1
|
Daniels MA, Teixeiro E. The NF-κB signaling network in the life of T cells. Front Immunol 2025; 16:1559494. [PMID: 40370445 PMCID: PMC12075310 DOI: 10.3389/fimmu.2025.1559494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 04/07/2025] [Indexed: 05/16/2025] Open
Abstract
NF-κB is a crucial transcription factor in lymphocyte signaling. It is activated by environmental cues that drive lymphocyte differentiation to combat infections and cancer. As a key player in inflammation, NF-κB also significantly impacts autoimmunity and transplant rejection, making it an important therapeutic target. While the signaling molecules regulating this pathway are well-studied, the effect of changes in NF-κB signaling levels on T lymphocyte differentiation, fate, and function is not fully understood. Advances in computational biology and new NF-κB-inducible animal models are beginning to clarify these questions. In this review, we highlight recent findings related to T cells, focusing on how environmental cues affecting NF-κB signaling levels determine T cell fate and function.
Collapse
Affiliation(s)
- Mark A. Daniels
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, United States
- Roy Blunt NextGen Precision Health Building, University of Missouri, Columbia, MO, United States
| | - Emma Teixeiro
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, United States
- Roy Blunt NextGen Precision Health Building, University of Missouri, Columbia, MO, United States
| |
Collapse
|
2
|
Public and private human T-cell clones respond differentially to HCMV antigen when boosted by CD3 copotentiation. Blood Adv 2021; 4:5343-5356. [PMID: 33125463 DOI: 10.1182/bloodadvances.2020002255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/17/2020] [Indexed: 12/16/2022] Open
Abstract
Human cytomegalovirus (HCMV) induces long-lasting T-cell immune responses that control but do not clear infection. Typical responses involve private T-cell clones, expressing T-cell antigen receptors (TCRs) unique to a person, and public T-cell clones with identical TCRs active in different people. Here, we report the development of a pretherapeutic immunostimulation modality against HCMV for human T cells, CD3 copotentiation, and the clonal analysis of its effects in recall assays at single-cell resolution. CD3 copotentiation of human T cells required identification of an intrinsically inert anti-CD3 Fab fragment that conditionally augmented signaling only when TCR was coengaged with antigen. When applied in recall assays, CD3 copotentiation enhanced the expansion of both public and private T-cell clones responding to autologous HLA-A2(+) antigen-presenting cells and immunodominant NLVPMVATV (NLV) peptide from HCMV pp65 protein. Interestingly, public vs private TCR expression was associated with distinct clonal expansion signatures in response to recall stimulus. This implied that besides possible differences in their generation and selection in an immune response, public and private T cells may respond differently to pharmacoimmunomodulation. Furthermore, a third clonal expansion profile was observed upon CD3 copotentiation of T-cell clones from HLA-A2(-) donors and 1 HLA-A2(+) presumed-uninfected donor, where NLV was of low intrinsic potency. We conclude that human T-cell copotentiation can increase the expansion of different classes of T-cell clones responding to recall antigens of different strengths, and this may be exploitable for therapeutic development against chronic, persistent infections such as HCMV.
Collapse
|
3
|
Neier SC, Ferrer A, Wilton KM, Smith SEP, Kelcher AMH, Pavelko KD, Canfield JM, Davis TR, Stiles RJ, Chen Z, McCluskey J, Burrows SR, Rossjohn J, Hebrink DM, Carmona EM, Limper AH, Kappes DJ, Wettstein PJ, Johnson AJ, Pease LR, Daniels MA, Neuhauser C, Gil D, Schrum AG. The early proximal αβ TCR signalosome specifies thymic selection outcome through a quantitative protein interaction network. Sci Immunol 2020; 4:4/32/eaal2201. [PMID: 30770409 DOI: 10.1126/sciimmunol.aal2201] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/17/2019] [Indexed: 12/18/2022]
Abstract
During αβ T cell development, T cell antigen receptor (TCR) engagement transduces biochemical signals through a protein-protein interaction (PPI) network that dictates dichotomous cell fate decisions. It remains unclear how signal specificity is communicated, instructing either positive selection to advance cell differentiation or death by negative selection. Early signal discrimination might occur by PPI signatures differing qualitatively (customized, unique PPI combinations for each signal), quantitatively (graded amounts of a single PPI series), or kinetically (speed of PPI pathway progression). Using a novel PPI network analysis, we found that early TCR-proximal signals distinguishing positive from negative selection appeared to be primarily quantitative in nature. Furthermore, the signal intensity of this PPI network was used to find an antigen dose that caused a classic negative selection ligand to induce positive selection of conventional αβ T cells, suggesting that the quantity of TCR triggering was sufficient to program selection outcome. Because previous work had suggested that positive selection might involve a qualitatively unique signal through CD3δ, we reexamined the block in positive selection observed in CD3δ0 mice. We found that CD3δ0 thymocytes were inhibited but capable of signaling positive selection, generating low numbers of MHC-dependent αβ T cells that expressed diverse TCR repertoires and participated in immune responses against infection. We conclude that the major role for CD3δ in positive selection is to quantitatively boost the signal for maximal generation of αβ T cells. Together, these data indicate that a quantitative network signaling mechanism through the early proximal TCR signalosome determines thymic selection outcome.
Collapse
Affiliation(s)
- Steven C Neier
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA.,Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Alejandro Ferrer
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Katelynn M Wilton
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA.,Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN, USA.,Medical Scientist Training Program, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Stephen E P Smith
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - April M H Kelcher
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA.,Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN, USA.,Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Kevin D Pavelko
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Jenna M Canfield
- Molecular Pathogenesis and Therapeutics PhD Graduate Program, University of Missouri, Columbia, MO, USA
| | - Tessa R Davis
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Robert J Stiles
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Zhenjun Chen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Scott R Burrows
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia.,School of Medicine, University of Queensland, Brisbane, Queensland 4006, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia.,Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Deanne M Hebrink
- Thoracic Diseases Research Unit, Division of Pulmonary Critical Care and Internal Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Eva M Carmona
- Thoracic Diseases Research Unit, Division of Pulmonary Critical Care and Internal Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Andrew H Limper
- Thoracic Diseases Research Unit, Division of Pulmonary Critical Care and Internal Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Dietmar J Kappes
- Blood Cell Development and Cancer Keystone, Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Peter J Wettstein
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA.,Department of Surgery, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Aaron J Johnson
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA.,Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Larry R Pease
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Mark A Daniels
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA.,Department of Surgery, School of Medicine, University of Missouri, Columbia, MO, USA
| | | | - Diana Gil
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA. .,Department of Surgery, School of Medicine, University of Missouri, Columbia, MO, USA.,Department of Bioengineering, College of Engineering, University of Missouri, Columbia, MO, USA
| | - Adam G Schrum
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA. .,Department of Surgery, School of Medicine, University of Missouri, Columbia, MO, USA.,Department of Bioengineering, College of Engineering, University of Missouri, Columbia, MO, USA
| |
Collapse
|
4
|
Schamel WW, Alarcon B, Minguet S. The TCR is an allosterically regulated macromolecular machinery changing its conformation while working. Immunol Rev 2020; 291:8-25. [PMID: 31402501 DOI: 10.1111/imr.12788] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 05/30/2019] [Indexed: 12/13/2022]
Abstract
The αβ T-cell receptor (TCR) is a multiprotein complex controlling the activation of T cells. Although the structure of the complete TCR is not known, cumulative evidence supports that the TCR cycles between different conformational states that are promoted either by thermal motion or by force. These structural transitions determine whether the TCR engages intracellular effectors or not, regulating TCR phosphorylation and signaling. As for other membrane receptors, ligand binding selects and stabilizes the TCR in active conformations, and/or switches the TCR to activating states that were not visited before ligand engagement. Here we review the main models of TCR allostery, that is, ligand binding at TCRαβ changes the structure at CD3 and ζ. (a) The ITAM and proline-rich sequence exposure model, in which the TCR's cytoplasmic tails shield each other and ligand binding exposes them for phosphorylation. (b) The membrane-ITAM model, in which the CD3ε and ζ tails are sequestered inside the membrane and again ligand binding exposes them. (c) The mechanosensor model in which ligand binding exerts force on the TCR, inducing structural changes that allow signaling. Since these models are complementary rather than competing, we propose a unified model that aims to incorporate all existing data.
Collapse
Affiliation(s)
- Wolfgang W Schamel
- Department of Immunology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Center of Chronic Immunodeficiency CCI, University Clinics and Medical Faculty, Freiburg, Germany
| | - Balbino Alarcon
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Susana Minguet
- Department of Immunology, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Center of Chronic Immunodeficiency CCI, University Clinics and Medical Faculty, Freiburg, Germany
| |
Collapse
|
5
|
Tao C, Shao H, Zhang W, Bo H, Wu F, Shen H, Huang S. γδTCR immunoglobulin constant region domain exchange in human αβTCRs improves TCR pairing without altering TCR gene-modified T cell function. Mol Med Rep 2017; 15:1555-1564. [PMID: 28259946 PMCID: PMC5365024 DOI: 10.3892/mmr.2017.6206] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 12/12/2016] [Indexed: 12/15/2022] Open
Abstract
The adoptive genetic transfer of T cell receptors (TCRs) has been shown to be overall feasible and offer clinical potential as a treatment for different types of cancer. However, this promising clinical approach is limited by the serious potential consequence that exogenous TCR mispairing with endogenous TCR chains may lead to the risk of self-reactivity. In the present study, domain-exchange and three-dimensional modeling strategies were used to create a set of chimeric TCR variants, which were used to exchange the partial or complete constant region of αβTCR with corresponding γδTCR domains. The expression, assembly and function of the chimeric TCR variants were examined in Jurkat T cells and peripheral mononuclear blood cells (PBMCs). Genetically-encoded chimeras were fused with a pair of fluorescent proteins (ECFP/EYFP) to monitor expression and the pairing between chimeric TCRα chains and TCRβ chains. The fluorescence energy transfer based on confocal laser scanning microscopy showed that the introduction of γδTCR constant sequences into the αβTCR did not result in a global reduction of mispairing with endogenous TCR. However, the TCR harboring the immunoglobulin-like domain of the γδTCR constant region (i.e., TCR∆IgC), showed a higher expression and preferential pairing, compared with wild-type (wt)TCR. The function analysis showed that TCR∆IgC exhibited the same levels of interferon-γ production and cytotoxic activity, compared with wtTCR. Furthermore, these modified TCR-transduced T cells retained the classic human leukocyte antigen restriction of the original TCR. The other two chimeric TCRs, had either exchange of the cp+tm+ic domain or exchange of the whole C domain (Fig. 1). Ultimately, exchange of these domains demonstrated defective function in the transduced T cells. Taken together, these findings may provide further understanding of the γδTCR constant domain with implications for the improvement of TCR gene transfer therapy.
Collapse
Affiliation(s)
- Changli Tao
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, P.R. China
| | - Hongwei Shao
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, P.R. China
| | - Wenfeng Zhang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, P.R. China
| | - Huaben Bo
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, P.R. China
| | - Fenglin Wu
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, P.R. China
| | - Han Shen
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, P.R. China
| | - Shulin Huang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, P.R. China
| |
Collapse
|
6
|
Goplen NP, Saxena V, Knudson KM, Schrum AG, Gil D, Daniels MA, Zamoyska R, Teixeiro E. IL-12 Signals through the TCR To Support CD8 Innate Immune Responses. THE JOURNAL OF IMMUNOLOGY 2016; 197:2434-43. [PMID: 27521342 DOI: 10.4049/jimmunol.1600037] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 07/13/2016] [Indexed: 01/19/2023]
Abstract
CD8 T cells must integrate antigenic and inflammatory signals to differentiate into efficient effector and memory T cells able to protect us from infections. The mechanisms by which TCR signaling and proinflammatory cytokine receptor signaling cooperate in these processes are poorly defined. In this study, we show that IL-12 and other proinflammatory cytokines transduce signals through the TCR signalosome in a manner that requires Fyn activity and self-peptide-MHC (self-pMHC) interactions. This mechanism is crucial for CD8 innate T cell functions. Loss of Fyn activity or blockade of self-pMHC interactions severely impaired CD8 T cell IFN-γ and NKG2D expression, proliferation, and cytotoxicity upon cytokine-mediated bystander activation. Most importantly, in the absence of self-pMHC interactions, CD8 memory T cells fail to undergo bystander activation upon an unrelated infection. Thus, CD8 T cell bystander activation, although independent of cognate Ag, still requires self-pMHC and TCR signaling.
Collapse
Affiliation(s)
- Nicholas P Goplen
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212
| | - Vikas Saxena
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212
| | - Karin M Knudson
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212
| | - Adam G Schrum
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN 55905; and
| | - Diana Gil
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN 55905; and
| | - Mark A Daniels
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212
| | - Rose Zamoyska
- Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, Ashworth Laboratories, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
| | - Emma Teixeiro
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212;
| |
Collapse
|
7
|
Knudson KM, Hamilton SE, Daniels MA, Jameson SC, Teixeiro E. Cutting edge: The signals for the generation of T cell memory are qualitatively different depending on TCR ligand strength. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 191:5797-5801. [PMID: 24244018 PMCID: PMC9037717 DOI: 10.4049/jimmunol.1300905] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
CD8 T cell memory critically contributes to long-term immunity. Both low- and high-affinity TCR signals are able to support the differentiation of memory CD8 T cells. However, it is unclear whether the requirements for memory development change when TCR signal strength is altered. To gain further insight into this question, we used a TCRβ transmembrane domain mutant model that is defective in the generation of memory in response to high-affinity ligands. Surprisingly, lowering TCR signal strength, by stimulation with low-affinity ligands, resulted in normal memory development. Restoration of memory correlated with recovery of TCR-dependent NF-κB signaling. Thus, these data provide novel evidence that the requirements for memory are qualitatively different depending on TCR signal strength.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Adoptive Transfer
- Animals
- Antigens/immunology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/transplantation
- Gene Expression Regulation/immunology
- Immunologic Memory/immunology
- Immunomagnetic Separation
- Ligands
- Listeria monocytogenes/immunology
- Listeriosis/immunology
- Lymphocyte Count
- Lymphopenia/immunology
- Lymphopoiesis
- Mice
- Mice, Congenic
- Mice, Inbred C57BL
- Mice, Transgenic
- NF-kappa B/physiology
- Ovalbumin/immunology
- Peptide Fragments/immunology
- Point Mutation
- Protein Structure, Tertiary/genetics
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/transplantation
Collapse
Affiliation(s)
- Karin M. Knudson
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212
| | - Sara E. Hamilton
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55454
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55454
| | - Mark A. Daniels
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212
| | - Stephen C. Jameson
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55454
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55454
| | - Emma Teixeiro
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212
| |
Collapse
|
8
|
Cunningham CA, Knudson KM, Peng BJ, Teixeiro E, Daniels MA. The POSH/JIP-1 scaffold network regulates TCR-mediated JNK1 signals and effector function in CD8+T cells. Eur J Immunol 2013; 43:3361-71. [DOI: 10.1002/eji.201343635] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 07/15/2013] [Accepted: 08/16/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Cody A. Cunningham
- Department of Molecular Microbiology and Immunology & Department of Surgery; Center for Cellular and Molecular Immunology, School of Medicine, University of Missouri; Columbia MO USA
| | - Karin M. Knudson
- Department of Molecular Microbiology and Immunology & Department of Surgery; Center for Cellular and Molecular Immunology, School of Medicine, University of Missouri; Columbia MO USA
| | - Binghao J. Peng
- Department of Molecular Microbiology and Immunology & Department of Surgery; Center for Cellular and Molecular Immunology, School of Medicine, University of Missouri; Columbia MO USA
| | - Emma Teixeiro
- Department of Molecular Microbiology and Immunology & Department of Surgery; Center for Cellular and Molecular Immunology, School of Medicine, University of Missouri; Columbia MO USA
| | - Mark A. Daniels
- Department of Molecular Microbiology and Immunology & Department of Surgery; Center for Cellular and Molecular Immunology, School of Medicine, University of Missouri; Columbia MO USA
| |
Collapse
|
9
|
Kuhns MS, Badgandi HB. Piecing together the family portrait of TCR-CD3 complexes. Immunol Rev 2013; 250:120-43. [PMID: 23046126 DOI: 10.1111/imr.12000] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The pre-T-cell receptor (TCR)-, αβTCR-, and γδTCR-CD3 complexes are members of a family of modular biosensors that are responsible for driving T-cell development, activation, and effector functions. They inform essential checkpoint decisions by relaying key information from their ligand-binding modules (TCRs) to their signaling modules (CD3γε + CD3δε and CD3ζζ) and on to the intracellular signaling apparatus. Their actions shape the T-cell repertoire, as well as T-cell-mediated immunity; yet, the mechanisms that underlie their activity remain an enigma. As with any molecular machine, understanding how they function depends upon understanding how their parts fit and work together. In the 30 years since the initial biochemical and genetic characterizations of the αβTCR, the structure and function of the individual components of these family members have been extensively characterized. Cumulatively, this information has allowed us to piece together a portrait of the αβTCR-CD3 complex and outline the form of the remaining family members. Here we review the known structural and functional characteristics of the components of these TCR-CD3 complex family members. We then discuss how these data have informed our understanding of the architecture of the αβTCR-CD3 complex as well as their implications for the other family members. The intent is to provide a framework for considering: (i) how these thematically similar complexes diverge to execute their specific functions and (ii) how our knowledge of the form and function of these distinct family members can cross-inform our understanding of the other family members.
Collapse
Affiliation(s)
- Michael S Kuhns
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, USA.
| | | |
Collapse
|
10
|
Bida AT, Gil D, Schrum AG. Multiplex IP-FCM (immunoprecipitation-flow cytometry): Principles and guidelines for assessing physiologic protein-protein interactions in multiprotein complexes. Methods 2011; 56:154-60. [PMID: 21945581 DOI: 10.1016/j.ymeth.2011.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 09/05/2011] [Accepted: 09/09/2011] [Indexed: 12/13/2022] Open
Abstract
There is significant interest in the development of methods with the potential to increase access to 'the interactome' for both experimental and clinical applications. Immunoprecipitation detected by flow cytometry (IP-FCM) is a robust, biochemical method that can be used for measuring physiologic protein-protein interactions (PPI) in multiprotein complexes (MPC) with high sensitivity. Because it is based on antibody-mediated capture of protein complexes onto microspheres, IP-FCM is potentially compatible with a multiplex platform that could allow simultaneous assessment of many physiologic PPI. Here, we consider the principles of ambient analyte conditions (AAC) and inter-bead independence, and provide a template set of experiments showing how to convert singleplex IP-FCM to multiplex IP-FCM, including assays to confirm the validity of the experimental conditions for data acquisition. We conclude that singleplex IP-FCM can be successfully upgraded to multiplex format, and propose that the unique strengths of multiplex IP-FCM make it a method that is likely to facilitate the acquisition of new PPI data from primary cell sources.
Collapse
Affiliation(s)
- Anya T Bida
- Mayo Clinic College of Medicine, Department of Immunology, Rochester, MN, USA
| | | | | |
Collapse
|
11
|
Schrum AG, Gil D, Turka LA, Palmer E. Physical and functional bivalency observed among TCR/CD3 complexes isolated from primary T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 187:870-8. [PMID: 21666056 PMCID: PMC3131427 DOI: 10.4049/jimmunol.1100538] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Unlike BCR and secreted Ig, TCR expression is not thought to occur in a bivalent form. The conventional monovalent model of TCR/CD3 is supported by published studies of complexes solubilized in the detergent digitonin, in which bivalency was not observed. We revisited the issue of TCR valency by examining complexes isolated from primary αβ T cells after solubilization in digitonin. Using immunoprecipitation followed by flow cytometry, we unexpectedly observed TCR/CD3 complexes that contained two TCRs per complex. Standard anti-TCR Abs, being bivalent themselves, tended to bind with double occupancy to bivalent TCRs; this property masked the presence of the second TCR per complex in certain Ab binding assays, which may partially explain why previous data did not reveal these bivalent complexes. We also found that the prevalence of bivalency among fully assembled, mature TCR/CD3 complexes was sufficient to impact the functional performance of immunoprecipitated TCRs in binding antigenic peptide/MHC-Ig fusion proteins. Both TCR positions per bivalent complex required an Ag-specific TCR to effect optimal binding to these soluble ligands. Therefore, we conclude that in primary T cells, TCR/CD3 complexes can be found that are physically and functionally bivalent. The expression of bivalent TCR/CD3 complexes has implications regarding potential mechanisms by which Ag may trigger signaling. It also suggests the possibility that the potential for bivalent expression could represent a general feature of Ag receptors.
Collapse
MESH Headings
- Adaptive Immunity/genetics
- Animals
- CD3 Complex/genetics
- CD3 Complex/isolation & purification
- CD3 Complex/physiology
- Flow Cytometry
- Immunoprecipitation
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Protein Multimerization/genetics
- Protein Multimerization/immunology
- Receptor-CD3 Complex, Antigen, T-Cell/genetics
- Receptor-CD3 Complex, Antigen, T-Cell/isolation & purification
- Receptor-CD3 Complex, Antigen, T-Cell/physiology
- T-Lymphocyte Subsets/chemistry
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
Collapse
Affiliation(s)
- Adam G. Schrum
- Department of Immunology, 200 First Street SW, Mayo Clinic College of Medicine, Rochester MN, 55905, USA
- Department of Medicine, 415 Curie Blvd, University of Pennsylvania School of Medicine, Philadelphia PA, 19104, USA
- Laboratory of Transplantation Immunology and Nephrology, Department of Research, University Hospital-Basel, Hebelstrasse 20, 4031-Basel, Switzerland
| | - Diana Gil
- Department of Immunology, 200 First Street SW, Mayo Clinic College of Medicine, Rochester MN, 55905, USA
- Inmunología, Departamento de Microbiología I, Facultad de Medicina,Universidad Complutense de Madrid, Madrid 28043, Spain
| | - Laurence A. Turka
- Department of Medicine, 415 Curie Blvd, University of Pennsylvania School of Medicine, Philadelphia PA, 19104, USA
| | - Ed Palmer
- Laboratory of Transplantation Immunology and Nephrology, Department of Research, University Hospital-Basel, Hebelstrasse 20, 4031-Basel, Switzerland
| |
Collapse
|
12
|
Abstract
Immunoprecipitation detected by flow cytometry (IP-FCM) is an efficient method for detecting and quantifying protein-protein interactions. The basic principle extends that of sandwich ELISA, wherein the captured primary analyte can be detected together with other molecules physically associated within multiprotein complexes. The procedure involves covalent coupling of polystyrene latex microbeads with immunoprecipitating monoclonal antibodies (mAb) specific for a protein of interest, incubating these beads with cell lysates, probing captured protein complexes with fluorochrome-conjugated probes, and analyzing bead-associated fluorescence by flow cytometry. IP-FCM is extremely sensitive, allows analysis of proteins in their native (non-denatured) state, and is amenable to either semi-quantitative or quantitative analysis. As additional advantages, IP-FCM requires no genetic engineering or specialized equipment, other than a flow cytometer, and it can be readily adapted for high-throughput applications.
Collapse
Affiliation(s)
- Tessa R Davis
- Department of Immunology, College of Medicine, Mayo Clinic, USA
| | | |
Collapse
|
13
|
Marcu-Malina V, van Dorp S, Kuball J. Re-targeting T-cells against cancer by gene-transfer of tumor-reactive receptors. Expert Opin Biol Ther 2010; 9:579-91. [PMID: 19368527 DOI: 10.1517/14712590902887018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Adoptive transfer of T-lymphocytes is a promising treatment for a variety of malignancies, but is often not feasible due to difficulties in generating T-cells reactive with the targeted antigen from patients. To facilitate rapid generation of cells for therapy, T-cells can be programmed with genes encoding for an antigen-specific T-cell receptor (TCR) or chimeric receptors. OBJECTIVE To discuss the molecular design and selected pitfalls of TCR gene modified T-cells and T-cells expressing chimeric receptors, so called T-bodies. METHODS A selected review of the recent literature. CONCLUSION Clinical trials report so far only limited efficacy of adoptively transferred genetically modified T-cells. However, the recent progress in engineering tumor-reactive T cells is providing a promising basis to further explore this treatment modality.
Collapse
Affiliation(s)
- Victoria Marcu-Malina
- Department of Hematology and VanCreveld Clinic, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | |
Collapse
|
14
|
Sigalov AB. The SCHOOL of nature: I. Transmembrane signaling. SELF/NONSELF 2010; 1:4-39. [PMID: 21559175 PMCID: PMC3091606 DOI: 10.4161/self.1.1.10832] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 11/30/2009] [Accepted: 12/01/2009] [Indexed: 11/19/2022]
Abstract
Receptor-mediated transmembrane signaling plays an important role in health and disease. Recent significant advances in our understanding of the molecular mechanisms linking ligand binding to receptor activation revealed previously unrecognized striking similarities in the basic structural principles of function of numerous cell surface receptors. In this work, I demonstrate that the Signaling Chain Homooligomerization (SCHOOL)-based mechanism represents a general biological mechanism of transmembrane signal transduction mediated by a variety of functionally unrelated single- and multichain activating receptors. within the SCHOOL platform, ligand binding-induced receptor clustering is translated across the membrane into protein oligomerization in cytoplasmic milieu. This platform resolves a long-standing puzzle in transmembrane signal transduction and reveals the major driving forces coupling recognition and activation functions at the level of protein-protein interactions-biochemical processes that can be influenced and controlled. The basic principles of transmembrane signaling learned from the SCHOOL model can be used in different fields of immunology, virology, molecular and cell biology and others to describe, explain and predict various phenomena and processes mediated by a variety of functionally diverse and unrelated receptors. Beyond providing novel perspectives for fundamental research, the platform opens new avenues for drug discovery and development.
Collapse
Affiliation(s)
- Alexander B Sigalov
- Department of Pathology; University of Massachusetts Medical School; Worcester, MA USA
| |
Collapse
|
15
|
Anderson SM, Khalil A, Uduman M, Hershberg U, Louzoun Y, Haberman AM, Kleinstein SH, Shlomchik MJ. Taking advantage: high-affinity B cells in the germinal center have lower death rates, but similar rates of division, compared to low-affinity cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 183:7314-25. [PMID: 19917681 PMCID: PMC4106706 DOI: 10.4049/jimmunol.0902452] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
B lymphocytes producing high-affinity Abs are critical for protection from extracellular pathogens, such as bacteria and parasites. The process by which high-affinity B cells are selected during the immune response has never been elucidated. Although it has been shown that high-affinity cells directly outcompete low-affinity cells in the germinal center (GC), whether there are also intrinsic differences between these cells has not been addressed. It could be that higher affinity cells proliferate more rapidly or are more likely to enter cell cycle, thereby outgrowing lower affinity cells. Alternatively, higher affinity cells could be relatively more resistant to cell death in the GC. By comparing high- and low-affinity B cells for the same Ag, we show here that low-affinity cells have an intrinsically higher death rate than do cells of higher affinity, even in the absence of competition. This suggests that selection in the GC reaction is due at least in part to the control of survival of higher affinity B cells and not by a proliferative advantage conferred upon these cells compared with lower affinity B cells. Control over survival rather than proliferation of low- and high-affinity B cells in the GC allows greater diversity not only in the primary response but also in the memory response.
Collapse
Affiliation(s)
- Shannon M Anderson
- Departments of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Schrum AG. Visualization of multiprotein complexes by flow cytometry. CURRENT PROTOCOLS IN IMMUNOLOGY 2009; Chapter 5:5.9.1-5.9.14. [PMID: 19918948 PMCID: PMC3398460 DOI: 10.1002/0471142735.im0509s87] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Multiprotein complexes and other protein-protein interactions play important roles in virtually all cellular processes. Analysis of coimmunoprecipitation of protein complexes by flow cytometry (IP-FCM, or "the fly-p" method) provides a sensitive means to measure these interactions in the native/nondenatured state. First, immunoprecipitating antibodies are covalently coupled to polystyrene latex beads whose low autofluorescence is compatible with flow cytometry. These antibody-coupled beads are used to immunoprecipitate a specific protein (primary analyte) present in cell lysates. Finally, the protein complexes associated with the beads are probed with fluorochrome-conjugated antibodies specific for interaction partners, or secondary analytes, that may be associated with the primary analyte. The use of quantitative flow cytometric methodology can allow the semiquantitative fluorescence data generated to be converted into estimated numbers of co-associated molecules on the beads. The method represents a robust technique to assess native protein-protein interactions without requiring genetic engineering or large sample sizes.
Collapse
Affiliation(s)
- Adam G Schrum
- Mayo Clinic College of Medicine, Rochester, Minnesota
| |
Collapse
|
17
|
N-terminal negatively charged residues in CD3varepsilon chains as a phylogenetically conserved trait potentially yielding isoforms with different isoelectric points: analysis of human CD3varepsilon chains. Immunol Lett 2009; 126:8-15. [PMID: 19616027 DOI: 10.1016/j.imlet.2009.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 06/23/2009] [Accepted: 07/09/2009] [Indexed: 11/21/2022]
Abstract
CD3varepsilon chains are essential to the structure, expression and signaling of T cell receptors. Here, we extend to human CD3varepsilon our previous data in mouse CD3varepsilon showing that, in T cells, proteolytic processing of the acidic N-terminal sequence of CD3varepsilon chains generate distinct polypeptide species that can be identified by two-dimension (IEF-SDS PAGE) electrophoresis and immunoblot. This was shown first by showing the processing of a fusion protein of GFP and the extracellular domain of mouse CD3varepsilon (mCD3GFP) expressed in Jurkat cells. Secondly, pI heterogeneity was also found in human CD3varepsilon chains immunoprecipitated from the surface of Jurkat cells or PHA blasts of human blood T lymphocytes. Comparison of CD3varepsilon chains from 27 different species shows that their N-terminal sequences share a strong acidic nature, despite the large differences in terms of length and composition, even among closely related species. Our results suggest that generation of CD3varepsilon chain isoforms with different N-terminal sequence and pI is a general phenomenon. Thus, as previously observed in the mouse, the relative abundance of CD3varepsilon chain species might regulate TCR/CD3 structure and function, including the strength of the interactions between CD3 dimers and the TCR clonotypic receptors, as well as TCR/CD3 activation thresholds. Interestingly, CD3varepsilon chains from 7 out of 27 species studied have putative N-glycosylation (NxS or NxT) motifs in their Ig extracellular domain. Their location, plus the conservation of residues involved in domain organization, the interactions with other CD3 chains, or the TCR, and signal triggering add new data useful to establish a permissive topology for the interaction between CD3 dimers and the TCR chains.
Collapse
|
18
|
Teixeiro E, Daniels MA, Hamilton SE, Schrum AG, Bragado R, Jameson SC, Palmer E. Different T cell receptor signals determine CD8+ memory versus effector development. Science 2009; 323:502-5. [PMID: 19164748 DOI: 10.1126/science.1163612] [Citation(s) in RCA: 166] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Following infection, naïve CD8+ T cells bearing pathogen-specific T cell receptors (TCRs) differentiate into a mixed population of short-lived effector and long-lived memory T cells to mediate an adaptive immune response. How the TCR regulates memory T cell development has remained elusive. Using a mutant TCR transgenic model, we found that point mutations in the TCR beta transmembrane domain (betaTMD) impair the development and function of CD8+ memory T cells without affecting primary effector T cell responses. Mutant T cells are deficient in polarizing the TCR and in organizing the nuclear factor kappaB signal at the immunological synapse. Thus, effector and memory states of CD8+ T cells are separable fates, determined by differential TCR signaling.
Collapse
Affiliation(s)
- Emma Teixeiro
- Experimental Transplantation Immunology, Department of Biomedicine, University Hospital-Basel, Hebelstrasse 20, 4031-Basel, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
19
|
Signaling Chain Homooligomerization (SCHOOL) Model. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 640:121-63. [DOI: 10.1007/978-0-387-09789-3_12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
Sebestyén Z, Schooten E, Sals T, Zaldivar I, San José E, Alarcón B, Bobisse S, Rosato A, Szöllősi J, Gratama JW, Willemsen RA, Debets R. Human TCR That Incorporate CD3ζ Induce Highly Preferred Pairing between TCRα and β Chains following Gene Transfer. THE JOURNAL OF IMMUNOLOGY 2008; 180:7736-46. [DOI: 10.4049/jimmunol.180.11.7736] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Mueller P, Massner J, Jayachandran R, Combaluzier B, Albrecht I, Gatfield J, Blum C, Ceredig R, Rodewald HR, Rolink AG, Pieters J. Regulation of T cell survival through coronin-1-mediated generation of inositol-1,4,5-trisphosphate and calcium mobilization after T cell receptor triggering. Nat Immunol 2008; 9:424-31. [PMID: 18345003 DOI: 10.1038/ni1570] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Accepted: 01/28/2008] [Indexed: 11/09/2022]
Abstract
T cell homeostasis is essential for the functioning of the vertebrate immune system, but the intracellular signals required for T cell homeostasis are largely unknown. We here report that the WD-repeat protein family member coronin-1, encoded by the gene Coro1a, is essential in the mouse for T cell survival through its promotion of Ca2+ mobilization from intracellular stores. Upon T cell receptor triggering, coronin-1 was essential for the generation of inositol-1,4,5-trisphosphate from phosphatidylinositol-4,5-bisphosphate. The absence of coronin-1, although it did not affect T cell development, resulted in a profound defect in Ca2+ mobilization, interleukin-2 production, T cell proliferation and T cell survival. We conclude that coronin-1, through activation of Ca2+ release from intracellular stores, is an essential regulator of peripheral lymphocyte survival.
Collapse
Affiliation(s)
- Philipp Mueller
- Biozentrum, University of Basel, Klingelbergstrasse 50-70, CH 4056 Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Antigen-specific human T-cell responses and T cell-dependent production of human antibodies in a humanized mouse model. Blood 2008; 111:4293-6. [PMID: 18270327 DOI: 10.1182/blood-2007-11-121319] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Humanized mice with a functional human immune system would be very useful for in vivo studies of human immunobiology. We have previously shown that cotransplantation of human fetal thymus/liver tissues and CD34(+) fetal liver cells into immunodeficient nonobese diabetic severe combined immunodeficiency (NOD/SCID) mice leads to the development of multiple lineages of human lymphohematopoietic cells and formation of secondary lymphoid organs with normal architecture. Here, we evaluated the ability of these humanized mice to develop antigen-specific, T cell-dependent antibody responses after in vivo immunization with T-dependent antigen, 2,4-dinitrophenyl hapten-keyhole limpet hemocyanin (DNP(23)-KLH). Human T cells from DNP(23)-KLH-immunized mice showed strong proliferation in response to KLH in vitro. Furthermore, T cell-dependent production of DNP-specific human antibodies (mainly IgG1 and IgG2) was detected in all immunized mice. These results confirm that a functional human immune system can be established in immunodeficient mice through cotransplantation of human fetal thymus/liver tissues and CD34(+) hematopoietic stem/progenitor cells.
Collapse
|
23
|
|
24
|
Petersen TR, Lata R, Spittle E, Bäckström BT. A chimeric TCR-β chain confers increased susceptibility to EAE. Mol Immunol 2007; 44:3473-81. [PMID: 17481734 DOI: 10.1016/j.molimm.2007.03.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Revised: 03/20/2007] [Accepted: 03/21/2007] [Indexed: 01/22/2023]
Abstract
Autoreactive myelin-specific CD4(+) T cells play an important role in CNS demyelination observed in MS and EAE. Consequently, it is important to understand the mechanisms of T cell receptor signalling leading to the activation of autoreactive T cells. We have previously generated a chimeric T cell receptor beta-chain (betaIII) displaying increased antigen sensitivity by exchanging most of the transmembrane and the intracellular domain of the TCR-beta chain with the corresponding TCR-gamma sequence. To investigate the effect of this "super-signalling" TCR in an autoimmune setting, we generated MOG(35-55) specific TCR transgenic mice expressing either the wild-type or the chimeric betaIII TCR-beta chain. We found that naïve transgenic T cells expressing the chimeric betaIII chain proliferated more extensively than wild-type cells in response to MOG(35-55)in vitro. Likewise, betaIII T cells skewed into a TH1 phenotype maintained the proliferative advantage over wild-type TH1 T cells at low antigen concentration. However, when skewed into a TH2 phenotype, there was no difference in proliferation between wild-type and betaIII T cells. Blocking of Fas-mediated cell death evenly affected wild-type and betaIII TH1 T cells and resulted in increased proliferation of both subsets, suggesting that betaIII T cells did not show defective Fas-FasL signalling. Finally, we found that betaIII TCR transgenic mice are more susceptible to EAE than wild-type TCR transgenic mice. We conclude that the change in the transmembrane domain of the TCR-beta chain affects TH1 T cells and the susceptibility to EAE, but does not affect TH2 cells. Investigating the molecular interaction within the TCR complex will help us to identify signalling pathways that can be manipulated to stop the progression of MS.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Cell Proliferation/drug effects
- Cytotoxicity, Immunologic/drug effects
- Disease Susceptibility/immunology
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Fas Ligand Protein/immunology
- Female
- Glycoproteins/pharmacology
- Immunization
- Interferon-gamma/biosynthesis
- Interleukin-17/biosynthesis
- Interleukin-4/biosynthesis
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Molecular Sequence Data
- Myelin-Oligodendrocyte Glycoprotein
- Peptide Fragments/pharmacology
- Protein Structure, Tertiary
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/immunology
- Recombinant Proteins/immunology
- Th1 Cells/drug effects
- Th1 Cells/immunology
- Th2 Cells/drug effects
- Th2 Cells/immunology
- fas Receptor/immunology
Collapse
Affiliation(s)
- Troels R Petersen
- Malaghan Institute of Medical Research, P.O. Box 7060, Wellington South, New Zealand
| | | | | | | |
Collapse
|
25
|
Schrum AG, Gil D, Dopfer EP, Wiest DL, Turka LA, Schamel WWA, Palmer E. High-sensitivity detection and quantitative analysis of native protein-protein interactions and multiprotein complexes by flow cytometry. ACTA ACUST UNITED AC 2007; 2007:pl2. [PMID: 17551170 PMCID: PMC3913565 DOI: 10.1126/stke.3892007pl2] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Most mechanisms of cell development, physiology, and signal transduction are controlled by protein-protein interactions. Immunoprecipitation of multiprotein complexes detected by flow cytometry (IP-FCM) is a means to quantitatively measure these interactions. The high sensitivity of this method makes it useful even when very little biomaterial is available for analysis, as in the case of rare primary cell subsets or patient samples. Detection of the T cell antigen receptor associated with the CD3 multiprotein complex from as few as 300 primary murine T cells is presented as an example. The method is compatible with quantitative flow cytometry techniques, making it possible to estimate the number of coimmunoprecipitated molecules. Both constitutive and inducible protein-protein interactions can be analyzed, as illustrated in related methodology using glutathione S-transferase-fusion protein pull-down experiments. IP-FCM represents a robust, quantitative, biochemical technique to assess native protein-protein interactions, without requiring genetic engineering or large sample sizes.
Collapse
Affiliation(s)
- Adam G Schrum
- Department of Research, University Hospital-Basel, Basel, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
26
|
Chen G, Tai AK, Lin M, Chang F, Terhorst C, Huber BT. Increased proliferation of CD8+ T cells in SAP-deficient mice is associated with impaired activation-induced cell death. Eur J Immunol 2007; 37:663-74. [PMID: 17266174 DOI: 10.1002/eji.200636417] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Defective signaling lymphocyte activation molecule (SLAM)-associated protein (SAP) is responsible for the human X-linked lymphoproliferative syndrome. Defects in T helper 2, natural killer, natural killer T and B cells have been demonstrated in SAP-deficient humans and mice, and increased proliferation of CD8+ T cells has been observed. In the current study, we investigated the properties of CD8+ T cell proliferation and activation-induced cell death (AICD), using OT-I T cell receptor (TCR)-transgenic mice on either wild-type (WT) or SAP-/- background. Interestingly, we found that ovalbumin peptide-activated SAP-/- CD8+ T cells have lower AICD compared to their WT counterparts. Furthermore, the induction of p73, a key mediator of TCR-induced apoptosis through the mitochondrial apoptotic pathway, was significantly reduced at both the mRNA and protein levels in the activated mutant cells. Meanwhile, a reduced level of activated caspase 9 was observed in the mutant cells. We conclude that reduced AICD in activated SAP-/- CD8+ T cells is associated with impaired p73 induction, indicating that the initiation of the mitochondrial apoptotic pathway might be impaired. Our data demonstrate an intrinsic defect in SAP-/- CD8+ T cells and shed light on the increased responsiveness of CD8+ T cells in SAP-/- mice.
Collapse
Affiliation(s)
- Gang Chen
- Department of Pathology, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | | | | | | | |
Collapse
|
27
|
Daniels MA, Teixeiro E, Gill J, Hausmann B, Roubaty D, Holmberg K, Werlen G, Holländer GA, Gascoigne NRJ, Palmer E. Thymic selection threshold defined by compartmentalization of Ras/MAPK signalling. Nature 2006; 444:724-9. [PMID: 17086201 DOI: 10.1038/nature05269] [Citation(s) in RCA: 476] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Accepted: 09/18/2006] [Indexed: 01/02/2023]
Abstract
A healthy individual can mount an immune response to exogenous pathogens while avoiding an autoimmune attack on normal tissues. The ability to distinguish between self and non-self is called 'immunological tolerance' and, for T lymphocytes, involves the generation of a diverse pool of functional T cells through positive selection and the removal of overtly self-reactive thymocytes by negative selection during T-cell ontogeny. To elucidate how thymocytes arrive at these cell fate decisions, here we have identified ligands that define an extremely narrow gap spanning the threshold that distinguishes positive from negative selection. We show that, at the selection threshold, a small increase in ligand affinity for the T-cell antigen receptor leads to a marked change in the activation and subcellular localization of Ras and mitogen-activated protein kinase (MAPK) signalling intermediates and the induction of negative selection. The ability to compartmentalize signalling molecules differentially in the cell endows the thymocyte with the ability to convert a small change in analogue input (affinity) into a digital output (positive versus negative selection) and provides the basis for establishing central tolerance.
Collapse
Affiliation(s)
- Mark A Daniels
- Laboratory of Transplantation Immunology and Nephrology, Department of Research, University Hospital-Basel, Hebelstrasse 20, 4031 Basel, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Sengupta S, Chilton PM, Mitchell TC. Adjuvant-induced survival signaling in clonally expanded T cells is associated with transient increases in pAkt levels and sustained uptake of glucose. Immunobiology 2006; 210:647-59. [PMID: 16325488 DOI: 10.1016/j.imbio.2005.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Accepted: 06/20/2005] [Indexed: 11/18/2022]
Abstract
Immunological adjuvants help increase the number of T cells responding to an immunizing antigen. Part of the increase is due to promotion of survival of clonally expanded T cells in the face of waning antigen load and subsequent growth-factor withdrawal. The phosphatidylinositide-3 kinase (PI3-kinase)/Akt pathway is activated upon T cell stimulation and plays a critical role in clonal expansion by mediating several aspects of co-stimulation in a growth-factor-dependent manner. We hypothesized that adjuvants must either cause the PI3-kinase/Akt pathway to operate in the absence of growth-factor or to render T cells independent of continuous PI3-kinase signaling for their survival. To determine which is true, mice were treated with model antigen in the presence or absence of the natural adjuvant lipopolysaccharide (LPS). T cells from treated mice were assayed for their dependence on PI3-kinase signaling by measuring (i) levels of phosphorylated Akt, (ii) survival after culture in the presence of the PI3-kinase inhibitor LY294002, and (iii) the amount of glucose uptake upon ex vivo culture. The results show that although LPS treatment increased the induced PI3-kinase activity, the presence of PI3-kinase inhibitor did not affect glucose uptake or survival of T cells, an attribute the cells acquired within 4 h of LPS injection. Therefore, adjuvant-dependent survival effects do not require continuous PI3-kinase activity to occur, a finding that may explain how activated T cells survive antigen-withdrawal long enough to traffic from priming lymph nodes to sites of infection.
Collapse
Affiliation(s)
- Sadhak Sengupta
- Institute for Cellular Therapeutics, University of Louisville School of Medicine, KY 40202, USA
| | | | | |
Collapse
|
29
|
Cohen CJ, Zhao Y, Zheng Z, Rosenberg SA, Morgan RA. Enhanced antitumor activity of murine-human hybrid T-cell receptor (TCR) in human lymphocytes is associated with improved pairing and TCR/CD3 stability. Cancer Res 2006; 66:8878-86. [PMID: 16951205 PMCID: PMC2147082 DOI: 10.1158/0008-5472.can-06-1450] [Citation(s) in RCA: 365] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Little is known about the biology of murine T-cell receptors (TCR) expressed in human cells. We recently observed that a murine anti-human p53 TCR is highly functional when expressed in human lymphocytes. Herein, we compare human and mouse TCR function and expression to delineate the molecular basis for the apparent superior biological activity of murine receptors in human T lymphocytes. To this end, we created hybrid TCRs where we swapped the original constant regions with either human or mouse ones, respectively. We showed that murine or "murinized" receptors were overexpressed on the surface of human lymphocytes compared with their human/humanized counterparts and were able to mediate higher levels of cytokine secretion when cocultured with peptide-pulsed antigen-presenting cells. Preferential pairing of murine constant regions and improved CD3 stability seemed to be responsible for these observations. These enhanced biological properties translated into significantly greater antitumor response mediated by TCR with mouse constant regions. Furthermore, we were able to circumvent the natural low avidity of class I MHC TCR in CD4(+) cells by introducing the murinized TCR into CD4(+) lymphocytes, giving them the ability to recognize melanoma tumors. These findings have implications for human TCR gene transfer therapy and may provide new insights into the biology of the TCR/CD3 complex.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antineoplastic Agents/pharmacology
- CD3 Complex/physiology
- Chimera
- Cloning, Molecular
- Drug Stability
- Humans
- Jurkat Cells
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/immunology
- Lymphocyte Activation
- Mice
- Peptide Fragments/chemistry
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/physiology
- Receptors, Antigen, T-Cell/therapeutic use
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Cyrille J Cohen
- Surgery Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-1201, USA
| | | | | | | | | |
Collapse
|
30
|
Abstract
When T cells encounter antigens via the T cell antigen receptor (TCR), information about the quantity and quality of antigen engagement is relayed to the intracellular signal transduction machinery. This process is poorly understood. The TCR itself lacks a significant intracellular domain. Instead, it is associated with CD3 molecules that contain intracellular signaling domains that couple the TCR/CD3 complex to the downstream signaling machinery. The earliest events in TCR signaling must involve the transfer of information from the antigen binding TCR subunit to the CD3 signaling subunits of the TCR/CD3 complex. Elucidating the structural organization of the TCR with the associated CD3 signaling molecules is necessary for understanding the mechanism by which TCR engagement is coupled to activation. Here, we review the current state of our understanding of the structure and organization of the TCR/CD3 complex.
Collapse
Affiliation(s)
- Michael S Kuhns
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | |
Collapse
|
31
|
Abstract
A major regulator of lymphocyte survival and activation is the transcription factor nuclear factor-kappaB (NF-kappaB). Controlled activation of NF-kappaB is essential for the immune and inflammatory response as well as for cell proliferation and protection against apoptosis. The NEMO/IkappaB kinase (IKK) complex is the central integrator of most stimuli leading to NF-kappaB activation, but a detailed knowledge of the upstream events is available only for a limited number of stimuli. In particular, although most players have probably been identified, relatively little is known about the detailed molecular mechanisms involved in the cascade leading to NF-kappaB activation following engagement of the T-cell receptor by a foreign antigen. In this review, we discuss recent insights into this specific signal transduction cascade, and the way it is controlled both spatially and temporally.
Collapse
Affiliation(s)
- R Weil
- Unité de Signalisation Moléculaire et Activation Cellulaire, URA 2582 Centre National de la Recherche Scientifique, Institut Pasteur, 25 Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | | |
Collapse
|
32
|
Ishimaru N, Hayashi Y. Crucial Roles of NF-.KAPPA.B for T Cell Activation. J Oral Biosci 2006. [DOI: 10.2330/joralbiosci.48.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
33
|
Crucial Roles of NF-κB for T Cell Activation. J Oral Biosci 2006. [DOI: 10.1016/s1349-0079(06)80014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
34
|
Thompson BS, Mata-Haro V, Casella CR, Mitchell TC. Peptide-stimulated DO11.10 T cells divide well but accumulate poorly in the absence of TLR agonist treatment. Eur J Immunol 2005; 35:3196-208. [PMID: 16220541 DOI: 10.1002/eji.200526132] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Immunological adjuvants increase the clonal burst size of antigen-specific T cell populations by mechanisms that remain incompletely understood. Using the DO11.10 adoptive transfer system to study peptide-stimulated T cell responses, we found that TLR agonist treatment increased the extent of cellular division undergone by responding T cells, but not by enough to explain the net increases in T cell yield that were achieved. Two novel analyses involving CFSE dye dilution analysis were used to characterize the shortfall, both of which were consistent with the idea that DO11.10 T cells are frequently lost during proliferation unless TLR agonists are present. T cell loss during clonal expansion was correlated with decreased levels of Bcl-2, but TLR agonists did not appear to afford protection by restoring levels of Bcl-2 or of cell surface IL-7Ralpha chain expression. TLR-mediated protection also failed to correlate with increased expression of Bcl-x or decreased expression of pro-apoptotic Bim. Our findings suggest that DO11.10 T cells stimulated by antigenic peptide in vivo divide well, but fail to accumulate efficiently unless TLR agonists are present.
Collapse
Affiliation(s)
- Bruce S Thompson
- Institute for Cellular Therapeutics, Department of Microbiology and Immunology, University of Louisville Medical School, Louisville, KY, USA
| | | | | | | |
Collapse
|
35
|
Redmond WL, Sherman LA. Peripheral Tolerance of CD8 T Lymphocytes. Immunity 2005; 22:275-84. [PMID: 15780985 DOI: 10.1016/j.immuni.2005.01.010] [Citation(s) in RCA: 180] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Revised: 01/10/2005] [Accepted: 01/13/2005] [Indexed: 01/18/2023]
Abstract
Whereas high-avidity recognition of peptide-MHC complexes by developing T cells in the thymus results in deletion and promotes self-tolerance, such recognition by mature T cells in the periphery results in activation and clonal expansion. This dichotomy represents the basis of a dilemma that has stumped immunologists for many years, how are self-specific T cells tolerized in the periphery? There appear to be two important criteria used to achieve this goal. The first is that in the absence of inflammatory pathogens, tolerance is promoted when T cells recognize antigen presented by quiescent dendritic cells (DCs) expressing low levels of costimulatory molecules. A second critical factor that defines "self" and drives tolerance through deletion, anergy, or suppression is the persistence of antigen.
Collapse
Affiliation(s)
- William L Redmond
- Department of Immunology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|