1
|
Jin Q, Jiang H, Han Y, Zhang L, Li C, Zhang Y, Chai Y, Zeng P, Yue L, Wu C. Tumor microenvironment in primary central nervous system lymphoma (PCNSL). Cancer Biol Ther 2024; 25:2425131. [PMID: 39555697 PMCID: PMC11581175 DOI: 10.1080/15384047.2024.2425131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 05/10/2022] [Accepted: 10/30/2024] [Indexed: 11/19/2024] Open
Abstract
Primary central nervous system lymphoma (PCNSL) is one of the rare lymphomas limited to the central nervous system. With the availability of immunotherapy, the tumor microenvironment (TME) attracts much attention nowadays. However, the systematic studies on the TME of PCNSL are lacking. By reviewing the existing research, we found that the TME of PCNSL is infiltrated with abundant TAMs and TILs, among which cytotoxic T cells (CTLs) and M2-polarized macrophages are principal. However, the counts of immune cells infiltrated in the TME of PCNSL are significantly lower than systemic diffuse large B-cell lymphoma (DLBCL). In addition, PCNSL can attract the infiltration of immunosuppressive cells and the loss of HLA I/II expression, overexpress inhibitory immune checkpoints, and release immunosuppressive cytokines to form an immunosuppressive TME. The immunosuppressive effect of TME in PCNSL is significantly stronger than that in systemic DLBCL. These characteristics of TME highlight the immunosuppression of PCNSL.
Collapse
Affiliation(s)
- Qiqi Jin
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Haoyun Jiang
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Ye Han
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Litian Zhang
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Cuicui Li
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Yurong Zhang
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Ye Chai
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Pengyun Zeng
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Lingling Yue
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Chongyang Wu
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
2
|
Shen H, Zhu B, Qian Y, Jin J, Zhou J, Peng G, Mo J. Advances in Research on Meningeal Lymphatic Vessels in Central Nervous System Diseases. J Craniofac Surg 2024:00001665-990000000-02238. [PMID: 39630968 DOI: 10.1097/scs.0000000000010872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 10/12/2024] [Indexed: 12/07/2024] Open
Abstract
Meningeal lymphatic vessels (mLVs), located around the dural sinuses, are considered significant participants in cerebrospinal fluid (CSF) circulation. Meningeal lymphatic vessels not only drain fluids and metabolic waste from the brain into deep cervical lymph nodes (dCLNs) but also transport immune cells from the brain to dCLNs, thus regulating the interaction between the central and peripheral immune systems. These vessels play a crucial role in maintaining normal physiological functions of the central nervous system (CNS). Meningeal lymphatic vessels are involved in the pathophysiological processes of various CNS diseases, including neurodegenerative diseases, cerebrovascular diseases, and brain tumors. In aging and various CNS diseases, damage and dysfunction of mLVs have been observed, leading to the abnormal accumulation of toxic substances and exacerbating neural damage. By transporting antigen-presenting cells that have taken up antigens within the brain to dCLNs, mLVs modulate the activation of peripheral immune cells and their migration and infiltration into brain lesions. Certain drug interventions or physical therapies can modulate the drainage function of mLVs, effectively improving the prognosis of CNS diseases. This review provides a detailed introduction to the anatomic structure, physiological roles, and research advances of mLVs in CNS diseases. In addition, we propose new strategies for targeting mLVs in the treatment of CNS diseases.
Collapse
Affiliation(s)
- Huimin Shen
- Department of Neurosurgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang
| | - Bingrui Zhu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University
| | - Yajun Qian
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiancheng Jin
- Department of Neurosurgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang
| | - Jiankuai Zhou
- Department of Neurosurgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang
| | - Guotao Peng
- Department of Neurosurgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang
| | - Jun Mo
- Department of Neurosurgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang
| |
Collapse
|
3
|
Masuda C, Onishi S, Yorozu K, Kurasawa M, Morinaga M, Wakita D, Sugimoto M. PD-L1 and VEGF dual blockade enhances anti-tumor effect on brain metastasis in hematogenous metastasis model. Clin Exp Metastasis 2024; 41:909-924. [PMID: 39231916 PMCID: PMC11607052 DOI: 10.1007/s10585-024-10309-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/20/2024] [Indexed: 09/06/2024]
Abstract
Immunotherapy improves survival outcomes in cancer patients, but there is still an unmet clinical need in the treatment of brain metastases. Here, we used a mouse model to investigate the antitumor effect of programmed death-ligand 1 (PD-L1) and vascular endothelial growth factor (VEGF) dual blockade on metastatic brain tumors and evaluated immune responses during treatment. After establishing hematogenous brain metastasis by transplanting murine bladder carcinoma MBT2 cells stably expressing secNLuc reporter via the internal carotid artery of C3H/HeNCrl mice, we observed the formation of metastases not only in the brain parenchyma but also in the ventricles. The observed pathological areas showed that metastases in the ventricle were histologically larger than that in the brain parenchyma. Regarding the total tumor burden in the whole brain as revealed by Nluc activities, the combination of anti-PD-L1 antibody and anti-VEGF antibody showed a stronger anti-tumor effect than each single agent. Anti-PD-L1 antibody alone enhanced CD8+ T cell priming in regional lymph nodes, increased the proportion of activated CD8+ T cells in whole brain, and increased the density of CD8+ cells in the brain parenchyma. Furthermore, anti-VEGF antibody alone decreased microvessel density (MVD) in ventricular metastases, and the combination treatment increased intratumoral CD8+ cell density in the brain parenchyma and ventricular metastases. These results suggest that PD-L1 blockade enhanced cancer immunity not only in brain metastases lesions but also in the regional lymph nodes of the metastases, and that the addition of VEGF blockade increased the antitumor effect by increasing the infiltration of activated CD8+ T cell and decreasing MVD.
Collapse
Affiliation(s)
- Chinami Masuda
- Product Research Department, Chugai Pharmaceutical Co., Ltd., Chugai Life Science Park Yokohama, 216, Totsuka-Cho, Totsuka-Ku, Yokohama, Kanagawa, 244-8602, Japan.
| | - Shinichi Onishi
- Product Research Department, Chugai Pharmaceutical Co., Ltd., Chugai Life Science Park Yokohama, 216, Totsuka-Cho, Totsuka-Ku, Yokohama, Kanagawa, 244-8602, Japan
| | - Keigo Yorozu
- Product Research Department, Chugai Pharmaceutical Co., Ltd., Chugai Life Science Park Yokohama, 216, Totsuka-Cho, Totsuka-Ku, Yokohama, Kanagawa, 244-8602, Japan
| | - Mitsue Kurasawa
- Product Research Department, Chugai Pharmaceutical Co., Ltd., Chugai Life Science Park Yokohama, 216, Totsuka-Cho, Totsuka-Ku, Yokohama, Kanagawa, 244-8602, Japan
| | - Mamiko Morinaga
- Product Research Department, Chugai Pharmaceutical Co., Ltd., Chugai Life Science Park Yokohama, 216, Totsuka-Cho, Totsuka-Ku, Yokohama, Kanagawa, 244-8602, Japan
| | - Daiko Wakita
- Product Research Department, Chugai Pharmaceutical Co., Ltd., Chugai Life Science Park Yokohama, 216, Totsuka-Cho, Totsuka-Ku, Yokohama, Kanagawa, 244-8602, Japan
| | - Masamichi Sugimoto
- Product Research Department, Chugai Pharmaceutical Co., Ltd., Chugai Life Science Park Yokohama, 216, Totsuka-Cho, Totsuka-Ku, Yokohama, Kanagawa, 244-8602, Japan
| |
Collapse
|
4
|
Datsi A, Sorg RV, Garg AD. The conundrum of CD8 + T cell trajectories in low antigenic tumors: How to overcome a hypofunctional state distinct from antigen-driven exhaustion? Genes Immun 2024; 25:353-355. [PMID: 39384954 DOI: 10.1038/s41435-024-00299-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Affiliation(s)
- Angeliki Datsi
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Rüdiger V Sorg
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Abhishek D Garg
- Laboratory of Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium.
| |
Collapse
|
5
|
James F, Lorger M. Immunotherapy in the context of immune-specialized environment of brain metastases. DISCOVERY IMMUNOLOGY 2023; 2:kyad023. [PMID: 38567052 PMCID: PMC10917168 DOI: 10.1093/discim/kyad023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/18/2023] [Accepted: 11/15/2023] [Indexed: 04/04/2024]
Abstract
Brain metastases (BrM) develop in 20-40% of patients with advanced cancer. They mainly originate from lung cancer, melanoma, breast cancer, and renal cell carcinoma, and are associated with a poor prognosis. While patients with BrM traditionally lack effective treatment options, immunotherapy is increasingly gaining in importance in this group of patients, with clinical trials in the past decade demonstrating the efficacy and safety of immune checkpoint blockade in BrM originating from specific tumor types, foremost melanoma. The brain is an immune-specialized environment with several unique molecular, cellular, and anatomical features that affect immune responses, including those against tumors. In this review we discuss the potential role that some of these unique characteristics may play in the efficacy of immunotherapy, mainly focusing on the lymphatic drainage in the brain and the role of systemic anti-tumor immunity that develops due to the presence of concurrent extracranial disease in addition to BrM.
Collapse
Affiliation(s)
- Fiona James
- School of Medicine, University of Leeds, Leeds, UK
| | | |
Collapse
|
6
|
Eisemann T, Wechsler-Reya RJ. Coming in from the cold: overcoming the hostile immune microenvironment of medulloblastoma. Genes Dev 2022; 36:514-532. [PMID: 35680424 PMCID: PMC9186392 DOI: 10.1101/gad.349538.122] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Medulloblastoma is an aggressive brain tumor that occurs predominantly in children. Despite intensive therapy, many patients die of the disease, and novel therapies are desperately needed. Although immunotherapy has shown promise in many cancers, the low mutational burden, limited infiltration of immune effector cells, and immune-suppressive microenvironment of medulloblastoma have led to the assumption that it is unlikely to respond to immunotherapy. However, emerging evidence is challenging this view. Here we review recent preclinical and clinical studies that have identified mechanisms of immune evasion in medulloblastoma, and highlight possible therapeutic interventions that may give new hope to medulloblastoma patients and their families.
Collapse
Affiliation(s)
- Tanja Eisemann
- Tumor Initiation and Maintenance Program, National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, USA
| | - Robert J Wechsler-Reya
- Tumor Initiation and Maintenance Program, National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, USA.,Department of Pediatrics, University of California at San Diego, La Jolla, California 92161, USA
| |
Collapse
|
7
|
Huang Y, Zhou L, Zhang H, Zhang L, Xi X, Sun Y. BMDCs induce the generation of the CD103+CD8+ tissue-resident memory T cell subtype, which amplifies local tumor control in the genital tract. Cell Immunol 2022; 374:104502. [DOI: 10.1016/j.cellimm.2022.104502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/21/2022] [Accepted: 03/06/2022] [Indexed: 12/15/2022]
|
8
|
Chen F, Xie X, Wang L. Research Progress on Intracranial Lymphatic Circulation and Its Involvement in Disorders. Front Neurol 2022; 13:865714. [PMID: 35359624 PMCID: PMC8963982 DOI: 10.3389/fneur.2022.865714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/14/2022] [Indexed: 12/14/2022] Open
Abstract
The lymphatic system is an important part of the circulatory system, as an auxiliary system of the vein, which has the functions of immune defense, maintaining the stability of the internal environment, and regulating the pressure of the tissue. It has long been thought that there are no typical lymphatic vessels consisting of endothelial cells in the central nervous system (CNS). In recent years, studies have confirmed the presence of lymphatic vessels lined with endothelial cells in the meninges. The periventricular meninges of the CNS host different populations of immune cells that affect the immune response associated with the CNS, and the continuous drainage of interstitial and cerebrospinal fluid produced in the CNS also proceeds mainly by the lymphatic system. This fluid process mobilizes to a large extent the transfer of antigens produced by the CNS to the meningeal immune cells and subsequently to the peripheral immune system through the lymphatic network, with clinically important implications for infectious diseases, autoimmunity, and tumor immunology. In our review, we discussed recent research advances in intracranial lymphatic circulation and the pathogenesis of its associated diseases, especially the discovery of meningeal lymphatic vessels, which has led to new therapeutic targets for the treatment of diseases associated with the intracranial lymphatic system.
Collapse
|
9
|
Immunotherapeutic Approaches for Glioblastoma Treatment. Biomedicines 2022; 10:biomedicines10020427. [PMID: 35203636 PMCID: PMC8962267 DOI: 10.3390/biomedicines10020427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
Glioblastoma remains a challenging disease to treat, despite well-established standard-of-care treatments, with a median survival consistently of less than 2 years. In this review, we delineate the unique disease-specific challenges for immunotherapies, both brain-related and non-brain-related, which will need to be adequately overcome for the development of effective treatments. We also review current immunotherapy treatments, with a focus on clinical applications, and propose future directions for the field of GBM immunotherapy.
Collapse
|
10
|
Li J, Huang D, Lei B, Huang J, Yang L, Nie M, Su S, Zhao Q, Wang Y. VLA-4 suppression by senescence signals regulates meningeal immunity and leptomeningeal metastasis. eLife 2022; 11:83272. [PMID: 36484779 PMCID: PMC9803356 DOI: 10.7554/elife.83272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
Leptomeningeal metastasis is associated with dismal prognosis and has few treatment options. However, very little is known about the immune response to leptomeningeal metastasis. Here, by establishing an immunocompetent mouse model of breast cancer leptomeningeal metastasis, we found that tumor-specific CD8+ T cells were generated in deep cervical lymph nodes (dCLNs) and played an important role in controlling leptomeningeal metastasis. Mechanistically, T cells in dCLNs displayed a senescence phenotype and their recruitment was impaired in mice bearing cancer cells that preferentially colonized in leptomeningeal space. Upregulation of p53 suppressed the transcription of VLA-4 in senescent dCLN T cells and consequently inhibited their migration to the leptomeningeal compartment. Clinically, CD8+ T cells from the cerebrospinal fluid of patients with leptomeningeal metastasis exhibited senescence and VLA-4 downregulation. Collectively, our findings demonstrated that CD8+ T cell immunosenescence drives leptomeningeal metastasis.
Collapse
Affiliation(s)
- Jiaqian Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhouChina,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhouChina
| | - Di Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhouChina,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhouChina
| | - Bingxi Lei
- Department of Neurosurgery, Sun Yat-sen UniversityGuangzhouChina
| | - Jingying Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhouChina,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhouChina
| | - Linbing Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhouChina,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhouChina
| | - Man Nie
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer CenterGuangzhouChina
| | - Shicheng Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhouChina,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhouChina,Department of Immunology, Zhongshan School of Medicine, Sun Yat-Sen UniversityGuangzhouChina
| | - Qiyi Zhao
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen UniversityGuangzhouChina,Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital, Sun Yat-Sen UniversityGuangzhouChina
| | - Ying Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhouChina,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhouChina
| |
Collapse
|
11
|
Jansen JA, Omuro A, Lucca LE. T cell dysfunction in glioblastoma: a barrier and an opportunity for the development of successful immunotherapies. Curr Opin Neurol 2021; 34:827-833. [PMID: 34569985 PMCID: PMC8595795 DOI: 10.1097/wco.0000000000000988] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE OF REVIEW Immunotherapies such as immune checkpoint blockade have revolutionized cancer treatment, but current approaches have failed to improve outcomes in glioblastoma and other brain tumours. T cell dysfunction has emerged as one of the major barriers for the development of central nervous system (CNS)-directed immunotherapy. Here, we explore the unique requirements that T cells must fulfil to ensure immune surveillance in the CNS, and we analyse T cell dysfunction in glioblastoma (GBM) through the prism of CNS-resident immune responses. RECENT FINDINGS Using comprehensive and unbiased techniques such as single-cell RNA sequencing, multiple studies have dissected the transcriptional state of CNS-resident T cells that patrol the homeostatic brain. A similar approach has revealed that in GBM, tumour-infiltrating T cells lack the hallmarks of antigen-driven exhaustion typical of melanoma and other solid tumours, suggesting the need for better presentation of tumour-derived antigens. Consistently, in a mouse model of GBM, increasing lymphatic drainage to the cervical lymph node was sufficient to promote tumour rejection. SUMMARY For the success of future immunotherapy strategies, further work needs to explore the natural history of dysfunction in GBM tumour-infiltrating T cells, establish whether these originate from CNS-resident T cells and how they can be manipulated therapeutically.
Collapse
Affiliation(s)
- Josephina A. Jansen
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, USA
| | | | - Liliana E. Lucca
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, USA
| |
Collapse
|
12
|
Datsi A, Sorg RV. Dendritic Cell Vaccination of Glioblastoma: Road to Success or Dead End. Front Immunol 2021; 12:770390. [PMID: 34795675 PMCID: PMC8592940 DOI: 10.3389/fimmu.2021.770390] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/11/2021] [Indexed: 12/11/2022] Open
Abstract
Glioblastomas (GBM) are the most frequent and aggressive malignant primary brain tumor and remains a therapeutic challenge: even after multimodal therapy, median survival of patients is only 15 months. Dendritic cell vaccination (DCV) is an active immunotherapy that aims at inducing an antitumoral immune response. Numerous DCV trials have been performed, vaccinating hundreds of GBM patients and confirming feasibility and safety. Many of these studies reported induction of an antitumoral immune response and indicated improved survival after DCV. However, two controlled randomized trials failed to detect a survival benefit. This raises the question of whether the promising concept of DCV may not hold true or whether we are not yet realizing the full potential of this therapeutic approach. Here, we discuss the results of recent vaccination trials, relevant parameters of the vaccines themselves and of their application, and possible synergies between DCV and other therapeutic approaches targeting the immunosuppressive microenvironment of GBM.
Collapse
Affiliation(s)
- Angeliki Datsi
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine University Hospital, Medical Faculty, Düsseldorf, Germany
| | - Rüdiger V Sorg
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine University Hospital, Medical Faculty, Düsseldorf, Germany
| |
Collapse
|
13
|
Singh K, Hotchkiss KM, Patel KK, Wilkinson DS, Mohan AA, Cook SL, Sampson JH. Enhancing T Cell Chemotaxis and Infiltration in Glioblastoma. Cancers (Basel) 2021; 13:5367. [PMID: 34771532 PMCID: PMC8582389 DOI: 10.3390/cancers13215367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma is an immunologically 'cold' tumor, which are characterized by absent or minimal numbers of tumor-infiltrating lymphocytes (TILs). For those tumors that have been invaded by lymphocytes, they are profoundly exhausted and ineffective. While many immunotherapy approaches seek to reinvigorate immune cells at the tumor, this requires TILs to be present. Therefore, to unleash the full potential of immunotherapy in glioblastoma, the trafficking of lymphocytes to the tumor is highly desirable. However, the process of T cell recruitment into the central nervous system (CNS) is tightly regulated. Naïve T cells may undergo an initial licensing process to enter the migratory phenotype necessary to enter the CNS. T cells then must express appropriate integrins and selectin ligands to interact with transmembrane proteins at the blood-brain barrier (BBB). Finally, they must interact with antigen-presenting cells and undergo further licensing to enter the parenchyma. These T cells must then navigate the tumor microenvironment, which is rich in immunosuppressive factors. Altered tumoral metabolism also interferes with T cell motility. In this review, we will describe these processes and their mediators, along with potential therapeutic approaches to enhance trafficking. We also discuss safety considerations for such approaches as well as potential counteragents.
Collapse
Affiliation(s)
- Kirit Singh
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA; (K.M.H.); (K.K.P.); (D.S.W.); (A.A.M.); (S.L.C.)
| | | | | | | | | | | | - John H. Sampson
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA; (K.M.H.); (K.K.P.); (D.S.W.); (A.A.M.); (S.L.C.)
| |
Collapse
|
14
|
Lin C, Chen J, Su Z, Liu P, Liu Z, Zhu C, Xu D, Lin Z, Xu P, Liu G, Liu X. A Calcium-Related Immune Signature in Prognosis Prediction of Patients With Glioma. Front Cell Dev Biol 2021; 9:723103. [PMID: 34650975 PMCID: PMC8505737 DOI: 10.3389/fcell.2021.723103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/10/2021] [Indexed: 11/16/2022] Open
Abstract
Background: Immune checkpoint inhibitors have been successfully used in a variety of tumors, however, the efficacy of immune checkpoint blockade therapy for patients with glioma is limited. In this study, we tried to clarify gene expression signatures related to the prognosis of gliomas and construct a signature to predict the survival of patients with gliomas. Methods: Calcium-related differential expressed genes (DEGs) between gliomas and normal brain tissues were comprehensively analyzed in two independent databases. Univariate, multivariate Cox regression analysis and proportional hazards model were used to identify the prognostic of calcium-related risk score signature. The CIBERSORT algorithm and association analysis were carried out to evaluate the relationship between calcium-related signature and characteristic clinical features, tumor-infiltrating immune cell signatures as well as immune checkpoint molecules in glioma. A nomogram model was developed for predicting the overall survival for patients with gliomas. Results: We found the intersection of 415 DEGs between gliomas and normal brain tissues, and identified that an eighteen calcium-related gene panel was significantly enriched in these DEGs. A calcium-related signature derived risk score was developed to divide patients into high- and low-risk groups. Low levels of calcium-related gene expression in high-risk score cases were accompanied with worse outcomes of patients. Calcium-related risk scores were significantly associated with characteristic clinical features, immune infiltrating signatures of tumor microenvironment, and exhausted T cell markers including programmed cell death 1 (PD-1), lymphocyte activating 3 (LAG3), and T cell membrane protein 3 (TIM-3), which contribute to an adverse therapeutic effect of immunotherapy. Calcium-related signature risk score was considered as an independent prognostic parameter to predict the of overall survival of patients with gliomas in nomogram model. Conclusion: Our study demonstrated that calcium signaling pathway is highly associated with immunosuppression of gliomas and overall survival of patients. Targeting the calcium signaling pathway might be a new strategy to reverse the immunosuppressive microenvironment of gliomas and improve the efficacy of glioma immunotherapy.
Collapse
Affiliation(s)
- Cha Lin
- Department of Biochemistry, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, China.,Neurobiology Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Jian Chen
- Department of Biochemistry, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Zhaoying Su
- Department of Biochemistry, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Pei Liu
- Department of Biochemistry, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Zheyu Liu
- Department of Biochemistry, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Chenchen Zhu
- Department of Biochemistry, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Dan Xu
- Department of Biochemistry, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Zhongda Lin
- Department of Biochemistry, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Pei Xu
- Department of Biochemistry, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Ganqiang Liu
- Neurobiology Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Xinjian Liu
- Department of Biochemistry, Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
15
|
Nobashi TW, Mayer AT, Xiao Z, Chan CT, Chaney AM, James ML, Gambhir SS. Whole-body PET Imaging of T-cell Response to Glioblastoma. Clin Cancer Res 2021; 27:6445-6456. [PMID: 34548318 DOI: 10.1158/1078-0432.ccr-21-1412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/30/2021] [Accepted: 09/17/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Immunotherapy is a promising approach for many oncological malignancies, including glioblastoma, however, there are currently no available tools or biomarkers to accurately assess whole-body immune responses in patients with glioblastoma treated with immunotherapy. Here, the utility of OX40, a costimulatory molecule mainly expressed on activated effector T cells known to play an important role in eliminating cancer cells, was evaluated as a PET imaging biomarker to quantify and track response to immunotherapy. EXPERIMENTAL DESIGN A subcutaneous vaccination approach of CpG oligodeoxynucleotide, OX40 mAb, and tumor lysate at a remote site in a murine orthotopic glioma model was developed to induce activation of T cells distantly while monitoring their distribution in stimulated lymphoid organs with respect to observed therapeutic effects. To detect OX40-positive T cells, we utilized our in-house-developed 89Zr-DFO-OX40 mAb and in vivo PET/CT imaging. RESULTS ImmunoPET with 89Zr-DFO-OX40 mAb revealed strong OX40-positive responses with high specificity, not only in the nearest lymph node from vaccinated area (mean, 20.8%ID/cc) but also in the spleen (16.7%ID/cc) and the tumor draining lymph node (11.4%ID/cc). When the tumor was small (<106 p/sec/cm2/sr in bioluminescence imaging), a high number of responders and percentage shrinkage in tumor signal was indicated after only a single cycle of vaccination. CONCLUSIONS The results highlight the promise of clinically translating cancer vaccination as a potential glioma therapy, as well as the benefits of monitoring efficacy of these treatments using immunoPET imaging of T-cell activation.
Collapse
Affiliation(s)
- Tomomi W Nobashi
- Department of Radiology, Stanford University, Stanford, California.
| | - Aaron T Mayer
- Department of Radiology, Stanford University, Stanford, California. .,Department of Bioengineering, Stanford University, Stanford, California.,Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California.,Bio-X Program at Stanford, Stanford University, Stanford, California
| | - Zunyu Xiao
- Department of Radiology, Stanford University, Stanford, California.,Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California.,Molecular Imaging Research Center of Harbin Medical University, Harbin, China
| | - Carmel T Chan
- Department of Radiology, Stanford University, Stanford, California.,Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California
| | - Aisling M Chaney
- Department of Radiology, Stanford University, Stanford, California.,Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California
| | - Michelle L James
- Department of Radiology, Stanford University, Stanford, California.,Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California
| | - Sanjiv S Gambhir
- Department of Radiology, Stanford University, Stanford, California.,Department of Bioengineering, Stanford University, Stanford, California.,Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California.,Bio-X Program at Stanford, Stanford University, Stanford, California.,Department of Materials Science and Engineering, Stanford University, Stanford, California.,Canary Center at Stanford, Stanford University, Stanford, California
| |
Collapse
|
16
|
Genoud V, Espinoza FI, Marinari E, Rochemont V, Dietrich PY, McSheehy P, Bachmann F, Lane HA, Walker PR. Treating ICB-resistant glioma with anti-CD40 and mitotic spindle checkpoint controller BAL101553 (lisavanbulin). JCI Insight 2021; 6:e142980. [PMID: 34403371 PMCID: PMC8492343 DOI: 10.1172/jci.insight.142980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 08/12/2021] [Indexed: 11/23/2022] Open
Abstract
Glioblastoma is a highly malignant brain tumor with no curative treatment options, and immune checkpoint blockade has not yet shown major impact. We hypothesized that drugs targeting mitosis might affect the tumor microenvironment and sensitize cancer cells to immunotherapy. We used 2 glioblastoma mouse models with different immunogenicity profiles, GL261 and SB28, to test the efficacy of antineoplastic and immunotherapy combinations. The spindle assembly checkpoint activator BAL101553 (lisavanbulin), agonistic anti-CD40 antibody, and double immune checkpoint blockade (anti–programmed cell death 1 and anti–cytotoxic T lymphocyte–associated protein 4; anti–PD-1 and anti–CTLA-4) were evaluated individually or in combination for treating orthotopic GL261 and SB28 tumors. Genomic and immunological analyses were used to predict and interpret therapy responsiveness. BAL101553 monotherapy increased survival in immune checkpoint blockade–resistant SB28 glioblastoma tumors and synergized with anti-CD40 antibody, in a T cell–independent manner. In contrast, the more immunogenic and highly mutated GL261 model responded best to anti–PD-1 and anti–CTLA-4 therapy and more modestly to BAL101553 and anti-CD40 combination. Our results show that BAL101553 is a promising therapeutic agent for glioblastoma and could synergize with innate immune stimulation. Overall, these data strongly support immune profiling of glioblastoma patients and preclinical testing of combination therapies with appropriate models for particular patient groups.
Collapse
Affiliation(s)
- Vassilis Genoud
- Translational Research Center for Hemato-Oncology, University of Geneva, Faculty of Medicine, Geneva, Switzerland
| | - Felipe I Espinoza
- Translational Research Center for Hemato-Oncology, University of Geneva, Faculty of Medicine, Geneva, Switzerland
| | - Eliana Marinari
- Translational Research Center for Hemato-Oncology, University of Geneva, Faculty of Medicine, Geneva, Switzerland
| | - Viviane Rochemont
- Translational Research Center for Hemato-Oncology, University of Geneva, Faculty of Medicine, Geneva, Switzerland
| | | | - Paul McSheehy
- Department of Oncology, Basilea Pharmaceutica International Ltd., Basel, Switzerland
| | - Felix Bachmann
- Department of Oncology, Basilea Pharmaceutica International Ltd., Basel, Switzerland
| | - Heidi A Lane
- Department of Oncology, Basilea Pharmaceutica International Ltd., Basel, Switzerland
| | - Paul R Walker
- Translational Research Center for Hemato-Oncology, University of Geneva, Faculty of Medicine, Geneva, Switzerland
| |
Collapse
|
17
|
Marei HE, Althani A, Afifi N, Hasan A, Caceci T, Pozzoli G, Cenciarelli C. Current progress in chimeric antigen receptor T cell therapy for glioblastoma multiforme. Cancer Med 2021; 10:5019-5030. [PMID: 34145792 PMCID: PMC8335808 DOI: 10.1002/cam4.4064] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 12/17/2022] Open
Abstract
Glioblastoma multiforme (GBM) is one of the deadliest brain tumors with an unfavorable prognosis and overall survival of approximately 20 months following diagnosis. The current treatment for GBM includes surgical resections and chemo- and radiotherapeutic modalities, which are not effective. CAR-T immunotherapy has been proven effective for CD19-positive blood malignancies, and the application of CAR-T cell therapy for solid tumors including GBM offers great hope for this aggressive tumor which has a limited response to current treatments. CAR-T technology depends on the use of patient-specific T cells genetically engineered to express specific tumor-associated antigens (TAAs). Interaction of CAR-T cells with tumor cells triggers the destruction/elimination of these cells by the induction of cytotoxicity and the release of different cytokines. Despite the great promise of CAR-T cell-based therapy several challenges exist. These include the heterogeneity of GBM cancer cells, aberrant various signaling pathways involved in tumor progression, antigen escape, the hostile inhibitory GBM microenvironment, T cell dysfunction, blood-brain barrier, and defective antigen presentation. All need to be addressed before full application at the clinical level can begin. Herein we provide a focused review of the rationale for the use of different types of CAR-T cells (including FcγRs), the different GBM-associated antigens, the challenges still facing CAR-T-based therapy, and means to overcome such challenges. Finally, we enumerate currently completed and ongoing clinical trials, highlighting the different ways such trials are designed to overcome specific problems. Exploitation of the full potential of CAR-T cell therapy for GBM depends on their solution.
Collapse
MESH Headings
- Antibodies, Bispecific/immunology
- Antibodies, Bispecific/therapeutic use
- Antigen Presentation
- Antigens, Neoplasm/immunology
- Blood-Brain Barrier
- Brain Neoplasms/immunology
- Brain Neoplasms/therapy
- Cell Movement/immunology
- Cell Movement/physiology
- Clinical Trials as Topic
- Disease Progression
- ErbB Receptors/immunology
- Forecasting
- Glioblastoma/immunology
- Glioblastoma/therapy
- Humans
- Immune Checkpoint Inhibitors/metabolism
- Immunotherapy, Adoptive/adverse effects
- Immunotherapy, Adoptive/methods
- Interleukin-13 Receptor alpha2 Subunit/immunology
- Lymphocyte Activation
- Lymphocyte Depletion
- Receptor, ErbB-2/immunology
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/therapeutic use
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/therapeutic use
- T-Lymphocytes/physiology
- Tumor Escape
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Hany E. Marei
- Department of Cytology and HistologyFaculty of Veterinary MedicineMansoura UniversityMansouraEgypt
| | | | | | - Anwarul Hasan
- Department of Mechanical and Industrial EngineeringCollege of EngineeringQatar UniversityDohaQatar
| | - Thomas Caceci
- Biomedical SciencesVirginia Maryland College of Veterinary MedicineBlacksburgVirginiaUSA
| | - Giacomo Pozzoli
- Pharmacology UnitFondazione Policlinico A. GemelliIRCCSRomeItaly
| | | |
Collapse
|
18
|
Ohkuri T, Kosaka A, Ikeura M, Salazar AM, Okada H. IFN-γ- and IL-17-producing CD8 + T (Tc17-1) cells in combination with poly-ICLC and peptide vaccine exhibit antiglioma activity. J Immunother Cancer 2021; 9:jitc-2021-002426. [PMID: 34193567 PMCID: PMC8246372 DOI: 10.1136/jitc-2021-002426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2021] [Indexed: 12/11/2022] Open
Abstract
Background While adoptive transfer of T-cells has been a major medical breakthrough for patients with B cell malignancies, the development of safe and effective T-cell-based immunotherapy for central nervous system (CNS) tumors, such as glioblastoma (GBM), still needs to overcome multiple challenges, including effective homing and persistence of T-cells. Based on previous observations that interleukin (IL)-17-producing T-cells can traffic to the CNS in autoimmune conditions, we evaluated CD8+ T-cells that produce IL-17 and interferon-γ (IFN-γ) (Tc17-1) cells in a preclinical GBM model. Methods We differentiated Pmel-1 CD8+ T-cells into Tc17-1 cells and compared their phenotypic and functional characteristics with those of IFN-γ-producing CD8+ T (Tc1) and IL-17-producing CD8+ T (Tc17) cells. We also evaluated the therapeutic efficacy, persistence, and tumor-homing of Tc17-1 cells in comparison to Tc1 cells using a mouse GL261 glioma model. Results In vitro, Tc17-1 cells demonstrated profiles of both Tc1 and Tc17 cells, including production of both IFN-γ and IL-17, although Tc17-1 cells demonstrated lesser degrees of antigen-specific cytotoxic activity compared with Tc1 cells. In mice-bearing intracranial GL261-Quad tumor and treated with temozolomide, Tc1 cells, but not Tc17-1, showed a significant prolongation of survival. However, when the T-cell transfer was combined with poly-ICLC and Pmel-1 peptide vaccine, both Tc1 and Tc17-1 cells exhibited significantly prolonged survival associated with upregulation of very late activation antigen−4 on Tc17-1 cells in vivo. Glioma cells that recurred following the therapy lost the susceptibility to Pmel-1-derived cytotoxic T-cells, indicating that immuno-editing was a mechanism of the acquired resistance. Conclusions Tc17-1 cells were equally effective as Tc1 cells when combined with poly-ICLC and peptide vaccine treatment.
Collapse
Affiliation(s)
- Takayuki Ohkuri
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Brain Tumor Program, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, USA
| | - Akemi Kosaka
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Brain Tumor Program, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, USA
| | - Maki Ikeura
- Brain Tumor Program, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, USA
| | | | - Hideho Okada
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA .,Brain Tumor Program, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA.,Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| |
Collapse
|
19
|
Tietze S, Michen S, Schackert G, Temme A. Prospects of immune checkpoint blockade and vaccine-based immunotherapy for glioblastoma. Innov Surg Sci 2021. [DOI: 10.1515/iss-2020-0034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Abstract
Glioblastoma multiforme (GBM) is the most prevalent primary brain tumor endowed with a dismal prognosis. Nowadays, immunotherapy in a particular immune checkpoint blockade and therapeutic vaccines are being extensively pursued. Yet, several characteristics of GBM may impact such immunotherapeutic approaches. This includes tumor heterogeneity, the relatively low mutational load of primary GBM, insufficient delivery of antibodies to tumor parenchyma and the unique immunosuppressive microenvironment of GBM. Moreover, standard treatment of GBM, comprising temozolomide chemotherapy, radiotherapy and in most instances the application of glucocorticoids for management of brain edema, results in a further increased immunosuppression. This review will provide a brief introduction to the principles of vaccine-based immunotherapy and give an overview of the current clinical studies, which employed immune checkpoint inhibitors, oncolytic viruses-based vaccination, cell-based and peptide-based vaccines. Recent experiences as well as the latest developments are reviewed. Overcoming obstacles, which limit the induction and long-term immune response against GBM when using vaccination approaches, are necessary for the implementation of effective immunotherapy of GBM.
Collapse
Affiliation(s)
- Stefanie Tietze
- Department of Neurosurgery, Section Experimental Neurosurgery/Tumor Immunology , University Hospital Carl Gustav Carus, Technical University Dresden , Dresden , Germany
| | - Susanne Michen
- Department of Neurosurgery, Section Experimental Neurosurgery/Tumor Immunology , University Hospital Carl Gustav Carus, Technical University Dresden , Dresden , Germany
| | - Gabriele Schackert
- Department of Neurosurgery, Section Experimental Neurosurgery/Tumor Immunology , University Hospital Carl Gustav Carus, Technical University Dresden , Dresden , Germany
- German Cancer Consortium (DKTK) , Dresden , Germany
- German Cancer Research Center (DKFZ) , Heidelberg , Germany
- National Center for Tumor Diseases , University Hospital Carl Gustav Carus, Technical University Dresden , Dresden , Germany
| | - Achim Temme
- Department of Neurosurgery, Section Experimental Neurosurgery/Tumor Immunology , University Hospital Carl Gustav Carus, Technical University Dresden , Dresden , Germany
- German Cancer Consortium (DKTK) , Dresden , Germany
- German Cancer Research Center (DKFZ) , Heidelberg , Germany
- National Center for Tumor Diseases , University Hospital Carl Gustav Carus, Technical University Dresden , Dresden , Germany
| |
Collapse
|
20
|
Mucosal Associated Invariant T Cells in Cancer-Friend or Foe? Cancers (Basel) 2021; 13:cancers13071582. [PMID: 33808058 PMCID: PMC8036566 DOI: 10.3390/cancers13071582] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 12/18/2022] Open
Abstract
Mucosal associated invariant T (MAIT) cells are a population of unconventional T cells which can bridge the innate and adaptive immune systems. Well-described roles for MAIT cells include host protection against invading bacteria, fungi and viruses. Upon activation, MAIT cells become prolific effector cells, capable of producing a range of cytokines and lytic molecules. In addition to their anti-microbial role, MAIT cells have been implicated in immune responses to cancer, with opposing beneficial and pathogenic roles reported. On the one hand, MAIT cells can home to the site of the tumour in many human cancers and can produce anti-tumour molecules. On the other, MAIT cells can display defective phenotypes in certain cancers and produce pro-tumour molecules. In this review, we discuss the current literature on the diverse roles for MAIT cells in cancer, outlining their frequencies, functions and associations with N staging and prognosis. We also discuss potential mechanisms underpinning cancer-related alterations in MAIT cells and highlight therapeutic approaches to harness or target MAIT cells in cancer.
Collapse
|
21
|
Genoud V, Migliorini D. Challenging Hurdles of Current Targeting in Glioblastoma: A Focus on Immunotherapeutic Strategies. Int J Mol Sci 2021; 22:3493. [PMID: 33800593 PMCID: PMC8036548 DOI: 10.3390/ijms22073493] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 01/23/2023] Open
Abstract
Glioblastoma is the most frequent primary neoplasm of the central nervous system and still suffers from very poor therapeutic impact. No clear improvements over current standard of care have been made in the last decade. For other cancers, but also for brain metastasis, which harbors a very distinct biology from glioblastoma, immunotherapy has already proven its efficacy. Efforts have been pursued to allow glioblastoma patients to benefit from these new approaches, but the road is still long for broad application. Here, we aim to review key glioblastoma immune related characteristics, current immunotherapeutic strategies being explored, their potential caveats, and future directions.
Collapse
Affiliation(s)
- Vassilis Genoud
- Department of Oncology, University Hospital of Geneva, 1205 Geneva, Switzerland;
- Center for Translational Research in Onco-Haematology, University of Geneva, 1205 Geneva, Switzerland
| | - Denis Migliorini
- Department of Oncology, University Hospital of Geneva, 1205 Geneva, Switzerland;
- Center for Translational Research in Onco-Haematology, University of Geneva, 1205 Geneva, Switzerland
- Brain Tumor and Immune Cell Engineering Laboratory, 1005 Lausanne, Switzerland
- Swiss Cancer Center Léman, 1205 Geneva, Switzerland
| |
Collapse
|
22
|
Cantini G, Pisati F, Pessina S, Finocchiaro G, Pellegatta S. Immunotherapy against the radial glia marker GLAST effectively triggers specific antitumor effectors without autoimmunity. Oncoimmunology 2021; 1:884-893. [PMID: 23162756 PMCID: PMC3489744 DOI: 10.4161/onci.20637] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The glutamate-aspartate transporter GLAST is a radial glia marker that is highly expressed in GL261 stem-like cells (GSCs). To target GLAST, we treated glioma-bearing mice with three subcutaneous injections of four GLAST peptides emulsified with Montanide ISA-51 in association with granulocyte macrophage colony-stimulating factor (GM-CSF) injections. Vaccination with GLAST peptides significantly prolonged survival, effectively enhanced systemic T-cell and NK-cell responses and promoted robust antitumor cytotoxicity. GLAST expression significantly decreased in gliomas from immunized mice, as evaluated by histological analysis and real-time PCR (RT-PCR). Moreover, the immunization protocol led to the upregulation of interferonγ (IFNγ) and tumor necrosis factorα (TNFα) as well as to the downregulation of transforming growth factor (TGF) β1 and β2 in the tumor. Beyond these changes, gliomas from immunized mice exhibited an increased recruitment of NK cells and antigen-specific CD8+ T cells expressing the tumor homing molecule VLA-4, as well as a local chemotactic gradient featuring expression of CXCL10 (which may be responsible for the recruitment of CTLs), CCL3, CCL4 and CCL5 (which are involved in NK-cell migration), and NKG2D ligand on glioma cells. Importantly, although GLAST is expressed in the central nervous system, autoimmune reactions were not observed in immunized mice. Altogether, these results support the contention that GLAST may constitute a glioma antigen against which immune responses can be efficiently induced without major safety concerns.
Collapse
Affiliation(s)
- Gabriele Cantini
- Unit of Molecular Neuro-Oncology; Neurological Institute C. Besta; Milan, Italy ; Department of Experimental Oncology; European Institute of Oncology; Campus IFOM-IEO; Milan, Italy
| | | | | | | | | |
Collapse
|
23
|
Reardon DA, Kim TM, Frenel JS, Simonelli M, Lopez J, Subramaniam DS, Siu LL, Wang H, Krishnan S, Stein K, Massard C. Treatment with pembrolizumab in programmed death ligand 1-positive recurrent glioblastoma: Results from the multicohort phase 1 KEYNOTE-028 trial. Cancer 2021; 127:1620-1629. [PMID: 33496357 DOI: 10.1002/cncr.33378] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/18/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Current treatments for recurrent glioblastoma offer limited benefit. The authors report the antitumor activity and safety of the anti-programmed death 1 (anti-PD-1) immunotherapy, pembrolizumab, in programmed death ligand 1 (PD-L1)-positive, recurrent glioblastoma. METHODS Adult patients with PD-L1-positive tumors were enrolled in the recurrent glioblastoma cohort of the multicohort, phase 1b KEYNOTE-028 study (ClinicalTrials.gov identifier, NCT02054806) and received pembrolizumab 10 mg/kg every 2 weeks for up to 2 years. The primary endpoint was investigator-assessed overall response rate according to the Response Evaluation Criteria in Solid Tumors, version 1.1. Archival tumor samples were assessed for PD-L1 expression levels (prospectively) and T-cell-inflamed gene expression profile score (retrospectively). RESULTS After a median follow-up of 14 months (range, 2-55 months) among the 26 enrolled patients, the overall response rate was 8% (95% CI, 1%-26%). Two partial responses, lasting 8.3 and 22.8 months, occurred. Progression-free survival (median, 2.8 months; 95% CI, 1.9-8.1 months) rate at 6 months was 37.7%, and the overall survival (median, 13.1 months; 95% CI, 8.0-26.6 months) rate at 12 months was 58%. Correlation of therapeutic benefit to level of PD-L1 expression, gene expression profile score, or baseline steroid use could not be established. Treatment-related adverse events occurred in 19 patients (73%), and 5 patients experienced grade 3 or 4 events (there were no grade 5 events). Immune-mediated adverse events and infusion reactions occurred in 7 patients (27%). CONCLUSIONS Pembrolizumab monotherapy demonstrated durable antitumor activity in a subset of patients with manageable toxicity in this small, signal-finding, recurrent glioblastoma cohort. Future studies evaluating rationally designed pembrolizumab combination regimens may improve outcomes in patients with recurrent glioblastoma.
Collapse
Affiliation(s)
| | - Tae Min Kim
- Seoul National University Hospital, Seoul, South Korea
| | | | - Matteo Simonelli
- Humanitas University, Department of Biomedical Sciences, Milan, Italy.,Humanitas Clinical and Research Center-IRCCS, Humanitas Cancer Center, Milan, Italy
| | - Juanita Lopez
- Drug Development Unit, Royal Marsden Hospital, Sutton, United Kingdom
| | - Deepa S Subramaniam
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia
| | - Lillian L Siu
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
24
|
Resident Memory T Cells and Their Effect on Cancer. Vaccines (Basel) 2020; 8:vaccines8040562. [PMID: 33019493 PMCID: PMC7711795 DOI: 10.3390/vaccines8040562] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
Resident memory T (TRM) cells are a unique subset of CD8+ T cells that are present within certain tissues and do not recirculate through the blood. Long term memory establishment and maintenance are dependent on tissue population of memory T cells. They are characterized by dual CD69/CD103 positivity, and play a role in both response to viral infection and local cancer immunosurveillance. Human TRM cells demonstrate the increased expression of adhesion molecules to facilitate tissue retention, have reduced proliferation and produce both regulatory and immune responsive cytokines. TRM cell phenotype is often characterized by a distinct expression profile driven by Runx3, Blimp1, and Hobit transcription factors. The accumulation of TRM cells in tumors is associated with increased survival and response to immunotherapies, including anti-PD-1 and anti-CTLA-4. In this review, we explore potential mechanisms of TRM cell transformation and maintenance, as well as potential applications for the use of TRM cells in both the development of supportive therapies and establishing more accurate prognoses.
Collapse
|
25
|
Gedeon PC, Champion CD, Rhodin KE, Woroniecka K, Kemeny HR, Bramall AN, Bernstock JD, Choi BD, Sampson JH. Checkpoint inhibitor immunotherapy for glioblastoma: current progress, challenges and future outlook. Expert Rev Clin Pharmacol 2020; 13:1147-1158. [PMID: 32862726 DOI: 10.1080/17512433.2020.1817737] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Despite maximal surgical resection and chemoradiation, glioblastoma (GBM) continues to be associated with significant morbidity and mortality. Novel therapeutic strategies are urgently needed. Given success in treating multiple other forms of cancer, checkpoint inhibitor immunotherapy remains foremost amongst novel therapeutic strategies that are currently under investigation. AREAS COVERED Through a systematic review of both published literature and the latest preliminary data available from ongoing clinical studies, we provide an up-to-date discussion on the immune system in the CNS, a detailed mechanistic evaluation of checkpoint biology in the CNS along with evidence for disruption of these pathways in GBM, and a summary of available preclinical and clinical data for checkpoint blockade in GBM. We also include a discussion of novel, emerging targets for checkpoint blockade which may play an important role in GBM immunotherapy. EXPERT OPINION Evidence indicates that while clinical success of checkpoint blockade for the treatment of GBM has been limited to date, through improved preclinical models, optimization in the context of standard of care therapies, assay standardization and harmonization, and combinatorial approaches which may include novel targets for checkpoint blockade, checkpoint inhibitor immunotherapy may yield a safe and effective therapeutic option for the treatment of GBM.
Collapse
Affiliation(s)
- Patrick C Gedeon
- Department of Surgery, Brigham and Women's Hospital and Harvard Medical School , Boston, MA, USA
| | - Cosette D Champion
- Department of Neurosurgery, Duke University Medical Center , Durham, NC, USA
| | - Kristen E Rhodin
- Department of Surgery, Duke University Medical Center , Durham, NC, USA
| | - Karolina Woroniecka
- Department of Neurosurgery, Duke University Medical Center , Durham, NC, USA.,Department of Pathology, Duke University Medical Center , Durham, NC, USA
| | - Hanna R Kemeny
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine , Chicago, IL, USA
| | - Alexa N Bramall
- Department of Neurosurgery, Duke University Medical Center , Durham, NC, USA
| | - Joshua D Bernstock
- Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School , Boston, MA, USA
| | - Bryan D Choi
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School , Boston, MA, USA
| | - John H Sampson
- Department of Neurosurgery, Duke University Medical Center , Durham, NC, USA.,Department of Pathology, Duke University Medical Center , Durham, NC, USA
| |
Collapse
|
26
|
Campanella R, Guarnaccia L, Caroli M, Zarino B, Carrabba G, La Verde N, Gaudino C, Rampini A, Luzzi S, Riboni L, Locatelli M, Navone SE, Marfia G. Personalized and translational approach for malignant brain tumors in the era of precision medicine: the strategic contribution of an experienced neurosurgery laboratory in a modern neurosurgery and neuro-oncology department. J Neurol Sci 2020; 417:117083. [PMID: 32784071 DOI: 10.1016/j.jns.2020.117083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/16/2020] [Accepted: 08/04/2020] [Indexed: 12/20/2022]
Abstract
Personalized medicine (PM) aims to optimize patient management, taking into account the individual traits of each patient. The main purpose of PM is to obtain the best response, improving health care and lowering costs. Extending traditional approaches, PM introduces novel patient-specific paradigms from diagnosis to treatment, with greater precision. In neuro-oncology, the concept of PM is well established. Indeed, every neurosurgical intervention for brain tumors has always been highly personalized. In recent years, PM has been introduced in neuro-oncology also to design and prescribe specific therapies for the patient and the patient's tumor. The huge advances in basic and translational research in the fields of genetics, molecular and cellular biology, transcriptomics, proteomics, and metabolomics have led to the introduction of PM into clinical practice. The identification of a patient's individual variation map may allow to design selected therapeutic protocols that ensure successful outcomes and minimize harmful side effects. Thus, clinicians can switch from the "one-size-fits-all" approach to PM, ensuring better patient care and high safety margin. Here, we review emerging trends and the current literature about the development of PM in neuro-oncology, considering the positive impact of innovative advanced researches conducted by a neurosurgical laboratory.
Collapse
Affiliation(s)
- Rolando Campanella
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Laura Guarnaccia
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Manuela Caroli
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Barbara Zarino
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giorgio Carrabba
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Chiara Gaudino
- Department of Neuroradiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Angela Rampini
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Sabino Luzzi
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy; Neurosurgery Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Laura Riboni
- Department of Medical Biotechnology and Translational Medicine, LITA-Segrate, University of Milan, Milan, Italy
| | - Marco Locatelli
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Aldo Ravelli" Research Center, Milan, Italy; Department of Medical-Surgical Physiopathology and Transplantation, University of Milan, Milan, Italy
| | - Stefania Elena Navone
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Aldo Ravelli" Research Center, Milan, Italy.
| | - Giovanni Marfia
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Aldo Ravelli" Research Center, Milan, Italy; Clinical Pathology Unit, Istituto di Medicina Aerospaziale "A. Moosso", Aeronautica Militare, Milan, Italy
| |
Collapse
|
27
|
Hu X, Deng Q, Ma L, Li Q, Chen Y, Liao Y, Zhou F, Zhang C, Shao L, Feng J, He T, Ning W, Kong Y, Huo Y, He A, Liu B, Zhang J, Adams R, He Y, Tang F, Bian X, Luo J. Meningeal lymphatic vessels regulate brain tumor drainage and immunity. Cell Res 2020; 30:229-243. [PMID: 32094452 PMCID: PMC7054407 DOI: 10.1038/s41422-020-0287-8] [Citation(s) in RCA: 234] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/21/2020] [Indexed: 11/14/2022] Open
Abstract
Recent studies have shown that meningeal lymphatic vessels (MLVs), which are located both dorsally and basally beneath the skull, provide a route for draining macromolecules and trafficking immune cells from the central nervous system (CNS) into cervical lymph nodes (CLNs), and thus represent a potential therapeutic target for treating neurodegenerative and neuroinflammatory diseases. However, the roles of MLVs in brain tumor drainage and immunity remain unexplored. Here we show that dorsal MLVs undergo extensive remodeling in mice with intracranial gliomas or metastatic melanomas. RNA-seq analysis of MLV endothelial cells revealed changes in the gene sets involved in lymphatic remodeling, fluid drainage, as well as inflammatory and immunological responses. Disruption of dorsal MLVs alone impaired intratumor fluid drainage and the dissemination of brain tumor cells to deep CLNs (dCLNs). Notably, the dendritic cell (DC) trafficking from intracranial tumor tissues to dCLNs decreased in mice with defective dorsal MLVs, and increased in mice with enhanced dorsal meningeal lymphangiogenesis. Strikingly, disruption of dorsal MLVs alone, without affecting basal MLVs or nasal LVs, significantly reduced the efficacy of combined anti-PD-1/CTLA-4 checkpoint therapy in striatal tumor models. Furthermore, mice bearing tumors overexpressing VEGF-C displayed a better response to anti-PD-1/CTLA-4 combination therapy, and this was abolished by CCL21/CCR7 blockade, suggesting that VEGF-C potentiates checkpoint therapy via the CCL21/CCR7 pathway. Together, the results of our study not only demonstrate the functional aspects of MLVs as classic lymphatic vasculature, but also highlight that they are essential in generating an efficient immune response against brain tumors.
Collapse
Affiliation(s)
- Xueting Hu
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, 100871, Beijing, China
| | - Qiuping Deng
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, 100871, Beijing, China
| | - Lu Ma
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, 100871, Beijing, China
| | - Qingqing Li
- Biodynamic Optical Imaging Center, College of Life Sciences, Peking University, 100871, Beijing, China
| | - Yidong Chen
- Biodynamic Optical Imaging Center, College of Life Sciences, Peking University, 100871, Beijing, China
| | - Yuhan Liao
- Biodynamic Optical Imaging Center, College of Life Sciences, Peking University, 100871, Beijing, China
| | - Fan Zhou
- State Key Laboratory of Proteomics, Translational Medicine Center of Stem Cells, 307-Ivy Translational Medicine Center, Laboratory of Oncology, Affiliated Hospital, Academy of Military Medical Sciences, 100071, Beijing, China
| | - Chen Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, 100069, Beijing, China
| | - Linlin Shao
- Eye Hospital of China Academy of Chinese Medical Sciences, 100040, Beijing, China
| | - Jun Feng
- Eye Hospital of China Academy of Chinese Medical Sciences, 100040, Beijing, China
| | - Tubao He
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, 100871, Beijing, China
| | - Weihai Ning
- Sanbo Brain Hospital, Capital Medical University, 100093, Beijing, China
| | - Yan Kong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Cell Biology, Peking University Cancer Hospital and Institute, 100142, Beijing, China
| | - Yingqing Huo
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, 100871, Beijing, China
| | - Aibin He
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, 100871, Beijing, China
- Peking-Tsinghua Center for Life Sciences, 100871, Beijing, China
| | - Bing Liu
- State Key Laboratory of Proteomics, Translational Medicine Center of Stem Cells, 307-Ivy Translational Medicine Center, Laboratory of Oncology, Affiliated Hospital, Academy of Military Medical Sciences, 100071, Beijing, China
| | - Jingjing Zhang
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China
| | - Ralf Adams
- Max-Planck-Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, Münster, D-48149, Germany
| | - Yulong He
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Fuchou Tang
- Biodynamic Optical Imaging Center, College of Life Sciences, Peking University, 100871, Beijing, China
- Peking-Tsinghua Center for Life Sciences, 100871, Beijing, China
| | - Xiuwu Bian
- Institute of Pathology and Southwest Cancer Center, Key Laboratory of the Ministry of Education, Southwest Hospital, Army Medical University (Third Military Medical University), 400038, Chongqing, China
| | - Jincai Luo
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, 100871, Beijing, China.
| |
Collapse
|
28
|
Adhikaree J, Moreno-Vicente J, Kaur AP, Jackson AM, Patel PM. Resistance Mechanisms and Barriers to Successful Immunotherapy for Treating Glioblastoma. Cells 2020; 9:E263. [PMID: 31973059 PMCID: PMC7072315 DOI: 10.3390/cells9020263] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma (GBM) is inevitably refractory to surgery and chemoradiation. The hope for immunotherapy has yet to be realised in the treatment of GBM. Immune checkpoint blockade antibodies, particularly those targeting the Programme death 1 (PD-1)/PD-1 ligand (PD-L1) pathway, have improved the prognosis in a range of cancers. However, its use in combination with chemoradiation or as monotherapy has proved unsuccessful in treating GBM. This review focuses on our current knowledge of barriers to immunotherapy success in treating GBM, such as diminished pre-existing anti-tumour immunity represented by low levels of PD-L1 expression, low tumour mutational burden and a severely exhausted T-cell tumour infiltrate. Likewise, systemic T-cell immunosuppression is seen driven by tumoural factors and corticosteroid use. Furthermore, unique anatomical differences with primary intracranial tumours such as the blood-brain barrier, the type of antigen-presenting cells and lymphatic drainage contribute to differences in treatment success compared to extracranial tumours. There are, however, shared characteristics with those known in other tumours such as the immunosuppressive tumour microenvironment. We conclude with a summary of ongoing and future immune combination strategies in GBM, which are representative of the next wave in immuno-oncology therapeutics.
Collapse
Affiliation(s)
- Jason Adhikaree
- Host-Tumour Interactions Group, Division of Cancer and Stem Cells, BioDiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK; (A.P.K.); (A.M.J.); (P.M.P.)
| | - Julia Moreno-Vicente
- Antibody and Vaccine Group, Centre for Cancer Immunology, University of Southampton, Southampton General Hospital, Southampton, Hants SO16 6YD, UK;
| | - Aanchal Preet Kaur
- Host-Tumour Interactions Group, Division of Cancer and Stem Cells, BioDiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK; (A.P.K.); (A.M.J.); (P.M.P.)
| | - Andrew Mark Jackson
- Host-Tumour Interactions Group, Division of Cancer and Stem Cells, BioDiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK; (A.P.K.); (A.M.J.); (P.M.P.)
| | - Poulam M. Patel
- Host-Tumour Interactions Group, Division of Cancer and Stem Cells, BioDiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK; (A.P.K.); (A.M.J.); (P.M.P.)
| |
Collapse
|
29
|
Lorger M, Andreou T, Fife C, James F. Immune Checkpoint Blockade - How Does It Work in Brain Metastases? Front Mol Neurosci 2019; 12:282. [PMID: 31824260 PMCID: PMC6881300 DOI: 10.3389/fnmol.2019.00282] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 11/05/2019] [Indexed: 01/13/2023] Open
Abstract
Immune checkpoints restrain the immune system following its activation and their inhibition unleashes anti-tumor immune responses. Immune checkpoint inhibitors revolutionized the treatment of several cancer types, including melanoma, and immune checkpoint blockade with anti-PD-1 and anti-CTLA-4 antibodies is becoming a frontline therapy in metastatic melanoma. Notably, up to 60% of metastatic melanoma patients develop metastases in the brain. Brain metastases (BrM) are also very common in patients with lung and breast cancer, and occur in ∼20-40% of patients across different cancer types. Metastases in the brain are associated with poor prognosis due to the lack of efficient therapies. In the past, patients with BrM used to be excluded from immune-based clinical trials due to the assumption that such therapies may not work in the context of "immune-specialized" environment in the brain, or may cause harm. However, recent trials in patients with BrM demonstrated safety and intracranial activity of anti-PD-1 and anti-CTLA-4 therapy. We here discuss how immune checkpoint therapy works in BrM, with focus on T cells and the cross-talk between BrM, the immune system, and tumors growing outside the brain. We discuss major open questions in our understanding of what is required for an effective immune checkpoint inhibitor therapy in BrM.
Collapse
Affiliation(s)
- Mihaela Lorger
- Institute of Medical Research at St. James’s, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Tereza Andreou
- Institute of Medical Research at St. James’s, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Christopher Fife
- Institute of Medical Research at St. James’s, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Fiona James
- Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| |
Collapse
|
30
|
Xu J, Yu S, Wang X, Qian Y, Wu W, Zhang S, Zheng B, Wei G, Gao S, Cao Z, Fu W, Xiao Z, Lu W. High Affinity of Chlorin e6 to Immunoglobulin G for Intraoperative Fluorescence Image-Guided Cancer Photodynamic and Checkpoint Blockade Therapy. ACS NANO 2019; 13:10242-10260. [PMID: 31397999 DOI: 10.1021/acsnano.9b03466] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cancer photodynamic therapy (PDT) represents an attractive local treatment in combination with immunotherapy. Successful cancer PDT relies on image guidance to ensure the treatment accuracy. However, existing nanotechnology for co-delivery of photosensitizers and image contrast agents slows the clearance of PDT agents from the body and causes a disparity between the release profiles of the imaging and PDT agents. We have found that the photosensitizer Chlorin e6 (Ce6) is inherently bound to immunoglobulin G (IgG) in a nanomolarity range of affinity. Ce6 and IgG self-assemble to form the nanocomplexes termed Chloringlobulin (Chlorin e6 + immunoglobulin G). Chloringlobulin enhances the Ce6 concentration in the tumor without changing its elimination half-life in blood. Utilizing the immune checkpoint inhibitor antiprogrammed death ligand 1 (PD-L1) (αPD-L1) to prepare αPD-L1 Chloringlobulin, we have demonstrated a combination of Ce6-based red-light fluorescence image-guided surgery, stereotactic PDT, and PD-L1 blockade therapy of mice bearing orthotopic glioma. In mice bearing an orthotopic colon cancer model, we have prepared another Chloringlobulin that allows intraoperative fluorescence image-guided PDT in combination with PD-L1 and cytotoxic T lymphocyte antigen 4 (CTLA-4) dual checkpoint blockade therapy. The Chloringlobulin technology shows great potential for clinical translation of combinatorial intraoperative fluorescence image-guided PDT and checkpoint blockade therapy.
Collapse
Affiliation(s)
- Jiaojiao Xu
- Minhang Hospital & School of Pharmacy, Key Laboratory of Smart Drug Delivery Ministry of Education, State Key Laboratory of Molecular Engineering of Polymers , Fudan University , Shanghai 201199 , China
| | - Sheng Yu
- Minhang Hospital & School of Pharmacy, Key Laboratory of Smart Drug Delivery Ministry of Education, State Key Laboratory of Molecular Engineering of Polymers , Fudan University , Shanghai 201199 , China
| | - Xiaodong Wang
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy , The University of Rhode Island , Kingston , Rhode Island 02881 , United States
| | - Yuyi Qian
- Minhang Hospital & School of Pharmacy, Key Laboratory of Smart Drug Delivery Ministry of Education, State Key Laboratory of Molecular Engineering of Polymers , Fudan University , Shanghai 201199 , China
| | - Weishu Wu
- Minhang Hospital & School of Pharmacy, Key Laboratory of Smart Drug Delivery Ministry of Education, State Key Laboratory of Molecular Engineering of Polymers , Fudan University , Shanghai 201199 , China
| | - Sihang Zhang
- Minhang Hospital & School of Pharmacy, Key Laboratory of Smart Drug Delivery Ministry of Education, State Key Laboratory of Molecular Engineering of Polymers , Fudan University , Shanghai 201199 , China
| | - Binbin Zheng
- Minhang Hospital & School of Pharmacy, Key Laboratory of Smart Drug Delivery Ministry of Education, State Key Laboratory of Molecular Engineering of Polymers , Fudan University , Shanghai 201199 , China
| | - Guoguang Wei
- Minhang Hospital & School of Pharmacy, Key Laboratory of Smart Drug Delivery Ministry of Education, State Key Laboratory of Molecular Engineering of Polymers , Fudan University , Shanghai 201199 , China
| | - Shuai Gao
- Minhang Hospital & School of Pharmacy, Key Laboratory of Smart Drug Delivery Ministry of Education, State Key Laboratory of Molecular Engineering of Polymers , Fudan University , Shanghai 201199 , China
| | - Zhonglian Cao
- Minhang Hospital & School of Pharmacy, Key Laboratory of Smart Drug Delivery Ministry of Education, State Key Laboratory of Molecular Engineering of Polymers , Fudan University , Shanghai 201199 , China
| | - Wei Fu
- Minhang Hospital & School of Pharmacy, Key Laboratory of Smart Drug Delivery Ministry of Education, State Key Laboratory of Molecular Engineering of Polymers , Fudan University , Shanghai 201199 , China
| | - Zeyu Xiao
- Department of Pharmacology and Chemical Biology, & Clinical and Fundamental Research Center, Institute of Molecular Medicine, Renji Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai 200025 , China
| | - Wei Lu
- Minhang Hospital & School of Pharmacy, Key Laboratory of Smart Drug Delivery Ministry of Education, State Key Laboratory of Molecular Engineering of Polymers , Fudan University , Shanghai 201199 , China
| |
Collapse
|
31
|
Khan JF, Khan AS, Brentjens RJ. Application of CAR T cells for the treatment of solid tumors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 164:293-327. [PMID: 31383408 DOI: 10.1016/bs.pmbts.2019.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
CAR T cell therapy of cancers promises to revolutionize oncology by harnessing the powers of synthetic biology and immunotherapy in a single agent. CARs are synthetic receptors composed of an extracellular antigen binding domain and one or more intracellular signaling domains which act in concert to activate the T cell upon antigen recognition. CARs targeting B cell associated CD19 demonstrated robust in vivo cytolytic activity, expansion, and persistence upon antigen exposure paving the way for clinical application of this technology and ultimately FDA approval for pediatric and young adult acute lymphoblastic leukemia as well as patients with relapsed or refractory diffuse large B cell lymphoma. However, these successes have not yet been replicated in the arena of solid tumors. Unlike hematologic malignancies, solid tumors present numerous challenges in the form of an immunosuppressive tumor microenvironment. In this chapter, we will highlight clinical application of CAR T cells in solid tumors, discuss hurdles that have impeded CAR T cell function in these malignancies, and propose methods to overcome these limitations.
Collapse
Affiliation(s)
- Jonathan F Khan
- Department of Pharmacology, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, United States; Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Abdul Salam Khan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Renier J Brentjens
- Department of Pharmacology, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, United States; Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States.
| |
Collapse
|
32
|
Pineda B, Sánchez García FJ, Olascoaga NK, Pérez de la Cruz V, Salazar A, Moreno-Jiménez S, Hernández Pedro N, Márquez-Navarro A, Ortiz Plata A, Sotelo J. Malignant Glioma Therapy by Vaccination with Irradiated C6 Cell-Derived Microvesicles Promotes an Antitumoral Immune Response. Mol Ther 2019; 27:1612-1620. [PMID: 31204210 PMCID: PMC6731467 DOI: 10.1016/j.ymthe.2019.05.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/13/2019] [Accepted: 05/19/2019] [Indexed: 12/19/2022] Open
Abstract
Glioblastoma is the most common and malignant tumor of the CNS, with a mean survival of 14 months after diagnosis. Its unfavorable prognosis reveals the need for novel therapies. It is known that radiation can induce a systemic antitumor effect. Tumor cells produce and release microvesicles in response to cell damage such as radiation. Microvesicles contain a plethora of bioactive molecules, including antigens involved in modulation of the immune response. In this study, we characterized and evaluated irradiated C6 cell-derived microvesicles as a therapeutic vaccination in C6 malignant glioma. Cultured C6 glioma cells were irradiated with a single dose of 50 Gy to obtain the microvesicles. Subcutaneous implantation of C6 cells was performed when the tumor reached 2 cm in diameter, and non-irradiated and irradiated C6 cell-derived microvesicles were administered subcutaneously. Tumor growth, apoptosis, and immunophenotypes were determined. Reduction of tumor volume (more than 50%) was observed in the group treated with irradiated C6 cell-derived microvesicles compared with the control (p = 0.03). The percentages of infiltrative helper, cytotoxic, and regulatory T lymphocytes as well as apoptotic cells were increased in tumors from immunized rats compared with controls. These findings make microvesicle-based vaccination a promising immunotherapeutic approach against glioblastoma.
Collapse
Affiliation(s)
- Benjamín Pineda
- Neuroimmunology and Neuro-oncology Unit, National Institute of Neurology and Neurosurgery, Mexico City 14269, Mexico.
| | - Francisco Javier Sánchez García
- Inmunorregulation Laboratory, National School of Biological Sciences, National Polytechnic Institute, Mexico City 11340, Mexico
| | - Nora Karen Olascoaga
- Neuroimmunology and Neuro-oncology Unit, National Institute of Neurology and Neurosurgery, Mexico City 14269, Mexico
| | - Verónica Pérez de la Cruz
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery, Mexico City 14269, Mexico
| | - Alelí Salazar
- Neuroimmunology and Neuro-oncology Unit, National Institute of Neurology and Neurosurgery, Mexico City 14269, Mexico
| | - Sergio Moreno-Jiménez
- Radioneurosurgery Unit, National Institute of Neurology and Neurosurgery, Mexico City 14269, Mexico
| | - Norma Hernández Pedro
- Experimental Oncology Laboratory, National Cancer Institute, Mexico City 14080, Mexico
| | - Adrián Márquez-Navarro
- Federal Commission for the Protection against Sanitary Risks, Commission of Sanitary Authorization, Oklahoma, Benito Juárez, Mexico City 03810, Mexico
| | - Alma Ortiz Plata
- Experimental Neuropathology Laboratory, National Institute of Neurology and Neurosurgery, Mexico City 14269, Mexico
| | - Julio Sotelo
- Neuroimmunology and Neuro-oncology Unit, National Institute of Neurology and Neurosurgery, Mexico City 14269, Mexico
| |
Collapse
|
33
|
Cytotoxic CD8 + T lymphocytes expressing ALS-causing SOD1 mutant selectively trigger death of spinal motoneurons. Proc Natl Acad Sci U S A 2019; 116:2312-2317. [PMID: 30674678 PMCID: PMC6369778 DOI: 10.1073/pnas.1815961116] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
CD8+ T lymphocytes, which are typically devoted to eliminate malignant and infected cells, have been described in the central nervous system (CNS) of patients and mice with amyotrophic lateral sclerosis (ALS). However, their role in ALS pathogenesis has yet to be unraveled. Here, we show that ablation of CD8+ T cells in ALS mice increased the number of surviving motoneurons. CD8+ T cells expressing the ALS-causing superoxide dismutase-1 mutant protein recognize and selectively kill motoneurons in vitro. To exert their cytotoxic function, mutant CD8+ T cells required presentation of the antigen-MHC-I complex at the surface of the motoneurons. Analysis of T cell receptor diversity supports the evidence that self-reactive CD8+ T lymphocytes infiltrate the CNS of ALS mice to exert cytotoxic function. Adaptive immune response is part of the dynamic changes that accompany motoneuron loss in amyotrophic lateral sclerosis (ALS). CD4+ T cells that regulate a protective immunity during the neurodegenerative process have received the most attention. CD8+ T cells are also observed in the spinal cord of patients and ALS mice although their contribution to the disease still remains elusive. Here, we found that activated CD8+ T lymphocytes infiltrate the central nervous system (CNS) of a mouse model of ALS at the symptomatic stage. Selective ablation of CD8+ T cells in mice expressing the ALS-associated superoxide dismutase-1 (SOD1)G93A mutant decreased spinal motoneuron loss. Using motoneuron-CD8+ T cell coculture systems, we found that mutant SOD1-expressing CD8+ T lymphocytes selectively kill motoneurons. This cytotoxicity activity requires the recognition of the peptide-MHC-I complex (where MHC-I represents major histocompatibility complex class I). Measurement of interaction strength by atomic force microscopy-based single-cell force spectroscopy demonstrated a specific MHC-I-dependent interaction between motoneuron and SOD1G93A CD8+ T cells. Activated mutant SOD1 CD8+ T cells produce interferon-γ, which elicits the expression of the MHC-I complex in motoneurons and exerts their cytotoxic function through Fas and granzyme pathways. In addition, analysis of the clonal diversity of CD8+ T cells in the periphery and CNS of ALS mice identified an antigen-restricted repertoire of their T cell receptor in the CNS. Our results suggest that self-directed immune response takes place during the course of the disease, contributing to the selective elimination of a subset of motoneurons in ALS.
Collapse
|
34
|
Congdon KL, Sanchez-Perez LA, Sampson JH. Effective effectors: How T cells access and infiltrate the central nervous system. Pharmacol Ther 2018; 197:52-60. [PMID: 30557632 DOI: 10.1016/j.pharmthera.2018.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Several Phase II and III clinical trials have demonstrated that immunotherapy can induce objective responses in otherwise refractory malignancies in tumors outside the central nervous system. In large part, effector T cells mediate much of the antitumor efficacy in these trials, and potent antitumor T cells can be generated through vaccination, immune checkpoint blockade, adoptive transfer, and genetic manipulation. However, activated T cells must still traffic to, infiltrate, and persist within tumor in order to mediate tumor lysis. These requirements for efficacy pose unique challenges for brain tumor immunotherapy, due to specific anatomical barriers and populations of specialized immune cells within the central nervous system that function to constrain immunity. Both autoimmune and infectious diseases of the central nervous system provide a wealth of information on how T cells can successfully migrate to the central nervous system and then engender sustained immune responses. In this review, we will examine the commonalities in the efferent arm of immunity to the brain for autoimmunity, infection, and tumor immunotherapy to identify key factors underlying potent immune responses.
Collapse
Affiliation(s)
- Kendra L Congdon
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, United States; The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, United States; Department of Neurosurgery, Duke University School of Medicine, Durham, NC 27710, United States
| | - Luis A Sanchez-Perez
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, United States; The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, United States; Department of Neurosurgery, Duke University School of Medicine, Durham, NC 27710, United States
| | - John H Sampson
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, United States; The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, United States; Department of Neurosurgery, Duke University School of Medicine, Durham, NC 27710, United States; Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27710, United States; Department of Pathology, Duke University School of Medicine, Durham, NC 27710, United States.
| |
Collapse
|
35
|
Dong B, Wang L, Nie S, Li X, Xiao Y, Yang L, Meng X, Zhao P, Cui C, Tu L, Lu W, Sun W, Yu Y. Anti-glioma effect of intracranial vaccination with tumor cell lysate plus flagellin in mice. Vaccine 2018; 36:8148-8157. [PMID: 30449633 DOI: 10.1016/j.vaccine.2018.04.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 02/19/2018] [Accepted: 04/19/2018] [Indexed: 02/06/2023]
Abstract
The adjuvant effects of flagellin on regulation of immune response have been proved; whether flagellin could assist tumor cell lysate (TCL) to enhance anti-glioma immunity remains to be investigated. This study tests a hypothesis that therapeuticly intracranial administration with flagellin plus TCL enhances the effects of specific immunotherapy on glioma in mice. In this study, GL261 cells were transferred into C57BL/6 mice and the GL261-bearing mice were subcutaneously or intracranially inoculated with flagellin plus TCL, flagellin, TCL or saline. Our results showed that prophylacticly subcutaneous administration with TCL and flagellin could induce potent cytotoxic T lymphocyte (CTL) and prolong the survival of GL261-bearing mice significantly, but therapeuticly subcutaneous administration failed to. However, therapeuticly intracranial administration of TCL plus flagellin could prolong the survival. Moreover, intracranial administration of flagellin could recruit CD4+ T cells and CD8+ T cells to brain tissues, induce proliferation of natural killer (NK) cells, CD4+ T cells and CD8+ T cells in peripheral blood mononuclear cells and induce to splenomegaly. The results suggested that flagellin could be acted as an efficient adjuvant for TCL based vaccine.
Collapse
Affiliation(s)
- Boqi Dong
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Liying Wang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Shu Nie
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Xin Li
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Yue Xiao
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Lei Yang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Xiuping Meng
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Peiyan Zhao
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Cuiyun Cui
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Liqun Tu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Wenting Lu
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Wei Sun
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China.
| | - Yongli Yu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China.
| |
Collapse
|
36
|
Filley AC, Henriquez M, Dey M. CART Immunotherapy: Development, Success, and Translation to Malignant Gliomas and Other Solid Tumors. Front Oncol 2018; 8:453. [PMID: 30386740 PMCID: PMC6199385 DOI: 10.3389/fonc.2018.00453] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/26/2018] [Indexed: 12/26/2022] Open
Abstract
T cell chimeric antigen receptor (CAR) technology has allowed for the introduction of a high degree of tumor selectivity into adoptive cell transfer therapies. Evolution of this technology has produced a robust antitumor immunotherapeutic strategy that has resulted in dramatic outcomes in liquid cancers. CAR-expressing T-cells (CARTs) targeting CD19 and CD20 have been successfully used in the treatment of hematologic malignancies, producing sustained tumor regressions in a majority of treated patients. These encouraging results have led to a historic and unprecedented FDA approval of CTL019, Novartis' CAR T-cell therapy for the treatment of children and young adults with relapsed or refractory B-cell acute lymphoblastic leukemia (ALL). However, the translation of this technology to solid tumors, like malignant gliomas (MG), has thus far been unsuccessful. This review provides a timely analysis of the factors leading to the success of CART immunotherapy in the setting of hematologic malignancies, barriers limiting its success in the treatment of solid tumors, and approaches to overcome these challenges and allow the application of CART immunotherapy as a treatment modality for refractory tumors, like malignant gliomas, that are in desperate need of effective therapies.
Collapse
Affiliation(s)
- Anna C Filley
- Department of Neurosurgery, IU Simon Cancer Center, IU School of Medicine, Indiana University Purdue University Indianapolis, Indianapolis, IN, United States
| | - Mario Henriquez
- Department of Neurosurgery, IU Simon Cancer Center, IU School of Medicine, Indiana University Purdue University Indianapolis, Indianapolis, IN, United States
| | - Mahua Dey
- Department of Neurosurgery, IU Simon Cancer Center, IU School of Medicine, Indiana University Purdue University Indianapolis, Indianapolis, IN, United States
| |
Collapse
|
37
|
Dumauthioz N, Labiano S, Romero P. Tumor Resident Memory T Cells: New Players in Immune Surveillance and Therapy. Front Immunol 2018; 9:2076. [PMID: 30258445 PMCID: PMC6143788 DOI: 10.3389/fimmu.2018.02076] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 08/21/2018] [Indexed: 12/11/2022] Open
Abstract
Tissue resident memory T cells (Trm) are a subset of memory T cells mainly described in inflammation and infection settings. Their location in peripheral tissues, such as lungs, gut, or skin, makes them the earliest T cell population to respond upon antigen recognition or under inflammatory conditions. The study of Trm cells in the field of cancer, and particularly in cancer immunotherapy, has recently gained considerable momentum. Different reports have shown that the vaccination route is critical to promote Trm generation in preclinical cancer models. Cancer vaccines administered directly at the mucosa, frequently result in enhanced Trm formation in mucosal cancers compared to vaccinations via intramuscular or subcutaneous routes. Moreover, the intratumoral presence of T cells expressing the integrin CD103 has been reported to strongly correlate with a favorable prognosis for cancer patients. In spite of recent progress, the full spectrum of Trm anti-tumoral functions still needs to be fully established, particularly in cancer patients, in different clinical contexts. In this mini-review we focus on the recent vaccination strategies aimed at generating Trm cells, as well as evidence supporting their association with patient survival in different cancer types. We believe that collectively, this information provides a strong rationale to target Trm for cancer immunotherapy.
Collapse
Affiliation(s)
- Nina Dumauthioz
- Department of Oncology, Faculty of Biology and Medicine, University of Lausanne, Épalinges, Switzerland
| | - Sara Labiano
- Department of Oncology, Faculty of Biology and Medicine, University of Lausanne, Épalinges, Switzerland
| | - Pedro Romero
- Department of Oncology, Faculty of Biology and Medicine, University of Lausanne, Épalinges, Switzerland
| |
Collapse
|
38
|
Genoud V, Marinari E, Nikolaev SI, Castle JC, Bukur V, Dietrich PY, Okada H, Walker PR. Responsiveness to anti-PD-1 and anti-CTLA-4 immune checkpoint blockade in SB28 and GL261 mouse glioma models. Oncoimmunology 2018; 7:e1501137. [PMID: 30524896 PMCID: PMC6279422 DOI: 10.1080/2162402x.2018.1501137] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/11/2018] [Accepted: 07/12/2018] [Indexed: 12/21/2022] Open
Abstract
Immune checkpoint blockade (ICB) is currently evaluated in patients with glioblastoma (GBM), based on encouraging clinical data in other cancers, and results from studies with the methylcholanthrene-induced GL261 mouse glioma. In this paper, we describe a novel model faithfully recapitulating some key human GBM characteristics, including low mutational load, a factor reported as a prognostic indicator of ICB response. Consistent with this observation, SB28 is completely resistant to ICB, contrasting with treatment sensitivity of the more highly mutated GL261. Moreover, SB28 shows features of a poorly immunogenic tumor, with low MHC-I expression and modest CD8+ T-cell infiltration, suggesting that it may present similar challenges for immunotherapy as human GBM. Based on these key features for immune reactivity, SB28 may represent a treatment-resistant malignancy likely to mirror responses of many human tumors. We therefore propose that SB28 is a particularly suitable model for optimization of GBM immunotherapy.
Collapse
Affiliation(s)
- Vassilis Genoud
- Translational research center for hemato-oncology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Eliana Marinari
- Translational research center for hemato-oncology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sergey I Nikolaev
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - John C. Castle
- Biomarker Development Center, Translational Oncology at the University Medical Center of Johannes Gutenberg University, Mainz, Germany
| | - Valesca Bukur
- Biomarker Development Center, Translational Oncology at the University Medical Center of Johannes Gutenberg University, Mainz, Germany
| | - Pierre-Yves Dietrich
- Translational research center for hemato-oncology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Oncology, University Hospitals of Geneva, Geneva, Switzerland
| | - Hideho Okada
- Department of Neurological Surgery, University of California, San Francisco, California, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
| | - Paul R. Walker
- Translational research center for hemato-oncology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
39
|
Broekman ML, Maas SLN, Abels ER, Mempel TR, Krichevsky AM, Breakefield XO. Multidimensional communication in the microenvirons of glioblastoma. Nat Rev Neurol 2018; 14:482-495. [PMID: 29985475 PMCID: PMC6425928 DOI: 10.1038/s41582-018-0025-8] [Citation(s) in RCA: 405] [Impact Index Per Article: 57.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Glioblastomas are heterogeneous and invariably lethal tumours. They are characterized by genetic and epigenetic variations among tumour cells, which makes the development of therapies that eradicate all tumour cells challenging and currently impossible. An important component of glioblastoma growth is communication with and manipulation of other cells in the brain environs, which supports tumour progression and resistance to therapy. Glioblastoma cells recruit innate immune cells and change their phenotype to support tumour growth. Tumour cells also suppress adaptive immune responses, and our increasing understanding of how T cells access the brain and how the tumour thwarts the immune response offers new strategies for mobilizing an antitumour response. Tumours also subvert normal brain cells - including endothelial cells, neurons and astrocytes - to create a microenviron that favours tumour success. Overall, after glioblastoma-induced phenotypic modifications, normal cells cooperate with tumour cells to promote tumour proliferation, invasion of the brain, immune suppression and angiogenesis. This glioblastoma takeover of the brain involves multiple modes of communication, including soluble factors such as chemokines and cytokines, direct cell-cell contact, extracellular vesicles (including exosomes and microvesicles) and connecting nanotubes and microtubes. Understanding these multidimensional communications between the tumour and the cells in its environs could open new avenues for therapy.
Collapse
Affiliation(s)
- Marike L Broekman
- Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, MA, USA.
- Department of Neurosurgery, Brain Center Rudolf Magnus, Institute of Neurosciences, University Medical Center, Heidelberglaan, Utrecht, Netherlands.
| | - Sybren L N Maas
- Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Brain Center Rudolf Magnus, Institute of Neurosciences, University Medical Center, Heidelberglaan, Utrecht, Netherlands
| | - Erik R Abels
- Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - Thorsten R Mempel
- The Center for Immunology and Inflammatory Diseases and Department of Medicine, Massachusetts General Hospital, Charlestown, MA, USA
- Program in Immunology, Harvard Medical School, Boston, MA, USA
| | - Anna M Krichevsky
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Initiative for RNA Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Xandra O Breakefield
- Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
40
|
High-grade glioma associated immunosuppression does not prevent immune responses induced by therapeutic vaccines in combination with T reg depletion. Cancer Immunol Immunother 2018; 67:1545-1558. [PMID: 30054667 PMCID: PMC6182405 DOI: 10.1007/s00262-018-2214-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 07/20/2018] [Indexed: 01/20/2023]
Abstract
High-grade gliomas (HGG) exert systemic immunosuppression, which is of particular importance as immunotherapeutic strategies such as therapeutic vaccines are increasingly used to treat HGGs. In a first cohort of 61 HGG patients we evaluated a panel of 30 hematological and 34 plasma biomarkers. Then, we investigated in a second cohort of 11 relapsed HGG patients receiving immunomodulation with metronomic cyclophosphamide upfront to a DC-based vaccine whether immune abnormalities persisted and whether they hampered induction of IFNγ+ T-cell responses. HGG patients from the first cohort showed increased numbers of leukocytes, neutrophils and MDSCs and in parallel reduced numbers of CD4+/CD8+ T-cells, plasmacytoid and conventional DC2s. MDSCs and T-cell alterations were more profound in WHO IV° glioma patients. Moreover, levels of MDSCs and epidermal growth factor were negatively associated with survival. Serum levels of IL-2, IL-4, IL-5 and IL-10 were altered in HGG patients, however, without any impact on clinical outcome. In the immunotherapy cohort, 6-month overall survival was 100%. Metronomic cyclophosphamide led to > 40% reduction of regulatory T cells (Treg). In parallel to Treg-depletion, MDSCs and DC subsets became indistinguishable from healthy controls, whereas T-lymphopenia persisted. Despite low T-cells, IFNγ-responses could be induced in 9/10 analyzed cases. Importantly, frequency of CD8+VLA-4+ T-cells with CNS-homing properties, but not of CD4+ VLA-4+ T-cells, increased during vaccination. Our study identifies several features of systemic immunosuppression in HGGs. Metronomic cyclophosphamide in combination with an active immunization alleviates the latter and the combined treatment allows induction of a high rate of anti-glioma immune responses.
Collapse
|
41
|
Walker R, Poleszczuk J, Pilon-Thomas S, Kim S, Anderson AARA, Czerniecki BJ, Harrison LB, Moros EG, Enderling H. Immune interconnectivity of anatomically distant tumors as a potential mediator of systemic responses to local therapy. Sci Rep 2018; 8:9474. [PMID: 29930290 PMCID: PMC6013469 DOI: 10.1038/s41598-018-27718-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 06/07/2018] [Indexed: 12/14/2022] Open
Abstract
Complex interactions occur between tumor and host immune system at each site in the metastatic setting, the outcome of which can determine behavior ranging from dormancy to rapid growth. An additional layer of complexity arises from the understanding that cytotoxic T cells can traffic through the host circulatory system. Coupling mathematical models of local tumor-immune dynamics and systemic T cell trafficking allows us to simulate the evolution of tumor and immune cell populations in anatomically distant sites following local therapy and thus computationally evaluate immune interconnectivity. Results suggest that the presence of a secondary site may either inhibit or promote growth of the primary, depending on the capacity for immune recruitment of each tumor and the resulting systemic redistribution of T cells. Treatment such as surgical resection and radiotherapy can be simulated to estimate both the decrease in tumor volume at the local treatment-targeted site, and the change in overall tumor burden and tumor growth trajectories across all sites. Qualitatively similar responses of distant tumors to local therapy (positive and negative abscopal effects) to those reported in the clinical setting were observed. Such findings may facilitate an improved understanding of general disease kinetics in the metastatic setting: if metastatic sites are interconnected through the immune system, truly local therapy does not exist.
Collapse
Affiliation(s)
- Rachel Walker
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jan Poleszczuk
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Shari Pilon-Thomas
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Sungjune Kim
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Alexander A R A Anderson
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Brian J Czerniecki
- Department of Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Louis B Harrison
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Eduardo G Moros
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Heiko Enderling
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA. .,Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| |
Collapse
|
42
|
Rapp M, Grauer OM, Kamp M, Sevens N, Zotz N, Sabel M, Sorg RV. A randomized controlled phase II trial of vaccination with lysate-loaded, mature dendritic cells integrated into standard radiochemotherapy of newly diagnosed glioblastoma (GlioVax): study protocol for a randomized controlled trial. Trials 2018; 19:293. [PMID: 29801515 PMCID: PMC5970474 DOI: 10.1186/s13063-018-2659-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/02/2018] [Indexed: 01/06/2023] Open
Abstract
Background Despite the combination of surgical resection, radio- and chemotherapy, median survival of glioblastoma multiforme (GBM) patients only slightly increased in the last years. Disease recurrence is definite with no effective therapy existing after tumor removal. Dendritic cell (DC) vaccination is a promising active immunotherapeutic approach. There is clear evidence that it is feasible, results in immunological anti-tumoral responses, and appears to be beneficial for survival and quality of life of GBM patients. Moreover, combining it with the standard therapy of GBM may allow exploiting synergies between the treatment modalities. In this randomized controlled trial, we seek to confirm these promising initial results. Methods One hundred and thirty-six newly diagnosed, isocitrate dehydrogenase wildtype GBM patients will be randomly allocated (1:1 ratio, stratified by O6-methylguanine-DNA-methyltransferase promotor methylation status) after near-complete resection in a multicenter, prospective phase II trial into two groups: (1) patients receiving the current therapeutic “gold standard” of radio/temozolomide chemotherapy and (2) patients receiving DC vaccination as an add-on to the standard therapy. A recruitment period of 30 months is anticipated; follow-up will be 2 years. The primary objective of the study is to compare overall survival (OS) between the two groups. Secondary objectives are comparing progression-free survival (PFS) and 6-, 12- and 24-month OS and PFS rates, the safety profile, overall and neurological performance and quality of life. Discussion Until now, close to 500 GBM patients have been treated with DC vaccination in clinical trials or on a compassionate-use basis. Results have been encouraging, but cannot provide robust evidence of clinical efficacy because studies have been non-controlled or patient numbers have been low. Therefore, a prospective, randomized phase II trial with a sufficiently large number of patients is now mandatory for clear evidence regarding the impact of DC vaccination on PFS and OS in GBM. Trial registration Protocol code: GlioVax, date of registration: 17. February 2017. Trial identifier: EudraCT-Number 2017–000304-14. German Registry for Clinical Studies, ID: DRKS00013248 (approved primary register in the WHO network) and at ClinicalTrials.gov, ID: NCT03395587. Registered on 11 March 2017. Electronic supplementary material The online version of this article (10.1186/s13063-018-2659-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marion Rapp
- Department of Neurosurgery, Heinrich Heine University Hospital, Moorenstr. 5, 40225, Düsseldorf, Germany. .,Department of Neurosurgery, Heinrich Heine University Hospital Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany.
| | - Oliver M Grauer
- Department of Neurology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Marcel Kamp
- Department of Neurosurgery, Heinrich Heine University Hospital, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Natalie Sevens
- Department of Neurosurgery, Heinrich Heine University Hospital, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Nikola Zotz
- Coordination Center for Clinical Trials, Heinrich Heine University Hospital, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Michael Sabel
- Department of Neurosurgery, Heinrich Heine University Hospital, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Rüdiger V Sorg
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Hospital, Moorenstr. 5, 40225, Düsseldorf, Germany
| |
Collapse
|
43
|
Qiu J, Peng S, Yang A, Ma Y, Han L, Cheng MA, Farmer E, Hung CF, Wu TC. Intramuscular vaccination targeting mucosal tumor draining lymph node enhances integrins-mediated CD8+ T cell infiltration to control mucosal tumor growth. Oncoimmunology 2018; 7:e1463946. [PMID: 30221059 PMCID: PMC6136882 DOI: 10.1080/2162402x.2018.1463946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/05/2018] [Accepted: 04/07/2018] [Indexed: 10/16/2022] Open
Abstract
Purpose: Mucosal immunization is suggested to be crucial for controlling tumors in the mucosal region; however, therapeutic DNA vaccination with electroporation in various mucosal sites has yet to become clinically adaptable. Since tumor-draining lymph nodes (tdLNs) have been suggested as immune-educated sites that can be utilized to mount a potent antitumor immune response, we examined whether intramuscular DNA vaccination with electroporation at sites that target the mucosal tdLNs could elicit mucosal immune response to restrict tumor growth. Experimental Design: The efficacy and mechanism of intramuscular administration of a therapeutic DNA vaccine with electroporation at different sites was examined by lymphocyte analysis, tumor growth, mouse survival, as well as integrin expression, in mice bearing orthotopic HPV16 E6/E7+ syngeneic TC-1 tumors in various mucosal areas. Results: While provoking comparable systemic CD8+ T cell responses, intramuscular hind leg vaccination generated stronger responses in cervicovaginal-draining LNs to control cervicovaginal tumors, whereas intramuscular front leg vaccination generated stronger responses in oral-draining LNs to control buccal tumors. Surgical removal of tdLNs abolished the antitumor effects of therapeutic vaccination. Mucosal-tdLN-targeted intramuscular vaccination induced the expression of mucosal-homing integrins LPAM-1 and CD49a by tumor-specific CD8+ T cells in the tdLNs. Inhibition of these integrins abolished the therapeutic effects of vaccination and the infiltration of tumor-specific CD8+ T cells into mucosal tumors. Conclusions: Our findings demonstrate that tumor draining lymph nodes targeted intramuscular immunization can effectively control mucosal tumors, which represents a readily adaptable strategy for treating mucosal cancers in humans.
Collapse
Affiliation(s)
- Jin Qiu
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China; Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, United States
| | - Shiwen Peng
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, United States
| | - Andrew Yang
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, United States
| | - Ying Ma
- Department of Gynecology and Obstetrics, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong province, China; Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, United States
| | - Liping Han
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, United States
| | - Max A. Cheng
- Department of Pathology; Johns Hopkins Medical Institutions, Baltimore, MD, United States
| | - Emily Farmer
- Department of Pathology; Johns Hopkins Medical Institutions, Baltimore, MD, United States
| | - Chien-Fu Hung
- Department of Pathology and Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, United States
| | - T.-C. Wu
- Departments of Pathology, Department of Obstetrics and Gynecology, Department of Molecular Microbiology and Immunology, and Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, UnitedStates
| |
Collapse
|
44
|
Madsen SJ, Christie C, Huynh K, Peng Q, Uzal FA, Krasieva TB, Hirschberg H. Limiting glioma development by photodynamic therapy-generated macrophage vaccine and allo-stimulation: an in vivo histological study in rats. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-7. [PMID: 29417766 PMCID: PMC5802332 DOI: 10.1117/1.jbo.23.2.028001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/19/2018] [Indexed: 06/08/2023]
Abstract
Immunotherapy of brain tumors involves the stimulation of an antitumor immune response. This type of therapy can be targeted specifically to tumor cells thus sparing surrounding normal brain. Due to the presence of the blood-brain barrier, the brain is relatively isolated from the systemic circulation and, as such, the initiation of significant immune responses is more limited than other types of cancers. The purpose of this study was to show that the efficacy of tumor primed antigen presenting macrophage (MaF98) vaccines can be increased by: (1) photodynamic therapy (PDT) of the priming tumor cells and (2) intracranial injection of allogeneic glioma cells directly into the tumor site. Experiments were conducted in an in vivo brain tumor development model using Fischer rats and F98 (syngeneic) and BT4C (allogeneic) glioma cells. The results showed that immunization with Ma (acting as antigen-presenting cells), primed with PDT-treated tumor cells (MaF98), significantly slowed but did not prevent the growth of F98-induced tumors in the brain. Complete suppression of tumor development was obtained via MaF98 inoculation combined with direct intracranial injection of allogeneic glioma cells. No deleterious effects were noted in any of the animals during the 14-day observation period.
Collapse
Affiliation(s)
- Steen J. Madsen
- University of Nevada, Department of Health Physics and Diagnostic Sciences, Las Vegas, Nevada, United States
| | - Catherine Christie
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Khoi Huynh
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Qian Peng
- University of Oslo, Pathology Clinic, Rikshospitalet-Radiumhospitalet HF Medical Center, Montebello, Oslo, Norway
| | - Francisco A. Uzal
- University of California, School of Veterinary Medicine, Davis, San Bernardino, California, United States
| | - Tatiana B. Krasieva
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| | - Henry Hirschberg
- University of California, Beckman Laser Institute and Medical Clinic, Irvine, California, United States
| |
Collapse
|
45
|
Migliorini D, Dietrich PY, Stupp R, Linette GP, Posey AD, June CH. CAR T-Cell Therapies in Glioblastoma: A First Look. Clin Cancer Res 2017; 24:535-540. [PMID: 29158268 DOI: 10.1158/1078-0432.ccr-17-2871] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/08/2017] [Accepted: 11/16/2017] [Indexed: 11/16/2022]
Abstract
Glioblastoma is an aggressive malignancy with a poor prognosis. The current standard of care for newly diagnosed glioblastoma patients includes surgery to the extent, temozolomide combined with radiotherapy, and alternating electric fields therapy. After recurrence, there is no standard therapy and survival is less than 9 months. Recurrent glioblastoma offers a unique opportunity to investigate new treatment approaches in a malignancy known for remarkable genetic heterogeneity, an immunosuppressive microenvironment, and a partially permissive anatomic blood-brain barrier. Results from three first-in-man chimeric antigen receptor (CAR) T-cell trials targeting IL13Rα2, Her2/CMV, and EGFRvIII have recently been reported. Each one of these trials addresses important questions, such as T-cell trafficking to CNS, engraftment and persistence, tumor microenvironment remodeling, and monitoring of glioma response to CAR T cells. Objective radiologic responses have been reported. Here, we discuss and summarize the results of these trials and suggest opportunities for the field. Clin Cancer Res; 24(3); 535-40. ©2017 AACR.
Collapse
Affiliation(s)
- Denis Migliorini
- Center for Cellular Immunotherapies and Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Roger Stupp
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Gerald P Linette
- Center for Cellular Immunotherapies and Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Avery D Posey
- Center for Cellular Immunotherapies and Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Carl H June
- Center for Cellular Immunotherapies and Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
46
|
Nataf S. Autoimmunity as a Driving Force of Cognitive Evolution. Front Neurosci 2017; 11:582. [PMID: 29123465 PMCID: PMC5662758 DOI: 10.3389/fnins.2017.00582] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/04/2017] [Indexed: 12/12/2022] Open
Abstract
In the last decades, increasingly robust experimental approaches have formally demonstrated that autoimmunity is a physiological process involved in a large range of functions including cognition. On this basis, the recently enunciated “brain superautoantigens” theory proposes that autoimmunity has been a driving force of cognitive evolution. It is notably suggested that the immune and nervous systems have somehow co-evolved and exerted a mutual selection pressure benefiting to both systems. In this two-way process, the evolutionary-determined emergence of neurons expressing specific immunogenic antigens (brain superautoantigens) has exerted a selection pressure on immune genes shaping the T-cell repertoire. Such a selection pressure on immune genes has translated into the emergence of a finely tuned autoimmune T-cell repertoire that promotes cognition. In another hand, the evolutionary-determined emergence of brain-autoreactive T-cells has exerted a selection pressure on neural genes coding for brain superautoantigens. Such a selection pressure has translated into the emergence of a neural repertoire (defined here as the whole of neurons, synapses and non-neuronal cells involved in cognitive functions) expressing brain superautoantigens. Overall, the brain superautoantigens theory suggests that cognitive evolution might have been primarily driven by internal cues rather than external environmental conditions. Importantly, while providing a unique molecular connection between neural and T-cell repertoires under physiological conditions, brain superautoantigens may also constitute an Achilles heel responsible for the particular susceptibility of Homo sapiens to “neuroimmune co-pathologies” i.e., disorders affecting both neural and T-cell repertoires. These may notably include paraneoplastic syndromes, multiple sclerosis as well as autism, schizophrenia and neurodegenerative diseases. In the context of this theoretical frame, a specific emphasis is given here to the potential evolutionary role exerted by two families of genes, namely the MHC class II genes, involved in antigen presentation to T-cells, and the Foxp genes, which play crucial roles in language (Foxp2) and the regulation of autoimmunity (Foxp3).
Collapse
Affiliation(s)
- Serge Nataf
- CarMeN Laboratory, Bank of Tissues and Cells, Institut National de la Santé et de la Recherche Médicale 1060, INRA 1397, INSA Lyon, Lyon University Hospital (Hospices Civils de Lyon), Université Claude Bernard Lyon-1, Lyon, France
| |
Collapse
|
47
|
Su S, Liao J, Liu J, Huang D, He C, Chen F, Yang L, Wu W, Chen J, Lin L, Zeng Y, Ouyang N, Cui X, Yao H, Su F, Huang JD, Lieberman J, Liu Q, Song E. Blocking the recruitment of naive CD4 + T cells reverses immunosuppression in breast cancer. Cell Res 2017; 27:461-482. [PMID: 28290464 PMCID: PMC5385617 DOI: 10.1038/cr.2017.34] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 01/24/2017] [Accepted: 02/10/2017] [Indexed: 02/07/2023] Open
Abstract
The origin of tumor-infiltrating Tregs, critical mediators of tumor immunosuppression, is unclear. Here, we show that tumor-infiltrating naive CD4+ T cells and Tregs in human breast cancer have overlapping TCR repertoires, while hardly overlap with circulating Tregs, suggesting that intratumoral Tregs mainly develop from naive T cells in situ rather than from recruited Tregs. Furthermore, the abundance of naive CD4+ T cells and Tregs is closely correlated, both indicating poor prognosis for breast cancer patients. Naive CD4+ T cells adhere to tumor slices in proportion to the abundance of CCL18-producing macrophages. Moreover, adoptively transferred human naive CD4+ T cells infiltrate human breast cancer orthotopic xenografts in a CCL18-dependent manner. In human breast cancer xenografts in humanized mice, blocking the recruitment of naive CD4+ T cells into tumor by knocking down the expression of PITPNM3, a CCL18 receptor, significantly reduces intratumoral Tregs and inhibits tumor progression. These findings suggest that breast tumor-infiltrating Tregs arise from chemotaxis of circulating naive CD4+ T cells that differentiate into Tregs in situ. Inhibiting naive CD4+ T cell recruitment into tumors by interfering with PITPNM3 recognition of CCL18 may be an attractive strategy for anticancer immunotherapy.
Collapse
Affiliation(s)
- Shicheng Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Jianyou Liao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Jiang Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Di Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Chonghua He
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Fei Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - LinBing Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Wei Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Jianing Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Ling Lin
- Department of Internal Medicine, The First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Yunjie Zeng
- Department of Pathology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Nengtai Ouyang
- Department of Pathology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Xiuying Cui
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Herui Yao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Fengxi Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Jian-dong Huang
- Department of Biochemistry, the University of Hong Kong, Hong Kong, SAR, China
| | - Judy Lieberman
- Department of Pediatrics, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- E-mail:
| | - Qiang Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
- E-mail:
| | - Erwei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
- E-mail:
| |
Collapse
|
48
|
Mangani D, Weller M, Roth P. The network of immunosuppressive pathways in glioblastoma. Biochem Pharmacol 2017; 130:1-9. [DOI: 10.1016/j.bcp.2016.12.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 12/13/2016] [Indexed: 12/21/2022]
|
49
|
Advances in Immunotherapy for Glioblastoma Multiforme. J Immunol Res 2017; 2017:3597613. [PMID: 28299344 PMCID: PMC5337363 DOI: 10.1155/2017/3597613] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 01/15/2017] [Accepted: 01/26/2017] [Indexed: 11/18/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common primary malignant brain tumor in adults. Patients with GBM have poor outcomes, even with the current gold-standard first-line treatment: maximal safe resection combined with radiotherapy and temozolomide chemotherapy. Accumulating evidence suggests that advances in antigen-specific cancer vaccines and immune checkpoint blockade in other advanced tumors may provide an appealing promise for immunotherapy in glioma. The future of therapy for GBM will likely incorporate a combinatorial, personalized approach, including current conventional treatments, active immunotherapeutics, plus agents targeting immunosuppressive checkpoints.
Collapse
|
50
|
Kalinski P, Talmadge JE. Tumor Immuno-Environment in Cancer Progression and Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1036:1-18. [PMID: 29275461 DOI: 10.1007/978-3-319-67577-0_1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The approvals of Provenge (Sipuleucel-T), Ipilimumab (Yervoy/anti-CTLA-4) and blockers of the PD-1 - PD-L1/PD-L2 pathway, such as nivolumab (Opdivo), pembrolizumab (Keytruda), or atezolizumab (Tecentriq), have established immunotherapy as a key component of comprehensive cancer care. Further, murine mechanistic studies and studies in immunocompromised patients have documented the critical role of immunity in effectiveness of radio- and chemotherapy. However, in addition to the ability of the immune system to control cancer progression, it can also promote tumor growth, via regulatory T cells (Tregs), myeloid-derived dendritic cells (MDSCs) and tumor associated macrophages (TAM), which can enhance survival of cancer cells directly or via the regulation of the tumor stroma.An increasing body of evidence supports a central role for the tumor microenvironment (TME) and the interactions between tumor stroma, infiltrating immune cells and cancer cells during the induction and effector phase of anti-cancer immunity, and the overall effectiveness of immunotherapy and other forms of cancer treatment. In this chapter, we discuss the roles of key TME components during tumor progression, metastatic process and cancer therapy-induced tumor regression, as well as opportunities for their modulation to enhance the overall therapeutic benefit.
Collapse
Affiliation(s)
- Pawel Kalinski
- Department of Medicine and Center for Immunotherapy, Roswell Park Cancer Institute, Buffalo, NY, USA.
| | - James E Talmadge
- University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|