1
|
Moradi M, Ghaleh HEG, Bolandian M, Dorostkar R. New role of bacteriophages in medical oncology. Biotechnol Appl Biochem 2023; 70:2017-2024. [PMID: 37635625 DOI: 10.1002/bab.2506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 08/07/2023] [Indexed: 08/29/2023]
Abstract
Targeted treatment of cancer is one of the most paramount approaches in cancer treatment. Despite significant advances in cancer diagnosis and treatment methods, there are still significant limitations and disadvantages in the field, including high costs, toxicity, and unwanted damage to healthy cells. The phage display technique is an innovative method for designing carriers containing exogenic peptides with cancer diagnostic and therapeutic properties. Bacteriophages possess unique properties making them effective in cancer treatment. These characteristics include the small size enabling them to penetrate vessels; having no pathogenicity to mammals; easy manipulation of their genetic information and surface proteins to introduce vaccines and drugs to cancer tissues; lower cost of large-scale production; and greater stimulation of the immune system. Bacteriophages will certainly play a more effective role in the future of medical oncology; however, studies are in the early stages of conception and require more extensive research. We aimed in this review to provide some related examples and bring insights into the potential of phages as targeted vectors for use in cancer diagnosis and treatment, especially regarding their capability in gene and drug delivery to cancer target cells, determination of tumor markers, and vaccine design to stimulate anticancer immunity.
Collapse
Affiliation(s)
- Mohammad Moradi
- Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Masoumeh Bolandian
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ruhollah Dorostkar
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Khambhati K, Bhattacharjee G, Gohil N, Dhanoa GK, Sagona AP, Mani I, Bui NL, Chu D, Karapurkar JK, Jang SH, Chung HY, Maurya R, Alzahrani KJ, Ramakrishna S, Singh V. Phage engineering and phage-assisted CRISPR-Cas delivery to combat multidrug-resistant pathogens. Bioeng Transl Med 2023; 8:e10381. [PMID: 36925687 PMCID: PMC10013820 DOI: 10.1002/btm2.10381] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/30/2022] [Accepted: 07/16/2022] [Indexed: 12/13/2022] Open
Abstract
Antibiotic resistance ranks among the top threats to humanity. Due to the frequent use of antibiotics, society is facing a high prevalence of multidrug resistant pathogens, which have managed to evolve mechanisms that help them evade the last line of therapeutics. An alternative to antibiotics could involve the use of bacteriophages (phages), which are the natural predators of bacterial cells. In earlier times, phages were implemented as therapeutic agents for a century but were mainly replaced with antibiotics, and considering the menace of antimicrobial resistance, it might again become of interest due to the increasing threat of antibiotic resistance among pathogens. The current understanding of phage biology and clustered regularly interspaced short palindromic repeats (CRISPR) assisted phage genome engineering techniques have facilitated to generate phage variants with unique therapeutic values. In this review, we briefly explain strategies to engineer bacteriophages. Next, we highlight the literature supporting CRISPR-Cas9-assisted phage engineering for effective and more specific targeting of bacterial pathogens. Lastly, we discuss techniques that either help to increase the fitness, specificity, or lytic ability of bacteriophages to control an infection.
Collapse
Affiliation(s)
- Khushal Khambhati
- Department of Biosciences, School of ScienceIndrashil UniversityRajpurMehsanaGujaratIndia
| | - Gargi Bhattacharjee
- Department of Biosciences, School of ScienceIndrashil UniversityRajpurMehsanaGujaratIndia
| | - Nisarg Gohil
- Department of Biosciences, School of ScienceIndrashil UniversityRajpurMehsanaGujaratIndia
| | - Gurneet K. Dhanoa
- School of Life SciencesUniversity of Warwick, Gibbet Hill CampusCoventryUnited Kindgom
| | - Antonia P. Sagona
- School of Life SciencesUniversity of Warwick, Gibbet Hill CampusCoventryUnited Kindgom
| | - Indra Mani
- Department of MicrobiologyGargi College, University of DelhiNew DelhiIndia
| | - Nhat Le Bui
- Center for Biomedicine and Community HealthInternational School, Vietnam National UniversityHanoiVietnam
| | - Dinh‐Toi Chu
- Center for Biomedicine and Community HealthInternational School, Vietnam National UniversityHanoiVietnam
- Faculty of Applied SciencesInternational School, Vietnam National UniversityHanoiVietnam
| | | | - Su Hwa Jang
- Graduate School of Biomedical Science and EngineeringHanyang UniversitySeoulSouth Korea
- Hanyang Biomedical Research InstituteHanyang UniversitySeoulSouth Korea
| | - Hee Yong Chung
- Graduate School of Biomedical Science and EngineeringHanyang UniversitySeoulSouth Korea
- Hanyang Biomedical Research InstituteHanyang UniversitySeoulSouth Korea
- College of MedicineHanyang UniversitySeoulSouth Korea
| | - Rupesh Maurya
- Department of Biosciences, School of ScienceIndrashil UniversityRajpurMehsanaGujaratIndia
| | - Khalid J. Alzahrani
- Department of Clinical Laboratories SciencesCollege of Applied Medical Sciences, Taif UniversityTaifSaudi Arabia
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and EngineeringHanyang UniversitySeoulSouth Korea
- College of MedicineHanyang UniversitySeoulSouth Korea
| | - Vijai Singh
- Department of Biosciences, School of ScienceIndrashil UniversityRajpurMehsanaGujaratIndia
| |
Collapse
|
3
|
Abstract
Bacteriophages-viruses that infect bacteria-are abundant within our bodies, but their significance to human health is only beginning to be explored. Here, we synthesize what is currently known about our phageome and its interactions with the immune system. We first review how phages indirectly affect immunity via bacterial expression of phage-encoded proteins. We next review how phages directly influence innate immunity and bacterial clearance. Finally, we discuss adaptive immunity against phages and its implications for phage/bacterial interactions. In light of these data, we propose that our microbiome can be understood as an interconnected network of bacteria, bacteriophages, and human cells and that the stability of these tri-kingdom interactions may be important for maintaining our immunologic and metabolic health. Conversely, the disruption of this balance, through exposure to exogenous phages, microbial dysbiosis, or immune dysregulation, may contribute to disease. Expected final online publication date for the Annual Review of Virology, Volume 8 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Medeea Popescu
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, California 94305, USA; .,Immunology Program, School of Medicine, Stanford University, Stanford, California 94305, USA.,These authors contributed equally to this article
| | - Jonas D Van Belleghem
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, California 94305, USA; .,These authors contributed equally to this article
| | - Arya Khosravi
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, California 94305, USA;
| | - Paul L Bollyky
- Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, California 94305, USA;
| |
Collapse
|
4
|
Goracci M, Pignochino Y, Marchiò S. Phage Display-Based Nanotechnology Applications in Cancer Immunotherapy. Molecules 2020; 25:E843. [PMID: 32075083 PMCID: PMC7071019 DOI: 10.3390/molecules25040843] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/07/2020] [Accepted: 02/11/2020] [Indexed: 12/12/2022] Open
Abstract
Phage display is a nanotechnology with limitless potential, first developed in 1985 and still awaiting to reach its peak. Awarded in 2018 with the Nobel Prize for Chemistry, the method allows the isolation of high-affinity ligands for diverse substrates, ranging from recombinant proteins to cells, organs, even whole organisms. Personalized therapeutic approaches, particularly in oncology, depend on the identification of new, unique, and functional targets that phage display, through its various declinations, can certainly provide. A fast-evolving branch in cancer research, immunotherapy is now experiencing a second youth after being overlooked for years; indeed, many reports support the concept of immunotherapy as the only non-surgical cure for cancer, at least in some settings. In this review, we describe literature reports on the application of peptide phage display to cancer immunotherapy. In particular, we discuss three main outcomes of this procedure: (i) phage display-derived peptides that mimic cancer antigens (mimotopes) and (ii) antigen-carrying phage particles, both as prophylactic and/or therapeutic vaccines, and (iii) phage display-derived peptides as small-molecule effectors of immune cell functions. Preclinical studies demonstrate the efficacy and vast potential of these nanosized tools, and their clinical application is on the way.
Collapse
Affiliation(s)
- Martina Goracci
- Department of Oncology, University of Torino, 10060 Candiolo, Italy
- Candiolo Cancer Institute, FPO–IRCCS, 10060 Candiolo, Italy
| | | | - Serena Marchiò
- Department of Oncology, University of Torino, 10060 Candiolo, Italy
- Candiolo Cancer Institute, FPO–IRCCS, 10060 Candiolo, Italy
| |
Collapse
|
5
|
Sartorius R, D'Apice L, Prisco A, De Berardinis P. Arming Filamentous Bacteriophage, a Nature-Made Nanoparticle, for New Vaccine and Immunotherapeutic Strategies. Pharmaceutics 2019; 11:437. [PMID: 31480551 PMCID: PMC6781307 DOI: 10.3390/pharmaceutics11090437] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 12/17/2022] Open
Abstract
The pharmaceutical use of bacteriophages as safe and inexpensive therapeutic tools is collecting renewed interest. The use of lytic phages to fight antibiotic-resistant bacterial strains is pursued in academic and industrial projects and is the object of several clinical trials. On the other hand, filamentous bacteriophages used for the phage display technology can also have diagnostic and therapeutic applications. Filamentous bacteriophages are nature-made nanoparticles useful for their size, the capability to enter blood vessels, and the capacity of high-density antigen expression. In the last decades, our laboratory focused its efforts in the study of antigen delivery strategies based on the filamentous bacteriophage 'fd', able to trigger all arms of the immune response, with particular emphasis on the ability of the MHC class I restricted antigenic determinants displayed on phages to induce strong and protective cytotoxic responses. We showed that fd bacteriophages, engineered to target mouse dendritic cells (DCs), activate innate and adaptive responses without the need of exogenous adjuvants, and more recently, we described the display of immunologically active lipids. In this review, we will provide an overview of the reported applications of the bacteriophage carriers and describe the advantages of exploiting this technology for delivery strategies.
Collapse
Affiliation(s)
- Rossella Sartorius
- Institute of Biochemistry and Cell Biology (IBBC), 80131 CNR Naples, Italy
| | - Luciana D'Apice
- Institute of Biochemistry and Cell Biology (IBBC), 80131 CNR Naples, Italy.
| | - Antonella Prisco
- Institute of Genetics and Biophysics "A. Buzzati-Traverso" (IGB), 80131 CNR Naples, Italy
| | | |
Collapse
|
6
|
Lambda bacteriophage nanoparticles displaying GP2, a HER2/neu derived peptide, induce prophylactic and therapeutic activities against TUBO tumor model in mice. Sci Rep 2019; 9:2221. [PMID: 30778090 PMCID: PMC6379380 DOI: 10.1038/s41598-018-38371-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/27/2018] [Indexed: 12/16/2022] Open
Abstract
Generating a protective and long-lasting immune response is the primary goal in the expanding field of immunotherapeutic research. In current study we designed an immunogenic bacteriophage- based vaccine to induce a cytotoxic T lymphocyte activity against a mice tumor model over-expressing HER2/neu. Bacteriophage λ displaying a HER2/neu derived peptide GP2 was constructed and used as an anti-cancer vaccine in a BALB/c mouse xenograft tumor model. The results of our study indicated that phage nanoparticles displaying GP2 as a fused peptide to the gpD phage capsid protein induced a robust CTL response. Furthermore, the chimeric phage nanoparticles protected mice against HER2/neu-positive tumor challenge in both prophylactic and therapeutic settings. In conclusion, we propose that λ phage nanoparticles decorated with GP2 peptide merit further investigation for the development of peptide-based vaccines against HER2/neu overexpressing tumors.
Collapse
|
7
|
Kłyż A, Piekarowicz A. Phage proteins are expressed on the surface of Neisseria gonorrhoeae and are potential vaccine candidates. PLoS One 2018; 13:e0202437. [PMID: 30138416 PMCID: PMC6107182 DOI: 10.1371/journal.pone.0202437] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/02/2018] [Indexed: 11/19/2022] Open
Abstract
All Neisseria gonorrhoeae strains whose DNA sequences have been determined possess filamentous phage sequences representing their full genomes. The presence of filamentous phage DNA sequences in all sequenced N. gonorrhoeae strains suggest that purified phage particles might be used as a gonococcal vaccine. To test this hypothesis, we purified filamentous NgoΦfil phages and immunized rabbits subcutaneously. The elicited sera contained large quantities of anti-phage IgG and IgA antibodies that bound to the surface of N. gonorrhoeae cells, as shown by ELISA and flow cytometry. The elicited sera bound to the structural NgoΦ6fil proteins present in phage particles and to N. gonorrhoeae cells. The sera did not react with gonococcal outer membrane proteins. The sera also had bactericidal activity and blocked adhesion of gonococci to tissue culture cells. These data demonstrate that NgoΦfil phage particles can induce antibodies with anti-gonococcal activity and may be a candidate for vaccine development.
Collapse
Affiliation(s)
- Aneta Kłyż
- Department of Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
- * E-mail: (AK); (AP)
| | - Andrzej Piekarowicz
- Department of Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
- * E-mail: (AK); (AP)
| |
Collapse
|
8
|
Barati N, Razazan A, Nicastro J, Slavcev R, Arab A, Mosaffa F, Nikpoor AR, Badiee A, Jaafari MR, Behravan J. Immunogenicity and antitumor activity of the superlytic λF7 phage nanoparticles displaying a HER2/neu-derived peptide AE37 in a tumor model of BALB/c mice. Cancer Lett 2018; 424:109-116. [PMID: 29580807 DOI: 10.1016/j.canlet.2018.03.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/16/2018] [Accepted: 03/21/2018] [Indexed: 01/03/2023]
Abstract
Phage display technique has been increasingly researched for vaccine design and delivery strategies in recent years. In this study, the AE37 (Ii-Key/HER-2/neu 776-790) peptide derived from HER2 (human epidermal growth factor receptor protein) was used as a fused peptide to the lambda phage (λF7) coat protein gpD, and the phage nanoparticles were used to induce antitumor immunogenicity in a TUBO model of breast cancer in mice. Mice were immunized with the AE37 peptide displaying phage, λF7 (gpD::AE37) every 2-week intervals over 6-weeks, then the generated immune responses were evaluated. An induction of CTL immune response by the λF7 (gpD::AE37) construct compared to the control λF7 and buffer groups was observed in vitro. Moreover, in the in vivo studies, the vaccine candidate showed promising prophylactic and therapeutic effects against the HER2 overexpressing cancer in BALB/c mice.
Collapse
Affiliation(s)
- Nastaran Barati
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atefeh Razazan
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jessica Nicastro
- School of Pharmacy, University of Waterloo, 200 University Ave W., Waterloo, N2L3G1, Canada; Waterloo Institute of Nanotechnology, University of Waterloo, 200 University Ave W., Waterloo, N2L3G1, Canada
| | - Roderick Slavcev
- School of Pharmacy, University of Waterloo, 200 University Ave W., Waterloo, N2L3G1, Canada; Waterloo Institute of Nanotechnology, University of Waterloo, 200 University Ave W., Waterloo, N2L3G1, Canada; Mediphage Bioceuticals, Inc., 661 University Avenue, Suite 1300, MaRS Centre, West Tower, Toronto, M5G0B7, Canada
| | - Atefeh Arab
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Mosaffa
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Reza Nikpoor
- Department of Medical Immunology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Badiee
- Nanotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Nanotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Behravan
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, University of Waterloo, 200 University Ave W., Waterloo, N2L3G1, Canada; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Samoylova TI, Braden TD, Spencer JA, Bartol FF. Immunocontraception: Filamentous Bacteriophage as a Platform for Vaccine Development. Curr Med Chem 2017; 24:3907-3920. [PMID: 28901276 PMCID: PMC5738698 DOI: 10.2174/0929867324666170911160426] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/19/2017] [Accepted: 08/23/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND Population control of domestic, wild, invasive, and captive animal species is a global issue of importance to public health, animal welfare and the economy. There is pressing need for effective, safe, and inexpensive contraceptive technologies to address this problem. Contraceptive vaccines, designed to stimulate the immune system in order to block critical reproductive events and suppress fertility, may provide a solution. Filamentous bacteriophages can be used as platforms for development of such vaccines. OBJECTIVE In this review authors highlight structural and immunogenic properties of filamentous phages, and discuss applications of phage-peptide vaccines for advancement of immunocontraception technology in animals. RESULTS Phages can be engineered to display fusion (non-phage) peptides as coat proteins. Such modifications can be accomplished via genetic manipulation of phage DNA, or by chemical conjugation of synthetic peptides to phage surface proteins. Phage fusions with antigenic determinants induce humoral as well as cell-mediated immune responses in animals, making them attractive as vaccines. Additional advantages of the phage platform include environmental stability, low cost, and safety for immunized animals and those administering the vaccines. CONCLUSION Filamentous phages are viable platforms for vaccine development that can be engineered with molecular and organismal specificity. Phage-based vaccines can be produced in abundance at low cost, are environmentally stable, and are immunogenic when administered via multiple routes. These features are essential for a contraceptive vaccine to be operationally practical in animal applications. Adaptability of the phage platform also makes it attractive for design of human immunocontraceptive agents.
Collapse
Affiliation(s)
- Tatiana I Samoylova
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA.,Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Timothy D Braden
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Jennifer A Spencer
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Frank F Bartol
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA.,Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
10
|
Jafari N, Abediankenari S. Phage Particles as Vaccine Delivery Vehicles: Concepts, Applications and Prospects. Asian Pac J Cancer Prev 2016; 16:8019-29. [PMID: 26745034 DOI: 10.7314/apjcp.2015.16.18.8019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The development of new strategies for vaccine delivery for generating protective and long-lasting immune responses has become an expanding field of research. In the last years, it has been recognized that bacteriophages have several potential applications in the biotechnology and medical fields because of their intrinsic advantages, such as ease of manipulation and large-scale production. Over the past two decades, bacteriophages have gained special attention as vehicles for protein/peptide or DNA vaccine delivery. In fact, whole phage particles are used as vaccine delivery vehicles to achieve the aim of enhanced immunization. In this strategy, the carried vaccine is protected from environmental damage by phage particles. In this review, phage-based vaccine categories and their development are presented in detail, with discussion of the potential of phage-based vaccines for protection against microbial diseases and cancer treatment. Also reviewed are some recent advances in the field of phage- based vaccines.
Collapse
Affiliation(s)
- Narjes Jafari
- Cellular and Molecular Biology, Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran E-mail :
| | | |
Collapse
|
11
|
Oral Immunization of Rabbits with S. enterica Typhimurium Expressing Neisseria gonorrhoeae Filamentous Phage Φ6 Induces Bactericidal Antibodies Against N. gonorrhoeae. Sci Rep 2016; 6:22549. [PMID: 26939573 PMCID: PMC4778046 DOI: 10.1038/srep22549] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 02/16/2016] [Indexed: 01/23/2023] Open
Abstract
All Neisseria gonorrhoeae strains whose DNA sequences have been determined possess filamentous phage DNA sequences. To ascertain if phage encoded proteins could form the basis of a gonococcal vaccine, rabbits were orally infected with S. entericaTyphimurium strain χ3987 harboring phagemid NgoΦ6 fm. The elicited sera contained large quantities of anti-phage IgG and IgA antibodies that bound to the surface of N. gonorrhoeae cells, as shown by indirect fluorescent analysis and flow cytometry. The elicited sera was able to bind to several phage proteins. The sera also had bactericidal activity. These data demonstrate that N. gonorrhoeae filamentous phage can induce antibodies with anti-gonococcal activity and that phage proteins may be a candidate for vaccine development.
Collapse
|
12
|
Humoral immune responses against gonadotropin releasing hormone elicited by immunization with phage-peptide constructs obtained via phage display. J Biotechnol 2015; 216:20-8. [PMID: 26456116 DOI: 10.1016/j.jbiotec.2015.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 07/30/2015] [Accepted: 10/05/2015] [Indexed: 12/16/2022]
Abstract
Phage display is based on genetic engineering of phage coat proteins resulting in fusion peptides displayed on the surface of phage particles. The technology is widely used for generation of phages with novel characteristics for numerous applications in biomedicine and far beyond. The focus of this study was on development of phage-peptide constructs that stimulate production of antibodies against gonadotropin releasing hormone (GnRH). Phage-peptide constructs that elicit production of neutralizing GnRH antibodies can be used for anti-fertility and anti-cancer applications. Phage-GnRH constructs were generated via selection from a phage display library using several types of GnRH antibodies as selection targets. Such phage constructs were characterized for sequence similarities to GnRH peptide and frequency of their occurrence in the selection rounds. Five of the constructs with suitable characteristics were tested in mice as a single dose 5×10(11) virions (vir) vaccine and were found to be able to stimulate production of GnRH-specific antibodies, but not to suppress testosterone (indirect indicator of GnRH antibody neutralizing properties). Next, one of the constructs was tested at a higher dose of 2×10(12) vir per mouse in combination with a poly(lactide-co-glycolide) (PLGA)-based adjuvant. This resulted in multifold increase in GnRH antibody production and significant reduction of serum testosterone, indicating that antibodies produced in response to the phage-GnRH immunization possess neutralizing properties. To achieve optimal immune responses for desired applications, phage-GnRH constructs can be modified with respect to flanking sequences of GnRH-like peptides displayed on phage. Anticipated therapeutic effects also might be attained using optimized phage doses, a combination of several constructs in a single treatment, or application of adjuvants and advanced phage delivery systems.
Collapse
|
13
|
Henry KA, Arbabi-Ghahroudi M, Scott JK. Beyond phage display: non-traditional applications of the filamentous bacteriophage as a vaccine carrier, therapeutic biologic, and bioconjugation scaffold. Front Microbiol 2015; 6:755. [PMID: 26300850 PMCID: PMC4523942 DOI: 10.3389/fmicb.2015.00755] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 07/10/2015] [Indexed: 12/23/2022] Open
Abstract
For the past 25 years, phage display technology has been an invaluable tool for studies of protein-protein interactions. However, the inherent biological, biochemical, and biophysical properties of filamentous bacteriophage, as well as the ease of its genetic manipulation, also make it an attractive platform outside the traditional phage display canon. This review will focus on the unique properties of the filamentous bacteriophage and highlight its diverse applications in current research. Particular emphases are placed on: (i) the advantages of the phage as a vaccine carrier, including its high immunogenicity, relative antigenic simplicity and ability to activate a range of immune responses, (ii) the phage's potential as a prophylactic and therapeutic agent for infectious and chronic diseases, (iii) the regularity of the virion major coat protein lattice, which enables a variety of bioconjugation and surface chemistry applications, particularly in nanomaterials, and (iv) the phage's large population sizes and fast generation times, which make it an excellent model system for directed protein evolution. Despite their ubiquity in the biosphere, metagenomics work is just beginning to explore the ecology of filamentous and non-filamentous phage, and their role in the evolution of bacterial populations. Thus, the filamentous phage represents a robust, inexpensive, and versatile microorganism whose bioengineering applications continue to expand in new directions, although its limitations in some spheres impose obstacles to its widespread adoption and use.
Collapse
Affiliation(s)
- Kevin A. Henry
- Human Health Therapeutics Portfolio, National Research Council Canada, OttawaON, Canada
| | - Mehdi Arbabi-Ghahroudi
- Human Health Therapeutics Portfolio, National Research Council Canada, OttawaON, Canada
- School of Environmental Sciences, University of Guelph, GuelphON, Canada
- Department of Biology, Carleton University, OttawaON, Canada
| | - Jamie K. Scott
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BCCanada
- Faculty of Health Sciences, Simon Fraser University, BurnabyBC, Canada
| |
Collapse
|
14
|
Sciutto E, Fragoso G, Hernández M, Rosas G, Martínez JJ, Fleury A, Cervantes J, Aluja A, Larralde C. Development of the S3Pvac vaccine against murine Taenia crassiceps cysticercosis: a historical review. J Parasitol 2013; 99:693-702. [PMID: 23409920 DOI: 10.1645/ge-3101.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Our work of the last 25 yr was concerned with the development of a vaccine aimed to prevent porcine Taenia solium cysticercosis and was based on cross-reacting Taenia crassiceps antigens that had proved protective against experimental intraperitoneal murine T. crassiceps cysticercosis (EIMTcC). In recent times the efficacy of the vaccine has been considered in need of confirmation, and the use of EIMTcC has been questioned as a valid tool in screening for vaccine candidates among the many antigens possibly involved. A review of our work divided in 2 parts is presented at this point, the first dealing with EIMTcC and the second with porcine T. solium cysticercosis (presented in this issue). Herein, we revise our results using EIMTcC as a measure of the protective capacity of T. crassiceps complex antigen mixtures, of purified native antigens, and of S3Pvac anti-cysticercosis vaccine composed by 3 protective peptides: GK-1, KETc1, and KETc12 either synthetic or recombinantly expressed and collectively or separately, by diverse delivery systems when administered at different doses and by different routes. Statistical analyses of the data lead confidently to the strong inference that S3Pvac is indeed an effective vaccine against EIMTcC via specific and non-specific mechanisms of protection.
Collapse
Affiliation(s)
- Edda Sciutto
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México DF, México.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Hashemi H, Pouyanfard S, Bandehpour M, Noroozbabaei Z, Kazemi B, Saelens X, Mokhtari-Azad T. Immunization with M2e-displaying T7 bacteriophage nanoparticles protects against influenza A virus challenge. PLoS One 2012; 7:e45765. [PMID: 23029232 PMCID: PMC3454340 DOI: 10.1371/journal.pone.0045765] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 08/23/2012] [Indexed: 12/17/2022] Open
Abstract
Considering the emergence of highly pathogenic influenza viruses and threat of worldwide pandemics, there is an urgent need to develop broadly-protective influenza vaccines. In this study, we demonstrate the potential of T7 bacteriophage-based nanoparticles with genetically fused ectodomain of influenza A virus M2 protein (T7-M2e) as a candidate universal flu vaccine. Immunization of mice with non-adjuvanted T7-M2e elicited M2e-specific serum antibody responses that were similar in magnitude to those elicited by M2e peptide administered in Freund’s adjuvant. Comparable IgG responses directed against T7 phage capsomers were induced following vaccination with wild type T7 or T7-M2e. T7-M2e immunization induced balanced amounts of IgG1 and IgG2a antibodies and these antibodies specifically recognized native M2 on the surface of influenza A virus-infected mammalian cells. The frequency of IFN-γ-secreting T cells induced by T7-M2e nanoparticles was comparable to those elicited by M2e peptide emulsified in Freund’s adjuvant. Emulsification of T7-M2e nanoparticles in Freund’s adjuvant, however, induced a significantly stronger T cell response. Furthermore, T7-M2e-immunized mice were protected against lethal challenge with an H1N1 or an H3N2 virus, implying the induction of hetero-subtypic immunity in our mouse model. T7-M2e-immunized mice displayed considerable weight loss and had significantly reduced viral load in their lungs compared to controls. We conclude that display of M2e on the surface of T7 phage nanoparticles offers an efficient and economical opportunity to induce cross-protective M2e-based immunity against influenza A.
Collapse
Affiliation(s)
- Hamidreza Hashemi
- Department of Virology, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mojgan Bandehpour
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Biotechnology Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Noroozbabaei
- Department of Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahram Kazemi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Biotechnology Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- * E-mail: (BK); (TM)
| | - Xavier Saelens
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Talat Mokhtari-Azad
- Department of Virology, Tehran University of Medical Sciences, Tehran, Iran
- * E-mail: (BK); (TM)
| |
Collapse
|
16
|
Bazan J, Całkosiński I, Gamian A. Phage display--a powerful technique for immunotherapy: 2. Vaccine delivery. Hum Vaccin Immunother 2012; 8:1829-35. [PMID: 22906938 DOI: 10.4161/hv.21704] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Phage display is a powerful technique in medical and health biotechnology. This technology has led to formation of antibody libraries and has provided techniques for fast and efficient search of these libraries. The phage display technique has been used in studying the protein-protein or protein-ligand interactions, constructing of the antibody and antibody fragments and improving the affinity of proteins to receptors. Recently phage display has been widely used to study immunization process, develop novel vaccines and investigate allergen-antibody interactions. This technology can provide new tools for protection against viral, fungal and bacterial infections. It may become a valuable tool in cancer therapies, abuse and allergies treatment. This review presents the recent advancements in diagnostic and therapeutic applications of phage display. In particular the applicability of this technology to study the immunization process, construction of new vaccines and development of safer and more efficient delivery strategies has been described.
Collapse
Affiliation(s)
- Justyna Bazan
- Department of Medical Biochemistry; Wroclaw Medical University; Wroclaw, Poland
| | | | | |
Collapse
|
17
|
Samoylova TI, Norris MD, Samoylov AM, Cochran AM, Wolfe KG, Petrenko VA, Cox NR. Infective and inactivated filamentous phage as carriers for immunogenic peptides. J Virol Methods 2012; 183:63-8. [PMID: 22575687 DOI: 10.1016/j.jviromet.2012.03.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 03/19/2012] [Accepted: 03/26/2012] [Indexed: 11/28/2022]
Abstract
The focus of this study is on development of vaccines using filamentous phage as a delivery vector for immunogenic peptides. The use of phage as a carrier for immunogenic peptides provides significant benefits such as high immunogenicity, low production costs, and high stability of phage preparations. However, introduction of live recombinant phage into the environment might represent a potential ecological problem. This, for example, may occur when vaccines are used in oral or nasal formulations in field conditions for wild and feral animals. To address this issue, comparative studies of antigenic properties of live and inactivated (non-viable) phage were accomplished. Inactivated phage, if released, will not propagate and will degrade as any other protein. In these experiments, a model phage clone that was previously selected from a phage display library and shown to stimulate production of anti-sperm antibodies with contraceptive properties was used. Multiple methods of phage inactivation were tested, including drying, freezing, autoclaving, heating, and UV irradiation. Under studied conditions, heating at 76°C for 3h, UV irradiation, and autoclaving resulted in complete phage inactivation. Phage samples treated by heat and UV were characterized by spectrophotometry and electron microscopy. To test antigenicity, live and inactivated phage preparations were injected into mice and antibody responses assayed by ELISA. It was found that phage killed by heat causes little to no immune responses, probably due to destruction of phage particles. In contrast, UV-inactivated phage stimulated production of IgG serum antibodies at the levels comparable to live phage. Thus, vaccines formulated to include UV-inactivated filamentous phage might represent environmentally safe alternatives to live phage vaccines.
Collapse
Affiliation(s)
- Tatiana I Samoylova
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Zhou FL, Meng S, Zhang WG, Wei YC, Cao XM, Bai GG, Wang BY. Peptide-based immunotherapy for multiple myeloma: current approaches. Vaccine 2010; 28:5939-46. [PMID: 20619381 DOI: 10.1016/j.vaccine.2010.06.088] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 06/12/2010] [Accepted: 06/28/2010] [Indexed: 12/24/2022]
Abstract
Multiple myeloma (MM) is a clonal B-cell malignancy with many fatal clinical sequelae. Despite extensive therapeutic approaches, cures remain rare exceptions. A recent promising area of investigation is the development of immunotherapeutic approaches that target and eliminate myeloma cells more selectively. Because of its potential to promote the destruction of cancerous cells via cytotoxic T-cell responses, peptide-based immunotherapy is one of these strategies to have attracted considerable attention. Furthermore, many studies were carried out to identify the best epitope peptides, the optimal vaccine formulation and schedule, and the preferable clinical situation for vaccination. Based on these results, various epitope peptides have been identified that may be selectively targeted by host immunity, and various approaches have been used to enhance the immune responses of peptides. This chapter focuses on reviewing previous immunotherapy trials, describing the current strategies for peptide-based immunotherapy, and discussing the achievable prospects in MM.
Collapse
Affiliation(s)
- Fu-Ling Zhou
- Department of Clinical Hematology, The Affiliated No. 2 Hospital, Xi'an Jiaotong University, The West Five Road, No. 157, Xi'an 710004, PR China.
| | | | | | | | | | | | | |
Collapse
|