1
|
Dubuisson A, Mangelinck A, Knockaert S, Zichi A, Becht E, Philippon W, Dromaint-Catesson S, Fasquel M, Melchiore F, Provost N, Walas D, Darville H, Galizzi JP, Lefebvre C, Blanc V, Lombardi V. Glucose deprivation and identification of TXNIP as an immunometabolic modulator of T cell activation in cancer. Front Immunol 2025; 16:1548509. [PMID: 40260243 PMCID: PMC12010123 DOI: 10.3389/fimmu.2025.1548509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/18/2025] [Indexed: 04/23/2025] Open
Abstract
Background The ability of immune cells to rapidly respond to pathogens or malignant cells is tightly linked to metabolic pathways. In cancer, the tumor microenvironment (TME) represents a complex system with a strong metabolism stress, in part due to glucose shortage, which limits proper T cell activation, differentiation and functions preventing anti-tumor immunity. Methods In this study, we evaluated T cell immune reactivity in glucose-restricted mixed lymphocyte reaction (MLR), using a comprehensive profiling of soluble factors, multiparametric flow cytometry and single cell RNA sequencing (scRNA-seq). Results We determined that glucose restriction potentiates anti-PD-1 immune responses and identified thioredoxin-interacting protein (TXNIP), a negative regulator of glucose uptake, as a potential immunometabolic modulator of T cell activation. We confirmed TXNIP downregulation in tumor infiltrating T cells in cancer patients. We next investigated the implication of TXNIP in modulating immune effector functions in primary human T cells and showed that TXNIP depletion increased IFN-γ secretion and tumor cell killing. Conclusions TXNIP is at the interface between immunometabolism and T cell activation and could represent a potential target for immuno-oncology treatments.
Collapse
Affiliation(s)
| | | | | | - Adrien Zichi
- Servier, Research and Development, Gif-sur-Yvette, France
| | - Etienne Becht
- Servier, Research and Development, Gif-sur-Yvette, France
| | | | | | - Manon Fasquel
- Servier, Research and Development, Gif-sur-Yvette, France
| | | | | | - Dawid Walas
- Servier, Research and Development, Gif-sur-Yvette, France
- Faculty of Medicine, University of Opole, Opole, Poland
| | | | | | | | | | | |
Collapse
|
2
|
Griffith S, Muir L, Suchanek O, Hope J, Pade C, Gibbons JM, Tuong ZK, Fung A, Touizer E, Rees-Spear C, Nans A, Roustan C, Alguel Y, Fink D, Orkin C, Deayton J, Anderson J, Gupta RK, Doores KJ, Cherepanov P, McKnight Á, Clatworthy M, McCoy LE. Preservation of memory B cell homeostasis in an individual producing broadly neutralising antibodies against HIV-1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.05.578789. [PMID: 38370662 PMCID: PMC10871235 DOI: 10.1101/2024.02.05.578789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Immunological determinants favouring emergence of broadly neutralising antibodies are crucial to the development of HIV-1 vaccination strategies. Here, we combined RNAseq and B cell cloning approaches to isolate a broadly neutralising antibody (bnAb) ELC07 from an individual living with untreated HIV-1. Using single particle cryogenic electron microscopy (cryo-EM), we show that the antibody recognises a conformational epitope at the gp120-gp41 interface. ELC07 binds the closed state of the viral glycoprotein causing considerable perturbations to the gp41 trimer core structure. Phenotypic analysis of memory B cell subsets from the ELC07 bnAb donor revealed a lack of expected HIV-1-associated dysfunction, specifically no increase in CD21-/CD27- cells was observed whilst the resting memory (CD21+/CD27+) population appeared preserved despite uncontrolled HIV-1 viraemia. Moreover, single cell transcriptomes of memory B cells from this bnAb donor showed a resting memory phenotype irrespective of the epitope they targeted or their ability to neutralise diverse strains of HIV-1. Strikingly, single memory B cells from the ELC07 bnAb donor were transcriptionally similar to memory B cells from HIV-negative individuals. Our results demonstrate that potent bnAbs can arise without the HIV-1-induced dysregulation of the memory B cell compartment and suggest that sufficient levels of antigenic stimulation with a strategically designed immunogen could be effective in HIV-negative vaccine recipients.
Collapse
Affiliation(s)
- Sarah Griffith
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| | - Luke Muir
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| | - Ondrej Suchanek
- Molecular Immunity Unit, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Joshua Hope
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London, UK
| | - Corinna Pade
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - Joseph M Gibbons
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - Zewen Kelvin Tuong
- Molecular Immunity Unit, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK
- Cellular Genetics, Wellcome Sanger Institute, Cambridge, UK
- Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Audrey Fung
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| | - Emma Touizer
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| | - Chloe Rees-Spear
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| | - Andrea Nans
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, UK
| | - Chloe Roustan
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, UK
| | - Yilmaz Alguel
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London, UK
| | - Douglas Fink
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| | - Chloe Orkin
- SHARE collaborative, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jane Deayton
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - Jane Anderson
- Homerton University Hospital NHS Foundation, London, UK
| | - Ravindra K Gupta
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Katie J Doores
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Peter Cherepanov
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London, UK
- Department of Infectious Disease, St-Mary's Campus, Imperial College London, London, UK
| | - Áine McKnight
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - Menna Clatworthy
- Molecular Immunity Unit, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
- Cellular Genetics, Wellcome Sanger Institute, Cambridge, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, UK
| | - Laura E McCoy
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| |
Collapse
|
3
|
Deng J, Pan T, Liu Z, McCarthy C, Vicencio JM, Cao L, Alfano G, Suwaidan AA, Yin M, Beatson R, Ng T. The role of TXNIP in cancer: a fine balance between redox, metabolic, and immunological tumor control. Br J Cancer 2023; 129:1877-1892. [PMID: 37794178 PMCID: PMC10703902 DOI: 10.1038/s41416-023-02442-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/07/2023] [Accepted: 09/14/2023] [Indexed: 10/06/2023] Open
Abstract
Thioredoxin-interacting protein (TXNIP) is commonly considered a master regulator of cellular oxidation, regulating the expression and function of Thioredoxin (Trx). Recent work has identified that TXNIP has a far wider range of additional roles: from regulating glucose and lipid metabolism, to cell cycle arrest and inflammation. Its expression is increased by stressors commonly found in neoplastic cells and the wider tumor microenvironment (TME), and, as such, TXNIP has been extensively studied in cancers. In this review, we evaluate the current literature regarding the regulation and the function of TXNIP, highlighting its emerging role in modulating signaling between different cell types within the TME. We then assess current and future translational opportunities and the associated challenges in this area. An improved understanding of the functions and mechanisms of TXNIP in cancers may enhance its suitability as a therapeutic target.
Collapse
Affiliation(s)
- Jinhai Deng
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
- Clinical Research Center (CRC), Clinical Pathology Center (CPC), Chongqing University Three Gorges Hospital, Chongqing University, Wanzhou, Chongqing, China
| | - Teng Pan
- Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, 518172, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Caitlin McCarthy
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - Jose M Vicencio
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - Lulu Cao
- Department of Rheumatology and Immunology, Peking University People's Hospital and Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Giovanna Alfano
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - Ali Abdulnabi Suwaidan
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - Mingzhu Yin
- Clinical Research Center (CRC), Clinical Pathology Center (CPC), Chongqing University Three Gorges Hospital, Chongqing University, Wanzhou, Chongqing, China
| | - Richard Beatson
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK.
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College London (UCL), Rayne 9 Building, London, WC1E 6JF, UK.
| | - Tony Ng
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK.
- UCL Cancer Institute, University College London, London, UK.
- Cancer Research UK City of London Centre, London, UK.
| |
Collapse
|
4
|
Lasry A, Nadorp B, Fornerod M, Nicolet D, Wu H, Walker CJ, Sun Z, Witkowski MT, Tikhonova AN, Guillamot-Ruano M, Cayanan G, Yeaton A, Robbins G, Obeng EA, Tsirigos A, Stone RM, Byrd JC, Pounds S, Carroll WL, Gruber TA, Eisfeld AK, Aifantis I. An inflammatory state remodels the immune microenvironment and improves risk stratification in acute myeloid leukemia. NATURE CANCER 2023; 4:27-42. [PMID: 36581735 PMCID: PMC9986885 DOI: 10.1038/s43018-022-00480-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 11/04/2022] [Indexed: 12/31/2022]
Abstract
Acute myeloid leukemia (AML) is a hematopoietic malignancy with poor prognosis and limited treatment options. Here we provide a comprehensive census of the bone marrow immune microenvironment in adult and pediatric patients with AML. We characterize unique inflammation signatures in a subset of AML patients, associated with inferior outcomes. We identify atypical B cells, a dysfunctional B-cell subtype enriched in patients with high-inflammation AML, as well as an increase in CD8+GZMK+ and regulatory T cells, accompanied by a reduction in T-cell clonal expansion. We derive an inflammation-associated gene score (iScore) that associates with poor survival outcomes in patients with AML. Addition of the iScore refines current risk stratifications for patients with AML and may enable identification of patients in need of more aggressive treatment. This work provides a framework for classifying patients with AML based on their immune microenvironment and a rationale for consideration of the inflammatory state in clinical settings.
Collapse
Affiliation(s)
- Audrey Lasry
- Department of Pathology, New York University School of Medicine, New York, NY, USA
- Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Bettina Nadorp
- Department of Pathology, New York University School of Medicine, New York, NY, USA
- Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
- Applied Bioinformatics Laboratories, New York University School of Medicine, New York, NY, USA
| | - Maarten Fornerod
- Department of Cell Biology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Deedra Nicolet
- The Ohio State University Comprehensive Cancer Center, Clara D. Bloomfield Center for Leukemia Outcomes Research, Columbus, OH, USA
- Alliance Statistics and Data Center, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Huiyun Wu
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Christopher J Walker
- The Ohio State University Comprehensive Cancer Center, Clara D. Bloomfield Center for Leukemia Outcomes Research, Columbus, OH, USA
- Alliance Statistics and Data Center, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Zhengxi Sun
- Department of Pathology, New York University School of Medicine, New York, NY, USA
- Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Matthew T Witkowski
- Department of Pathology, New York University School of Medicine, New York, NY, USA
- Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Anastasia N Tikhonova
- Department of Pathology, New York University School of Medicine, New York, NY, USA
- Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Maria Guillamot-Ruano
- Department of Pathology, New York University School of Medicine, New York, NY, USA
- Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Geraldine Cayanan
- Department of Pathology, New York University School of Medicine, New York, NY, USA
- Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Anna Yeaton
- Department of Pathology, New York University School of Medicine, New York, NY, USA
- Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Gabriel Robbins
- Department of Pathology, New York University School of Medicine, New York, NY, USA
- Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Esther A Obeng
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Aristotelis Tsirigos
- Department of Pathology, New York University School of Medicine, New York, NY, USA
- Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
- Applied Bioinformatics Laboratories, New York University School of Medicine, New York, NY, USA
| | - Richard M Stone
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - John C Byrd
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Stanley Pounds
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - William L Carroll
- Department of Pathology, New York University School of Medicine, New York, NY, USA
- Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Tanja A Gruber
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
| | - Ann-Kathrin Eisfeld
- The Ohio State University Comprehensive Cancer Center, Clara D. Bloomfield Center for Leukemia Outcomes Research, Columbus, OH, USA.
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
- Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, USA.
| | - Iannis Aifantis
- Department of Pathology, New York University School of Medicine, New York, NY, USA.
- Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
5
|
He Y, Xu R, Peng L, Hu X. Tumor infiltrating lymphocytes associated competitive endogenous RNA networks as predictors of outcome in hepatic carcinoma based on WGCNA analysis. PLoS One 2021; 16:e0254829. [PMID: 34324544 PMCID: PMC8321115 DOI: 10.1371/journal.pone.0254829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 07/05/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The important regulatory role of competitive endogenous RNAs (ceRNAs) in hepatocellular carcinoma (HCC) has been confirmed. Tumor infiltrating lymphocytes (TILs) are of great significance to tumor outcome and prognosis. This study will systematically analyze the key factors affecting the prognosis of HCC from the perspective of ceRNA and TILs. METHODS The Cancer Genome Atlas (TCGA) database was used for transcriptome data acquisition of HCC. Through the analysis of the Weighted Gene Co-expression Network Analysis (WCGNA), the two modules for co-expression of the disease were determined, and a ceRNA network was constructed. We used Cox regression and LASSO regression analysis to screen prognostic factors and constructed a risk score model. The Gene Expression Omnibus (GEO) was used to validate the model. The Kyoto Encyclopedia of Genes and Genomes (KEGG) was used for mRNAs functional analysis. The cell composition of TILs was analyzed by the CIBERSORT algorithm, and Pearson correlation analysis was utilized to explore the correlation between TILs and prognostic factors. RESULTS We constructed a ceRNA regulatory network composed of 67 nodes through WGCNA, including 44 DElncRNAs, 19 DEGs, and 4 DEmiRNAs. And based on the expression of 4 DEGs in this network (RRM2, LDLR, TXNIP, and KIF23), a prognostic model of HCC with good specificity and sensitivity was developed. CIBERSORT analyzed the composition of TILs in HCC tumor tissues. Correlation analysis showed that RRM2 is significantly correlated with T cells CD4 memory activated, T cells CD4 memory resting, T cells CD8, and T cells follicular helper, and TXNIP is negatively correlated with B cells memory. CONCLUSIONS In this study, a ceRNA with prognostic value in HCC was created, and a prognostic risk model for HCC was constructed based on it. This risk score model is closely related to TILs and is expected to become a potential therapeutic target and a new predictive indicator.
Collapse
Affiliation(s)
- Ying He
- Department of College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Rui Xu
- Department of College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Li Peng
- Department of College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiaoyu Hu
- Department of Infectious Disease, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Wennink RAW, Pandit A, Haasnoot AMJW, Hiddingh S, Kalinina Ayuso V, Wulffraat NM, Vastert BJ, Radstake TRDJ, de Boer JH, Kuiper JJW. Whole Transcriptome Analysis Reveals Heterogeneity in B Cell Memory Populations in Patients With Juvenile Idiopathic Arthritis-Associated Uveitis. Front Immunol 2020; 11:2170. [PMID: 33042130 PMCID: PMC7527539 DOI: 10.3389/fimmu.2020.02170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/10/2020] [Indexed: 12/25/2022] Open
Abstract
Purpose Patients with juvenile idiopathic arthritis (JIA) are prone to developing chronic anterior uveitis (JIA-U+). Although several risk factors for JIA-U+ have been identified, the underlying etiology is poorly understood. Histopathological studies demonstrate B cell infiltrates in eye tissues of patients with JIA-U+. Methods We performed transcriptome profiling of peripheral blood CD19-positive B cells taken from 14 cases with JIA-U+, 13 JIA cases without uveitis (JIA-U-), and five healthy controls. Deconvolution-based estimation was used to determine the immune cell fractions for each sample. Results Deconvolution results revealed that naive B cells made up on average 71% of the CD19-positive cell fractions analyzed. Differential expression analysis identified 614 differentially expressed genes (DEGs) between the groups at nominal significance and six genes at a false discovery rate of 5% (FDR < 0.05). Head-to-head comparison of all JIA-U- versus JIA-U+ revealed no DEGs in the CD19+ B cell pool (FDR < 0.05). However, principal component analysis based on a panel of key genes for B cell subsets revealed that JIA-U+ cases bifurcate into distinct clusters, characterized by markedly disparate expression for genes associated with specific memory B cell populations. CIBERSORT analysis of the overall transcriptome of the new uveitis cluster identified an increased proportion of memory B cells. Conclusion These data show that JIA-U- and JIA-U+ have a globally similar transcriptome considering the global peripheral CD19-positive B cell pool. However, heterogeneity in B cell memory genes among cases with uveitis suggests a role for specific memory B cell subsets in the etiology of JIA-U+.
Collapse
Affiliation(s)
- Roos A W Wennink
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Aridaman Pandit
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Anne-Mieke J W Haasnoot
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Sanne Hiddingh
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Viera Kalinina Ayuso
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Nico M Wulffraat
- Department of Pediatric Rheumatology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Bas J Vastert
- Department of Pediatric Rheumatology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Timothy R D J Radstake
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Joke H de Boer
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Jonas J W Kuiper
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
7
|
Molecular analysis of lymphoid tissue from rhesus macaque rhadinovirus-infected monkeys identifies alterations in host genes associated with oncogenesis. PLoS One 2020; 15:e0228484. [PMID: 32017809 PMCID: PMC6999886 DOI: 10.1371/journal.pone.0228484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/02/2020] [Indexed: 01/08/2023] Open
Abstract
Rhesus macaque (RM) rhadinovirus (RRV) is a simian gamma-2 herpesvirus closely related to human Kaposi’s sarcoma-associated herpesvirus (KSHV). RRV is associated with the development of diseases in simian immunodeficiency virus (SIV) co-infected RM that resemble KSHV-associated pathologies observed in HIV-infected humans, including B cell lymphoproliferative disorders (LPD) and lymphoma. Importantly, how de novo KSHV infection affects the expression of host genes in humans, and how these alterations in gene expression affect viral replication, latency, and disease is unknown. The utility of the RRV/RM infection model provides a novel approach to address these questions in vivo, and utilizing the RRV bacterial artificial chromosome (BAC) system, the effects of specific viral genes on host gene expression patterns can also be explored. To gain insight into the effects of RRV infection on global host gene expression patterns in vivo, and to simultaneously assess the contributions of the immune inhibitory viral CD200 (vCD200) molecule to host gene regulation, RNA-seq was performed on pre- and post-infection lymph node (LN) biopsy samples from RM infected with either BAC-derived WT (n = 4) or vCD200 mutant RRV (n = 4). A variety of genes were identified as being altered in LN tissue samples due to RRV infection, including cancer-associated genes activation-induced cytidine deaminase (AICDA), glypican-1 (GPC1), CX3C chemokine receptor 1 (CX3CR1), and Ras dexamethasone-induced 1 (RasD1). Further analyses also indicate that GPC1 may be associated with lymphomagenesis. Finally, comparison of infection groups identified the differential expression of host gene thioredoxin interacting protein (TXNIP), suggesting a possible mechanism by which vCD200 negatively affects RRV viral loads in vivo.
Collapse
|
8
|
Huang Y, Mao Z, Zhang X, Yang X, Sawada N, Takeda M, Yao J. Connexin43 Is Required for the Effective Activation of Spleen Cells and Immunoglobulin Production. Int J Mol Sci 2019; 20:ijms20225789. [PMID: 31752090 PMCID: PMC6888161 DOI: 10.3390/ijms20225789] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/05/2019] [Accepted: 11/15/2019] [Indexed: 02/07/2023] Open
Abstract
Gap junctions (Gjs), formed by specific protein termed connexins (Cxs), regulate many important cellular processes in cellular immunity. However, little is known about their effects on humoral immunity. Here we tested whether and how Gj protein connexin43 (Cx43) affected antibody production in spleen cells. Detection of IgG in mouse tissues and serum revealed that wild-type (Cx43+/+) mouse had a significantly higher level of IgG than Cx43 heterozygous (Cx43+/−) mouse. Consistently, spleen cells from Cx43+/+ mouse produced more IgG under both basal and lipopolysaccharide (LPS)-stimulated conditions. Further analysis showed that LPS induced a more dramatic activation of ERK and cell proliferation in Cx43+/+ spleen cells, which was associated with a higher pro-oxidative state, as indicated by the increased NADPH oxidase 2 (NOX2), TXNIP, p38 activation and protein carbonylation. In support of a role of the oxidative state in the control of lymphocyte activation, exposure of spleen cells to exogenous superoxide induced Cx43 expression, p38 activation and IgG production. On the contrary, inhibition of NOX attenuated the effects of LPS. Collectively, our study characterized Cx43 as a novel molecule involved in the control of spleen cell activation and IgG production. Targeting Cx43 could be developed to treat certain antibody-related immune diseases.
Collapse
Affiliation(s)
- Yanru Huang
- Division of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo 409-3898, Japan; (Y.H.); (Z.M.); (X.Z.); (X.Y.)
| | - Zhimin Mao
- Division of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo 409-3898, Japan; (Y.H.); (Z.M.); (X.Z.); (X.Y.)
| | - Xiling Zhang
- Division of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo 409-3898, Japan; (Y.H.); (Z.M.); (X.Z.); (X.Y.)
| | - Xiawen Yang
- Division of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo 409-3898, Japan; (Y.H.); (Z.M.); (X.Z.); (X.Y.)
| | - Norifumi Sawada
- Department of Urology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo 409-3898, Japan; (N.S.); (M.T.)
| | - Masayuki Takeda
- Department of Urology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo 409-3898, Japan; (N.S.); (M.T.)
| | - Jian Yao
- Division of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo 409-3898, Japan; (Y.H.); (Z.M.); (X.Z.); (X.Y.)
- Correspondence: ; Tel.: +81-55-273-8074
| |
Collapse
|
9
|
High concentrations of glucose suppress etoposide-induced cell death of B-cell lymphoma through BCL-6. Biochem Biophys Res Commun 2014; 450:227-33. [DOI: 10.1016/j.bbrc.2014.05.096] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 05/21/2014] [Indexed: 11/18/2022]
|
10
|
Abstract
Chronic hyperglycemia (HG)-associated reactive oxygen/nitrogen species (ROS/RNS) stress and low grade inflammation are considered to play critical roles in the development of diabetic retinopathy (DR). Excess glucose metabolic flux through the aldose reductase/polyol pathway, advanced glycation end product (AGE) formation, elevated hexosamine biosynthesis pathway (HBP), diacyl glycerol/PKC activation, and mitochondrial ROS generation are all implicated in DR. In addition, endoplasmic reticulum stress/unfolded protein response (er-UPR) and deregulation of mitochondrial quality control by autophagy/mitophagy are observed causing cellular bioenergetic deficiency and injury. Recently, a pro-oxidant and pro-apoptotic thioredoxin interacting protein (TXNIP) was shown to be highly upregulated in DR and by HG in retinal cells in culture. TXNIP binds to thioredoxin (Trx) inhibiting its oxidant scavenging and thiolreducing capacity. Hence, prolonged overexpression of TXNIP causes ROS/RNS stress, mitochondrial dysfunction, inflammation and premature cell death in DR. Initially, DR was considered as microvascular complications of endothelial dysfunction and pericyte loss characterized by capillary basement membrane thickening, pericyte ghost, blood retinal barrier leakage, acellular capillary and neovascularization. However, it is currently acknowledged that neuro-glia are also affected by HG in diabetes and that neuronal injury, glial activation, innate immunity/sterile inflammation, and ganglion apoptosis occur early in DR. In addition, retinal pigment epithelium (RPE) becomes dysfunctional in DR. Since TXNIP is induced by HG in most cells, its effects are not restricted to a particular cell type in DR. However, depending on the metabolic activity and anti-oxidant capacity, some cells may be affected earlier by TXNIP than others. Identification of TXNIP sensitive cells and elucidating the underlying mechanism(s) will be critical for preventing pre-mature cell death and progression of DR.
Collapse
Affiliation(s)
- Lalit P Singh
- Departments of Anatomy and Cell Biology and Ophthalmology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
11
|
Piao ZH, Kim MS, Jeong M, Yun S, Lee SH, Sun HN, Song HY, Suh HW, Jung H, Yoon SR, Kim TD, Lee YH, Choi I. VDUP1 exacerbates bacteremic shock in mice infected with Pseudomonas aeruginosa. Cell Immunol 2012; 280:1-9. [PMID: 23246829 DOI: 10.1016/j.cellimm.2012.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 11/02/2012] [Accepted: 11/02/2012] [Indexed: 02/05/2023]
Abstract
Vitamin-D3 upregulated protein-1 (VDUP1) is a stress response protein. Pseudomonas aeruginosa (P. aeruginosa) infection is a leading cause of death. Mice infected with live P. aeruginosa exhibit significantly decreased VDUP1 expression. However, the function of VDUP1 during P. aeruginosa-induced mouse bacteremic shock is unknown. To address the function of VDUP1 in P. aeruginosa-infected mice, we constructed a bacteremic shock model wherein both wild-type and VDUP1-deficient mice were infected intra-peritoneally with live P. aeruginosa. We found that VDUP1-deficient mice were more resistant to P. aeruginosa-induced bacteremic shock than wild-type mice, as shown by the increased survival, accelerated bacterial clearance and suppression of cytokine overproduction of the VDUP1-deficient mice. VDUP1 promoted the recruitment of neutrophils into the peritoneal cavities of infected mice. VDUP1 impeded the phagocytosis of non-opsonized P. aeruginosa via phosphatidylinositide 3-kinase (PI3K) pathway in macrophages. P. aeruginosa infection induced the generation of reactive oxygen species (ROS), and the increased production of ROS by the peritoneal cells of VDUP1-deficient mice was advantageous in clearing the bacteria. Overall, VDUP1 aggravates bacteremic shock; thus, VDUP1 can be considered a target molecule for the inhibition of P. aeruginosa-induced bacteremic shock.
Collapse
Affiliation(s)
- Zheng-Hao Piao
- Immunotherapy Research Center, Korea Research of Bioscience and Biotechnology, Yuseong, Daejeon, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Li J. Quiescence regulators for hematopoietic stem cell. Exp Hematol 2011; 39:511-20. [PMID: 21288477 DOI: 10.1016/j.exphem.2011.01.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 01/18/2011] [Accepted: 01/24/2011] [Indexed: 02/08/2023]
Abstract
Hematopoietic stem cell (HSC) either stays in quiescence or proliferates toward differentiation for the production of mature blood cells, or toward self-renewal for giving rise to itself. In order to both maintain a supply of mature blood cells and not exhaust HSCs throughout the lifetime of an individual, under steady state, most HSCs remain quiescent and only a small number enter the cell cycle. Quiescence of HSCs is not only critical for protecting the stem cell compartment and sustaining stem cell pools over long periods, but it is also critical for protecting stem cells by minimizing their accumulation of replication-associated mutations. The balance between quiescence and proliferation is tightly controlled by both HSC-intrinsic and -extrinsic mechanisms. In recent years, through reductionistic strategies, a wide variety of molecules or pathways critical for HSC quiescence regulation have been identified. This regulation network involves both positive and negative regulators. Understanding quiescence regulation in HSC is of great importance not only for understanding the physiological foundation of HSCs, but also for understanding the pathophysiological origins of many related disorders. In this article, I will briefly review the current advance in the quiescence regulators for the HSCs.
Collapse
Affiliation(s)
- June Li
- Department of Genetics, The University of Texas, M D Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| |
Collapse
|
13
|
Sbai O, Devi TS, Melone MAB, Feron F, Khrestchatisky M, Singh LP, Perrone L. RAGE-TXNIP axis is required for S100B-promoted Schwann cell migration, fibronectin expression and cytokine secretion. J Cell Sci 2010; 123:4332-9. [PMID: 21098642 DOI: 10.1242/jcs.074674] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
During peripheral nerve injury, Schwann cells (SCs) adopt a migratory phenotype and remodel the extracellular matrix and provide a supportive activity for neuron regeneration. SCs synthesize neurotrophic factors and cytokines that are crucial for the repair of the injured nerve. The receptor for advanced glycation end products (RAGE) and its ligand S100B, which are secreted by SCs, are required for the repair of the injured peripheral nerve in vivo. However, the precise intracellular pathways involved have not been completely elucidated. Here, we show that RAGE-induced S100B secretion involves the recruitment of S100B in lipid rafts and caveolae. Moreover, we demonstrate for the first time that RAGE induces the expression of thioredoxin interacting protein (TXNIP) in SCs and the injured sciatic nerve in vivo. TXNIP is involved in the activation of p38 MAPK, CREB and NFκB in SCs. TXNIP silencing partially inhibits RAGE-induced SC migration and completely abolishes RAGE-induced fibronectin and IL-1β expression. Our results support a model in which TXNIP mediates in part RAGE-induced SC migration and is required for the expression of provisional ECM and pro-inflammatory IL-1β. We provide new insight on the role of the SC RAGE-TXNIP axis in the repair of injured peripheral nerves.
Collapse
Affiliation(s)
- Oualid Sbai
- NICN, CNRS UMR 6184, Faculté de Médecine, Université Aix-Marseille, 13344 Marseille Cedex 15, France
| | | | | | | | | | | | | |
Collapse
|