1
|
Goleij P, Rezaee A, Lam HY, Tabari MAK, Ouf N, Alijanzadeh D, Sanaye PM, Larsen DS, Daglia M, Khan H, Sethi G, Kumar AP. From bench to bedside: exploring curcumin-driven signaling pathways in immune cells for cancer management. Inflammopharmacology 2025:10.1007/s10787-025-01739-5. [PMID: 40244492 DOI: 10.1007/s10787-025-01739-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/02/2025] [Indexed: 04/18/2025]
Abstract
The use of natural compounds as effective therapeutic agents is an expanding area of health and disease research. Curcumin, a bioactive component derived from the rhizome of the turmeric plant (Curcuma longa L.), has been primarily used in culinary applications for several centuries, but now its potential health benefits are the focus of growing scientific research. Interestingly, some studies have found that curcumin has antitumorigenic effects due to its ability to influence the tumor microenvironment and possibly promote immune system response by modulating specific signaling pathways in immune cells. The interaction of curcumin with immune cells in the field of cancer chemoprevention is a complex area of research. It has been suggested that curcumin might promote T cell recruitment, reduce neutrophil and macrophage accumulation in the tumor microenvironment, and prevent the conversion of infiltrating lymphocytes into immunosuppressive subpopulations. Thus, its possible mechanisms of action also include a shift of the immune balance toward activation by reversing the prevalence of immunosuppressive cells. With innovations and improvements in our understanding of the potential benefits of curcumin on immune cells in cancer prevention and treatment, it is important to have an overview of current findings. Therefore, in this study, we aim to provide a review of the latest discoveries regarding curcumin in the field of cancer and immune cell research.
Collapse
Affiliation(s)
- Pouya Goleij
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research, Network (USERN), Tehran, Iran.
| | - Aryan Rezaee
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hiu Yan Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mohammad Amin Khazeei Tabari
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research, Network (USERN), Tehran, Iran
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Mazandaran, Iran
| | - Noureldeen Ouf
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Dorsa Alijanzadeh
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pantea Majma Sanaye
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research, Network (USERN), Tehran, Iran
- School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Danaé S Larsen
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1010, New Zealand
| | - Maria Daglia
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131, Naples, Italy
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China
| | - Haroon Khan
- Department of Pharmacy, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
- Department of Pharmacy, Korea University, Sejong, 20019, South Korea
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
2
|
Brisse ME, Hickman HD. Viral Infection and Dissemination Through the Lymphatic System. Microorganisms 2025; 13:443. [PMID: 40005808 PMCID: PMC11858409 DOI: 10.3390/microorganisms13020443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/11/2025] [Accepted: 02/15/2025] [Indexed: 02/27/2025] Open
Abstract
Many viruses induce viremia (virus in the blood) and disseminate throughout the body via the bloodstream from the initial infection site. However, viruses must often pass through the lymphatic system to reach the blood. The lymphatic system comprises a network of vessels distinct from blood vessels, along with interconnected lymph nodes (LNs). The complex network has become increasingly appreciated as a crucial host factor that contributes to both the spread and control of viral infections. Viruses can enter the lymphatics as free virions or along with migratory cells. Once virions arrive in the LN, sinus-resident macrophages remove infectious virus from the lymph. Depending on the virus, macrophages can eliminate infection or propagate the virus. A virus released from an LN is eventually deposited into the blood. This unique pathway highlights LNs as targets for viral infection control and for modulation of antiviral response development. Here, we review the lymphatic system and viruses that disseminate through this network. We discuss infection of the LN, the generation of adaptive antiviral immunity, and current knowledge of protection within the infected node. We conclude by sharing insights from ongoing efforts to optimize lymphatic targeting by vaccines and pharmaceuticals. Understanding the lymphatic system's role during viral infection enhances our knowledge of antiviral immunity and virus-host interactions and reveals potential targets for next-generation therapies.
Collapse
Affiliation(s)
| | - Heather D. Hickman
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20852, USA;
| |
Collapse
|
3
|
Tang KT, Chen YS, Chen TT, Chao YH, Kung SP, Chen DY, Lin CC. Inhibiting Tyrosine Kinase 2 Ameliorates Antiphospholipid Syndrome Nephropathy. Mediators Inflamm 2024; 2024:5568822. [PMID: 39742289 PMCID: PMC11688129 DOI: 10.1155/mi/5568822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/07/2024] [Indexed: 01/03/2025] Open
Abstract
Objective: Antiphospholipid antibody syndrome (APS) is an autoimmune disease characterized by the presence of β2-glycoprotein I (β2-GPI)-targeting antiphospholipid antibodies (aPLs) and vascular thrombosis or obstetrical complications. One of its severe manifestations is nephropathy. Methods: To examine the role of type I interferon (IFN) and therapeutic potential of tyrosine kinase 2 (Tyk2) inhibition, we administered BMS-986202, a novel Tyk2 inhibitor, in a mouse model of APS nephropathy. We administered BMS-986202 to BALB/c mice at a dose of 2 mg/kg. Biochemical and histological characteristics of APS nephropathy were then determined. The type I IFN signature in the kidney was also evaluated by real-time polymerase chain reaction (PCR). Results: The Tyk2 inhibitor reversed the elevation of blood urea nitrogen (BUN) and microalbuminuria in the murine model of APS nephropathy. In addition, the Tyk2 inhibitor reversed the pathological vascular changes in the kidney as judged in electron microscopy (EM), and fibrin and C3 deposition as revealed in immunohistochemistry (IHC). An increased expression levels of IFN signature (IFN regulatory factor 7 (IRF7) and Mx1) in the kidneys of APS mice were found. Tyk2 inhibition reversed such an upregulation. Conclusion: Our results demonstrated the key role of type I IFN in the pathogenesis of APS nephropathy. Furthermore, the therapeutic efficacy of Tyk2 inhibition was demonstrated in a murine model of APS nephropathy. Our results could provide a new treatment strategy for this debilitating disease.
Collapse
Affiliation(s)
- Kuo-Tung Tang
- Division of Allergy, Immunology and Rheumatology, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Sin Chen
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
- Institute of Biomedical Science, The iEGG and Animal Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan
| | - Tzu-Ting Chen
- Institute of Bioinformatics and Structural Biology and Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Ya-Hsuan Chao
- Institute of Biomedical Science, The iEGG and Animal Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan
- Division of Chest Medicine, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Shu-Ping Kung
- Institute of Biomedical Science, The iEGG and Animal Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan
| | - Der-Yuan Chen
- Rheumatology and Immunology Center, China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
- College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Chi-Chien Lin
- Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Institute of Biomedical Science, The iEGG and Animal Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
4
|
Rahman F. Characterizing the immune response to Mycobacterium tuberculosis: a comprehensive narrative review and implications in disease relapse. Front Immunol 2024; 15:1437901. [PMID: 39650648 PMCID: PMC11620876 DOI: 10.3389/fimmu.2024.1437901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/07/2024] [Indexed: 12/11/2024] Open
Abstract
Introduction Tuberculosis remains the leading cause of death from infectious diseases among adults worldwide. To date, an overarching review of the immune response to Mtb in humans has not been fully elucidated, with innate immunity remaining poorly understood due to historic focus on adaptive immunity. Specifically, there is a major gap concerning the contribution of the immune system to overall bacterial clearance, particularly residual bacteria. This review aims to describe the time course of interactions between the host immune system and Mtb, from the start of the infection to the development of the adaptive response. Concordantly, we aim to crystallize the pathogenic effects and immunoevasive mechanisms of Mtb. The translational value of animal data is also discussed. Methods The literature search was conducted in the PubMed, ScienceDirect, and Google Scholar databases, which included reported research from 1990 until 2024. A total of 190 publications were selected and screened, of which 108 were used for abstraction and 86 were used for data extraction. Graphical summaries were created using the narrative information (i.e., recruitment, recognition, and response) to generate clear visual representations of the immune response at the cellular and molecular levels. Results The key cellular players included airway epithelial cells, alveolar epithelial cells, neutrophils, natural killer cells, macrophages, dendritic cells, T cells, and granulomatous lesions; the prominent molecular players included IFN-γ, TNF-α, and IL-10. The paper also sheds light on the immune response to residual bacteria and applications of the data. Discussion We provide a comprehensive characterization of the key immune players that are implicated in pulmonary tuberculosis, in line with the organs or compartments in which mycobacteria reside, offering a broad vignette of the immune response to Mtb and how it responds to residual bacteria. Ultimately, the data presented could provide immunological insights to help establish optimized criteria for identifying efficacious treatment regimens and durations for relapse prevention in the modeling and simulation space and wider fields.
Collapse
Affiliation(s)
- Fatima Rahman
- Department of Pharmacology, University College London, London, United Kingdom
- Istituto per le Applicazioni del Calcolo, Consiglio Nazionale delle Ricerche, Rome, Italy
| |
Collapse
|
5
|
Gao X, Fan Y, Dai K, Zheng G, Jia X, Han B, Xu B, Ji H. Structural characterization of an acid-extracted polysaccharide from Suillus luteus and the regulatory effects on intestinal flora metabolism in tumor-bearing mice. Int J Biol Macromol 2024; 280:136137. [PMID: 39349083 DOI: 10.1016/j.ijbiomac.2024.136137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 09/17/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
Suillus luteus is an excellent edible fungus that has been applied in soil remediation and environmental pollution control, while the development of bioactive polysaccharide component including structural performance and intestinal flora regulation is still insufficient. In this study, a S. luteus acid-extracted polysaccharide (SLAP) was prepared under room temperature, then the structural characteristics and regulatory effects on gut microbiota metabolism in tumor-bearing mice were investigated. Results showed that SLAP was a kind of gulcomannan (average molecular weight of 1.76 × 107 Da) comprised of Xyl, Man, Glc, Gal (molar ratio of 0.19:1.00:0.72:0.53), which took β-(1 → 4)-Manp and β-(1 → 4)-Glcp as the backbone with β-(1 → 6)-Glcp and α-(1 → 6)-Galp as branches. The animal experiment results demonstrated that SLAP could effectively enhance the immunoregulatory activities of CD4+ and CD8+ T cells in tumor-bearing mice via improving intestinal lactobacillaceae contents and promoting primary bile acids biosynthesis, finally leading to the suppression of solid tumors growth with an inhibitory rate of 61.14 % (100 mg/kg·d). These results would provide certain data support and research basis for further applications of SLAP as an immunomodulatory adjuvant in food and medicine fields.
Collapse
Affiliation(s)
- Xiaoji Gao
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai, Shandong 264005, China
| | - Yuting Fan
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai, Shandong 264005, China
| | - Keyao Dai
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Guoqiang Zheng
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaoyu Jia
- Xinjiang Yuanxiang Agricultural Technology Co., Ltd., Hetian, Xinjiang 848000, China
| | - Bing Han
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai, Shandong 264005, China
| | - Bo Xu
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai, Shandong 264005, China.
| | - Haiyu Ji
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai, Shandong 264005, China.
| |
Collapse
|
6
|
Al-Janabi H, Moyes K, Allen R, Fisher M, Crespo M, Gurel B, Rescigno P, de Bono J, Nunns H, Bailey C, Junker-Jensen A, Muthana M, Phillips WA, Pearson HB, Taplin ME, Brown JE, Lewis CE. Targeting a STING agonist to perivascular macrophages in prostate tumors delays resistance to androgen deprivation therapy. J Immunother Cancer 2024; 12:e009368. [PMID: 39060021 DOI: 10.1136/jitc-2024-009368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Androgen deprivation therapy (ADT) is a front-line treatment for prostate cancer. In some men, their tumors can become refractory leading to the development of castration-resistant prostate cancer (CRPC). This causes tumors to regrow and metastasize, despite ongoing treatment, and impacts negatively on patient survival. ADT is known to stimulate the accumulation of immunosuppressive cells like protumoral tumor-associated macrophages (TAMs), myeloid-derived suppressor cells and regulatory T cells in prostate tumors, as well as hypofunctional T cells. Protumoral TAMs have been shown to accumulate around tumor blood vessels during chemotherapy and radiotherapy in other forms of cancer, where they drive tumor relapse. Our aim was to see whether such perivascular (PV) TAMs also accumulate in ADT-treated prostate tumors prior to CRPC, and, if so, whether selectively inducing them to express a potent immunostimulant, interferon beta (IFNβ), would stimulate antitumor immunity and delay CRPC. METHODS We used multiplex immunofluorescence to assess the effects of ADT on the distribution and activation status of TAMs, CD8+T cells, CD4+T cells and NK cells in mouse and/or human prostate tumors. We then used antibody-coated, lipid nanoparticles (LNPs) to selectively target a STING agonist, 2'3'-cGAMP (cGAMP), to PV TAMs in mouse prostate tumors during ADT. RESULTS TAMs accumulated at high density around blood vessels in response to ADT and expressed markers of a protumoral phenotype including folate receptor-beta (FR-β), MRC1 (CD206), CD169 and VISTA. Additionally, higher numbers of inactive (PD-1-) CD8+T cells and reduced numbers of active (CD69+) NK cells were present in these PV tumor areas. LNPs coated with an antibody to FR-β selectively delivered cGAMP to PV TAMs in ADT-treated tumors, where they activated STING and upregulated the expression of IFNβ. This resulted in a marked increase in the density of active CD8+T cells (along with CD4+T cells and NK cells) in PV tumor areas, and significantly delayed the onset of CRPC. Antibody depletion of CD8+T cells during LNP administration demonstrated the essential role of these cells in delay in CRPC induced by LNPs. CONCLUSION Together, our data indicate that targeting a STING agonist to PV TAMs could be used to extend the treatment window for ADT in prostate cancer.
Collapse
Affiliation(s)
- Haider Al-Janabi
- Divsion of Clinical Medicine, The University of Sheffield, Sheffield, UK
| | - Katy Moyes
- Divsion of Clinical Medicine, The University of Sheffield, Sheffield, UK
| | - Richard Allen
- Divsion of Clinical Medicine, The University of Sheffield, Sheffield, UK
| | - Matthew Fisher
- Divsion of Clinical Medicine, The University of Sheffield, Sheffield, UK
| | | | - Bora Gurel
- The Institute of Cancer Research, London, UK
| | - Pasquale Rescigno
- The Institute of Cancer Research and the Royal Marsden NHS Foundation Trust, The Institute of Cancer Research, London, UK
| | | | - Harry Nunns
- NeoGenomics Laboratories Inc Aliso Viejo, Aliso Viejo, California, USA
| | | | | | - Munitta Muthana
- Division of Clinical Medicine, The University of Sheffield, Sheffield, UK
| | | | | | | | - Janet E Brown
- Division of Clinical Medicine, The University of Sheffield, Sheffield, UK
| | - Claire E Lewis
- Divsion of Clinical Medicine, The University of Sheffield, Sheffield, UK
| |
Collapse
|
7
|
Gray-Gaillard SL, Solis SM, Chen HM, Monteiro C, Ciabattoni G, Samanovic MI, Cornelius AR, Williams T, Geesey E, Rodriguez M, Ortigoza MB, Ivanova EN, Koralov SB, Mulligan MJ, Herati RS. SARS-CoV-2 inflammation durably imprints memory CD4 T cells. Sci Immunol 2024; 9:eadj8526. [PMID: 38905326 PMCID: PMC11824880 DOI: 10.1126/sciimmunol.adj8526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 05/30/2024] [Indexed: 06/23/2024]
Abstract
Memory CD4 T cells are critical to human immunity, yet it is unclear whether viral inflammation during memory formation has long-term consequences. Here, we compared transcriptional and epigenetic landscapes of Spike (S)-specific memory CD4 T cells in 24 individuals whose first exposure to S was via SARS-CoV-2 infection or mRNA vaccination. Nearly 2 years after memory formation, S-specific CD4 T cells established by infection remained enriched for transcripts related to cytotoxicity and for interferon-stimulated genes, likely because of a chromatin accessibility landscape altered by inflammation. Moreover, S-specific CD4 T cells primed by infection had reduced proliferative capacity in vitro relative to vaccine-primed cells. Furthermore, the transcriptional state of S-specific memory CD4 T cells was minimally altered by booster immunization and/or breakthrough infection. Thus, infection-associated inflammation durably imprints CD4 T cell memory, which affects the function of these cells and may have consequences for long-term immunity.
Collapse
Affiliation(s)
| | - Sabrina M. Solis
- Department of Medicine, New York University Grossman School
of Medicine; New York, NY, USA
| | - Han M. Chen
- Department of Medicine, New York University Grossman School
of Medicine; New York, NY, USA
| | - Clarice Monteiro
- Department of Medicine, New York University Grossman School
of Medicine; New York, NY, USA
| | - Grace Ciabattoni
- Department of Microbiology, New York University School of
Medicine; New York, NY, USA
| | - Marie I. Samanovic
- Department of Medicine, New York University Grossman School
of Medicine; New York, NY, USA
| | - Amber R. Cornelius
- Department of Medicine, New York University Grossman School
of Medicine; New York, NY, USA
| | - Tijaana Williams
- Department of Medicine, New York University Grossman School
of Medicine; New York, NY, USA
| | - Emilie Geesey
- Department of Medicine, New York University Grossman School
of Medicine; New York, NY, USA
| | - Miguel Rodriguez
- Department of Medicine, New York University Grossman School
of Medicine; New York, NY, USA
| | - Mila Brum Ortigoza
- Department of Medicine, New York University Grossman School
of Medicine; New York, NY, USA
| | - Ellie N. Ivanova
- Department of Pathology, New York University School of
Medicine; New York, NY, USA
| | - Sergei B. Koralov
- Department of Pathology, New York University School of
Medicine; New York, NY, USA
| | - Mark J. Mulligan
- Department of Medicine, New York University Grossman School
of Medicine; New York, NY, USA
- Department of Microbiology, New York University School of
Medicine; New York, NY, USA
| | - Ramin Sedaghat Herati
- Department of Medicine, New York University Grossman School
of Medicine; New York, NY, USA
- Department of Microbiology, New York University School of
Medicine; New York, NY, USA
| |
Collapse
|
8
|
Bettini E, Chudnovskiy A, Protti G, Nakadakari-Higa S, Ceglia S, Castaño D, Chiu J, Muramatsu H, Mdluli T, Abraham E, Lipinszki Z, Maillard I, Tam YK, Reboldi A, Pardi N, Spreafico R, Victora GD, Locci M. Distinct components of nucleoside-modified messenger RNA vaccines cooperate to instruct efficient germinal center responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.17.594726. [PMID: 38798523 PMCID: PMC11118742 DOI: 10.1101/2024.05.17.594726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Nucleoside-modified mRNA vaccines elicit protective antibodies through their ability to promote T follicular helper (Tfh) cells. The lipid nanoparticle (LNP) component of mRNA vaccines possesses inherent adjuvant activity. However, to what extent the nucleoside-modified mRNA can be sensed and contribute to Tfh cell responses remains largely undefined. Herein, we deconvoluted the signals induced by LNP and mRNA that instruct dendritic cells (DCs) to promote Tfh cell differentiation. We demonstrated that the nucleoside-modified mRNA drives the production of type I interferons that act on DCs to induce their maturation and the induction of Th1-biased Tfh responses. Conversely, LNP favors the acquisition of a Tfh cell-inducing program in DCs, a stronger Th2 polarization in Tfh cells, and allows for rapid mRNA translation by DCs within the draining lymph node. Our work unravels distinct adjuvant features of mRNA and LNP necessary for the induction of Tfh cells, with implications for vaccine design.
Collapse
|
9
|
Defaye M, Bradaia A, Abdullah NS, Agosti F, Iftinca M, Delanne-Cuménal M, Soubeyre V, Svendsen K, Gill G, Ozmaeian A, Gheziel N, Martin J, Poulen G, Lonjon N, Vachiery-Lahaye F, Bauchet L, Basso L, Bourinet E, Chiu IM, Altier C. Induction of antiviral interferon-stimulated genes by neuronal STING promotes the resolution of pain in mice. J Clin Invest 2024; 134:e176474. [PMID: 38690737 PMCID: PMC11060736 DOI: 10.1172/jci176474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/12/2024] [Indexed: 05/03/2024] Open
Abstract
Inflammation and pain are intertwined responses to injury, infection, or chronic diseases. While acute inflammation is essential in determining pain resolution and opioid analgesia, maladaptive processes occurring during resolution can lead to the transition to chronic pain. Here we found that inflammation activates the cytosolic DNA-sensing protein stimulator of IFN genes (STING) in dorsal root ganglion nociceptors. Neuronal activation of STING promotes signaling through TANK-binding kinase 1 (TBK1) and triggers an IFN-β response that mediates pain resolution. Notably, we found that mice expressing a nociceptor-specific gain-of-function mutation in STING exhibited an IFN gene signature that reduced nociceptor excitability and inflammatory hyperalgesia through a KChIP1-Kv4.3 regulation. Our findings reveal a role of IFN-regulated genes and KChIP1 downstream of STING in the resolution of inflammatory pain.
Collapse
Affiliation(s)
- Manon Defaye
- Department of Physiology and Pharmacology, Cumming School of Medicine
- Inflammation Research Network–Snyder Institute for Chronic Diseases, Cumming School of Medicine, and
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Amyaouch Bradaia
- Department of Physiology and Pharmacology, Cumming School of Medicine
- Inflammation Research Network–Snyder Institute for Chronic Diseases, Cumming School of Medicine, and
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Nasser S. Abdullah
- Department of Physiology and Pharmacology, Cumming School of Medicine
- Inflammation Research Network–Snyder Institute for Chronic Diseases, Cumming School of Medicine, and
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Francina Agosti
- Department of Physiology and Pharmacology, Cumming School of Medicine
- Inflammation Research Network–Snyder Institute for Chronic Diseases, Cumming School of Medicine, and
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Mircea Iftinca
- Department of Physiology and Pharmacology, Cumming School of Medicine
- Inflammation Research Network–Snyder Institute for Chronic Diseases, Cumming School of Medicine, and
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Mélissa Delanne-Cuménal
- Department of Physiology and Pharmacology, Cumming School of Medicine
- Inflammation Research Network–Snyder Institute for Chronic Diseases, Cumming School of Medicine, and
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Vanessa Soubeyre
- Department of Neurosurgery, Gui de Chauliac Hospital, Donation and Transplantation Coordination Unit, Montpellier University Medical Center, Montpellier, France
| | - Kristofer Svendsen
- Department of Physiology and Pharmacology, Cumming School of Medicine
- Inflammation Research Network–Snyder Institute for Chronic Diseases, Cumming School of Medicine, and
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Gurveer Gill
- Department of Physiology and Pharmacology, Cumming School of Medicine
- Inflammation Research Network–Snyder Institute for Chronic Diseases, Cumming School of Medicine, and
| | - Aye Ozmaeian
- Department of Physiology and Pharmacology, Cumming School of Medicine
- Inflammation Research Network–Snyder Institute for Chronic Diseases, Cumming School of Medicine, and
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Nadine Gheziel
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM UMR1291, University of Toulouse III, Toulouse, France
| | - Jérémy Martin
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM UMR1291, University of Toulouse III, Toulouse, France
| | - Gaetan Poulen
- Department of Neurosurgery, Gui de Chauliac Hospital, Donation and Transplantation Coordination Unit, Montpellier University Medical Center, Montpellier, France
| | - Nicolas Lonjon
- Department of Neurosurgery, Gui de Chauliac Hospital, Donation and Transplantation Coordination Unit, Montpellier University Medical Center, Montpellier, France
| | - Florence Vachiery-Lahaye
- Department of Neurosurgery, Gui de Chauliac Hospital, Donation and Transplantation Coordination Unit, Montpellier University Medical Center, Montpellier, France
| | - Luc Bauchet
- Department of Neurosurgery, Gui de Chauliac Hospital, Donation and Transplantation Coordination Unit, Montpellier University Medical Center, Montpellier, France
- Institute of Functional Genomics, Montpellier University, CNRS, INSERM, Montpellier, France
| | - Lilian Basso
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM UMR1291, University of Toulouse III, Toulouse, France
| | - Emmanuel Bourinet
- Institute of Functional Genomics, Montpellier University, CNRS, INSERM, Montpellier, France
| | - Isaac M. Chiu
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Christophe Altier
- Department of Physiology and Pharmacology, Cumming School of Medicine
- Inflammation Research Network–Snyder Institute for Chronic Diseases, Cumming School of Medicine, and
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
10
|
Karakoese Z, Ingola M, Sitek B, Dittmer U, Sutter K. IFNα Subtypes in HIV Infection and Immunity. Viruses 2024; 16:364. [PMID: 38543729 PMCID: PMC10975235 DOI: 10.3390/v16030364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 05/23/2024] Open
Abstract
Type I interferons (IFN), immediately triggered following most viral infections, play a pivotal role in direct antiviral immunity and act as a bridge between innate and adaptive immune responses. However, numerous viruses have evolved evasion strategies against IFN responses, prompting the exploration of therapeutic alternatives for viral infections. Within the type I IFN family, 12 IFNα subtypes exist, all binding to the same receptor but displaying significant variations in their biological activities. Currently, clinical treatments for chronic virus infections predominantly rely on a single IFNα subtype (IFNα2a/b). However, the efficacy of this therapeutic treatment is relatively limited, particularly in the context of Human Immunodeficiency Virus (HIV) infection. Recent investigations have delved into alternative IFNα subtypes, identifying certain subtypes as highly potent, and their antiviral and immunomodulatory properties have been extensively characterized. This review consolidates recent findings on the roles of individual IFNα subtypes during HIV and Simian Immunodeficiency Virus (SIV) infections. It encompasses their induction in the context of HIV/SIV infection, their antiretroviral activity, and the diverse regulation of the immune response against HIV by distinct IFNα subtypes. These insights may pave the way for innovative strategies in HIV cure or functional cure studies.
Collapse
Affiliation(s)
- Zehra Karakoese
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (Z.K.); (U.D.)
- Institute for the Research on HIV and AIDS-Associated Diseases, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Martha Ingola
- Medical Proteome Center, Ruhr University Bochum, 44801 Bochum, Germany; (M.I.); (B.S.)
| | - Barbara Sitek
- Medical Proteome Center, Ruhr University Bochum, 44801 Bochum, Germany; (M.I.); (B.S.)
- Department of Anesthesia, Intensive Care Medicine and Pain Therapy, University Hospital Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (Z.K.); (U.D.)
- Institute for the Research on HIV and AIDS-Associated Diseases, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Kathrin Sutter
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (Z.K.); (U.D.)
- Institute for the Research on HIV and AIDS-Associated Diseases, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| |
Collapse
|
11
|
Sausen DG, Poirier MC, Spiers LM, Smith EN. Mechanisms of T cell evasion by Epstein-Barr virus and implications for tumor survival. Front Immunol 2023; 14:1289313. [PMID: 38179040 PMCID: PMC10764432 DOI: 10.3389/fimmu.2023.1289313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024] Open
Abstract
Epstein-Barr virus (EBV) is a prevalent oncogenic virus estimated to infect greater than 90% of the world's population. Following initial infection, it establishes latency in host B cells. EBV has developed a multitude of techniques to avoid detection by the host immune system and establish lifelong infection. T cells, as important contributors to cell-mediated immunity, make an attractive target for these immunoevasive strategies. Indeed, EBV has evolved numerous mechanisms to modulate T cell responses. For example, it can augment expression of programmed cell death ligand-1 (PD-L1), which inhibits T cell function, and downregulates the interferon response, which has a strong impact on T cell regulation. It also modulates interleukin secretion and can influence major histocompatibility complex (MHC) expression and presentation. In addition to facilitating persistent EBV infection, these immunoregulatory mechanisms have significant implications for evasion of the immune response by tumor cells. This review dissects the mechanisms through which EBV avoids detection by host T cells and discusses how these mechanisms play into tumor survival. It concludes with an overview of cancer treatments targeting T cells in the setting of EBV-associated malignancy.
Collapse
Affiliation(s)
- D. G. Sausen
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | | | | | | |
Collapse
|
12
|
Seitz V, Gennermann K, Elezkurtaj S, Groth D, Schaper S, Dröge A, Lachmann N, Berg E, Lenze D, Kühl AA, Husemann C, Kleo K, Horst D, Lennerz V, Hennig S, Hummel M, Schumann M. Specific T-cell receptor beta-rearrangements of gluten-triggered CD8 + T-cells are enriched in celiac disease patients' duodenal mucosa. Clin Immunol 2023; 256:109795. [PMID: 37769786 DOI: 10.1016/j.clim.2023.109795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/12/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
Celiac disease (CeD) is an autoimmune disorder affecting the small intestine with gluten as disease trigger. Infections including Influenza A, increase the CeD risk. While gluten-specific CD4+ T-cells, recognizing HLA-DQ2/DQ8 presented gluten-peptides, initiate and sustain the celiac immune response, CD8+ α/β intraepithelial T-cells elicit mucosal damage. Here, we subjected TCRs from a cohort of 56 CeD patients and 22 controls to an analysis employing 749 published CeD-related TCRβ-rearrangements derived from gluten-specific CD4+ T-cells and gluten-triggered peripheral blood CD8+ T-cells. We show, that in addition to TCRs from gluten-specific CD4+ T-cells, TCRs of gluten-triggered CD8+ T-cells are significantly enriched in CeD duodenal tissue samples. TCRβ-rearrangements of gluten-triggered CD8+ T-cells were even more expanded in patients than TCRs from gluten-specific CD4+ T-cells (p < 0.0002) and highest in refractory CeD. Sequence alignments with TCR-antigen databases suggest that a subgroup of these most likely indirectly gluten-triggered TCRs recognize microbial, viral, and autoantigens.
Collapse
Affiliation(s)
- V Seitz
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; HS Diagnomics GmbH, Berlin, Germany
| | | | - S Elezkurtaj
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - D Groth
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | | | - A Dröge
- HS Diagnomics GmbH, Berlin, Germany
| | - N Lachmann
- Centre for Tumor Medicine, Histocompatibility & Immunogenetics Laboratory, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - E Berg
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - D Lenze
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - A A Kühl
- iPATH.Berlin - Core Unit of the Charité Universitätsmedizin Berlin, corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - C Husemann
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin, Berlin, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - K Kleo
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - D Horst
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - S Hennig
- HS Diagnomics GmbH, Berlin, Germany
| | - M Hummel
- Institute of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin, Berlin, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - M Schumann
- Medizinische Klinik m. S. Gastroenterologie, Infektiologie und Rheumatologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
13
|
Yuen CK, Wong WM, Mak LF, Lam JY, Cheung LY, Cheung DTY, Ng YY, Lee ACY, Zhong N, Yuen KY, Kok KH. An interferon-integrated mucosal vaccine provides pan-sarbecovirus protection in small animal models. Nat Commun 2023; 14:6762. [PMID: 37875475 PMCID: PMC10598001 DOI: 10.1038/s41467-023-42349-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/09/2023] [Indexed: 10/26/2023] Open
Abstract
A pan-sarbecovirus or pan-betacoronavirus vaccine that can prevent current and potential future beta-coronavirus infections is important for fighting possible future pandemics. Here, we report a mucosal vaccine that cross-protects small animal models from sarbecoviruses including SARS-CoV-1, SARS-CoV-2 and its variants. The vaccine comprises a live-but-defective SARS-CoV-2 virus that is envelope deficient and has the orf8 segment replaced by interferon-beta, hence named Interferon Beta Integrated SARS-CoV-2 (IBIS) vaccine. Nasal vaccination with IBIS protected mice from lethal homotypic SARS-CoV-2 infection and hamsters from co-housing-mediated transmission of homotypic virus. Moreover, IBIS provided complete protection against heterotypic sarbecoviruses, including SARS-CoV-2 Delta and Omicron variants, and SARS-CoV-1 in both mice and hamsters. Besides inducing a strong lung CD8 + T cell response, IBIS specifically heightened the activation of mucosal virus-specific CD4 + T cells compared to the interferon-null vaccine. The direct production of interferon by IBIS also suppressed virus co-infection of SARS-CoV-2 in human cells, reducing the risk of genetic recombination when using as live vaccines. Altogether, IBIS is a next-generation pan-sarbecovirus vaccine and warrants further clinical investigations.
Collapse
Affiliation(s)
- Chun-Kit Yuen
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR, China
| | - Wan-Man Wong
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR, China
| | - Long-Fung Mak
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR, China
| | - Joy-Yan Lam
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR, China
| | - Lok-Yi Cheung
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Derek Tsz-Yin Cheung
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yau-Yee Ng
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Andrew Chak-Yiu Lee
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR, China
| | - Nanshan Zhong
- Department of Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, China State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, China
| | - Kwok-Yung Yuen
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR, China
- State Key Laboratory for Emerging Infectious Diseases, The University of Hong Kong, Hong Kong SAR, China
| | - Kin-Hang Kok
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR, China.
- State Key Laboratory for Emerging Infectious Diseases, The University of Hong Kong, Hong Kong SAR, China.
- AIDS Institute, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
14
|
López-Rodríguez JC, Hancock SJ, Li K, Crotta S, Barrington C, Suárez-Bonnet A, Priestnall SL, Aubé J, Wack A, Klenerman P, Bengoechea JA, Barral P. Type I interferons drive MAIT cell functions against bacterial pneumonia. J Exp Med 2023; 220:e20230037. [PMID: 37516912 PMCID: PMC10373297 DOI: 10.1084/jem.20230037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/31/2023] [Accepted: 07/11/2023] [Indexed: 07/31/2023] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are abundant in the lung and contribute to host defense against infections. During bacterial infections, MAIT cell activation has been proposed to require T cell receptor (TCR)-mediated recognition of antigens derived from the riboflavin synthesis pathway presented by the antigen-presenting molecule MR1. MAIT cells can also be activated by cytokines in an MR1-independent manner, yet the contribution of MR1-dependent vs. -independent signals to MAIT cell functions in vivo remains unclear. Here, we use Klebsiella pneumoniae as a model of bacterial pneumonia and demonstrate that MAIT cell activation is independent of MR1 and primarily driven by type I interferons (IFNs). During Klebsiella infection, type I IFNs stimulate activation of murine and human MAIT cells, induce a Th1/cytotoxic transcriptional program, and modulate MAIT cell location within the lungs. Consequently, adoptive transfer or boosting of pulmonary MAIT cells protect mice from Klebsiella infection, with protection being dependent on direct type I IFN signaling on MAIT cells. These findings reveal type I IFNs as new molecular targets to manipulate MAIT cell functions during bacterial infections.
Collapse
Affiliation(s)
- Juan Carlos López-Rodríguez
- The Peter Gorer Department of Immunobiology, King’s College London, London, UK
- The Francis Crick Institute, London, UK
| | - Steven J. Hancock
- Wellcome-Wolfson Institute for Experimental Medicine. School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, UK
| | - Kelin Li
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | - Alejandro Suárez-Bonnet
- The Francis Crick Institute, London, UK
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hatfield, UK
| | - Simon L. Priestnall
- The Francis Crick Institute, London, UK
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hatfield, UK
| | - Jeffrey Aubé
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, Oxford, UK
| | - Jose A. Bengoechea
- Wellcome-Wolfson Institute for Experimental Medicine. School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, UK
| | - Patricia Barral
- The Peter Gorer Department of Immunobiology, King’s College London, London, UK
- The Francis Crick Institute, London, UK
| |
Collapse
|
15
|
Cao L, Qian W, Li W, Ma Z, Xie S. Type III interferon exerts thymic stromal lymphopoietin in mediating adaptive antiviral immune response. Front Immunol 2023; 14:1250541. [PMID: 37809098 PMCID: PMC10556530 DOI: 10.3389/fimmu.2023.1250541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023] Open
Abstract
Previously, it was believed that type III interferon (IFN-III) has functions similar to those of type I interferon (IFN-I). However, recently, emerging findings have increasingly indicated the non-redundant role of IFN-III in innate antiviral immune responses. Still, the regulatory activity of IFN-III in adaptive immune response has not been clearly reported yet due to the low expression of IFN-III receptors on most immune cells. In the present study, we reviewed the adjuvant, antiviral, antitumor, and disease-moderating activities of IFN-III in adaptive immunity; moreover, we further elucidated the mechanisms of IFN-III in mediating the adaptive antiviral immune response in a thymic stromal lymphopoietin (TSLP)-dependent manner, a pleiotropic cytokine involved in mucosal adaptive immunity. Research has shown that IFN-III can enhance the antiviral immunogenic response in mouse species by activating germinal center B (GC B) cell responses after stimulating TSLP production by microfold (M) cells, while in human species, TSLP exerts OX40L for regulating GC B cell immune responses, which may also depend on IFN-III. In conclusion, our review highlights the unique role of the IFN-III/TSLP axis in mediating host adaptive immunity, which is mechanically different from IFN-I. Therefore, the IFN-III/TSLP axis may provide novel insights for clinical immunotherapy.
Collapse
Affiliation(s)
- Luhong Cao
- Department of Otolaryngology Head and Neck Surgery Surgery, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Weiwei Qian
- Department of Emergency Medicine, Laboratory of Emergency Medicine, West China Hospital, and Disaster Medical Center, Sichuan University, Chengdu, Sichuan, China
| | - Wanlin Li
- National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, Shenzhen, China
| | - Zhiyue Ma
- Department of Otolaryngology Head and Neck Surgery Surgery, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Shenglong Xie
- Department of Thoracic Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
16
|
Cham LB, Gunst JD, Schleimann MH, Frattari GS, Rosas-Umbert M, Vibholm LK, van der Sluis RM, Jakobsen MR, Olesen R, Lin L, Tolstrup M, Søgaard OS. Single cell analysis reveals a subset of cytotoxic-like plasmacytoid dendritic cells in people with HIV-1. iScience 2023; 26:107628. [PMID: 37664600 PMCID: PMC10470411 DOI: 10.1016/j.isci.2023.107628] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/20/2023] [Accepted: 08/10/2023] [Indexed: 09/05/2023] Open
Abstract
Human plasmacytoid dendritic cells (pDCs) play a central role in initiating and activating host immune responses during infection. To understand how the transcriptome of pDCs is impacted by HIV-1 infection and exogenous stimulation, we isolated pDCs from healthy controls, people with HIV-1 (PWH) before and during toll-like receptor 9 (TLR9) agonist treatment and performed single-cell (sc)-RNA sequencing. Our cluster analysis revealed four pDC clusters: pDC1, pDC2, cytotoxic-like pDC and an exhausted pDC cluster. The inducible cytotoxic-like pDC cluster is characterized by high expression of both antiviral and cytotoxic genes. Further analyses confirmed that cytotoxic-like pDCs are distinct from NK and T cells. Cell-cell communication analysis also demonstrated that cytotoxic-like pDCs exhibit similar incoming and outgoing cellular communicating signals as other pDCs. Thus, our study presents a detailed transcriptomic atlas of pDCs and provides new perspectives on the mechanisms of regulation and function of cytotoxic-like pDCs.
Collapse
Affiliation(s)
- Lamin B. Cham
- Department of Infectious Diseases, Aarhus University Hospital, 8200 Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
| | - Jesper D. Gunst
- Department of Infectious Diseases, Aarhus University Hospital, 8200 Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
| | - Mariane H. Schleimann
- Department of Infectious Diseases, Aarhus University Hospital, 8200 Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
| | - Giacomo S. Frattari
- Department of Infectious Diseases, Aarhus University Hospital, 8200 Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
| | - Miriam Rosas-Umbert
- Department of Infectious Diseases, Aarhus University Hospital, 8200 Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
| | - Line K. Vibholm
- Department of Infectious Diseases, Aarhus University Hospital, 8200 Aarhus, Denmark
| | | | | | - Rikke Olesen
- Department of Infectious Diseases, Aarhus University Hospital, 8200 Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
| | - Lin Lin
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Martin Tolstrup
- Department of Infectious Diseases, Aarhus University Hospital, 8200 Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
| | - Ole S. Søgaard
- Department of Infectious Diseases, Aarhus University Hospital, 8200 Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
| |
Collapse
|
17
|
Leung LL, Myles T, Morser J. Thrombin Cleavage of Osteopontin and the Host Anti-Tumor Immune Response. Cancers (Basel) 2023; 15:3480. [PMID: 37444590 PMCID: PMC10340489 DOI: 10.3390/cancers15133480] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
Osteopontin (OPN) is a multi-functional protein that is involved in various cellular processes such as cell adhesion, migration, and signaling. There is a single conserved thrombin cleavage site in OPN that, when cleaved, yields two fragments with different properties from full-length OPN. In cancer, OPN has tumor-promoting activity and plays a role in tumor growth and metastasis. High levels of OPN expression in cancer cells and tumor tissue are found in various types of cancer, including breast, lung, prostate, ovarian, colorectal, and pancreatic cancer, and are associated with poor prognosis and decreased survival rates. OPN promotes tumor progression and invasion by stimulating cell proliferation and angiogenesis and also facilitates the metastasis of cancer cells to other parts of the body by promoting cell adhesion and migration. Furthermore, OPN contributes to immune evasion by inhibiting the activity of immune cells. Thrombin cleavage of OPN initiates OPN's tumor-promoting activity, and thrombin cleavage fragments of OPN down-regulate the host immune anti-tumor response.
Collapse
Affiliation(s)
- Lawrence L. Leung
- Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA; (L.L.L.); (T.M.)
- Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304, USA
| | - Timothy Myles
- Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA; (L.L.L.); (T.M.)
- Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304, USA
| | - John Morser
- Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA; (L.L.L.); (T.M.)
- Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304, USA
| |
Collapse
|
18
|
Xavier A, Campagna MP, Maltby VE, Kilpatrick T, Taylor BV, Butzkueven H, Ponsonby AL, Scott RJ, Jokubaitis VG, Lea RA, Lechner-Scott J. Interferon beta treatment is a potent and targeted epigenetic modifier in multiple sclerosis. Front Immunol 2023; 14:1162796. [PMID: 37325639 PMCID: PMC10266220 DOI: 10.3389/fimmu.2023.1162796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/12/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction Multiple Sclerosis (MS) has a complex pathophysiology that involves genetic and environmental factors. DNA methylation (DNAm) is one epigenetic mechanism that can reversibly modulate gene expression. Cell specific DNAm changes have been associated with MS, and some MS therapies such as dimethyl fumarate can influence DNAm. Interferon Beta (IFNβ), was one of the first disease modifying therapies in multiple sclerosis (MS). However, how IFNβ reduces disease burden in MS is not fully understood and little is known about the precise effect of IFNβ treatment on methylation. Methods The objective of this study was to determine the changes in DNAm associated with INFβ use, using methylation arrays and statistical deconvolutions on two separate datasets (total ntreated = 64, nuntreated = 285). Results We show that IFNβ treatment in people with MS modifies the methylation profile of interferon response genes in a strong, targeted, and reproducible manner. Using these identified methylation differences, we constructed a methylation treatment score (MTS) that is an accurate discriminator between untreated and treated patients (Area under the curve = 0.83). This MTS is time-sensitive and in consistent with previously identified IFNβ treatment therapeutic lag. This suggests that methylation changes are required for treatment efficacy. Overrepresentation analysis found that IFNβ treatment recruits the endogenous anti-viral molecular machinery. Finally, statistical deconvolution revealed that dendritic cells and regulatory CD4+ T cells were most affected by IFNβ induced methylation changes. Discussion In conclusion, our study shows that IFNβ treatment is a potent and targeted epigenetic modifier in multiple sclerosis.
Collapse
Affiliation(s)
- Alexandre Xavier
- School of Biomedical Science and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
| | - Maria Pia Campagna
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Vicki E. Maltby
- Hunter Medical Research Institute, Immune Health research program, Newcastle, NSW, Australia
- Department of Neurology, John Hunter Hospital, Newcastle, NSW, Australia
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, Australia
| | - Trevor Kilpatrick
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Bruce V. Taylor
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Helmut Butzkueven
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Neuro-Immunology Registry, MSBase Foundation, Melbourne, VIC, Australia
| | - Anne-Louise Ponsonby
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Rodney J. Scott
- School of Biomedical Science and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
- New South Wales (NSW) Health Pathology, John Hunter Hospital, Newcastle, NSW, Australia
| | - Vilija G. Jokubaitis
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Rodney A. Lea
- School of Biomedical Science and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
- Centre of Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - Jeannette Lechner-Scott
- Hunter Medical Research Institute, Immune Health research program, Newcastle, NSW, Australia
- Department of Neurology, John Hunter Hospital, Newcastle, NSW, Australia
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
19
|
Gray-Gaillard SL, Solis S, Chen HM, Monteiro C, Ciabattoni G, Samanovic MI, Cornelius AR, Williams T, Geesey E, Rodriguez M, Ortigoza MB, Ivanova EN, Koralov SB, Mulligan MJ, Herati RS. Inflammation durably imprints memory CD4+ T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2022.11.15.516351. [PMID: 36415470 PMCID: PMC9681040 DOI: 10.1101/2022.11.15.516351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Adaptive immune responses are induced by vaccination and infection, yet little is known about how CD4+ T cell memory differs when primed in these two contexts. Notably, viral infection is generally associated with higher levels of systemic inflammation than is vaccination. To assess whether the inflammatory milieu at the time of CD4+ T cell priming has long-term effects on memory, we compared Spike-specific memory CD4+ T cells in 22 individuals around the time of the participants' third SARS-CoV-2 mRNA vaccination, with stratification by whether the participants' first exposure to Spike was via virus or mRNA vaccine. Multimodal single-cell profiling of Spike-specific CD4+ T cells revealed 755 differentially expressed genes that distinguished infection- and vaccine-primed memory CD4+ T cells. Spike-specific CD4+ T cells from infection-primed individuals had strong enrichment for cytotoxicity and interferon signaling genes, whereas Spike-specific CD4+ T cells from vaccine-primed individuals were enriched for proliferative pathways by gene set enrichment analysis. Moreover, Spike-specific memory CD4+ T cells established by infection had distinct epigenetic landscapes driven by enrichment of IRF-family transcription factors, relative to T cells established by mRNA vaccination. This transcriptional imprint was minimally altered following subsequent mRNA vaccination or breakthrough infection, reflecting the strong bias induced by the inflammatory environment during initial memory differentiation. Together, these data suggest that the inflammatory context during CD4+ T cell priming is durably imprinted in the memory state at transcriptional and epigenetic levels, which has implications for personalization of vaccination based on prior infection history.
Collapse
Affiliation(s)
| | - Sabrina Solis
- Department of Medicine, New York University Grossman School of Medicine; New York, NY, USA
| | - Han M. Chen
- Department of Medicine, New York University Grossman School of Medicine; New York, NY, USA
| | - Clarice Monteiro
- Department of Medicine, New York University Grossman School of Medicine; New York, NY, USA
| | - Grace Ciabattoni
- Department of Microbiology, New York University School of Medicine; New York, NY, USA
| | - Marie I. Samanovic
- Department of Medicine, New York University Grossman School of Medicine; New York, NY, USA
| | - Amber R. Cornelius
- Department of Medicine, New York University Grossman School of Medicine; New York, NY, USA
| | - Tijaana Williams
- Department of Medicine, New York University Grossman School of Medicine; New York, NY, USA
| | - Emilie Geesey
- Department of Medicine, New York University Grossman School of Medicine; New York, NY, USA
| | - Miguel Rodriguez
- Department of Medicine, New York University Grossman School of Medicine; New York, NY, USA
| | - Mila Brum Ortigoza
- Department of Medicine, New York University Grossman School of Medicine; New York, NY, USA
| | - Ellie N. Ivanova
- Department of Pathology, New York University School of Medicine; New York, NY, USA
| | - Sergei B. Koralov
- Department of Pathology, New York University School of Medicine; New York, NY, USA
| | - Mark J. Mulligan
- Department of Medicine, New York University Grossman School of Medicine; New York, NY, USA
- Department of Microbiology, New York University School of Medicine; New York, NY, USA
| | - Ramin Sedaghat Herati
- Department of Medicine, New York University Grossman School of Medicine; New York, NY, USA
- Department of Microbiology, New York University School of Medicine; New York, NY, USA
| |
Collapse
|
20
|
Li W, Lin A, Qi L, Lv X, Yan S, Xue J, Mu N. Immunotherapy: A promising novel endometriosis therapy. Front Immunol 2023; 14:1128301. [PMID: 37138868 PMCID: PMC10150018 DOI: 10.3389/fimmu.2023.1128301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/29/2023] [Indexed: 05/05/2023] Open
Abstract
Endometriosis is a common disease of the female reproductive system and has malignant features. Although endometriosis by itself is a benign disease, its erosive growth characteristics lead to severe pelvic pain and female infertility. Unfortunately, several aspects of the pathogenesis of endometriosis are still unclear. Furthermore, the clinical therapeutic methods are unsatisfactory. The recurrence rate of endometriosis is high. Accumulating evidence suggests that the onset and development of endometriosis are closely related to the abnormal function of the female autoimmune system, especially the function of some immune cells such as the aggregation of neutrophils, abnormal differentiation of macrophages, decreased cytotoxicity of NK cells, and abnormal function of T- and B-cell lines. Therefore, immunotherapy is probably a novel therapeutic strategy for endometriosis besides surgery and hormone therapy. However, information regarding the clinical application of immunotherapy in the treatment of endometriosis is very limited. This article aimed to review the effects of existing immunomodulators on the development of endometriosis, including immune cell regulators and immune factor regulators. These immunomodulators clinically or experimentally inhibit the pathogenesis and development of endometriosis lesions by acting on the immune cells, immune factors, or immune-related signaling pathways. Thus, immunotherapy is probably a novel and effective clinical treatment choice for endometriosis. Experimental studies of the detailed mechanism of immunotherapy and large-scale clinical studies about the effectiveness and safety of this promising therapeutic method are required in the future.
Collapse
Affiliation(s)
- Wenshu Li
- Departments of Gynecology and Obstetrics, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, China
| | - Aimin Lin
- Departments of Gynecology and Obstetrics, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, China
- Departments of Gynecology and Obstetrics, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
| | - Lin Qi
- Departments of Gynecology and Obstetrics, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, China
| | - Xin Lv
- Departments of Gynecology and Obstetrics, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, China
| | - Shenghuan Yan
- Departments of Gynecology and Obstetrics, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, China
| | - Jing Xue
- Departments of Gynecology and Obstetrics, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, China
| | - Nan Mu
- Departments of Gynecology and Obstetrics, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, China
- Specialized Laboratory of Gynecology and Obstetrics, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, China
| |
Collapse
|
21
|
Kamyshnyi A, Koval H, Kobevko O, Buchynskyi M, Oksenych V, Kainov D, Lyubomirskaya K, Kamyshna I, Potters G, Moshynets O. Therapeutic Effectiveness of Interferon-α2b against COVID-19 with Community-Acquired Pneumonia: The Ukrainian Experience. Int J Mol Sci 2023; 24:ijms24086887. [PMID: 37108051 PMCID: PMC10138580 DOI: 10.3390/ijms24086887] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/26/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Despite several targeted antiviral drugs against SARS-CoV-2 currently being available, the application of type I interferons (IFNs) still deserves attention as an alternative antiviral strategy. This study aimed to assess the therapeutic effectiveness of IFN-α in hospitalized patients with COVID-19-associated pneumonia. The prospective cohort study included 130 adult patients with coronavirus disease (COVID-19). A dose of 80,000 IU of IFN-α2b was administered daily intranasally for 10 days. Adding IFN-α2b to standard therapy reduces the length of the hospital stay by 3 days (p < 0.001). The level of CT-diagnosed lung injuries was reduced from 35% to 15% (p = 0.011) and CT injuries decreased from 50% to 15% (p = 0.017) by discharge. In the group of patients receiving IFN-α2b, the SpO2 index before and after treatment increased from 94 (92-96, Q1-Q3) to 96 (96-98, Q1-Q3) (p < 0.001), while the percentage of patients with normal saturation increased (from 33.9% to 74.6%, p < 0.05), but the level of SpO2 decreased in the low (from 52.5% to 16.9%) and very low (from 13.6% to 8.5%) categories. The addition of IFN-α2b to standard therapy has a positive effect on the course of severe COVID-19.
Collapse
Affiliation(s)
- Aleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, Majdan Voli 1, 46001 Ternopil, Ukraine
| | - Halyna Koval
- Department of Clinical Immunology, Allergology and Endocrinology, Bukovinian State Medical University, Teatralnaya Square, 2, 58002 Chernivtsi, Ukraine
- Department of Infectious Disease, Chernivtsi Regional Clinical Hospital, Holovna, 137, 58000 Chernivtsi, Ukraine
| | - Olha Kobevko
- Department of Infectious Disease, Chernivtsi Regional Clinical Hospital, Holovna, 137, 58000 Chernivtsi, Ukraine
| | - Mykhailo Buchynskyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, Majdan Voli 1, 46001 Ternopil, Ukraine
| | - Valentyn Oksenych
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway
| | - Denis Kainov
- Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7028 Trondheim, Norway
| | - Katerina Lyubomirskaya
- Department of Obstetrics and Gynecology, Zaporizhzhia State Medical University, Maiakovskyi Avenue 26, 69000 Zaporizhzhia, Ukraine
| | - Iryna Kamyshna
- Department of Medical Rehabilitation, I. Horbachevsky Ternopil National Medical University, Majdan Voli 1, 46001 Ternopil, Ukraine
| | - Geert Potters
- Antwerp Maritime Academy, Noordkasteel Oost 6, 2030 Antwerp, Belgium
- Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Olena Moshynets
- Biofilm Study Group, Department of Cell Regulatory Mechanisms, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Zabolotnoho Str., 03680 Kyiv, Ukraine
| |
Collapse
|
22
|
Fraser R, Orta-Resendiz A, Mazein A, Dockrell DH. Upper respiratory tract mucosal immunity for SARS-CoV-2 vaccines. Trends Mol Med 2023; 29:255-267. [PMID: 36764906 PMCID: PMC9868365 DOI: 10.1016/j.molmed.2023.01.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023]
Abstract
SARS-CoV-2 vaccination significantly reduces morbidity and mortality, but has less impact on viral transmission rates, thus aiding viral evolution, and the longevity of vaccine-induced immunity rapidly declines. Immune responses in respiratory tract mucosal tissues are crucial for early control of infection, and can generate long-term antigen-specific protection with prompt recall responses. However, currently approved SARS-CoV-2 vaccines are not amenable to adequate respiratory mucosal delivery, particularly in the upper airways, which could account for the high vaccine breakthrough infection rates and limited duration of vaccine-mediated protection. In view of these drawbacks, we outline a strategy that has the potential to enhance both the efficacy and durability of existing SARS-CoV-2 vaccines, by inducing robust memory responses in the upper respiratory tract (URT) mucosa.
Collapse
Affiliation(s)
- Rupsha Fraser
- The University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
| | - Aurelio Orta-Resendiz
- Institut Pasteur, Université Paris Cité, HIV, Inflammation and Persistence Unit, F-75015 Paris, France
| | - Alexander Mazein
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - David H Dockrell
- The University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| |
Collapse
|
23
|
George PJ, Marches R, Nehar-Belaid D, Banchereau J, Lustigman S. The Th1/Tfh-like biased responses elicited by the rASP-1 innate adjuvant are dependent on TRIF and Type I IFN receptor pathways. Front Immunol 2022; 13:961094. [PMID: 36119026 PMCID: PMC9478378 DOI: 10.3389/fimmu.2022.961094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/12/2022] [Indexed: 11/23/2022] Open
Abstract
Ov-ASP-1 (rASP-1), a parasite-derived protein secreted by the helminth Onchocerca volvulus, is an adjuvant which enhances the potency of the influenza trivalent vaccine (IIV3), even when used with 40-fold less IIV3. This study is aimed to provide a deeper insight into the molecular networks that underline the adjuvanticity of rASP-1. Here we show that rASP-1 stimulates mouse CD11c+ bone marrow-derived dendritic (BMDCs) to secrete elevated levels of IL-12p40, TNF-α, IP-10 and IFN-β in a TRIF-dependent but MyD88-independent manner. rASP-1-activated BMDCs promoted the differentiation of naïve CD4+ T cells into Th1 cells (IFN-γ+) that was TRIF- and type I interferon receptor (IFNAR)-dependent, and into Tfh-like cells (IL21+) and Tfh1 (IFN-γ+ IL21+) that were TRIF-, MyD88- and IFNAR-dependent. rASP-1-activated BMDCs promoted the differentiation of naïve CD4+ T cells into Th17 (IL-17+) cells only when the MyD88 pathway was inhibited. Importantly, rASP-1-activated human blood cDCs expressed upregulated genes that are associated with DC maturation, type I IFN and type II IFN signaling, as well as TLR4-TRIF dependent signaling. These activated cDCs promoted the differentiation of naïve human CD4+ T cells into Th1, Tfh-like and Th17 cells. Our data thus confirms that the rASP-1 is a potent innate adjuvant that polarizes the adaptive T cell responses to Th1/Tfh1 in both mouse and human DCs. Notably, the rASP-1-adjuvanted IIV3 vaccine elicited protection of mice from a lethal H1N1 infection that is also dependent on the TLR4-TRIF axis and IFNAR signaling pathway, as well as on its ability to induce anti-IIV3 antibody production.
Collapse
Affiliation(s)
- Parakkal Jovvian George
- Laboratory Molecular Parasitology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, United States
| | - Radu Marches
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| | | | - Jacques Banchereau
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| | - Sara Lustigman
- Laboratory Molecular Parasitology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, United States
| |
Collapse
|
24
|
Li H, Boulougoura A, Endo Y, Tsokos GC. Abnormalities of T cells in systemic lupus erythematosus: new insights in pathogenesis and therapeutic strategies. J Autoimmun 2022; 132:102870. [PMID: 35872102 DOI: 10.1016/j.jaut.2022.102870] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 11/25/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by loss of immune tolerance and sustained production of autoantibodies. Multiple and profound T cell abnormalities in SLE are intertwined with disease expression. Both numerical and functional disturbances have been reported in main CD4+ T helper cell subsets including Th1, Th2, Th17, regulatory, and follicular helper cells. SLE CD4+ T cells are known to provide help to B cells, produce excessive IL-17 but insufficient IL-2, and infiltrate tissues. In the absence of sufficient amounts of IL-2, regulatory T cells, do not function properly to constrain inflammation. A complicated series of early signaling defects and aberrant activation of kinases and phosphatases result in complex cell phenotypes by altering the metabolic profile and the epigenetic landscape. All main metabolic pathways including glycolysis, glutaminolysis and oxidative phosphorylation are altered in T cells from lupus prone mice and patients with SLE. SLE CD8+ cytotoxic T cells display reduced cytolytic activity which accounts for higher rates of infection and the sustenance of autoimmunity. Further, CD8+ T cells in the context of rheumatic diseases lose the expression of CD8, acquire IL-17+CD4-CD8- double negative T (DNT) cell phenotype and infiltrate tissues. Herein we present an update on these T cell abnormalities along with underlying mechanisms and discuss how these advances can be exploited therapeutically. Novel strategies to correct these aberrations in T cells show promise for SLE treatment.
Collapse
Affiliation(s)
- Hao Li
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Afroditi Boulougoura
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Yushiro Endo
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - George C Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
25
|
Tsuji S, Reil K, Nelson K, Proclivo VH, McGuire KL, Giacalone MJ. Intravesical VAX014 Synergizes with PD-L1 Blockade to Enhance Local and Systemic Control of Bladder Cancer. Cancer Immunol Res 2022; 10:978-995. [PMID: 35679299 DOI: 10.1158/2326-6066.cir-21-0879] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 04/08/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022]
Abstract
Emerging clinical evidence indicates that the combination of local administration of immunotherapy with systemic immune checkpoint blockade targeting the PD-1/PD-L1 pathway improves response rates in select solid tumor indications; however, limited clinical experience with this approach exists in advanced bladder cancer patients. VAX014 is a novel bacterial minicell-based, integrin-targeted oncolytic agent undergoing clinical investigation for intravesical (IVE) treatment of non-muscle invasive bladder cancer. Here, we demonstrated that the antitumor activity of VAX014 following IVE administration was dependent upon CD4+ and CD8+ T cells in two syngeneic orthotopic bladder tumor models (MB49 and MBT-2). PD-L1 upregulation was found to be an acquired immune-resistance mechanism in the MB49 model, and the combination of VAX014 with systemic PD-L1 blockade resulted in a significant improvement in bladder tumor clearance rates and development of protective antitumor immunologic memory. Combination treatment also led to enhanced systemic antitumor immune responses capable of clearing distal intradermal tumors and controlling pulmonary metastasis. Distal tumors actively responding to combination therapy demonstrated a phenotypic shift from Treg to Th1 in intratumoral CD4+ T cells, which was accompanied by a higher percentage of activated CD8+ T cells and higher IFNγ. Finally, VAX014's target integrins α3β1 and α5β1 were overexpressed in tumor biopsies from advanced stage bladder cancer patients, as well as in both the MB49 and MBT-2 orthotopic mouse models of bladder cancer. These collective findings provide rationale for clinical investigation of VAX014 and systemic PD-1/PD-L1 blockade in advanced stage bladder cancer.
Collapse
Affiliation(s)
- Shingo Tsuji
- Vaxiion Therapeutics (United States), San Diego, United States
| | - Katherine Reil
- Vaxiion Therapeutics and San Diego State University, San Diego, United States
| | - Kinsey Nelson
- Vaxiion Therapeutics and San Diego State University, San Diego, CA, United States
| | | | | | | |
Collapse
|
26
|
OUP accepted manuscript. Rheumatology (Oxford) 2022; 61:4547-4557. [DOI: 10.1093/rheumatology/keac112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/11/2022] [Indexed: 11/14/2022] Open
|
27
|
Kuka M, Iannacone M. Heterogeneity in antiviral B cell responses: Lessons from the movies. Immunol Rev 2021; 306:224-233. [PMID: 34811768 DOI: 10.1111/imr.13041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 11/29/2022]
Abstract
Humoral and cellular responses to viral infections coexist in a dynamic equilibrium that often results in efficient viral clearance. However, in some infections one of the two responses prevails, for instance when an overactivation of cytotoxic T cells is accompanied by weak and insufficient antibody responses. Although the cellular response is usually sufficient to control a primary viral infection, in some cases clearance is not complete and persistent infections ensue. In order to design effective therapeutic or vaccination strategies aiming at inducing early and potent neutralizing antibody responses, a deep knowledge of the cellular and molecular determinants of antiviral immune responses is needed. Here, we review our understanding on the spatiotemporal dynamics of antiviral humoral immune responses, with a particular focus on recent studies using intravital imaging approaches as an insightful complement to more traditional techniques.
Collapse
Affiliation(s)
- Mirela Kuka
- Division of Immunology, Transplantation and Infectious Diseases and Experimental Imaging Center, IRCCS San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Milan, Italy
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases and Experimental Imaging Center, IRCCS San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
28
|
Minnaert AK, Vanluchene H, Verbeke R, Lentacker I, De Smedt SC, Raemdonck K, Sanders NN, Remaut K. Strategies for controlling the innate immune activity of conventional and self-amplifying mRNA therapeutics: Getting the message across. Adv Drug Deliv Rev 2021; 176:113900. [PMID: 34324884 PMCID: PMC8325057 DOI: 10.1016/j.addr.2021.113900] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023]
Abstract
The recent approval of messenger RNA (mRNA)-based vaccines to combat the SARS-CoV-2 pandemic highlights the potential of both conventional mRNA and self-amplifying mRNA (saRNA) as a flexible immunotherapy platform to treat infectious diseases. Besides the antigen it encodes, mRNA itself has an immune-stimulating activity that can contribute to vaccine efficacy. This self-adjuvant effect, however, will interfere with mRNA translation and may influence the desired therapeutic outcome. To further exploit its potential as a versatile therapeutic platform, it will be crucial to control mRNA's innate immune-stimulating properties. In this regard, we describe the mechanisms behind the innate immune recognition of mRNA and provide an extensive overview of strategies to control its innate immune-stimulating activity. These strategies range from modifications to the mRNA backbone itself, optimization of production and purification processes to the combination with innate immune inhibitors. Furthermore, we discuss the delicate balance of the self-adjuvant effect in mRNA vaccination strategies, which can be both beneficial and detrimental to the therapeutic outcome.
Collapse
Affiliation(s)
- An-Katrien Minnaert
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - Helena Vanluchene
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - Rein Verbeke
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - Ine Lentacker
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - Stefaan C De Smedt
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - Koen Raemdonck
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - Niek N Sanders
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - Katrien Remaut
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
29
|
Bencze D, Fekete T, Pázmándi K. Type I Interferon Production of Plasmacytoid Dendritic Cells under Control. Int J Mol Sci 2021; 22:ijms22084190. [PMID: 33919546 PMCID: PMC8072550 DOI: 10.3390/ijms22084190] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022] Open
Abstract
One of the most powerful and multifaceted cytokines produced by immune cells are type I interferons (IFNs), the basal secretion of which contributes to the maintenance of immune homeostasis, while their activation-induced production is essential to effective immune responses. Although, each cell is capable of producing type I IFNs, plasmacytoid dendritic cells (pDCs) possess a unique ability to rapidly produce large amounts of them. Importantly, type I IFNs have a prominent role in the pathomechanism of various pDC-associated diseases. Deficiency in type I IFN production increases the risk of more severe viral infections and the development of certain allergic reactions, and supports tumor resistance; nevertheless, its overproduction promotes autoimmune reactions. Therefore, the tight regulation of type I IFN responses of pDCs is essential to maintain an adequate level of immune response without causing adverse effects. Here, our goal was to summarize those endogenous factors that can influence the type I IFN responses of pDCs, and thus might serve as possible therapeutic targets in pDC-associated diseases. Furthermore, we briefly discuss the current therapeutic approaches targeting the pDC-type I IFN axis in viral infections, cancer, autoimmunity, and allergy, together with their limitations defined by the Janus-faced nature of pDC-derived type I IFNs.
Collapse
Affiliation(s)
- Dóra Bencze
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary; (D.B.); (T.F.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary
| | - Tünde Fekete
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary; (D.B.); (T.F.)
| | - Kitti Pázmándi
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary; (D.B.); (T.F.)
- Correspondence: ; Tel./Fax: +36-52-417-159
| |
Collapse
|
30
|
Hou P, Yang K, Jia P, Liu L, Lin Y, Li Z, Li J, Chen S, Guo S, Pan J, Wu J, Peng H, Zeng W, Li C, Liu Y, Guo D. A novel selective autophagy receptor, CCDC50, delivers K63 polyubiquitination-activated RIG-I/MDA5 for degradation during viral infection. Cell Res 2021; 31:62-79. [PMID: 32612200 PMCID: PMC7852694 DOI: 10.1038/s41422-020-0362-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023] Open
Abstract
Autophagy is a conserved process that delivers cytosolic substances to the lysosome for degradation, but its direct role in the regulation of antiviral innate immunity remains poorly understood. Here, through high-throughput screening, we discovered that CCDC50 functions as a previously unknown autophagy receptor that negatively regulates the type I interferon (IFN) signaling pathway initiated by RIG-I-like receptors (RLRs), the sensors for RNA viruses. The expression of CCDC50 is enhanced by viral infection, and CCDC50 specifically recognizes K63-polyubiquitinated RLRs, thus delivering the activated RIG-I/MDA5 for autophagic degradation. The association of CCDC50 with phagophore membrane protein LC3 is confirmed by crystal structure analysis. In contrast to other known autophagic cargo receptors that associate with either the LIR-docking site (LDS) or the UIM-docking site (UDS) of LC3, CCDC50 can bind to both LDS and UDS, representing a new type of cargo receptor. In mouse models with RNA virus infection, CCDC50 deficiency reduces the autophagic degradation of RIG-I/MDA5 and promotes type I IFN responses, resulting in enhanced viral resistance and improved survival rates. These results reveal a new link between autophagy and antiviral innate immune responses and provide additional insights into the regulatory mechanisms of RLR-mediated antiviral signaling.
Collapse
Affiliation(s)
- Panpan Hou
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Studies (CIIS), Seventh Affiliated Hospital, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Kongxiang Yang
- Modern Virology Research Centre, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Penghui Jia
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Studies (CIIS), Seventh Affiliated Hospital, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Lan Liu
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Studies (CIIS), Seventh Affiliated Hospital, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Yuxin Lin
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Studies (CIIS), Seventh Affiliated Hospital, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Zibo Li
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Studies (CIIS), Seventh Affiliated Hospital, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Jun Li
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Studies (CIIS), Seventh Affiliated Hospital, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Shuliang Chen
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Shuting Guo
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Ji'An Pan
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Studies (CIIS), Seventh Affiliated Hospital, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Junyu Wu
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Studies (CIIS), Seventh Affiliated Hospital, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Hong Peng
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Studies (CIIS), Seventh Affiliated Hospital, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Weijie Zeng
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Studies (CIIS), Seventh Affiliated Hospital, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Chunmei Li
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Studies (CIIS), Seventh Affiliated Hospital, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Yingfang Liu
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Studies (CIIS), Seventh Affiliated Hospital, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Deyin Guo
- MOE Key Laboratory of Tropical Disease Control, Centre for Infection and Immunity Studies (CIIS), Seventh Affiliated Hospital, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| |
Collapse
|
31
|
A Zika Vaccine Generated Using the Chimeric Insect-Specific Binjari Virus Platform Protects against Fetal Brain Infection in Pregnant Mice. Vaccines (Basel) 2020; 8:vaccines8030496. [PMID: 32887302 PMCID: PMC7564101 DOI: 10.3390/vaccines8030496] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023] Open
Abstract
Zika virus (ZIKV) is the etiological agent of congenital Zika syndrome (CZS), a spectrum of birth defects that can lead to life-long disabilities. A range of vaccines are in development with the target population including pregnant women and women of child-bearing age. Using a recently described chimeric flavivirus vaccine technology based on the novel insect-specific Binjari virus (BinJV), we generated a ZIKV vaccine (BinJ/ZIKA-prME) and illustrate herein its ability to protect against fetal brain infection. Female IFNAR−/− mice were vaccinated once with unadjuvanted BinJ/ZIKA-prME, were mated, and at embryonic day 12.5 were challenged with ZIKVPRVABC59. No infectious ZIKV was detected in maternal blood, placenta, or fetal heads in BinJ/ZIKA-prME-vaccinated mice. A similar result was obtained when the more sensitive qRT PCR methodology was used to measure the viral RNA. BinJ/ZIKA-prME vaccination also did not result in antibody-dependent enhancement of dengue virus infection or disease. BinJ/ZIKA-prME thus emerges as a potential vaccine candidate for the prevention of CSZ.
Collapse
|
32
|
Mazucanti CH, Egan JM. SARS-CoV-2 disease severity and diabetes: why the connection and what is to be done? IMMUNITY & AGEING 2020; 17:21. [PMID: 32612666 PMCID: PMC7325192 DOI: 10.1186/s12979-020-00192-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/17/2020] [Indexed: 01/20/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel virus responsible for the current coronavirus disease 2019 (COVID-19) pandemic, has infected over 3.5 million people all over the world since the first case was reported from Wuhan, China 5 months ago. As more epidemiological data regarding COVID-19 patients is acquired, factors that increase the severity of the infection are being identified and reported. One of the most consistent co-morbidities associated with worse outcome in COVID-19 patients is diabetes, along with age and cardiovascular disease. Studies on the association of diabetes with other acute respiratory infections, namely SARS, MERS, and Influenza, outline what seems to be an underlying factor in diabetic patients that makes them more susceptible to complications. In this review we summarize what we think may be the factors driving this pattern between diabetes, aging and poor outcomes in respiratory infections. We also review therapeutic considerations and strategies for treatment of COVID-19 in diabetic patients, and how the additional challenge of this co-morbidity requires attention to glucose homeostasis so as to achieve the best outcomes possible for patients.
Collapse
Affiliation(s)
- Caio Henrique Mazucanti
- National Institute on Aging, Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD 21224 USA
| | - Josephine Mary Egan
- National Institute on Aging, Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD 21224 USA
| |
Collapse
|
33
|
Abdkarimi S, Razi Soofiyani S, Elham G, Mashhadi Abdolahi H, Safarzadeh E, Baradaran B. Targeting immune checkpoints: Building better therapeutic puzzle in pancreatic cancer combination therapy. Eur J Cancer Care (Engl) 2020; 29:e13268. [PMID: 32459388 DOI: 10.1111/ecc.13268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/30/2020] [Accepted: 04/30/2020] [Indexed: 12/24/2022]
Abstract
Pancreatic cancer is related to a very weak diagnosis; the close parallel between disease incidence and mortality rates from pancreatic cancer reflects the fatal nature of this disease. Although early detection procedures are growing, they are not applicable yet for pancreatic cancer. The majority of cancer patients suffer from advanced disease, in which surgery has no potential effect. Based on the growing evidence, it is predicated that cancer immunotherapy alone or in combination will probably be an essential section of different cancer treatment methods. There are different kinds of immune processes, including various antitumour and tumour-promoting leukocytes. Moreover, tumour cells utilise numerous approaches to overwhelm the immune response. Use of antibody in the therapeutic protocols is proving significant success and is probably a key element of cancer treatment. This method is directed against numerous negative immunologic regulators and immune checkpoints. In the present review, the clinical outlines of immune checkpoint inhibition are discussed in pancreatic cancer.
Collapse
Affiliation(s)
- Sina Abdkarimi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saiedeh Razi Soofiyani
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Goli Elham
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Mashhadi Abdolahi
- Tabriz Health Services Management Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Safarzadeh
- Department of Immunology and Microbiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
34
|
Spatiotemporal regulation of type I interferon expression determines the antiviral polarization of CD4 + T cells. Nat Immunol 2020; 21:321-330. [PMID: 32066949 PMCID: PMC7043938 DOI: 10.1038/s41590-020-0596-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 01/10/2020] [Indexed: 01/01/2023]
Abstract
Differentiation of CD4+ T cells into either follicular helper T (TFH) or type 1 helper T (TH1) cells influences the balance between humoral and cellular adaptive immunity, but the mechanisms whereby pathogens elicit distinct effector cells are incompletely understood. Here, we analyzed the spatiotemporal dynamics of CD4+ T cells during infection with recombinant vesicular stomatitis virus (VSV), which induces early, potent neutralizing antibodies or recombinant lymphocytic choriomeningitis virus (LCMV), which induces a vigorous cellular response, but inefficient neutralizing antibodies, expressing the same T cell epitope. Early exposure of dendritic cells to type I interferon (IFN), which occurred during infection with VSV, induced the production of the cytokine IL-6 and drove TFH cell polarization, while late exposure to type I IFN, which occurred during infection with LCMV, did not induce IL-6 and allowed differentiation into TH1 cells. Thus, tight spatiotemporal regulation of type I IFN shapes antiviral CD4+ T cell differentiation, and might instruct vaccine design strategies.
Collapse
|
35
|
Kotlyar A, Taylor HS, D'Hooghe TM. Use of immunomodulators to treat endometriosis. Best Pract Res Clin Obstet Gynaecol 2019; 60:56-65. [DOI: 10.1016/j.bpobgyn.2019.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/17/2019] [Accepted: 06/24/2019] [Indexed: 12/12/2022]
|