated in silico clinical trials using digital twins and predict that Tscm enrichment in the infused product improves persistence of the engineered T cells and could enable administration of a lower dose. Finally, we verified the broader relevance of the QSP model, the digital twins, and findings on the importance of Tscm enrichment by predicting kinetics for two patients with pancreatic cancer treated with KRAS G12D targeting T cell therapy. This work offers insight into the key role of Tscm biology on T cell kinetics and provides a quantitative framework to evaluate cellular kinetics for future efforts in the development and clinical application of TCR-engineered T cell therapies.
Collapse
Affiliation(s)
| | - Weize Huang
- Genentech Inc., South San Francisco, CA, USA
| | - Dale Miles
- Genentech Inc., South San Francisco, CA, USA
| | | | | |
Collapse
|
11
|
Wang H, Li Y, Hu P, Zhang J. The Correlation Between Low-Dose Radiotherapy Area of the Mediastinum and CD8+T Cells and the Efficacy of Radiotherapy for Non-Small Cell Lung Cancer. Cancer Manag Res 2024; 16:23-35. [PMID: 38230351 PMCID: PMC10790660 DOI: 10.2147/cmar.s438440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/08/2024] [Indexed: 01/18/2024] Open
Abstract
Background Radiation therapy (RT) can cause changes in peripheral blood immune cells. The relationship between the efficacy of radiation therapy for non-small cell lung cancer (NSCLC) and immune cell changes and the study of how mediastinal radiation dose parameters affect immune cell changes is still unclear. This study aims to analyze the relationship between immune cell changes induced by radiotherapy and the efficacy of NSCLC radiotherapy, as well as the relationship between radiotherapy dose parameters and immune cell changes. Materials and Methods We retrospectively analyzed the data of NSCLC patients receiving mediastinal radiation therapy from 2020 to 2022. Collect lymphocytes and circulating immune cells within one week before and after radiotherapy and collect the dose-volume parameters of the whole mediastinum in the patient's RT planning system. Analyze the changes in lymphocytes and radiotherapy effects after radiotherapy, and explore the relationship between radiotherapy dose parameters and immune cell changes. Results A total of 72 patients were enrolled. Compared with before radiotherapy, the proportion of CD3+T cells, CD8+T cells, and CD8/Treg in peripheral blood significantly increased after radiotherapy (P<0.05). The increase in CD8+T cells and CD8/Treg after radiotherapy was correlated with Objective response rate (ORR) (P<0.05). Based on binary logistic univariate and multivariate regression analysis, an increase in CD8+T cells after radiotherapy is an independent predictor of objective tumor response after radiotherapy (OR=12.71, 95% CI=3.64-44.64, P=0.01), and Volume of 200 cGy irradiation (V2) is an independent positive predictor of an increase in CD8+T lymphocyte ratio after radiotherapy (high group, OR=3.40, 95% CI=1.13-10.36, P=0.03). Conclusion The increase in CD8+T cells after radiotherapy can positively predict the short-term efficacy of radiotherapy. Mediastinal low-dose radiation therapy can increase CD8+T cells, thereby improving the short-term efficacy of radiotherapy. These potentially related mechanisms are worth further verification and exploration.
Collapse
Affiliation(s)
- Hang Wang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong Province, 250000, People’s Republic of China
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, Shandong Province, 250000, People’s Republic of China
- Shandong Lung Cancer Institute, Jinan, Shandong Province, 25000, People’s Republic of China
| | - Yang Li
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong Province, 250000, People’s Republic of China
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, Shandong Province, 250000, People’s Republic of China
- Shandong Lung Cancer Institute, Jinan, Shandong Province, 25000, People’s Republic of China
| | - Pingping Hu
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong Province, 250000, People’s Republic of China
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, Shandong Province, 250000, People’s Republic of China
- Shandong Lung Cancer Institute, Jinan, Shandong Province, 25000, People’s Republic of China
| | - Jiandong Zhang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong Province, 250000, People’s Republic of China
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, Shandong Province, 250000, People’s Republic of China
- Shandong Lung Cancer Institute, Jinan, Shandong Province, 25000, People’s Republic of China
| |
Collapse
|
12
|
Galts A, Hammi A. FLASH radiotherapy sparing effect on the circulating lymphocytes in pencil beam scanning proton therapy: impact of hypofractionation and dose rate. Phys Med Biol 2024; 69:025006. [PMID: 38081067 DOI: 10.1088/1361-6560/ad144e] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/11/2023] [Indexed: 01/06/2024]
Abstract
Purpose. The sparing effect of ultra-high dose rate (FLASH) radiotherapy has been reported, but its potential to mitigate depletion of circulating blood and lymphocytes (CL) has not been investigated in pencil-beam scanning-based (PBS) proton therapy, which could potentially reduce the risk of radiation-induced lymphopenia.Material and methods. A time-dependent framework was used to score the dose to the CL during the course of radiotherapy. For brain patients, cerebral vasculatures were semi-automatic segmented from 3T MR-angiography data. A dynamic beam delivery system was developed capable of simulating spatially varying instantaneous dose rates of PBS treatment plans, and which is based on realistic beam delivery parameters that are available clinically. We simulated single and different hypofractionated PBS intensity modulated proton therapy (IMPT) FLASH schemes using 600 nA beam current along with conventionally fractionated IMPT treatment plan at 2 nA beam current. The dosimetric impact of treatment schemes on CL was quantified, and we also evaluated the depletion in subsets of CL based on their radiosensitivity.Results. The proton FLASH sparing effect on CL was observed. In single-fraction PBS FLASH, just 1.5% of peripheral blood was irradiated, whereas hypofractionated FLASH irradiated 7.3% of peripheral blood. In contrast, conventional fractionated IMPT exposed 42.4% of peripheral blood to radiation. PBS FLASH reduced the depletion rate of CL by 69.2% when compared to conventional fractionated IMPT.Conclusion. Our dosimetric blood flow model provides quantitative measures of the PBS FLASH sparing effect on the CL in radiotherapy for brain cancer. FLASH Single treatment fraction offers superior CL sparing when compared to hypofractionated FLASH and conventional IMPT, supporting assumptions about reducing risks of lymphopenia compared to proton therapy at conventional dose rates. The results also indicate that faster conformal FLASH delivery, such as passive patient-specific energy modulation, may further enhance the sparing of the immune system.
Collapse
|
13
|
He S, Wu S, Chen T, Cao C. Using complete blood count, serum immunoglobulins G/A/M and complement C3/C4 levels to predict the risk of COPD acute exacerbation: 2-year follow-up in a single-center prospective cohort study. Clin Exp Med 2023; 23:5161-5176. [PMID: 37328656 DOI: 10.1007/s10238-023-01117-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/07/2023] [Indexed: 06/18/2023]
Abstract
Autoimmunity is present in patients with stable chronic obstructive pulmonary disease (COPD), playing a role in indirect and direct ways. We aimed to explore whether autoimmunity could play a role in COPD exacerbations and construct autoimmunity-related prediction models. This prospective, longitudinal, observational cohort study enrolled 155 patients with acute COPD exacerbations (AECOPD) followed for at least two years. The laboratory parameters, including complete blood count, serum immunoglobulins G/A/M and complement C3/C4 levels, were collected at enrollment. We studied the demographic characteristics, clinical characteristics and laboratory parameters to identify independent risk factors and build predictive models. The results showed that lower lymphocyte count was associated with noninvasive ventilation (NIV) in patients with AECOPD (the odds ratio [OR] 0.25, the 95% confidence interval [CI]: 0.08-0.81, P = 0.02). Lymphocyte count performed well with an area under the curves (AUC) of 0.75 (P < 0.0001, sensitivity: 78.1%, specificity: 62.3%, cutoff value [Cov] ≤ 1.1). The C index, calibration plot, decision curve analysis (DCA) and bootstrap repetitions indicated that this clinical prediction model based on lymphocyte count for NIV in patients with AECOPD performed well. Having prior home oxygen therapy (OR: 2.82, 95% CI: 1.25-6.36, P = 0.013) and higher COPD Assessment Test (CAT) scores (OR: 1.14, 95% CI: 1.03-1.25, P = 0.011) were associated with the increased risk for respiratory failure. For predicting respiratory failure, CAT scores and home oxygen therapy combined had an AUC-ROC of 0.73 (P < 0.0001). This clinical prediction model based on lymphocyte count may help to assist in treatment decisions for NIV in patients with AECOPD. Lower complement C3 seems to be associated with worse outcomes in patients with AECOPD.
Collapse
Affiliation(s)
- Shiyi He
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Ningbo University, 59 Liuting Road, Ningbo, 315010, China
- Health Science Center, Ningbo University, Ningbo, China
| | - Shiyu Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Ningbo University, 59 Liuting Road, Ningbo, 315010, China
| | - Tianwei Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Ningbo University, 59 Liuting Road, Ningbo, 315010, China
- Zhejiang University School of Medicine, Hangzhou, China
| | - Chao Cao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Ningbo University, 59 Liuting Road, Ningbo, 315010, China.
| |
Collapse
|
14
|
Beekman C, Withrow JD, Correa Alfonso CM, Pathak SP, Dawson RJ, Carrasco-Rojas N, Sforza AR, Colon CG, Bolch WE, Grassberger C, Paganetti H. A stochastic model of blood flow to calculate blood dose during radiotherapy. Phys Med Biol 2023; 68:10.1088/1361-6560/ad02d6. [PMID: 37827171 PMCID: PMC10695181 DOI: 10.1088/1361-6560/ad02d6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/12/2023] [Indexed: 10/14/2023]
Abstract
Purpose. Lymphopenia is a common side effect in patients treated with radiotherapy, potentially caused by direct cell killing of circulating lymphocytes in the blood. To investigate this hypothesis, a method to assess dose to circulating lymphocytes is needed.Methods. A stochastic model to simulate systemic blood flow in the human body was developed based on a previously designed compartment model. Blood dose was obtained by superimposing the spatiotemporal distribution of blood particles with a time-varying dose rate field, and used as a surrogate for dose to circulating lymphocytes. We discuss relevant theory on compartmental modeling and how to combine it with models of explicit organ vasculature.Results. A general workflow was established which can be used for any anatomical site. Stochastic compartments can be replaced by explicit models of organ vasculatures for improved spatial resolution, and tumor compartments can be dynamically assigned. Generating a patient-specific blood flow distribution takes about one minute, fast enough to investigate the effect of varying treatment parameters such as the dose rate. Furthermore, the anatomical structures contributing most to the overall blood dose can be identified, which could potentially be used for lymphocyte-sparing treatment planning.Conclusion. The ability to report the blood dose distribution during radiotherapy is imperative to test and act upon the current paradigm that radiation-induced lymphopenia is caused by direct cell killing of lymphocytes in the blood. We have built a general model that can do so for various treatment sites. The presented framework is publicly available athttp://github.com/mghro/hedos.
Collapse
Affiliation(s)
- Chris Beekman
- Massachusetts General Hospital/Harvard Medical School, United States of America
| | | | | | | | | | | | | | | | | | - Clemens Grassberger
- Massachusetts General Hospital/Harvard Medical School, United States of America
- University of Washington, United States of America
| | - Harald Paganetti
- Massachusetts General Hospital/Harvard Medical School, United States of America
| |
Collapse
|
15
|
Hatton IA, Galbraith ED, Merleau NSC, Miettinen TP, Smith BM, Shander JA. The human cell count and size distribution. Proc Natl Acad Sci U S A 2023; 120:e2303077120. [PMID: 37722043 PMCID: PMC10523466 DOI: 10.1073/pnas.2303077120] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/24/2023] [Indexed: 09/20/2023] Open
Abstract
Cell size and cell count are adaptively regulated and intimately linked to growth and function. Yet, despite their widespread relevance, the relation between cell size and count has never been formally examined over the whole human body. Here, we compile a comprehensive dataset of cell size and count over all major cell types, with data drawn from >1,500 published sources. We consider the body of a representative male (70 kg), which allows further estimates of a female (60 kg) and 10-y-old child (32 kg). We build a hierarchical interface for the cellular organization of the body, giving easy access to data, methods, and sources (https://humancelltreemap.mis.mpg.de/). In total, we estimate total body counts of ≈36 trillion cells in the male, ≈28 trillion in the female, and ≈17 trillion in the child. These data reveal a surprising inverse relation between cell size and count, implying a trade-off between these variables, such that all cells within a given logarithmic size class contribute an equal fraction to the body's total cellular biomass. We also find that the coefficient of variation is approximately independent of mean cell size, implying the existence of cell-size regulation across cell types. Our data serve to establish a holistic quantitative framework for the cells of the human body, and highlight large-scale patterns in cell biology.
Collapse
Affiliation(s)
- Ian A. Hatton
- Max Planck Institute for Mathematics in the Sciences, Leipzig04103, Germany
- Department of Earth and Planetary Sciences, McGill University, Montreal, QuebecH3A 0E8, Canada
| | - Eric D. Galbraith
- Department of Earth and Planetary Sciences, McGill University, Montreal, QuebecH3A 0E8, Canada
- ICREA, Barcelona08010, Spain
| | - Nono S. C. Merleau
- Max Planck Institute for Mathematics in the Sciences, Leipzig04103, Germany
- Center for Scalable Data Analytics and Artificial Intelligence, University of Leipzig, D-04105Leipzig, Germany
| | - Teemu P. Miettinen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Benjamin McDonald Smith
- Department of Medicine, McGill University Health Centre Research Institute, Montreal, QuebecH4A 3S5, Canada
- Department of Medicine, Columbia University Medical Center, New York, NY10032
| | | |
Collapse
|
16
|
Shin E, Bak SH, Park T, Kim JW, Yoon SR, Jung H, Noh JY. Understanding NK cell biology for harnessing NK cell therapies: targeting cancer and beyond. Front Immunol 2023; 14:1192907. [PMID: 37539051 PMCID: PMC10395517 DOI: 10.3389/fimmu.2023.1192907] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/30/2023] [Indexed: 08/05/2023] Open
Abstract
Gene-engineered immune cell therapies have partially transformed cancer treatment, as exemplified by the use of chimeric antigen receptor (CAR)-T cells in certain hematologic malignancies. However, there are several limitations that need to be addressed to target more cancer types. Natural killer (NK) cells are a type of innate immune cells that represent a unique biology in cancer immune surveillance. In particular, NK cells obtained from heathy donors can serve as a source for genetically engineered immune cell therapies. Therefore, NK-based therapies, including NK cells, CAR-NK cells, and antibodies that induce antibody-dependent cellular cytotoxicity of NK cells, have emerged. With recent advances in genetic engineering and cell biology techniques, NK cell-based therapies have become promising approaches for a wide range of cancers, viral infections, and senescence. This review provides a brief overview of NK cell characteristics and summarizes diseases that could benefit from NK-based therapies. In addition, we discuss recent preclinical and clinical investigations on the use of adoptive NK cell transfer and agents that can modulate NK cell activity.
Collapse
Affiliation(s)
- Eunju Shin
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Seong Ho Bak
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
| | - Taeho Park
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
| | - Jin Woo Kim
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
| | - Suk-Ran Yoon
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Haiyoung Jung
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Ji-Yoon Noh
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| |
Collapse
|
17
|
Essawi K, Hakami W, Naeem Khan MB, Martin R, Zeng J, Chu R, Uchida N, Bonifacino AC, Krouse AE, Linde NS, Donahue RE, Blobel GA, Gerdemann U, Kean LS, Maitland SA, Wolfe SA, Metais JY, Gottschalk S, Bauer DE, Tisdale JF, Demirci S. Pre-existing immunity does not impair the engraftment of CRISPR-Cas9-edited cells in rhesus macaques conditioned with busulfan or radiation. Mol Ther Methods Clin Dev 2023; 29:483-493. [PMID: 37273902 PMCID: PMC10236215 DOI: 10.1016/j.omtm.2023.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/17/2023] [Indexed: 06/06/2023]
Abstract
CRISPR-Cas9-based therapeutic genome editing approaches hold promise to cure a variety of human diseases. Recent findings demonstrate pre-existing immunity for the commonly used Cas orthologs from Streptococcus pyogenes (SpCas9) and Staphylococcus aureus (SaCas9) in humans, which threatens the success of this powerful tool in clinical use. Thus, a comprehensive investigation and potential risk assessment are required to exploit the full potential of the system. Here, we investigated existence of immunity to SpCas9 and SaCas9 in control rhesus macaques (Macaca mulatta) alongside monkeys transplanted with either lentiviral transduced or CRISPR-SpCas9 ribonucleoprotein (RNP)-edited cells. We observed significant levels of Cas9 antibodies in the peripheral blood of all transplanted and non-transplanted control animals. Transplantation of ex vivo transduced or SpCas9-mediated BCL11A enhancer-edited cells did not alter the levels of Cas9 antibodies in rhesus monkeys. Following stimulation of peripheral blood cells with SpCas9 or SaCas9, neither Cas9-specific T cells nor cytokine induction were detected. Robust and durable editing frequencies and expression of high levels of fetal hemoglobin in BCL11A enhancer-edited rhesus monkeys with no evidence of an immune response (>3 years) provide an optimistic outlook for the use of ex vivo CRISPR-SpCas9 (RNP)-edited cells.
Collapse
Affiliation(s)
- Khaled Essawi
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Gizan, Saudi Arabia
| | - Waleed Hakami
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Gizan, Saudi Arabia
| | - Muhammad Behroz Naeem Khan
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Reid Martin
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Jing Zeng
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA, USA
| | - Rebecca Chu
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Naoya Uchida
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | | | - Allen E. Krouse
- Translational Stem Cell Biology Branch, NHLBI, NIH, Bethesda, MD, USA
| | | | - Robert E. Donahue
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Gerd A. Blobel
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ulrike Gerdemann
- Boston Children’s Hospital, Department of Pediatric Oncology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Leslie S. Kean
- Boston Children’s Hospital, Department of Pediatric Oncology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Stacy A. Maitland
- Department of Molecular, Cell and Cancer Biology, Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Scot A. Wolfe
- Department of Molecular, Cell and Cancer Biology, Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jean-Yves Metais
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Daniel E. Bauer
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA, USA
| | - John F. Tisdale
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Selami Demirci
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
18
|
Wang JJ, Shao H, Yan J, Jing M, Xu WJ, Sun HW, Zhou ZW, Zhang YJ. Neoadjuvant chemoradiotherapy induced lymphopenia in gastric cancer and associations with spleen dosimetry and survival outcomes. Clin Transl Radiat Oncol 2023; 40:100617. [PMID: 37008513 PMCID: PMC10060597 DOI: 10.1016/j.ctro.2023.100617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/05/2023] [Accepted: 03/17/2023] [Indexed: 04/04/2023] Open
Abstract
Background Few studies concentrate on spleen dosimetry of radiotherapy for gastric cancer (GC). Although there is no consensus on the spleen dose-volume threshold for lymphopenia, several studies indicated that the higher the spleen dose, the higher the risk of lymphopenia. This study aimed to identify the appropriate spleen dosimetric parameters for predicting grade 4 + lymphopenia in patients with locally advanced GC. Material and methods A total of 295 patients treated with nCRT and nChT from June 2013 to December 2021 at two major centers were included, of whom 220 were assigned to the training cohort and 75 to the external validation cohort. Results Grade 4 + lymphopenia was more common in the nCRT than in the nChT group (49.5% vs. 0, P < 0.001 in the training cohort; 25.0% vs. 0, P = 0.001 in the external validation cohort). Age ≥ 60 years (P = 0.006), lower pretreatment absolute lymphocyte count (P = 0.001), higher spleen volume (SPV) (P = 0.001), and higher V20 (P = 0.003) were significant risk factors of grade 4 + lymphopenia for patients treated with nCRT. Patients with grade 4 + lymphopenia had significantly worse PFS (P = 0.043) and showed a negative correlation trend with OS (P = 0.07). Limiting V20 to < 84.5% could decrease the incidence of grade 4 + lymphopenia by 35.7%. The predictive effectiveness of the multivariable model in the training and external validation cohorts was 0.880 and 0.737, respectively. Conclusion Grade 4 + lymphopenia during nCRT was more common than nChT, and was associated with a worse PFS in GC patients. Constraining the spleen V20 to < 84.5% may indirectly improve outcomes through lymphocyte preservation.
Collapse
Affiliation(s)
- Ji-jin Wang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, People’s Republic of China
| | - Han Shao
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, People’s Republic of China
| | - Jin Yan
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing 400030, People’s Republic of China
| | - Ming Jing
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, People’s Republic of China
| | - Wen-jing Xu
- Department of Radiotherapy, Cancer Center, Guangdong Provincial People’s Hospital, Guangdong AcadCmy of Medical Sciences, Guangzhou 510080, People’s Republic of China
| | - Heng-wen Sun
- Department of Radiotherapy, Cancer Center, Guangdong Provincial People’s Hospital, Guangdong AcadCmy of Medical Sciences, Guangzhou 510080, People’s Republic of China
- Corresponding authors.
| | - Zhi-wei Zhou
- Department of Gastric Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, People’s Republic of China
| | - Yu-jing Zhang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, People’s Republic of China
- Corresponding authors.
| |
Collapse
|
19
|
Ellsworth SG, Mohan R, Lin SH. RE: Venkatesulu et al. (Letter to the Editor). Radiother Oncol 2023; 181:109490. [PMID: 36736591 DOI: 10.1016/j.radonc.2023.109490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023]
Affiliation(s)
| | - Radhe Mohan
- University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Steven H Lin
- University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
20
|
Pham TN, Coupey J, Candeias SM, Ivanova V, Valable S, Thariat J. Beyond lymphopenia, unraveling radiation-induced leucocyte subpopulation kinetics and mechanisms through modeling approaches. J Exp Clin Cancer Res 2023; 42:50. [PMID: 36814272 PMCID: PMC9945629 DOI: 10.1186/s13046-023-02621-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
Leucocyte subpopulations in both lymphoid and myeloid lineages have a significant impact on antitumor immune response. While radiation-induced lymphopenia is being studied extensively, radiation effects on lymphoid and myeloid subtypes have been relatively less addressed. Interactions between leucocyte subpopulations, their specific radiation sensitivity and the specific kinetics of each subpopulation can be modeled based on both experimental data and knowledge of physiological leucocyte depletion, production, proliferation, maturation and homeostasis. Modeling approaches of the leucocyte kinetics that may be used to unravel mechanisms underlying radiation induced-leucopenia and prediction of changes in cell counts and compositions after irradiation are presented in this review. The approaches described open up new possibilities for determining the influence of irradiation parameters both on a single-time point of acute effects and the subsequent recovery of leukocyte subpopulations. Utilization of these approaches to model kinetic data in post-radiotherapy states may be a useful tool for further development of new treatment strategies or for the combination of radiotherapy and immunotherapy.
Collapse
Affiliation(s)
- Thao-Nguyen Pham
- grid.412043.00000 0001 2186 4076Normandie Univ, UNICAEN, CNRS, ISTCT, GIP CYCERON, 14000 Caen, France ,grid.460771.30000 0004 1785 9671Laboratoire de Physique Corpusculaire UMR6534 IN2P3/ENSICAEN, Normandie Université, Caen, France
| | - Julie Coupey
- grid.412043.00000 0001 2186 4076Normandie Univ, UNICAEN, CNRS, ISTCT, GIP CYCERON, 14000 Caen, France
| | - Serge M. Candeias
- grid.457348.90000 0004 0630 1517Univ. Grenoble Alpes, CEA, CNRS, IRIG-LCBM-UMR5249, 38054 Grenoble, France
| | - Viktoriia Ivanova
- grid.412043.00000 0001 2186 4076Normandie Univ, UNICAEN, CNRS, ISTCT, GIP CYCERON, 14000 Caen, France
| | - Samuel Valable
- Normandie Univ, UNICAEN, CNRS, ISTCT, GIP CYCERON, 14000, Caen, France.
| | - Juliette Thariat
- Laboratoire de Physique Corpusculaire UMR6534 IN2P3/ENSICAEN, Normandie Université, Caen, France. .,Department of Radiation Oncology, Centre François Baclesse, Caen, Normandy, France.
| |
Collapse
|
21
|
Storci G, Barbato F, Ricci F, Tazzari PL, De Matteis S, Tomassini E, Dicataldo M, Laprovitera N, Arpinati M, Ursi M, Maffini E, Campanini E, Dan E, Manfroi S, Santi S, Ferracin M, Bonafe M, Bonifazi F. Pre-transplant CD69+ extracellular vesicles are negatively correlated with active ATLG serum levels and associate with the onset of GVHD in allogeneic HSCT patients. Front Immunol 2023; 13:1058739. [PMID: 36713433 PMCID: PMC9880409 DOI: 10.3389/fimmu.2022.1058739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/06/2022] [Indexed: 01/15/2023] Open
Abstract
Graft versus host disease (GVHD) is a major complication of allogeneic hematopoietic stem cell transplantation (HSCT). Rabbit anti-T lymphocyte globulin (ATLG) in addition to calcineurin inhibitors and antimetabolites is a suitable strategy to prevent GVHD in several transplant settings. Randomized studies already demonstrated its efficacy in terms of GVHD prevention, although the effect on relapse remains the major concern for a wider use. Tailoring of ATLG dose on host characteristics is expected to minimize its side effects (immunological reconstitution, relapse, and infections). Here, day -6 to day +15 pharmacokinetics of active ATLG serum level was first assayed in an explorative cohort of 23 patients by testing the ability of the polyclonal serum to bind antigens on human leukocytes. Significantly lower levels of serum active ATLG were found in the patients who developed GVHD (ATLG_AUCCD45: 241.52 ± 152.16 vs. 766.63 +/- 283.52 (μg*day)/ml, p = 1.46e-5). Consistent results were obtained when the ATLG binding capacity was assessed on CD3+ and CD3+/CD4+ T lymphocytes (ATLG_AUCCD3: 335.83 ± 208.15 vs. 903.54 ± 378.78 (μg*day)/ml, p = 1.92e-4; ATLG_AUCCD4: 317.75 ± 170.70 vs. 910.54 ± 353.35 (μg*day)/ml, p = 3.78e-5. Concomitantly, at pre-infusion time points, increased concentrations of CD69+ extracellular vesicles (EVs) were found in patients who developed GVHD (mean fold 9.01 ± 1.33; p = 2.12e-5). Consistent results were obtained in a validation cohort of 12 additional ATLG-treated HSCT patients. Serum CD69+ EVs were mainly represented in the nano (i.e. 100 nm in diameter) EV compartment and expressed the leukocyte marker CD45, the EV markers CD9 and CD63, and CD103, a marker of tissue-resident memory T cells. The latter are expected to set up a host pro-inflammatory cell compartment that can survive in the recipient for years after conditioning regimen and contribute to GVHD pathogenesis. In summary, high levels of CD69+ EVs are significantly correlated with an increased risk of GVHD, and they may be proposed as a tool to tailor ATLG dose for personalized GVHD prevention.
Collapse
Affiliation(s)
- Gianluca Storci
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Francesco Barbato
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy,Department of Experimental, Diagnostic and Specialty Medicine (DIMES) University of Bologna, Bologna, Italy
| | - Francesca Ricci
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | | | | | - Enrica Tomassini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Michele Dicataldo
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy,Department of Experimental, Diagnostic and Specialty Medicine (DIMES) University of Bologna, Bologna, Italy
| | | | - Mario Arpinati
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Margherita Ursi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy,Department of Experimental, Diagnostic and Specialty Medicine (DIMES) University of Bologna, Bologna, Italy
| | - Enrico Maffini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Elena Campanini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Elisa Dan
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES) University of Bologna, Bologna, Italy
| | - Silvia Manfroi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Spartaco Santi
- Consiglio Nazionale delle Ricerche (CNR) Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Bologna, Italy,IRCCS, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Manuela Ferracin
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy,Department of Experimental, Diagnostic and Specialty Medicine (DIMES) University of Bologna, Bologna, Italy
| | - Massimiliano Bonafe
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy,Department of Experimental, Diagnostic and Specialty Medicine (DIMES) University of Bologna, Bologna, Italy
| | - Francesca Bonifazi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy,*Correspondence: Francesca Bonifazi,
| |
Collapse
|
22
|
Hassan Omer ZI, Lu J, Cheng YJ, Li PX, Chen ZH, Wang WH. Age-dependent changes in the anatomical and histological characteristics of the aggregated lymphoid nodules in the stomach of Dromedary camels (Camelus Dromedarius). PLoS One 2023; 18:e0279417. [PMID: 36947571 PMCID: PMC10032504 DOI: 10.1371/journal.pone.0279417] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 12/06/2022] [Indexed: 03/23/2023] Open
Abstract
Gastrointestinal associated lymphoid tissue (GALT) is an important component of the mucosal immune system. It is the largest mass of lymphoid tissues in the body and makes up more than 70% immune cells of entire body. GALT is considered to be the origin of systemic mucosal immunity and consists of solitary lymphoid nodules, aggregated lymphoid nodules (Peyer's patches, PPs), scattered lymphoid tissues, and follicular associated epithelia. PPs play important roles as antigen inductive sites of the mucosal immune system, which are mainly distributed in the intestine of animals and humans (especially ileum and appendix). However, a special area of well-developed aggregated lymphoid nodules in the abomasum of Dromedary camel was found in our laboratory. Its existence was rarely described in the stomach before. In the present study, we investigated this special structure with the dromedary camels of different ages (young, 0.5-2 years; pubertal, 3-5 years; middle-aged, 6-16 years; old, 17-20 years), by the anatomical, histological and immunohistochemical approaches. The results showed that the special structure was mainly distributed in the cardiac glandular area of the abomasum, forming a triangular area. The mucosal folds in this area were significantly thicker than those in the surrounding region. These mucosal folds had two different forms, namely reticular mucosal folds (RMF) and longitudinal mucosal folds (LMF). There were abundant lymphoid nodules in the submucosa of RMF and LMF, which were arranged in one or multiple rows. The statistical analysis of the height and thickness of RMF and LMF showed that the structure was most developed in pubertal dromedary camels. The histological characteristics of the structure were the same as PPs in the intestine of the Dromedary camel, while anatomical appearance showed some difference. The immunohistochemical examination revealed that both immunoglobulin A (IgA) and G (IgG) antibodies-producing cells (APCs) were extensively distributed in the gastric lamina propria (LP) in all age group. Our finding suggest that camel stomach not only performs digestive functions, but also involves parts of body immunity.
Collapse
Affiliation(s)
| | - Jia Lu
- Department of pathology, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yu-Jiao Cheng
- Department of pathology, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Pei-Xuan Li
- Department of pathology, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Zhi-Hua Chen
- Department of pathology, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Wen-Hui Wang
- Department of pathology, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
23
|
Tolstykh EI, Degteva MO, Vozilova AV, Akleyev AV. Approaches to Cytogenetic Assessment of the Dose due to Radiation Exposure of the Gut-Associated Lymphoid Tissue. BIOL BULL+ 2022. [DOI: 10.1134/s1062359022110206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
24
|
Connecting multiple microenvironment proteomes uncovers the biology in head and neck cancer. Nat Commun 2022; 13:6725. [PMID: 36344512 PMCID: PMC9640649 DOI: 10.1038/s41467-022-34407-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022] Open
Abstract
The poor prognosis of head and neck cancer (HNC) is associated with metastasis within the lymph nodes (LNs). Herein, the proteome of 140 multisite samples from a 59-HNC patient cohort, including primary and matched LN-negative or -positive tissues, saliva, and blood cells, reveals insights into the biology and potential metastasis biomarkers that may assist in clinical decision-making. Protein profiles are strictly associated with immune modulation across datasets, and this provides the basis for investigating immune markers associated with metastasis. The proteome of LN metastatic cells recapitulates the proteome of the primary tumor sites. Conversely, the LN microenvironment proteome highlights the candidate prognostic markers. By integrating prioritized peptide, protein, and transcript levels with machine learning models, we identify nodal metastasis signatures in blood and saliva. We present a proteomic characterization wiring multiple sites in HNC, thus providing a promising basis for understanding tumoral biology and identifying metastasis-associated signatures.
Collapse
|
25
|
Liu Q, Ma L, Ma H, Yang L, Xu Z. Establishment of a prognostic nomogram for patients with locoregionally advanced nasopharyngeal carcinoma incorporating clinical characteristics and dynamic changes in hematological and inflammatory markers. Front Oncol 2022; 12:1032213. [DOI: 10.3389/fonc.2022.1032213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/11/2022] [Indexed: 12/08/2022] Open
Abstract
BackgroundThis study aims to investigate the prognostic value of changes in hematological and inflammatory markers during induction chemotherapy (IC) and concurrent chemo-radiation (CCRT), thus construct nomograms to predict progression free survival (PFS) of patients with locally advanced nasopharyngeal carcinoma (LANPC).Methods130 patients were included in this prospective analysis. Univariate and multivariate cox regression analyses were conducted to identify prognostic factors. Three multivariate analyses integrating different groups of variables were conducted independently. Concordance indexes (c-index), calibration plots and Kaplan-Meier curves were used to evaluate the nomograms. Bootstrap validation was performed to determine the accuracy of the nomogram using 1000 resamples. The performances of proposed nomograms and TNM staging system were compared to validate the prognostic value of hematological and inflammatory markers.ResultsPretreatment gross tumor volume of nodal disease (GTVn), Δe/bHGB (hemoglobin count at end of treatment/baseline hemoglobin count), and stage were selected as predictors for 3-year PFS in first multivariate analysis of clinical factors. The second multivariate analysis of clinical factors and all hematological variables demonstrated that ΔminLYM (minimum lymphocyte count during CCRT/lymphocyte count post-IC), pretreatment GTVn and stage were associated with 3-year PFS. Final multivariate analysis, incorporating all clinical factors, hematological variables and inflammatory markers, identified the following prognostic factors: pretreatment GTVn, stage, ΔmaxPLR (maximum platelet-to-lymphocyte ratio (PLR) during CCRT/PLR post-IC), and ΔminPLT (minimum platelet count during CCRT/platelet count post-IC). Calibration plots showed agreement between the PFS predicted by the nomograms and actual PFS. Kaplan–Meier curves demonstrated that patients in the high-risk group had shorter PFS than those in the low-risk group (P ≤ 0.001). The c-indexes of the three nomograms for PFS were 0.742 (95% CI, 0.639-0.846), 0.766 (95% CI, 0.661-0.871) and 0.815 (95% CI,0.737-0.893) respectively, while c-index of current TNM staging system was 0.633 (95% CI, 0.531-0.736).ConclusionWe developed and validated a nomogram for predicting PFS in patients with LANPC who received induction chemotherapy and concurrent chemo-radiation. Our study confirmed the prognostic value of dynamic changes in hematological and inflammatory markers. The proposed nomogram outperformed the current TNM staging system in predicting PFS, facilitating risk stratification and guiding individualized treatment plans.
Collapse
|
26
|
Mentzer SJ, Ackermann M, Jonigk D. Endothelialitis, Microischemia, and Intussusceptive Angiogenesis in COVID-19. Cold Spring Harb Perspect Med 2022; 12:a041157. [PMID: 35534210 PMCID: PMC9524390 DOI: 10.1101/cshperspect.a041157] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
COVID-19 has been associated with a range of illness severity-from minimal symptoms to life-threatening multisystem organ failure. The severe forms of COVID-19 appear to be associated with an angiocentric or vascular phase of the disease. In studying autopsy patients succumbing to COVID-19, we found alveolar capillary microthrombi were 9 times more common in COVID-19 than in comparable patients with influenza. Corrosion casting of the COVID-19 microcirculation has revealed microvascular distortion, enhanced bronchial circulation, and striking increases in intussusceptive angiogenesis. In patients with severe COVID-19, endothelial cells commonly demonstrate significant ultrastructural injury. High-resolution imaging suggests that microcirculation perturbations are linked to ischemic changes in microanatomic compartments of the lung (secondary lobules). NanoString profiling of these regions has confirmed a transcriptional signature compatible with microischemia. We conclude that irreversible tissue ischemia provides an explanation for the cystic and fibrotic changes associated with long-haul COVID-19 symptoms.
Collapse
Affiliation(s)
- Steven J Mentzer
- Division of Thoracic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Maximilian Ackermann
- Institute of Pathology and Department of Molecular Pathology, Helios University Clinic Wuppertal, University of Witten-Herdecke, 42283 Wuppertal, Germany; Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Danny Jonigk
- Institute of Pathology, Hannover Medical School, 30625 Hanover, Germany; Member of the German Center for Lung Research, Biomedical Research in Endstage and Obstructive Lung Disease Hannover, 30625 Hanover, Germany
| |
Collapse
|
27
|
Lee SF, Yip PL, Wong A, Ng F, Koh V, Wong LC, Luk H, Ng CK, Lee FAS, Mamon HJ. Splenic irradiation contributes to grade ≥ 3 lymphopenia after adjuvant chemoradiation for stomach cancer. Clin Transl Radiat Oncol 2022; 36:83-90. [PMID: 35909437 PMCID: PMC9334913 DOI: 10.1016/j.ctro.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/07/2022] [Accepted: 07/15/2022] [Indexed: 11/04/2022] Open
Abstract
Severe lymphopenia occurs commonly after adjuvant chemoradiation for gastric cancer. High splenic radiation doses increase the chances of severe lymphopenia. Severe lymphopenia predicts a poorer overall survival and higher risk of infections. The spleen is not routinely considered an organ-at-risk with dosimetric constraint. Applying dose constraints to the spleen might lower the risk of severe lymphopenia.
Introduction Adjuvant chemoradiation therapy (CRT) in gastric cancer inevitably results in an unintentional spleen radiation dose. We aimed to determine the association between the spleen radiation dose and the observed severity of lymphopenia which may affect the clinical outcomes (survival time and infection risk). Methods Patients who received adjuvant CRT for gastric cancer between January 2015 and December 2020 were analyzed. The splenic dose-volume histogram (DVH) parameters were reported as mean splenic dose (MSD) and percentage of splenic volume receiving at least × Gray (Gy). Peripheral blood counts were recorded pre- and post-CRT. The development of severe (Common Terminology Criteria for Adverse Events, version 5.0, grade ≥ 3) post-CRT lymphopenia (absolute lymphocyte count [ALC] < 0.5 K/μL) was assessed by multivariable logistic regression using patient and dosimetric factors. Overall survival (OS), recurrence-free survival (RFS), and cumulative incidence of infectious events were estimated and analyzed using the Cox model or competing risk analysis. Results Eighty-four patients with a median follow-up duration of 42 months were analyzed. Pre- and post-CRT median ALC values were 1.8 K/μL (0.9–3.1 K/μL) and 0.9 K/μL (0.0–4.9 K/μL), respectively (P < 0.001). MSD > 40 Gy (odds ratio [OR], 1.13; 95 % confidence interval [CI], 1.01–1.26; P = 0.041), sex (OR for male to female, 0.25; 95 % CI, 0.09–0.70; P = 0.008), and baseline absolute neutrophil count (OR per 1 unit increase, 1.61; 95 % CI, 1.02–2.58; P = 0.040) were associated with the development of severe post-CRT lymphopenia, which was a risk factor for poorer OS (hazard ratio [HR] = 2.47; 95 % CI, 1.24–4.92; P = 0.010) and RFS (HR = 2.27; 95 % CI, 1.16–4.46; P = 0.017). The cumulative incidence of infections was higher among severe post-CRT lymphopenia patients (2.53, 95 % CI, 1.03–6.23, P = 0.043). Conclusion High splenic radiation doses increase the odds of severe post-CRT lymphopenia, an independent predictor of lower OS and higher risks of recurrence and infections in gastric cancer patients receiving adjuvant CRT. Therefore, optimizing the splenic DVH parameters may decrease the risk of severe post-CRT lymphopenia.
Collapse
Affiliation(s)
- Shing Fung Lee
- Department of Clinical Oncology, Tuen Mun Hospital, Hospital Authority, Hong Kong.,Department of Clinical Oncology, Queen Mary Hospital, Hospital Authority, Hong Kong.,Department of Radiation Oncology, National University Cancer Institute, Singapore
| | - Pui Lam Yip
- Department of Clinical Oncology, Tuen Mun Hospital, Hospital Authority, Hong Kong
| | - Aray Wong
- Department of Clinical Oncology, Tuen Mun Hospital, Hospital Authority, Hong Kong
| | - Francesca Ng
- Department of Clinical Oncology, Tuen Mun Hospital, Hospital Authority, Hong Kong
| | - Vicky Koh
- Department of Radiation Oncology, National University Cancer Institute, Singapore
| | - Lea Choung Wong
- Department of Radiation Oncology, National University Cancer Institute, Singapore
| | - Hollis Luk
- Department of Clinical Oncology, Tuen Mun Hospital, Hospital Authority, Hong Kong
| | - Chuk Kwan Ng
- Department of Clinical Oncology, Tuen Mun Hospital, Hospital Authority, Hong Kong
| | | | - Harvey J Mamon
- Department of Radiation Oncology, Brigham and Women's Hospital/Dana Farber Cancer Institute, Boston, MA 02115, USA
| |
Collapse
|
28
|
Gough MJ, Crittenden MR. The paradox of radiation and T cells in tumors. Neoplasia 2022; 31:100808. [PMID: 35691060 PMCID: PMC9194456 DOI: 10.1016/j.neo.2022.100808] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/05/2022] [Accepted: 05/13/2022] [Indexed: 10/27/2022]
Abstract
In this review we consider what appears to be a paradox in immunotherapies based around radiation therapy. The paradox is based on three main points. 1. That T cells are needed for radiation's efficacy; 2. That tumor-specific T cells are enriched in the field of treatment; and 3. That radiation kills T cells in the treatment field. We discuss evidence of the effect of radiation on T cells in the field given their ongoing movement in and out of tissues and the tumor, and how the movement of T cells impacts the treated primary tumor and untreated distant metastases. Given this evidence, we revisit the paradox to understand how the extraordinary efficacy of radiation and immunity in preclinical models is dependent on this radiation sensitive cell.
Collapse
Affiliation(s)
- Michael J Gough
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, 4805 NE Glisan St., Portland, OR 97213, USA.
| | - Marka R Crittenden
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, 4805 NE Glisan St., Portland, OR 97213, USA; The Oregon Clinic, Portland, OR, 97213, USA
| |
Collapse
|
29
|
Ferrero A, Vassallo D, Geuna M, Fuso L, Villa M, Badellino E, Barboni M, Coata P, Santoro N, Delgado Bolton RC, Biglia N. Immunonutrition in ovarian cancer: clinical and immunological impact? J Gynecol Oncol 2022; 33:e77. [PMID: 36047379 DOI: 10.3802/jgo.2022.33.e77] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 06/23/2022] [Accepted: 07/20/2022] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE Malnutrition is frequent in ovarian cancer (OC) patients and may compromise post-operative outcomes. The aim of this study is to evaluate the impact of pre-operative immunonutrition on the surgical outcome of OC patients, and on their nutritional, inflammatory and peripheral blood immune status. METHODS A prospective study was performed between September 2016 and April 2020. Immune-enhancing enteral nutrition was administered to 42 patients before surgery according to their nutritional status assessed by the Malnutritional Universal Screening Tool. Biochemical and hematological monitoring was performed before and after immunonutrition. Post-operative outcomes were assessed and compared with those of a similar group of patients treated without nutritional support. RESULTS Of the 42 immune-nourished patients, 23 (54.8%) had a low, 11 (26.2%) an intermediate and 8 (19%) a high risk of malnutrition. After the immunonutritional intake, significant variations of prealbumin, creatinine and white blood cells were detected. All T cell populations had an increasing trend, in particular CD3+ T lymphocytes (p=0.020), CD3+CD8+ cytotoxic T lymphocytes (p=0.046) and lymphocyte with HLA-DR expression (p=0.012). The rate of grade II-III post-operative complications was lower (21.4% vs. 42.9%, p=0.035) and the time of hospitalization was shorter (7.5 vs. 9.2, p=0.009) in the immune-nourished group. CONCLUSION Pre-operative immunonutrition improves the surgical outcome of OC patients. After immunonutrition, an increase of CD3+CD8+ cytotoxic T lymphocytes was observed.
Collapse
Affiliation(s)
- Annamaria Ferrero
- Academic Division of Gynecology and Obstetrics, Mauriziano Hospital, University of Torino, Torino, Italy.
| | - Daniela Vassallo
- Division of Dietetics, Mauriziano Hospital, University of Torino, Torino, Italy
| | - Massimo Geuna
- Laboratory of Immunopathology, Division of Pathology, Mauriziano Hospital, University of Torino, Torino, Italy
| | - Luca Fuso
- Academic Division of Gynecology and Obstetrics, Mauriziano Hospital, University of Torino, Torino, Italy
| | - Michela Villa
- Academic Division of Gynecology and Obstetrics, Mauriziano Hospital, University of Torino, Torino, Italy
| | - Enrico Badellino
- Academic Division of Gynecology and Obstetrics, Mauriziano Hospital, University of Torino, Torino, Italy
| | - Martina Barboni
- Academic Division of Gynecology and Obstetrics, Mauriziano Hospital, University of Torino, Torino, Italy
| | - Paola Coata
- Division of Dietetics, Mauriziano Hospital, University of Torino, Torino, Italy
| | - Nathalie Santoro
- Laboratory of Immunopathology, Division of Pathology, Mauriziano Hospital, University of Torino, Torino, Italy
| | - Roberto C Delgado Bolton
- Department of Diagnostic Imaging (Radiology) and Nuclear Medicine, University Hospital San Pedro and Centre for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| | - Nicoletta Biglia
- Academic Division of Gynecology and Obstetrics, Mauriziano Hospital, University of Torino, Torino, Italy
| |
Collapse
|
30
|
Transcriptional Dynamics of DNA Damage Responsive Genes in Circulating Leukocytes during Radiotherapy. Cancers (Basel) 2022; 14:cancers14112649. [PMID: 35681629 PMCID: PMC9179543 DOI: 10.3390/cancers14112649] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary In this study, the transcriptional response of a panel of radiation responsive genes was monitored over time in blood samples after radiation exposure in vivo. For this aim, cancer patients treated by radiotherapy were recruited after consent forms were obtained. Following the first fraction of radiotherapy, 2 mL blood samples were collected at different time points during the first 24h hours (before the second fraction was delivered) and at mid and end of treatment. Amongst the 9 genes studied, the gene FDXR stood out as the most sensitive and responsive to the low dose of radiation received from the localised radiation treatment by the circulating white blood cells. The activation of FDXR was found to depend on the volume of the body exposed with a peak of expression around 8–9 hours after irradiation was delivered. Finally results obtained ex vivo confirmed the results obtained in vivo. Abstract External beam radiation therapy leads to cellular activation of the DNA damage response (DDR). DNA double-strand breaks (DSBs) activate the ATM/CHEK2/p53 pathway, inducing the transcription of stress genes. The dynamic nature of this transcriptional response has not been directly observed in vivo in humans. In this study we monitored the messenger RNA transcript abundances of nine DNA damage-responsive genes (CDKN1A, GADD45, CCNG1, FDXR, DDB2, MDM2, PHPT1, SESN1, and PUMA), eight of them regulated by p53 in circulating blood leukocytes at different time points (2, 6–8, 16–18, and 24 h) in cancer patients (lung, neck, brain, and pelvis) undergoing radiotherapy. We discovered that, although the calculated mean physical dose to the blood was very low (0.038–0.169 Gy), an upregulation of Ferredoxin reductase (FDXR) gene transcription was detectable 2 h after exposure and was dose dependent from the lowest irradiated percentage of the body (3.5% whole brain) to the highest, (up to 19.4%, pelvic zone) reaching a peak at 6–8 h. The radiation response of the other genes was not strong enough after such low doses to provide meaningful information. Following multiple fractions, the expression level increased further and was still significantly up-regulated by the end of the treatment. Moreover, we compared FDXR transcriptional responses to ionizing radiation (IR) in vivo with healthy donors’ blood cells exposed ex vivo and found a good correlation in the kinetics of expression from the 8-hours time-point onward, suggesting that a molecular transcriptional regulation mechanism yet to be identified is involved. To conclude, we provided the first in vivo human report of IR-induced gene transcription temporal response of a panel of p53-dependant genes. FDXR was demonstrated to be the most responsive gene, able to reliably inform on the low doses following partial body irradiation of the patients, and providing an expression pattern corresponding to the % of body exposed. An extended study would provide individual biological dosimetry information and may reveal inter-individual variability to predict radiotherapy-associated adverse health outcomes.
Collapse
|
31
|
Vaněk O, Kalousková B, Abreu C, Nejadebrahim S, Skořepa O. Natural killer cell-based strategies for immunotherapy of cancer. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 129:91-133. [PMID: 35305726 DOI: 10.1016/bs.apcsb.2022.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Natural killer (NK) cells are a family of lymphocytes with a natural ability to kill infected, harmed, or malignantly transformed cells. As these cells are part of the innate immunity, the cytotoxic mechanisms are activated upon recognizing specific patterns without prior antigen sensitization. This recognition is crucial for NK cell function in the maintenance of homeostasis and immunosurveillance. NK cells not only act directly toward malignant cells but also participate in the complex immune response by producing cytokines or cross-talk with other immune cells. Cancer may be seen as a break of all immune defenses when malignant cells escape the immunity and invade surrounding tissues creating a microenvironment supporting tumor progression. This process may be reverted by intervening immune response with immunotherapy, which may restore immune recognition. NK cells are important effector cells for immunotherapy. They may be used for adoptive cell transfer, genetically modified with chimeric antigen receptors, or triggered with appropriate antibodies and other antibody-fragment-based recombinant therapeutic proteins tailored specifically for NK cell engagement. NK cell receptors, responsible for target recognition and activation of cytotoxic response, could also be targeted in immunotherapy, for example, by various bi-, tri-, or multi-specific fusion proteins designed to bridge the gap between tumor markers present on target cells and activation receptors expressed on NK cells. However, this kind of immunoactive therapeutics may be developed only with a deep functional and structural knowledge of NK cell receptor: ligand interactions. This review describes the recent developments in the fascinating protein-engineering field of NK cell immunotherapeutics.
Collapse
Affiliation(s)
- Ondřej Vaněk
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic.
| | - Barbora Kalousková
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Celeste Abreu
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Shiva Nejadebrahim
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Ondřej Skořepa
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
32
|
Brauning A, Rae M, Zhu G, Fulton E, Admasu TD, Stolzing A, Sharma A. Aging of the Immune System: Focus on Natural Killer Cells Phenotype and Functions. Cells 2022; 11:cells11061017. [PMID: 35326467 PMCID: PMC8947539 DOI: 10.3390/cells11061017] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 02/01/2023] Open
Abstract
Aging is the greatest risk factor for nearly all major chronic diseases, including cardiovascular diseases, cancer, Alzheimer’s and other neurodegenerative diseases of aging. Age-related impairment of immune function (immunosenescence) is one important cause of age-related morbidity and mortality, which may extend beyond its role in infectious disease. One aspect of immunosenescence that has received less attention is age-related natural killer (NK) cell dysfunction, characterized by reduced cytokine secretion and decreased target cell cytotoxicity, accompanied by and despite an increase in NK cell numbers with age. Moreover, recent studies have revealed that NK cells are the central actors in the immunosurveillance of senescent cells, whose age-related accumulation is itself a probable contributor to the chronic sterile low-grade inflammation developed with aging (“inflammaging”). NK cell dysfunction is therefore implicated in the increasing burden of infection, malignancy, inflammatory disorders, and senescent cells with age. This review will focus on recent advances and open questions in understanding the interplay between systemic inflammation, senescence burden, and NK cell dysfunction in the context of aging. Understanding the factors driving and enforcing NK cell aging may potentially lead to therapies countering age-related diseases and underlying drivers of the biological aging process itself.
Collapse
Affiliation(s)
- Ashley Brauning
- SENS Research Foundation, Mountain View, CA 94041, USA; (A.B.); (M.R.); (G.Z.); (E.F.); (T.D.A.)
| | - Michael Rae
- SENS Research Foundation, Mountain View, CA 94041, USA; (A.B.); (M.R.); (G.Z.); (E.F.); (T.D.A.)
| | - Gina Zhu
- SENS Research Foundation, Mountain View, CA 94041, USA; (A.B.); (M.R.); (G.Z.); (E.F.); (T.D.A.)
| | - Elena Fulton
- SENS Research Foundation, Mountain View, CA 94041, USA; (A.B.); (M.R.); (G.Z.); (E.F.); (T.D.A.)
| | - Tesfahun Dessale Admasu
- SENS Research Foundation, Mountain View, CA 94041, USA; (A.B.); (M.R.); (G.Z.); (E.F.); (T.D.A.)
| | - Alexandra Stolzing
- SENS Research Foundation, Mountain View, CA 94041, USA; (A.B.); (M.R.); (G.Z.); (E.F.); (T.D.A.)
- Centre for Biological Engineering, Wolfson School of Electrical, Material and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU, UK
- Correspondence: (A.S.); (A.S.)
| | - Amit Sharma
- SENS Research Foundation, Mountain View, CA 94041, USA; (A.B.); (M.R.); (G.Z.); (E.F.); (T.D.A.)
- Correspondence: (A.S.); (A.S.)
| |
Collapse
|
33
|
Moysi E, Paris RM, Le Grand R, Koup RA, Petrovas C. Human lymph node immune dynamics as driver of vaccine efficacy: an understudied aspect of immune responses. Expert Rev Vaccines 2022; 21:633-644. [PMID: 35193447 DOI: 10.1080/14760584.2022.2045198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION During the last century, changes in hygiene, sanitation, and the advent of childhood vaccination have resulted in profound reductions in mortality from infectious diseases. Despite this success, infectious diseases remain an enigmatic public health threat, where effective vaccines for influenza, human immunodeficiency virus (HIV), tuberculosis, and malaria, among others remain elusive. AREA COVERED In addition to the immune evasion tactics employed by complex pathogens, our understanding of immunopathogenesis and the development of effective vaccines is also complexified by the inherent variability of human immune responses. Lymph nodes (LNs) are the anatomical sites where B cell responses develop. An important, but understudied component of immune response complexity is variation in LN immune dynamics and in particular variation in germinal center follicular helper T cells (Tfh) and B cells which can be impacted by genetic variation, aging, the microbiome and chronic infection. EXPERT OPINION This review describes the contribution of genetic variation, aging, microbiome and chronic infection on LN immune dynamics and associated Tfh responses and offers perspective on how inclusion of LN immune subset and cytoarchitecture analyses, along with peripheral blood biomarkers can supplement systems vaccinology or immunology approaches for the development of vaccines or other interventions to prevent infectious diseases.
Collapse
Affiliation(s)
- Eirini Moysi
- Tissue Analysis Core, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | | | - Roger Le Grand
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Richard A Koup
- Immunology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Constantinos Petrovas
- Tissue Analysis Core, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA.,Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
34
|
Lymphocyte Counts and Multiple Sclerosis Therapeutics: Between Mechanisms of Action and Treatment-Limiting Side Effects. Cells 2021; 10:cells10113177. [PMID: 34831400 PMCID: PMC8625745 DOI: 10.3390/cells10113177] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 01/18/2023] Open
Abstract
Although the detailed pathogenesis of multiple sclerosis (MS) is not completely understood, a broad range of disease-modifying therapies (DMTs) are available. A common side effect of nearly every MS therapeutic agent is lymphopenia, which can be both beneficial and, in some cases, treatment-limiting. A sound knowledge of the underlying mechanism of action of the selected agent is required in order to understand treatment-associated changes in white blood cell counts, as well as monitoring consequences. This review is a comprehensive summary of the currently available DMTs with regard to their effects on lymphocyte count. In the first part, we describe important general information about the role of lymphocytes in the course of MS and the essentials of lymphopenic states. In the second part, we introduce the different DMTs according to their underlying mechanism of action, summarizing recommendations for lymphocyte monitoring and definitions of lymphocyte thresholds for different therapeutic regimens.
Collapse
|
35
|
Lupo KB, Moon JI, Chambers AM, Matosevic S. Differentiation of natural killer cells from induced pluripotent stem cells under defined, serum- and feeder-free conditions. Cytotherapy 2021; 23:939-952. [PMID: 34272175 DOI: 10.1016/j.jcyt.2021.05.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/01/2021] [Accepted: 05/03/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND AIMS Traditionally, natural killer (NK) cells are sourced from the peripheral blood of donors-a laborious and highly donor-specific process. Processes for generating NK cells from induced pluripotent stem cells (iPSCs) have demonstrated that it is possible to successfully generate renewable alloreactive NK cells that are not only functional in vivo but can also be genetically engineered for enhanced function. However, poor standardization and cumbersome differentiation procedures suggest that further improvements in the control of the differentiation process are necessary. METHODS Here the authors evaluated the potential of differentiating NK cells from centrally authenticated iPSCs under entirely chemically defined and serum-free conditions as well as their immunotherapeutic potential, after expansion in feeder-free media, against solid tumors targets. To address limitations of current differentiation approaches, the authors did not utilize feeder or stromal cell layers, TrypLE adaptation or peripheral blood during the differentiation process. The authors also evaluated the feasibility of utilizing centrally authenticated iPSC lines, thus circumventing protocol- and donor-induced variability associated with reprogramming approaches, and characterized these iPSC-NK cells in terms of cytotoxicity, cytokine production and degranulation potential against solid tumor cell lines and patient-derived targets. RESULTS Differentiation of iPSCs generated NK cells that were predominantly CD56+/CD16+/CD3- and expressed NK activation markers NKG2D, NKp30, NKp44, NKp46 and DNAM-1. These iPSC-NK cells mediated effector functions, including cytotoxicity, degranulation and IFN-γ production, in response to solid tumor targets, including patient-derived cancer cells, and could be cryopreserved and expanded in culture. CONCLUSIONS The ability to produce NK cells under defined conditions and the functional responses elicited by these iPSC-NK cells suggest that they could represent promising effectors in clinical adoptive transfer settings as a renewable source of donor-independent NK cells for immunotherapy of solid tumors.
Collapse
Affiliation(s)
- Kyle B Lupo
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, Indiana, USA
| | - Jung-Il Moon
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, Indiana, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Andrea M Chambers
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, Indiana, USA
| | - Sandro Matosevic
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, Indiana, USA; Purdue Center for Cancer Research, West Lafayette, Indiana, USA.
| |
Collapse
|
36
|
Wang Q, Li S, Qiao S, Zheng Z, Duan X, Zhu X. Changes in T Lymphocyte Subsets in Different Tumors Before and After Radiotherapy: A Meta-analysis. Front Immunol 2021; 12:648652. [PMID: 34220806 PMCID: PMC8242248 DOI: 10.3389/fimmu.2021.648652] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/01/2021] [Indexed: 01/10/2023] Open
Abstract
Purpose Radiation therapy (RT) induces an immune response, but the relationship of this response with tumor type is not fully understood. This meta-analysis further elucidated this relationship by analyzing the changes in T lymphocyte subsets in different tumors before and after radiotherapy. Methods We searched English-language electronic databases including PubMed, EMBASE, and the Cochrane Library to collect studies on the changes in peripheral blood CD3+ T lymphocytes, CD4+ T lymphocytes, and CD8+ T lymphocytes before and after radiotherapy in tumor patients from January 2015 to April 2021. The quality of the included literature was evaluated using the NOS scale provided by the Cochrane Collaboration, and statistical software RevMan 5.4 was used to analyze the included literature. P<0.05 was considered to indicate statistical significance. Results A total of 19 studies in 16 articles involving 877 tumor patients were included. All data were collected within 1 month before or after radiotherapy. Meta-analysis showed that numbers of CD3+ T lymphocytes (SMD: -0.40; 95% CI [-0.75, -0.04]; p = 0.03) and CD4+ T lymphocytes (SMD: -0.43; 95% CI: [-0.85, -0.02]; p = 0.04) were significantly reduced after radiotherapy compared with before treatment, but there was no statistically significant difference for CD8+ T lymphocytes (SMD: 0.33; 95% CI: [-0.88, 0.74]; p = 0.12). Subgroup analysis showed that peripheral blood T lymphocytes decreased in head and neck cancer. However, in prostate cancer and breast cancer, there was no significant change in peripheral blood. 1 month after radiotherapy, it has a potential proliferation and activation effect on lymphocytes in esophageal cancer and lung cancer. The results showed that CD8+T lymphocytes increased in peripheral blood after SBRT. Radiotherapy alone reduced CD3+ T lymphocyte numbers. Conclusions Within 1 month of radiotherapy, patients have obvious immunological changes, which can cause apoptosis and reduction of T lymphocytes, and affect the balance of peripheral blood immune cells. The degree of immune response induced by radiotherapy differed between tumor types.
Collapse
Affiliation(s)
- Qin Wang
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shangbiao Li
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Simiao Qiao
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhihao Zheng
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaotong Duan
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoxia Zhu
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
37
|
Patient-Specific Lymphocyte Loss Kinetics as Biomarker of Spleen Dose in Patients Undergoing Radiation Therapy for Upper Abdominal Malignancies. Adv Radiat Oncol 2021; 6:100545. [PMID: 33665481 PMCID: PMC7897770 DOI: 10.1016/j.adro.2020.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/26/2020] [Accepted: 08/03/2020] [Indexed: 12/24/2022] Open
Abstract
Purpose Radiation therapy (RT)-induced lymphopenia (RIL) is linked with inferior survival in esophageal and pancreatic cancers. Previous work has demonstrated a correlation between spleen dose and RIL risk. The present study correlates spleen dose-volume parameters with fractional lymphocyte loss rate (FLL) and total percent change in absolute lymphocyte count (%ΔALC) and suggests spleen dose constraints to reduce RIL risk. Methods and Materials This registry-based study included 140 patients who underwent RT for pancreatic (n = 67), gastroesophageal (n = 61), or biliary tract (n = 12) adenocarcinoma. Patient-specific parameters of lymphocyte loss kinetics, including FLL and %ΔALC, were calculated based on serial ALCs obtained during RT. Spearman's rho was used to correlate spleen dose-volume parameters with %ΔALC, end-treatment ALC, and FLL. Multivariable logistic regression was used to identify predictors of ≥grade 3 and grade 4 RIL. Results Spleen dose-volume parameters, including mean spleen dose (MSD), all correlated with %ΔALC, end-treatment ALC, and FLL. Controlling for baseline ALC and planning target volume (PTV), an increase in any spleen dose-volume parameter increased the odds of developing ≥grade 3 lymphopenia. Each 1-Gy increase in MSD increased the odds of ≥grade 3 RIL by 18.6%, and each 100-cm3 increase in PTV increased the odds of ≥grade 3 lymphopenia by 20%. Patients with baseline ALC < 1500 cells/μL had a high risk of ≥grade 3 RIL regardless of MSD or PTV. FLL was an equally good predictor of ≥grade 3 lymphopenia as any spleen dose-volume parameter. Conclusions In patients undergoing RT for upper abdominal malignancies, higher spleen dose is associated with higher per-fraction lymphocyte loss rates, higher total %ΔALC, and increased odds of severe lymphopenia. Spleen dose constraints should be individualized based on baseline ALC and PTV size to minimize RIL risk, although our findings require validation in larger, ideally prospective data sets.
Collapse
|
38
|
Harms RZ, Ostlund KR, Cabrera M, Edwards E, Smith VB, Smith LM, Sarvetnick N. Frequencies of CD8 and DN MAIT Cells Among Children Diagnosed With Type 1 Diabetes Are Similar to Age-Matched Controls. Front Immunol 2021; 12:604157. [PMID: 33708202 PMCID: PMC7940386 DOI: 10.3389/fimmu.2021.604157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/26/2021] [Indexed: 11/13/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells have been implicated in various forms of autoimmunity, including type 1 diabetes (T1D). Here, we tested the hypothesis that CD8 and double negative (DN) MAIT cell frequencies were altered among diagnosed T1D subjects compared to controls. To do this, we analyzed cryopreserved peripheral blood mononuclear cells (PBMCs) from age-matched T1D and control children using flow cytometry. We observed that CD8 and DN MAIT cell frequencies were similarly abundant between the two groups. We tested for associations between MAIT cell frequency and T1D-associated parameters, which could reveal a pathogenic role for MAIT cells in the absence of changes in frequency. We found no significant associations between CD8 and DN MAIT cell frequency and levels of islet cell autoantibodies (ICA), glutamate decarboxylase 65 (GAD65) autoantibodies, zinc transporter 8 (ZNT8) autoantibodies, and insulinoma antigen 2 (IA-2) autoantibodies. Furthermore, CD8 and DN MAIT cell frequencies were not significantly associated with time since diagnosis, c-peptide levels, HbA1c, and BMI. As we have examined this cohort for multiple soluble factors previously, we tested for associations between relevant factors and MAIT cell frequency. These could help to explain the broad range of MAIT frequencies we observed and/or indicate disease-associated processes. Although we found nothing disease-specific, we observed that levels of IL-7, IL-18, 25 (OH) vitamin D, and the ratio of vitamin D binding protein to 25 (OH) vitamin D were all associated with MAIT cell frequency. Finally, previous cytomegalovirus infection was associated with reduced CD8 and DN MAIT cells. From this evaluation, we found no connections between CD8 and DN MAIT cells and children with T1D. However, we did observe several intrinsic and extrinsic factors that could influence peripheral MAIT cell abundance among all children. These factors may be worth consideration in future experimental design.
Collapse
Affiliation(s)
- Robert Z Harms
- Department of Surgery-Transplant, University of Nebraska Medical Center, Omaha, NE, United States
| | - Katie R Ostlund
- Department of Surgery-Transplant, University of Nebraska Medical Center, Omaha, NE, United States
| | - Monina Cabrera
- Pediatric Endocrinology, University of Nebraska Center, Omaha, NE, United States.,Children's Pediatric Endocrinology, Children's Hospital and Medical Center, Omaha, NE, United States
| | - Earline Edwards
- Pediatric Endocrinology, University of Nebraska Center, Omaha, NE, United States.,Children's Pediatric Endocrinology, Children's Hospital and Medical Center, Omaha, NE, United States
| | - Victoria B Smith
- Office of the Vice Chancellor of Research, University of Nebraska Medical Center, Omaha, NE, United States
| | - Lynette M Smith
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE, United States
| | - Nora Sarvetnick
- Department of Surgery-Transplant, University of Nebraska Medical Center, Omaha, NE, United States.,Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
39
|
Adams P, Fievez V, Schober R, Amand M, Iserentant G, Rutsaert S, Dessilly G, Vanham G, Hedin F, Cosma A, Moutschen M, Vandekerckhove L, Seguin-Devaux C. CD32 +CD4 + memory T cells are enriched for total HIV-1 DNA in tissues from humanized mice. iScience 2021; 24:101881. [PMID: 33364576 PMCID: PMC7753142 DOI: 10.1016/j.isci.2020.101881] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 09/04/2020] [Accepted: 11/25/2020] [Indexed: 12/20/2022] Open
Abstract
CD32 has raised conflicting results as a putative marker of the HIV-1 reservoir. We measured CD32 expression in tissues from viremic and virally suppressed humanized mice treated relatively early or late after HIV-1 infection with combined antiretroviral therapy. CD32 was expressed in a small fraction of the memory CD4+ T-cell subsets from different tissues in viremic and aviremic mice, regardless of treatment initiation time. CD32+ memory CD4+ T cells were enriched in cell-associated (CA) HIV-1 DNA but not in CA HIV-1 RNA as compared to the CD32-CD4+ fraction. Using multidimensional reduction analysis, several memory CD4+CD32+ T-cell clusters were identified expressing HLA-DR, TIGIT, or PD-1. Importantly, although tissue-resident CD32+CD4+ memory cells were enriched with translation-competent reservoirs, most of it was detected in memory CD32-CD4+ T cells. Our findings support that CD32 labels highly activated/exhausted memory CD4+ T-cell subsets that contain only a small proportion of the translation-competent reservoir.
Collapse
Affiliation(s)
- Philipp Adams
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette 4354, Luxembourg
- Department of Biomedical and Clinical Sciences, Institute of Tropical Medicine, Antwerp 2000, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp 2000, Belgium
| | - Virginie Fievez
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette 4354, Luxembourg
| | - Rafaëla Schober
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette 4354, Luxembourg
| | - Mathieu Amand
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette 4354, Luxembourg
| | - Gilles Iserentant
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette 4354, Luxembourg
| | - Sofie Rutsaert
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University, Ghent 9000, Belgium
| | - Géraldine Dessilly
- AIDS Reference Laboratory, Catholic University of Louvain, Brussels 1348, Belgium
| | - Guido Vanham
- Department of Biomedical and Clinical Sciences, Institute of Tropical Medicine, Antwerp 2000, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp 2000, Belgium
| | - Fanny Hedin
- Quantitative Biology Unit, National Cytometry Platform, Luxembourg Institute of Health, Esch-sur-Alzette L-4354, Luxembourg
| | - Antonio Cosma
- Quantitative Biology Unit, National Cytometry Platform, Luxembourg Institute of Health, Esch-sur-Alzette L-4354, Luxembourg
| | - Michel Moutschen
- Department of Infectious Diseases, University of Liège, CHU de Liège, Liège 4000, Belgium
| | - Linos Vandekerckhove
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University, Ghent 9000, Belgium
| | - Carole Seguin-Devaux
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette 4354, Luxembourg
| |
Collapse
|
40
|
Ma L, Li Q, Cai S, Peng H, Huyan T, Yang H. The role of NK cells in fighting the virus infection and sepsis. Int J Med Sci 2021; 18:3236-3248. [PMID: 34400893 PMCID: PMC8364442 DOI: 10.7150/ijms.59898] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 06/12/2021] [Indexed: 12/22/2022] Open
Abstract
Natural killer cells, one of the important types of innate immune cells, play a pivotal role in the antiviral process in vivo. It has been shown that increasing NK cell activity may promote the alleviation of viral infections, even severe infection-induced sepsis. Given the current state of the novel coronavirus (SARS-CoV-2) global pandemic, clarifying the anti-viral function of NK cells would be helpful for revealing the mechanism of host immune responses and decipher the progression of COVID-19 and providing important clues for combating this pandemic. In this review, we summarize the roles of NK cells in viral infection and sepsis as well as the potential possibilities of NK cell-based immunotherapy for treating COVID-19.
Collapse
Affiliation(s)
- Lu Ma
- The Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Qi Li
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Suna Cai
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Hourong Peng
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Ting Huyan
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Hui Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
41
|
Liu KX, Ioakeim-Ioannidou M, Susko MS, Rao AD, Yeap BY, Snijders AM, Ladra MM, Vogel J, Zaslowe-Dude C, Marcus KJ, Yock TI, Grassberger C, Braunstein SE, Haas-Kogan DA, Terezakis SA, MacDonald SM. A Multi-institutional Comparative Analysis of Proton and Photon Therapy-Induced Hematologic Toxicity in Patients With Medulloblastoma. Int J Radiat Oncol Biol Phys 2020; 109:726-735. [PMID: 33243479 DOI: 10.1016/j.ijrobp.2020.09.049] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 09/11/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE This multi-institutional retrospective study sought to examine the hematologic effects of craniospinal irradiation (CSI) in pediatric patients with medulloblastoma using proton or photon therapy. METHODS AND MATERIALS Clinical and treatment characteristics were recorded for 97 pediatric patients with medulloblastoma who received CSI without concurrent chemotherapy or with concurrent single-agent vincristine from 2000 to 2017. Groups of 60 and 37 patients underwent treatment with proton-based and photon-based therapy, respectively. Overall survival was determined by Kaplan-Meier curves with log-rank test. Comparisons of blood counts at each timepoint were conducted using multiple t tests with Bonferroni corrections. Univariate and multivariate analyses of time to grade ≥3 hematologic toxicity were performed with Cox regression analyses. RESULTS Median age of patients receiving proton and photon CSI was 7.5 years (range, 3.5-22.7 years) and 9.9 years (range, 3.6-19.5 years), respectively. Most patients had a diagnosis of standard risk medulloblastoma, with 86.7% and 89.2% for the proton and photon cohorts, respectively. Median total dose to involved field or whole posterior fossa was 54.0 Gy/Gy relative biological effectiveness (RBE) and median CSI dose was 23.4 Gy/Gy(RBE) (range, 18-36 Gy/Gy[RBE]) for both cohorts. Counts were significantly higher in the proton cohort compared with the photon cohort in weeks 3 to 6 of radiation therapy (RT). Although white blood cell counts did not differ between the 2 cohorts, patients receiving proton RT had significantly higher lymphocyte counts throughout the RT course. Similar results were observed when excluding patients who received vertebral body sparing proton RT or limiting to those receiving 23.4 Gy. Only photon therapy was associated with decreased time to grade ≥3 hematologic toxicity on univariate and multivariable analyses. No difference in overall survival was observed, and lymphopenia did not predict survival. CONCLUSIONS Patients who receive CSI using proton therapy experience significantly decreased hematologic toxicity compared with those receiving photon therapy.
Collapse
Affiliation(s)
- Kevin X Liu
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Myrsini Ioakeim-Ioannidou
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Department of Radiation and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Matthew S Susko
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - Avani D Rao
- Department of Radiation and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Beow Y Yeap
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Antoine M Snijders
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Matthew M Ladra
- Department of Radiation and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Jennifer Vogel
- Department of Radiation and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Cierra Zaslowe-Dude
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Karen J Marcus
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Torunn I Yock
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Clemens Grassberger
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Steve E Braunstein
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - Daphne A Haas-Kogan
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Stephanie A Terezakis
- Department of Radiation and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center Johns Hopkins School of Medicine, Baltimore, Maryland; Department of Radiation Oncology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Shannon M MacDonald
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
42
|
Zhang LX, Miao SY, Qin ZH, Wu JP, Chen HY, Sun HB, Xie Y, Du YQ, Shen J. Preliminary Analysis of B- and T-Cell Responses to SARS-CoV-2. Mol Diagn Ther 2020; 24:601-609. [PMID: 32710269 PMCID: PMC7380500 DOI: 10.1007/s40291-020-00486-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND OBJECTIVE Without a specific antiviral treatment or vaccine, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic, affecting over 200 countries worldwide. A better understanding of B- and T-cell immunity is critical to the diagnosis, treatment and prevention of coronavirus disease 2019 (COVID-19). METHODS A cohort of 129 patients with COVID-19 and 20 suspected cases were enrolled in this study, and a lateral flow immunochromatographic assay (LFIA) and a magnetic chemiluminescence enzyme immunoassay (MCLIA) were evaluated for SARS-CoV-2 IgM/IgG detection. Additionally, 127 patients with COVID-19 were selected for the detection of IgM and IgG antibodies to SARS-CoV-2 to evaluate B-cell immunity, and peripheral blood lymphocyte subsets were quantified in 95 patients with COVID-19 to evaluate T-cell immunity. RESULTS The sensitivity and specificity of LFIA-IgM/IgG and MCLIA-IgM/IgG assays for detecting SARS-CoV infection were > 90%, comparable with reverse transcription polymerase chain reaction detection. IgM antibody levels peaked on day 13 and began to fall on day 21, while IgG antibody levels peaked on day 17 and were maintained until tracking ended. Lymphocyte and subset enumeration suggested that lymphocytopenia occurred in patients with COVID-19. CONCLUSIONS LFIA-IgM/IgG and MCLIA-IgM/IgG assays can indicate SARS-CoV-2 infection, which elicits an antibody response. Lymphocytopenia occurs in patients with COVID-19, which possibly weakens the T-cell response.
Collapse
Affiliation(s)
- Li-Xia Zhang
- Tianjin Key Laboratory of Lung Regenerative medicine, Tianjin Haihe Hospital, 890 Jingu Road, Jinnan District, Tianjin, 300350, China
| | - Shu-Yan Miao
- Tianjin Key Laboratory of Lung Regenerative medicine, Tianjin Haihe Hospital, 890 Jingu Road, Jinnan District, Tianjin, 300350, China
| | - Zhong-Hua Qin
- Tianjin Key Laboratory of Lung Regenerative medicine, Tianjin Haihe Hospital, 890 Jingu Road, Jinnan District, Tianjin, 300350, China
| | - Jun-Pin Wu
- Tianjin Key Laboratory of Lung Regenerative medicine, Tianjin Haihe Hospital, 890 Jingu Road, Jinnan District, Tianjin, 300350, China
| | - Huai-Yong Chen
- Tianjin Key Laboratory of Lung Regenerative medicine, Tianjin Haihe Hospital, 890 Jingu Road, Jinnan District, Tianjin, 300350, China
| | - Hai-Bai Sun
- Tianjin Key Laboratory of Lung Regenerative medicine, Tianjin Haihe Hospital, 890 Jingu Road, Jinnan District, Tianjin, 300350, China
| | - Yi Xie
- Tianjin Key Laboratory of Lung Regenerative medicine, Tianjin Haihe Hospital, 890 Jingu Road, Jinnan District, Tianjin, 300350, China
| | - Yan-Qing Du
- Tianjin Key Laboratory of Lung Regenerative medicine, Tianjin Haihe Hospital, 890 Jingu Road, Jinnan District, Tianjin, 300350, China
| | - Jun Shen
- Tianjin Key Laboratory of Lung Regenerative medicine, Tianjin Haihe Hospital, 890 Jingu Road, Jinnan District, Tianjin, 300350, China.
| |
Collapse
|
43
|
Hofmann T, Schmucker S. Characterization of Chicken Leukocyte Subsets from Lymphatic Tissue by Flow Cytometry. Cytometry A 2020; 99:289-300. [DOI: 10.1002/cyto.a.24214] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/27/2020] [Accepted: 08/18/2020] [Indexed: 01/09/2023]
Affiliation(s)
- Tanja Hofmann
- Department of Behavioral Physiology of Livestock Institute of Animal Science, University of Hohenheim, Garbenstr. 17 Stuttgart 70599 Germany
| | - Sonja Schmucker
- Department of Behavioral Physiology of Livestock Institute of Animal Science, University of Hohenheim, Garbenstr. 17 Stuttgart 70599 Germany
| |
Collapse
|
44
|
Cesaire M, Le Mauff B, Rambeau A, Toutirais O, Thariat J. [Mechanisms of radiation-induced lymphopenia and therapeutic impact]. Bull Cancer 2020; 107:813-822. [PMID: 32451070 DOI: 10.1016/j.bulcan.2020.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/16/2020] [Accepted: 04/19/2020] [Indexed: 01/29/2023]
Abstract
Radiation induced lymphopenia is frequent and can be severe and durable. Although lymphocytes have long been known as highly radiosensitive cells, it is poorly characterized. Radiation-induced lymphopenia seems to affect lymphocyte subpopulations differently and seems to be influenced by radiation modalities. The depth and duration of lymphopenia depend on the location of the irradiation and the volumes of treatment. Importantly, radiation-induced lymphopenia has been associated with poorer prognosis in several tumor types. The knowledge about radiation-induced lymphopenia might lead to a rethinking of the modalities of radiotherapy and new approaches to restore lymphocytes counts.
Collapse
Affiliation(s)
- Mathieu Cesaire
- Centre François-Baclesse/ARCHADE, département de radiothérapie, 3, avenue General Harris, 14000 Caen, France
| | - Brigitte Le Mauff
- Normandie University, UNICAEN, sérine protéases et physiopathologie de l'unité neurovasculaire, Inserm U919, Caen, France; University Hospital of Caen, Department of Immunology, Caen, France
| | - Audrey Rambeau
- Centre François-Baclesse/ARCHADE, département de radiothérapie, 3, avenue General Harris, 14000 Caen, France
| | - Olivier Toutirais
- Normandie University, UNICAEN, sérine protéases et physiopathologie de l'unité neurovasculaire, Inserm U919, Caen, France; University Hospital of Caen, Department of Immunology, Caen, France
| | - Juliette Thariat
- Centre François-Baclesse/ARCHADE, département de radiothérapie, 3, avenue General Harris, 14000 Caen, France; Laboratoire de physique corpusculaire IN2P3/ENSICAEN - UMR6534, Caen, France; Normandie University, UNICAEN, Caen, France.
| |
Collapse
|
45
|
Hammi A, Paganetti H, Grassberger C. 4D blood flow model for dose calculation to circulating blood and lymphocytes. Phys Med Biol 2020; 65:055008. [PMID: 32119649 PMCID: PMC8268045 DOI: 10.1088/1361-6560/ab6c41] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
To better understand how radiotherapy delivery parameters affect the depletion of circulating lymphocytes in patients treated for intra-cranial tumors, we developed a computational human body blood flow model (BFM), that enables to estimate the dose to the circulating blood during the course of fractionated radiation therapy. A hemodynamic cardiovascular system based on human body reference values was developed to distribute the cardiac output to 24 different organs, described by a discrete Markov Chain. For explicit intracranial blood flow modeling, we extracted major cerebral vasculature from MRI data of a patient and complemented them with an extension network of generic vessels in the frontal and occipital lobes to guarantee even overall blood supply to the entire brain volume. An explicit Monte Carlo simulation was implemented to track the propagation of each individual blood particle (BP) through the brain and time-dependent radiation fields, accumulating dose along their trajectories. The cerebral model includes 1050 path lines and explicitly simulates more than 266 000 BP at any given time that are tracked with a time resolution of 10 ms. The entire BFM for the whole body contains 22 178 000 BP, corresponding to 4200 BP per ml of blood. We have used the model to investigate the difference between proton and photon therapy, and the effect of different dose rates and patient characteristics on the dose to the circulating blood pool. The mean dose to the blood pool is estimated to be 0.06 and 0.13 Gy after 30 fractions of proton and photon therapy, respectively, and the highest dose to 1% of blood was found to be 0.19 Gy and 0.34 Gy. The fraction of blood volume receiving any dose after the first fraction is significantly lower for proton therapy, 10.1% compared to 18.4% for the photon treatment plan. 90% of the blood pool will have received dose after the 11th fraction using photon therapy compared to the 21st fraction with proton therapy. Higher dose rates can effectively reduce the fraction of blood irradiated to low doses but increase the amount of blood receiving high doses. Patient characteristics such as blood pressure, gender and age lead to smaller effects than variations in the dose rate. We developed a 4D human BFM including recirculating to estimate the radiation dose to the circulating blood during intracranial treatment and demonstrate its application to proton- versus photon-based delivery, various dose rates and patient characteristics. The radiation dose estimation to the circulating blood provides us better insight into the origins of radiation-induced lymphopenia.
Collapse
Affiliation(s)
- Abdelkhalek Hammi
- Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, United States of America
| | | | | |
Collapse
|
46
|
A framework for modeling radiation induced lymphopenia in radiotherapy. Radiother Oncol 2020; 144:105-113. [DOI: 10.1016/j.radonc.2019.11.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 11/17/2022]
|
47
|
Assessing the interactions between radiotherapy and antitumour immunity. Nat Rev Clin Oncol 2019; 16:729-745. [PMID: 31243334 DOI: 10.1038/s41571-019-0238-9] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2019] [Indexed: 12/17/2022]
Abstract
Immunotherapy, specifically the introduction of immune checkpoint inhibitors, has transformed the treatment of cancer, enabling long-term tumour control even in individuals with advanced-stage disease. Unfortunately, only a small subset of patients show a response to currently available immunotherapies. Despite a growing consensus that combining immune checkpoint inhibitors with radiotherapy can increase response rates, this approach might be limited by the development of persistent radiation-induced immunosuppression. The ultimate goal of combining immunotherapy with radiotherapy is to induce a shift from an ineffective, pre-existing immune response to a long-lasting, therapy-induced immune response at all sites of disease. To achieve this goal and enable the adaptation and monitoring of individualized treatment approaches, assessment of the dynamic changes in the immune system at the patient level is essential. In this Review, we summarize the available clinical data, including forthcoming methods to assess the immune response to radiotherapy at the patient level, ranging from serum biomarkers to imaging techniques that enable investigation of immune cell dynamics in patients. Furthermore, we discuss modelling approaches that have been developed to predict the interaction of immunotherapy with radiotherapy, and highlight how they could be combined with biomarkers of antitumour immunity to optimize radiotherapy regimens and maximize their synergy with immunotherapy.
Collapse
|
48
|
Flores-Guzmán F, Alvarado-Sansininea JJ, López-Muñoz H, Escobar ML, Espinosa-Trejo M, Tavera-Hernandez R, Jiménez-Estrada M, Sánchez-Sánchez L. Antiproliferative, cytotoxic and apoptotic activity of the bentonite transformation of sesquiterpene lactone glaucolide B to 5β-hydroxy-hirsutinolide on tumor cell lines. Eur J Pharmacol 2019; 856:172406. [PMID: 31136759 DOI: 10.1016/j.ejphar.2019.172406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 05/13/2019] [Accepted: 05/22/2019] [Indexed: 11/30/2022]
Abstract
Numerous chemical compounds isolated from medicinal plants have anti-tumor properties, the effects of which on human cancer cells are currently under study. Here, the chemical transformation of glaucolide B were performed to produce a hirsutinolide. The antiproliferative and cytotoxic activity of 5β-hydroxy-hirsutinolide and its ability to induce apoptosis in tumor and non-tumor cells (lymphocyte cultures and the normal HaCaT cell line) (1a) are reported. We ascertained that compound 1a exerts an inhibitory effect on the proliferation of SK-Lu-1, MDA-MB-231 and CaSki cells in a dose-dependent manner at IC50 values of 15, 18 and 30 μg/ml, respectively. The proliferation of lymphocyte cells treated with 1a was inhibited at a range from 14 to 28%, but the HaCaT cell line was not affected, suggesting that compound 1a has a selective action. Cytotoxic activity was evaluated by detecting the lactate dehydrogenase enzyme in supernatants from tumor and non-tumor cells. The 1a compound exhibited low or null cytotoxic activity in both cell types. The presence of apoptotic bodies and active caspase-3 in tumor cell lines treated with compound 1a are suggestive of apoptotic cell death. Notably, flow cytometry evaluation did not detect the presence of active caspase-3 on lymphocytes treated with this compound. Our results suggest that 5β-hydroxy-hirsutinolide is a molecule with antiproliferative activity and low cytotoxic activity in tumor and non-tumor cells; this induces apoptotic cell death in tumor cell lines through selective action. Hence, this lactone could be considered a molecule worthy of study as an anti-tumor agent with therapeutic potential.
Collapse
Affiliation(s)
- Fernando Flores-Guzmán
- Lab. Biología Molecular del Cáncer, Laboratorio 6, 2° piso. UMIEZ, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ejercito de Oriente, Iztapalapa, 09230, CDMX, Mexico
| | - J Javier Alvarado-Sansininea
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510, CDMX, Mexico
| | - Hugo López-Muñoz
- Lab. Biología Molecular del Cáncer, Laboratorio 6, 2° piso. UMIEZ, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ejercito de Oriente, Iztapalapa, 09230, CDMX, Mexico
| | - María L Escobar
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510, CDMX, Mexico
| | - Mayra Espinosa-Trejo
- Lab. Biología Molecular del Cáncer, Laboratorio 6, 2° piso. UMIEZ, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ejercito de Oriente, Iztapalapa, 09230, CDMX, Mexico
| | - Rosario Tavera-Hernandez
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510, CDMX, Mexico
| | - Manuel Jiménez-Estrada
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510, CDMX, Mexico.
| | - Luis Sánchez-Sánchez
- Lab. Biología Molecular del Cáncer, Laboratorio 6, 2° piso. UMIEZ, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ejercito de Oriente, Iztapalapa, 09230, CDMX, Mexico.
| |
Collapse
|
49
|
Arndt T, Jörns A, Wedekind D. Changes in immune cell frequencies in primary and secondary lymphatic organs of LEW.1AR1-iddm rats, a model of human type 1 diabetes compared to other MHC congenic LEW inbred strains. Immunol Res 2019; 66:462-470. [PMID: 30143971 DOI: 10.1007/s12026-018-9015-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The LEW.1AR1-iddm rat is an animal model of human type 1 diabetes, which arose through a spontaneous mutation in the Dock8 gene within the MHC congenic background strain LEW.1AR1. This mutation not only mediates diabetes development but also leads to a variable T cell frequency in peripheral blood. In this study, the immune cell frequencies of primary and secondary lymphatic organs of LEW.1AR1-iddm rats were analysed at days 40 and 60 and compared to other MHC congenic LEW rat strains. In LEW.1AR1-iddm rats, the secondary lymphatic organs such as lymph nodes and spleen showed a reduced, around 15% in comparison to all other strains, but very variable T cell frequency, mirroring the fluctuating T cell content in blood. On the other hand, the frequency of B cells was increased by 10% in the lymph nodes and by 5% in the spleen. Thus, the decreasing number of T cells in blood could not be caused by an increase of T cells in secondary lymphatic organs. The frequency of single- or double-positive T cells in the thymus was unaffected. The T cell frequencies in the other analysed strains were more stable and mostly higher in all secondary lymphatic organs. Obviously, the Dock8 mutation leads to variabilities of T cell frequencies in blood as well as in secondary lymphatic organs. In conclusion, the Dock8 mutation was responsible for changed immune cell frequencies in different compartments and together with the RT1B/Du haplotype causing immune imbalances and development of autoimmune diabetes.
Collapse
Affiliation(s)
- Tanja Arndt
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Anne Jörns
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Dirk Wedekind
- Institute of Laboratory Animal Science, Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
50
|
Kumar V. Natural killer cells in sepsis: Underprivileged innate immune cells. Eur J Cell Biol 2019; 98:81-93. [DOI: 10.1016/j.ejcb.2018.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/15/2018] [Accepted: 12/17/2018] [Indexed: 02/06/2023] Open
|