1
|
Pethe A, Hartmann TN. The cytoskeletal control of B cell receptor and integrin signaling in normal B cells and chronic lymphocytic leukemia. FEBS Lett 2025. [PMID: 40243025 DOI: 10.1002/1873-3468.70045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/20/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025]
Abstract
B cells migrate within lymphoid organs during maturation and activation, processes orchestrated by the interplay between B cell receptor (BCR) signaling and microenvironmental cues. Integrins act as mechanoreceptors, linking BCR activation to cytoskeletal remodeling, facilitating immune synapse formation, antigen recognition, and extraction. BCR activation models describe receptor clustering and mechanical changes within the antigen-BCR complex. Upon activation, immune synapses form, enabling antigen extraction and downstream signaling. Integrins stabilize these synapses, amplify BCR signaling, and modulate BCR positioning via actin reorganization. In chronic lymphocytic leukemia (CLL), aberrant BCR signaling and integrins are major players in leukemic cell homing, prognosis, and therapy resistance. In this review, we summarize the current understanding of the interplay of BCR mechanics and B cell localization, with a particular focus on communication between BCR signaling and integrin-mediated processes via actin dynamics. We give insights into normal B cell biology and then outline aspects typical to CLL.
Collapse
Affiliation(s)
- Abhishek Pethe
- Department of Medicine I, Medical Centre-University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Tanja Nicole Hartmann
- Department of Medicine I, Medical Centre-University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| |
Collapse
|
2
|
Ottens K, Schneider J, Satterthwaite AB. B-1a Cells, but Not Marginal Zone B Cells, Are Implicated in the Accumulation of Autoreactive Plasma Cells in Lyn-/- Mice. Immunohorizons 2024; 8:47-56. [PMID: 38189742 PMCID: PMC10835670 DOI: 10.4049/immunohorizons.2300089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/22/2023] [Indexed: 01/09/2024] Open
Abstract
Mice deficient in Lyn, a tyrosine kinase that limits B cell activation, develop a lupus-like autoimmune disease characterized by the accumulation of splenic plasma cells and the production of autoantibodies. Lyn-/- mice have reduced numbers of marginal zone (MZ) B cells, a B cell subset that is enriched in autoreactivity and prone to plasma cell differentiation. We hypothesized that this is due to unchecked terminal differentiation of this potentially pathogenic B cell subpopulation. However, impairing MZ B cell development in Lyn-/- mice did not reduce plasma cell accumulation or autoantibodies, and preventing plasma cell differentiation did not restore MZ B cell numbers. Instead, Lyn-/- mice accumulated B-1a cells when plasma cell differentiation was impaired. Similar to MZ B cells, B-1a cells tend to be polyreactive or weakly autoreactive and are primed for terminal differentiation. Our results implicate B-1a cells, but not MZ B cells, as contributors to the autoreactive plasma cell pool in Lyn-/- mice.
Collapse
Affiliation(s)
- Kristina Ottens
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX
| | - Jalyn Schneider
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX
| | - Anne B. Satterthwaite
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX
| |
Collapse
|
3
|
Zhao M, Zhang Y, Yang J, Chen L, Zhang Z, Wang H, Shao Z, Xing L. Genome-wide DNA methylation profiles analysis in primary warm autoimmune hemolytic anemia patients. Hematology 2023; 28:2240138. [PMID: 37497837 DOI: 10.1080/16078454.2023.2240138] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND Autoimmune hemolytic anemia (AIHA) is caused by auto-antibodies, secreted by overactivated B cells, directed against self-red blood cells, resulting in hemolysis. It found that aberrant DNA methylation in B cells can induce the production of autoantibodies. Therefore, we attempted to explore if similar aberrant DNA methylation occur in AIHA patients. METHODS A 49-year-old female wAIHA patient and a 47-year-old female healthy control (HC) were enrolled. Peripheral blood (PB) B cells DNA was extracted. After constructing genomic libraries, bisulfite genomic sequencing (BSP) and DNA methylation profiles were analyzed. BSP was verified using PB B cells from 10 patients with hemolysis, 10 patients with hemolytic remission, and 10 healthy controls (HCs) by Methylation-specific PCR. RESULTS Total DNA methylation of whole-genome C bases (4.8%) and CG type bases (76.8%) in wAIHA patient were lower than those in the HC (5.3 and 82.5%, respectively) (p = 0.022 and p < 0.001). DNA methylation of C bases and CG type bases in whole-genome regulatory elements, such as coding sequence, up2Kb and down2Kb in the patient were also lower than those in the HC (p = 0.041, p = 0.038, and p = 0.029). 30,180 DNA-methylated regions (DMRs) on all 23 chromosomes were identified. DMR-related genes were mainly involved in the Rap1, phospholipase D, HIF-1, calcium, vascular endothelial growth factor (VEGF) and Ras signaling pathways. CONCLUSION The DNA methylation spectrum of B cells in AIHA patients is different from that of HC, and the proportion of hypo-methylation regions is higher than that of HC. DMR-related genes are mainly related to some signaling pathways.
Collapse
Affiliation(s)
- Manjun Zhao
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
- Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yang Zhang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Jin Yang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
- Beijing GoBroad Boren Hospital, Beijing, People's Republic of China
| | - Lei Chen
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Ziying Zhang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Huaquan Wang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Zonghong Shao
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Limin Xing
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| |
Collapse
|
4
|
Richard MA, Yang W, Sok P, Li M, Carmichael SL, von Behren J, Reynolds P, Fisher PG, Collins RT, Hobbs CA, Luke B, Shaw GM, Lupo PJ. Differential newborn DNA methylation among individuals with complex congenital heart defects and childhood lymphoma. Birth Defects Res 2022; 114:1434-1439. [PMID: 36226634 DOI: 10.1002/bdr2.2105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/07/2022] [Accepted: 09/25/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND There is emerging evidence that children with complex congenital heart defects (CHDs) are at increased risk for childhood lymphoma, but the mechanisms underlying this association are unclear. Thus, we sought to evaluate the role of DNA methylation patterns on "CHD-lymphoma" associations. METHODS From >3 million live births (1988-2004) in California registry linkages, we obtained newborn dried bloodspots from eight children with CHD-lymphoma through the California BioBank. We performed case-control epigenome-wide association analyses (EWAS) using two comparison groups with reciprocal discovery and validation to identify differential methylation associated with CHD-lymphoma. RESULTS After correction for multiple testing at the discovery and validation stages, individuals with CHD-lymphoma had differential newborn methylation at six sites relative to two comparison groups. Our top finding was significant in both EWAS and indicates PPFIA1 cg25574765 was hypomethylated among individuals with CHD-lymphoma (mean beta = 0.04) relative to both unaffected individuals (mean beta = 0.93, p = 1.5 × 10-12 ) and individuals with complex CHD (mean beta = 0.95, p = 3.8 × 10-8 ). PPFIA1 encodes a ubiquitously expressed liprin protein in one of the most commonly amplified regions in many cancers (11q13). Further, cg25574765 is a proposed marker of pre-eclampsia, a maternal CHD risk factor that has not been fully evaluated for lymphoma risk in offspring, and the tumor microenvironment that may drive immune cell malignancies. CONCLUSIONS We identified associations between molecular changes present in the genome at birth and risk of childhood lymphoma among those with CHD. Our findings also highlight novel perinatal exposures that may underlie methylation changes in CHD predisposing to lymphoma.
Collapse
Affiliation(s)
- Melissa A Richard
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Wei Yang
- Department of Pediatrics, Stanford University School of Medicine, Palo Alto, California, USA
| | - Pagna Sok
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Ming Li
- Department of Epidemiology and Biostatistics, Indiana University, Bloomington, Indiana, USA
| | - Suzan L Carmichael
- Department of Pediatrics, Stanford University School of Medicine, Palo Alto, California, USA
| | - Julie von Behren
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA
| | - Peggy Reynolds
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA
| | - Paul G Fisher
- Department of Pediatrics, Stanford University School of Medicine, Palo Alto, California, USA
- Department of Neurology, Stanford University School of Medicine, Palo Alto, California, USA
| | - R Thomas Collins
- Department of Pediatrics, Stanford University School of Medicine, Palo Alto, California, USA
| | - Charlotte A Hobbs
- Rady Children's Institute for Genomic Medicine, San Diego, California, USA
| | - Barbara Luke
- Department of Obstetrics, Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Gary M Shaw
- Department of Pediatrics, Stanford University School of Medicine, Palo Alto, California, USA
| | - Philip J Lupo
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
5
|
Campbell NE, Deer EM, Herrock OT, LaMarca BB. The Role of Different Lymphoid Cell Populations in Preeclampsia Pathophysiology. KIDNEY360 2022; 3:1785-1794. [PMID: 36514732 PMCID: PMC9717666 DOI: 10.34067/kid.0001282022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/11/2022] [Indexed: 01/12/2023]
Abstract
Preeclampsia (PE), new-onset hypertension during pregnancy, affects up to 10% of pregnancies worldwide. Despite being the leading cause of maternal and fetal morbidity and mortality, PE has no cure beyond the delivery of the fetal-placental unit. Although the exact pathogenesis of PE is unclear, there is a strong correlation between chronic immune activation; intrauterine growth restriction; uterine artery resistance; dysregulation of the renin-angiotensin system. Which contributes to renal dysfunction; and the resulting hypertension during pregnancy. The genesis of PE is thought to begin with insufficient trophoblast invasion leading to reduced spiral artery remodeling, resulting in decreased placental perfusion and thereby causing placental ischemia. The ischemic placenta releases factors that shower the endothelium and contribute to peripheral vasoconstriction and chronic immune activation and oxidative stress. Studies have shown imbalances in proinflammatory and anti-inflammatory cell types in women with PE and in animal models used to examine mediators of a PE phenotype during pregnancy. T cells, B cells, and natural killer cells have all emerged as potential mediators contributing to the production of vasoactive factors, renal and endothelial dysfunction, mitochondrial dysfunction, and hypertension during pregnancy. The chronic immune activation seen in PE leads to a higher risk for other diseases, such as cardiovascular disease, CKD, dementia during the postpartum period, and PE during a subsequent pregnancy. The purpose of this review is to highlight studies demonstrating the role that different lymphoid cell populations play in the pathophysiology of PE. Moreover, we will discuss treatments focused on restoring immune balance or targeting specific immune mediators that may be potential strategies to improve maternal and fetal outcomes associated with PE.
Collapse
Affiliation(s)
- Nathan E Campbell
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Evangeline M Deer
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Owen T Herrock
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Babbette B LaMarca
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
- Department of Obstetrics and Gynecology, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
6
|
Inheritance of Monogenic Hereditary Skin Disease and Related Canine Breeds. Vet Sci 2022; 9:vetsci9080433. [PMID: 36006348 PMCID: PMC9412528 DOI: 10.3390/vetsci9080433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/20/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
The plasticity of the genome is an evolutionary factor in all animal species, including canines, but it can also be the origin of diseases caused by hereditary genetic mutation. Genetic changes, or mutations, that give rise to a pathology in most cases result from recessive alleles that are normally found with minority allelic frequency. The use of genetic improvement increases the consanguinity within canine breeds and, on many occasions, also increases the frequency of these recessive alleles, increasing the prevalence of these pathologies. This prevalence has been known for a long time, but mutations differ according to the canine breed. These genetic diseases, including skin diseases, or genodermatosis, which is narrowly defined as monogenic hereditary dermatosis. In this review, we focus on genodermatosis sensu estricto, i.e., monogenic, and hereditary dermatosis, in addition to the clinical features, diagnosis, pathogeny, and treatment. Specifically, this review analyzes epidermolytic and non-epidermolytic ichthyosis, junctional epidermolysis bullosa, nasal parakeratosis, mucinosis, dermoid sinus, among others, in canine breeds, such as Golden Retriever, German Pointer, Australian Shepherd, American Bulldog, Great Dane, Jack Russell Terrier, Labrador Retriever, Shar-Pei, and Rhodesian Ridgeback.
Collapse
|
7
|
She Z, Li C, Wu F, Mao J, Xie M, Hun M, Abdirahman AS, Luo S, Wan W, Tian J, Wen C. The Role of B1 Cells in Systemic Lupus Erythematosus. Front Immunol 2022; 13:814857. [PMID: 35418972 PMCID: PMC8995743 DOI: 10.3389/fimmu.2022.814857] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease characterized by multisystemic and multi-organ involvement, recurrent relapses and remissions, and the presence of large amounts of autoantibodies in the body as the main clinical features. The mechanisms involved in this disease are complex and remain poorly understood; however, they are generally believed to be related to genetic susceptibility factors, external stimulation of the body’s immune dysfunction, and impaired immune regulation. The main immune disorders include the imbalance of T lymphocyte subsets, hyperfunction of B cells, production of large amounts of autoantibodies, and further deposition of immune complexes, which result in tissue damage. Among these, B cells play a major role as antibody-producing cells and have been studied extensively. B1 cells are a group of important innate-like immune cells, which participate in various innate and autoimmune processes. Yet the role of B1 cells in SLE remains unclear. In this review, we focus on the mechanism of B1 cells in SLE to provide new directions to explore the pathogenesis and treatment modalities of SLE.
Collapse
Affiliation(s)
- Zhou She
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Cuifang Li
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Feifeng Wu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jueyi Mao
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Min Xie
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Marady Hun
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Amin Sheikh Abdirahman
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Senlin Luo
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wuqing Wan
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jidong Tian
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chuan Wen
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
8
|
Ishihara S, Sato T, Sugioka R, Miwa R, Saito H, Sato R, Fukuyama H, Nakajima A, Sawai S, Kotani A, Katagiri K. Rap1 Is Essential for B-Cell Locomotion, Germinal Center Formation and Normal B-1a Cell Population. Front Immunol 2021; 12:624419. [PMID: 34140948 PMCID: PMC8203927 DOI: 10.3389/fimmu.2021.624419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 05/17/2021] [Indexed: 11/24/2022] Open
Abstract
Integrin regulation by Rap1 is indispensable for lymphocyte recirculation. In mice having B-cell-specific Rap1a/b double knockouts (DKO), the number of B cells in lymph nodes decreased to approximately 4% of that of control mice, and B cells were present in the spleen and blood. Upon the immunization with NP-CGG, DKO mice demonstrated the defective GC formation in the spleen, and the reduced NP-specific antibody production. In vitro, Rap1 deficiency impaired the movement of activated B cells along the gradients of chemoattractants known to be critical for their localization in the follicles. Furthermore, B-1a cells were almost completely absent in the peritoneal cavity, spleen and blood of adult DKO mice, and the number of B-cell progenitor/precursor (B-p) were reduced in neonatal and fetal livers. However, DKO B-ps normally proliferated, and differentiated into IgM+ cells in the presence of IL-7. CXCL12-dependent migration of B-ps on the VCAM-1 was severely impaired by Rap1 deficiency. Immunostaining study of fetal livers revealed defects in the co-localization of DKO B-ps and IL-7-producing stromal cells. This study proposes that the profound effects of Rap1-deficiency on humoral responses and B-1a cell generation may be due to or in part caused by impairments of the chemoattractant-dependent positioning and the contact with stromal cells.
Collapse
Affiliation(s)
- Sayaka Ishihara
- Department of Biosciences, School of Science, Kitasato University, Sagamihara, Japan
| | - Tsuyoshi Sato
- Department of Biosciences, School of Science, Kitasato University, Sagamihara, Japan
| | - Risa Sugioka
- Department of Biosciences, School of Science, Kitasato University, Sagamihara, Japan
| | - Ryota Miwa
- Department of Biosciences, School of Science, Kitasato University, Sagamihara, Japan
| | - Haruka Saito
- Department of Biosciences, School of Science, Kitasato University, Sagamihara, Japan
| | - Ryota Sato
- Laboratory of Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Hidehiro Fukuyama
- Laboratory of Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Akihiko Nakajima
- Department of Basic Science, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | - Satoshi Sawai
- Department of Basic Science, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | - Ai Kotani
- Department of Hematological Malignancy, Institute of Medical Science, Tokai University, Isehara, Japan
| | - Koko Katagiri
- Department of Biosciences, School of Science, Kitasato University, Sagamihara, Japan
| |
Collapse
|
9
|
Qu P, Wuest T, Min Y, Alevizos I, Young HA, Lin PC. Natural Killer Cell Transcript 4 promotes the development of Sjӧgren's syndrome via activation of Rap1 on B cells. J Autoimmun 2020; 116:102559. [PMID: 33087256 DOI: 10.1016/j.jaut.2020.102559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/03/2020] [Accepted: 10/10/2020] [Indexed: 10/23/2022]
Abstract
Autoimmune disorders are the third most common diseases in the United States, and affect the daily lives of millions of people. In this study, we analyzed patient samples, utilized a transgenic mouse model and human B cells to reveal Natural Killer Cell Transcript 4 (NK4) as a novel regulator that promotes the development of autoimmune disorders. NK4 was significantly elevated in samples from patients with Sjӧgren's Syndrome (SS). SS patients show elevated NK4 levels. There is a strong and positive correlation between the increased levels of NK4 and the duration of SS. Interestingly, transgenic expression of NK4 in a mouse model led to the development of autoantibodies and lymphocytic infiltration in salivary glands similar to those in SS patients. Those phenotypes were associated with increased B1a cells in the peritoneum, plasma cells in the spleen, and increased IgM, IgA, and IgG2a in serum of the NK4 transgenic mice. The autoimmune phenotypes became more severe in older mice. Moreover, after NK4 transfection, human naïve B cells were activated and memory B cells differentiation into IgG and IgA-plasmablasts, resulting in an increased production of autoantibodies.NK4 regulated the differentiation and activation of B cells through activating Rap1 activity. NK4 also promoted B cell migration in a paracrine fashion through an induction of CXCL13 in endothelial cells. Collectively, these findings identify NK4 as a promoter of the development of autoimmune disorders through its roles on B cells. Therefore, NK4 may be a novel therapeutic target for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Peng Qu
- Center for Cancer Research, National Cancer Institute, USA.
| | - Todd Wuest
- Center for Cancer Research, National Cancer Institute, USA
| | - Yongfen Min
- Center for Cancer Research, National Cancer Institute, USA
| | - Ilias Alevizos
- Sjӧgren's Syndrome Clinic, National Institute of Dental and Craniofacial Research, National Institute of Health, USA
| | - Howard A Young
- Center for Cancer Research, National Cancer Institute, USA
| | - P Charles Lin
- Center for Cancer Research, National Cancer Institute, USA.
| |
Collapse
|
10
|
Carabias A, Gómez-Hernández M, de Cima S, Rodríguez-Blázquez A, Morán-Vaquero A, González-Sáenz P, Guerrero C, de Pereda JM. Mechanisms of autoregulation of C3G, activator of the GTPase Rap1, and its catalytic deregulation in lymphomas. Sci Signal 2020; 13:13/647/eabb7075. [PMID: 32873726 DOI: 10.1126/scisignal.abb7075] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
C3G is a guanine nucleotide exchange factor (GEF) that regulates cell adhesion and migration by activating the GTPase Rap1. The GEF activity of C3G is stimulated by the adaptor proteins Crk and CrkL and by tyrosine phosphorylation. Here, we uncovered mechanisms of C3G autoinhibition and activation. Specifically, we found that two intramolecular interactions regulate the activity of C3G. First, an autoinhibitory region (AIR) within the central domain of C3G binds to and blocks the catalytic Cdc25H domain. Second, the binding of the protein's N-terminal domain to its Ras exchanger motif (REM) is required for its GEF activity. CrkL activated C3G by displacing the AIR/Cdc25HD interaction. Two missense mutations in the AIR found in non-Hodgkin's lymphomas, Y554H and M555K, disrupted the autoinhibitory mechanism. Expression of C3G-Y554H or C3G-M555K in Ba/F3 pro-B cells caused constitutive activation of Rap1 and, consequently, the integrin LFA-1. Our findings suggest that sustained Rap1 activation by deregulated C3G might promote progression of lymphomas and that designing therapeutics to target C3G might treat these malignancies.
Collapse
Affiliation(s)
- Arturo Carabias
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, 37007 Salamanca, Spain
| | - María Gómez-Hernández
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, 37007 Salamanca, Spain
| | - Sergio de Cima
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, 37007 Salamanca, Spain
| | - Antonio Rodríguez-Blázquez
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, 37007 Salamanca, Spain
| | - Alba Morán-Vaquero
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, 37007 Salamanca, Spain
| | - Patricia González-Sáenz
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, 37007 Salamanca, Spain
| | - Carmen Guerrero
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, 37007 Salamanca, Spain.,Departamento de Medicina, Facultad de Medicina, Universidad de Salamanca, Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - José M de Pereda
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, 37007 Salamanca, Spain.
| |
Collapse
|
11
|
Mele S, Devereux S, Pepper AG, Infante E, Ridley AJ. Calcium-RasGRP2-Rap1 signaling mediates CD38-induced migration of chronic lymphocytic leukemia cells. Blood Adv 2018; 2:1551-1561. [PMID: 29970392 PMCID: PMC6039665 DOI: 10.1182/bloodadvances.2017014506] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 05/24/2018] [Indexed: 01/08/2023] Open
Abstract
CD38 is a transmembrane exoenzyme that is associated with poor prognosis in chronic lymphocytic leukemia (CLL). High CD38 levels in CLL cells are linked to increased cell migration, but the molecular basis is unknown. CD38 produces nicotinic acid adenine dinucleotide phosphate and adenosine 5'-diphosphate-ribose, both of which can act to increase intracellular Ca2+ levels. Here we show that CD38 expression increases basal intracellular Ca2+ levels and stimulates CLL cell migration both with and without chemokine stimulation. We find that CD38 acts via intracellular Ca2+ to increase the activity of the Ras family GTPase Rap1, which is in turn regulated by the Ca2+-sensitive Rap1 guanine-nucleotide exchange factor RasGRP2. Both Rap1 and RasGRP2 are required for CLL cell migration, and RasGRP2 is polarized in primary CLL cells with high CD38 levels. These results indicate that CD38 promotes RasGRP2/Rap1-mediated CLL cell adhesion and migration by increasing intracellular Ca2+ levels.
Collapse
Affiliation(s)
- Silvia Mele
- Randall Centre for Cell and Molecular Biophysics, and
- School of Cancer Sciences, King's College London, London, United Kingdom
| | - Stephen Devereux
- School of Cancer Sciences, King's College London, London, United Kingdom
| | - Andrea G Pepper
- School of Cancer Sciences, King's College London, London, United Kingdom
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom; and
| | | | - Anne J Ridley
- Randall Centre for Cell and Molecular Biophysics, and
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
12
|
Wang JC, Lee JYJ, Dang-Lawson M, Pritchard C, Gold MR. The Rap2c GTPase facilitates B cell receptor-induced reorientation of the microtubule-organizing center. Small GTPases 2018; 11:402-412. [PMID: 29457987 DOI: 10.1080/21541248.2018.1441626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
When B lymphocytes encounter antigen-bearing surfaces, B-cell receptor (BCR) signaling initiates remodeling of the F-actin network and reorientation of the microtubule-organizing center (MTOC) towards the antigen contact site. We have previously shown that the Rap1 GTPase, an evolutionarily conserved regulator of cell polarity, is essential for these processes and that Rap1-regulated actin remodeling is required for MTOC polarization. The role of Rap2 proteins in establishing cell polarity is not well understood. We now show that depleting Rap2c, the only Rap2 isoform expressed in the A20 B-cell line, impairs BCR-induced MTOC reorientation as well as the actin remodeling that supports MTOC polarization. Thus Rap1 and Rap2 proteins may have similar but non-redundant functions in coupling the BCR to MTOC polarization.
Collapse
Affiliation(s)
- Jia C Wang
- Department of Microbiology & Immunology and the Life Sciences Institute, University of British Columbia , Vancouver, BC, Canada
| | - Jeff Y-J Lee
- Department of Microbiology & Immunology and the Life Sciences Institute, University of British Columbia , Vancouver, BC, Canada
| | - May Dang-Lawson
- Department of Microbiology & Immunology and the Life Sciences Institute, University of British Columbia , Vancouver, BC, Canada
| | - Caitlin Pritchard
- Department of Microbiology & Immunology and the Life Sciences Institute, University of British Columbia , Vancouver, BC, Canada
| | - Michael R Gold
- Department of Microbiology & Immunology and the Life Sciences Institute, University of British Columbia , Vancouver, BC, Canada
| |
Collapse
|
13
|
Xu Y, Ikeda S, Sumida K, Yamamoto R, Tanaka H, Minato N. Sipa1 deficiency unleashes a host-immune mechanism eradicating chronic myelogenous leukemia-initiating cells. Nat Commun 2018; 9:914. [PMID: 29500416 PMCID: PMC5834470 DOI: 10.1038/s41467-018-03307-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 02/05/2018] [Indexed: 02/06/2023] Open
Abstract
Chronic myelogenous leukemia (CML) caused by hematopoietic stem cells expressing the Bcr-Abl fusion gene may be controlled by Bcr-Abl tyrosine kinase inhibitors (TKIs). However, CML-initiating cells are resistant to TKIs and may persist as minimal residual disease. We demonstrate that mice deficient in Sipa1, which encodes Rap1 GTPase-activating protein, rarely develop CML upon transfer of primary hematopoietic progenitor cells (HPCs) expressing Bcr-Abl, which cause lethal CML disease in wild-type mice. Resistance requires both T cells and nonhematopoietic cells. Sipa1−/− mesenchymal stroma cells (MSCs) show enhanced activation and directed migration to Bcr-Abl+ cells in tumor tissue and preferentially produce Cxcl9, which in turn recruits Sipa1−/− memory T cells that have markedly augmented chemotactic activity. Thus, Sipa1 deficiency uncovers a host immune mechanism potentially capable of eradicating Bcr-Abl+ HPCs via coordinated interplay between MSCs and immune T cells, which may provide a clue for radical control of human CML. Chronic myelogenous leukemia (CML)-initiating cells are resistant to kinase inhibitors. Here the authors show that deficiency of the Rap1 GTPase-activating protein Sipa1 in the tumor microenvironment releases an immune response that eradicates CML-initiating cells via interplay between stromal and T cells.
Collapse
Affiliation(s)
- Yan Xu
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan.,DSK Project, Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Satoshi Ikeda
- DSK Project, Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Kentaro Sumida
- DSK Project, Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Ryusuke Yamamoto
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan.,DSK Project, Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Hiroki Tanaka
- DSK Project, Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Nagahiro Minato
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan. .,DSK Project, Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
14
|
Kim D, Kim JY, Jun HS. Smad4 in T cells plays a protective role in the development of autoimmune Sjögren's syndrome in the nonobese diabetic mouse. Oncotarget 2018; 7:80298-80312. [PMID: 27880731 PMCID: PMC5348321 DOI: 10.18632/oncotarget.13437] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 11/07/2016] [Indexed: 12/11/2022] Open
Abstract
We investigated the role of Smad4, a signaling molecule of the TGF-beta pathway, in T cells on the pathology of Sjögren's syndrome (SS) in nonobese diabetic (NOD) mice, an animal model of SS. T cell-specific Smad4-deleted (Smad4fl/fl,CD4-Cre; Smad4 tKO) NOD mice had accelerated development of SS compared with wild-type (Smad4+/+,CD4-Cre; WT) NOD mice, including increased lymphocyte infiltration into exocrine glands, decreased tear and saliva production, and increased levels of autoantibodies at 12 weeks of age. Activated/memory T cells and cytokine (IFN-γ, IL-17)-producing T cells were increased in Smad4 tKO NOD mice, however the proportion and function of regulatory T (Treg) cells were not different between Smad4 tKO and WT NOD mice. Effector T (Teff) cells from Smad4 tKO NOD mice were less sensitive than WT Teff cells to suppression by Treg cells. Th17 differentiation capability of Teff cells was similar between Smad4 tKO and WT NOD mice, but IL-17 expression was increased under inducible Treg skewing conditions in T cells from Smad4 tKO NOD mice. Our results demonstrate that disruption of the Smad4 pathway in T cells of NOD mice increases Teff cell activation resulting in upregulation of Th17 cells, indicating that Smad4 in T cells has a protective role in the development of SS in NOD mice.
Collapse
Affiliation(s)
- Donghee Kim
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
| | - Jae Young Kim
- Department of Life Science, Gachon University, Seongnam, Gyeonggi-Do, Republic of Korea
| | - Hee-Sook Jun
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea.,College of Pharmacy and Gachon Institute Pharmaceutical Science, Gachon University, Incheon, Republic of Korea.,Gil Medical Research Institute, Gil Hospital, Incheon, Republic of Korea
| |
Collapse
|
15
|
Satterthwaite AB. Bruton's Tyrosine Kinase, a Component of B Cell Signaling Pathways, Has Multiple Roles in the Pathogenesis of Lupus. Front Immunol 2018; 8:1986. [PMID: 29403475 PMCID: PMC5786522 DOI: 10.3389/fimmu.2017.01986] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 12/21/2017] [Indexed: 01/08/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the loss of adaptive immune tolerance to nucleic acid-containing antigens. The resulting autoantibodies form immune complexes that promote inflammation and tissue damage. Defining the signals that drive pathogenic autoantibody production is an important step in the development of more targeted therapeutic approaches for lupus, which is currently treated primarily with non-specific immunosuppression. Here, we review the contribution of Bruton’s tyrosine kinase (Btk), a component of B and myeloid cell signaling pathways, to disease in murine lupus models. Both gain- and loss-of-function genetic studies have revealed that Btk plays multiple roles in the production of autoantibodies. These include promoting the activation, plasma cell differentiation, and class switching of autoreactive B cells. Small molecule inhibitors of Btk are effective at reducing autoantibody levels, B cell activation, and kidney damage in several lupus models. These studies suggest that Btk may promote end-organ damage both by facilitating the production of autoantibodies and by mediating the inflammatory response of myeloid cells to these immune complexes. While Btk has not been associated with SLE in GWAS studies, SLE B cells display signaling defects in components both upstream and downstream of Btk consistent with enhanced activation of Btk signaling pathways. Taken together, these observations indicate that limiting Btk activity is critical for maintaining B cell tolerance and preventing the development of autoimmune disease. Btk inhibitors, generally well-tolerated and approved to treat B cell malignancy, may thus be a useful therapeutic approach for SLE.
Collapse
Affiliation(s)
- Anne B Satterthwaite
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, United States.,Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
16
|
Patsoukis N, Bardhan K, Weaver JD, Sari D, Torres-Gomez A, Li L, Strauss L, Lafuente EM, Boussiotis VA. The adaptor molecule RIAM integrates signaling events critical for integrin-mediated control of immune function and cancer progression. Sci Signal 2017; 10:10/493/eaam8298. [DOI: 10.1126/scisignal.aam8298] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
17
|
Lobo PI. Role of Natural IgM Autoantibodies (IgM-NAA) and IgM Anti-Leukocyte Antibodies (IgM-ALA) in Regulating Inflammation. Curr Top Microbiol Immunol 2017; 408:89-117. [PMID: 28698955 DOI: 10.1007/82_2017_37] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Natural IgM autoantibodies (IgM-NAA) are rapidly produced to inhibit pathogens and abrogate inflammation mediated by invading microorganisms and host neoantigens. IgM-NAA achieve this difficult task by being polyreactive with low binding affinity but with high avidity, characteristics that allow these antibodies to bind antigenic determinants shared by pathogens and neoantigens. Hence the same clones of natural IgM can bind and mask host neoantigens as well as inhibit microorganisms. In addition, IgM-NAA regulate the inflammatory response via mechanisms involving binding of IgM to apoptotic cells to enhance their removal and binding of IgM to live leukocytes to regulate their function. Secondly, we review how natural IgM prevents autoimmune disorders arising from pathogenic IgG autoantibodies as well as by autoreactive B and T cells that have escaped tolerance mechanisms. Thirdly, using IgM knockout mice, we show that regulatory B and T cells require IgM to effectively regulate inflammation mediated by innate, adaptive and autoimmune mechanisms. It is therefore not surprising why the host positively selects such autoreactive B1 cells that generate protective IgM-NAA, which are also evolutionarily conserved. Fourthly, we show that IgM anti-leukocyte autoantibodies (IgM-ALA) levels and their repertoire can vary in normal humans and disease states and this variation may partly explain the observed differences in the inflammatory response after infection, ischemic injury or after a transplant. Finally we also show how protective IgM-NAA can be rendered pathogenic under non-physiological conditions. IgM-NAA have therapeutic potential. Polyclonal IgM infusions can be used to abrogate ongoing inflammation. Additionally, inflammation arising after ischemic kidney injury, e.g., during high-risk elective cardiac surgery or after allograft transplantation, can be prevented by pre-emptively infusing polyclonal IgM, or DC pretreated ex vivo with IgM, or by increasing in vivo IgM with a vaccine approach. Cell therapy with IgM pretreated cells, is appealing as less IgM will be required.
Collapse
Affiliation(s)
- Peter I Lobo
- Department of Internal Medicine, Division of Nephrology, Center of Immunology, Inflammation and Regenerative Medicine, University of Virginia Health Center, Charlottesville, VA, USA.
| |
Collapse
|
18
|
Lobo PI. Role of Natural Autoantibodies and Natural IgM Anti-Leucocyte Autoantibodies in Health and Disease. Front Immunol 2016; 7:198. [PMID: 27375614 PMCID: PMC4893492 DOI: 10.3389/fimmu.2016.00198] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 05/06/2016] [Indexed: 11/13/2022] Open
Abstract
We review how polyreactive natural IgM autoantibodies (IgM-NAA) protect the host from invading micro-organisms and host neo-antigens that are constantly being produced by oxidation mechanisms and cell apoptosis. Second, we discuss how IgM-NAA and IgM anti-leukocyte antibodies (IgM-ALA) inhibits autoimmune inflammation by anti-idiotypic mechanisms, enhancing removal of apoptotic cells, masking neo-antigens, and regulating the function of dendritic cells (DC) and effector cells. Third, we review how natural IgM prevents autoimmune disorders arising from pathogenic IgG autoantibodies, triggered by genetic mechanisms (e.g., SLE) or micro-organisms, as well as by autoreactive B and T cells that have escaped tolerance mechanisms. Studies in IgM knockout mice have clearly demonstrated that regulatory B and T cells require IgM to effectively regulate inflammation mediated by innate, adaptive, and autoimmune mechanisms. It is, therefore, not surprising why the host positively selects such autoreactive B1 cells that generate IgM-NAA, which are also evolutionarily conserved. Fourth, we show that IgM-ALA levels and their repertoire can vary in normal humans and disease states and this variation may partly explain the observed differences in the inflammatory response after infection, ischemic injury, or after a transplant. We also show how protective IgM-NAA can be rendered pathogenic under non-physiological conditions. We also review IgG-NAA that are more abundant than IgM-NAA in plasma. However, we need to understand if the (Fab)(2) region of IgG-NAA has physiological relevance in non-disease states, as in plasma, their functional activity is blocked by IgM-NAA having anti-idiotypic activity. Some IgG-NAA are produced by B2 cells that have escaped tolerance mechanisms and we show how such pathogenic IgG-NAA are regulated to prevent autoimmune disease. The Fc region of IgG-NAA can influence inflammation and B cell function in vivo by binding to activating and inhibitory FcγR. IgM-NAA has therapeutic potential. Polyclonal IgM infusions can be used to abrogate on-going inflammation. Additionally, inflammation arising after ischemic kidney injury, e.g., during high-risk elective cardiac surgery or after allograft transplantation, can be prevented by pre-emptively infusing polyclonal IgM or DC pretreated ex vivo with IgM or by increasing in vivo IgM with a vaccine approach. Cell therapy is appealing as less IgM will be required.
Collapse
Affiliation(s)
- Peter Isaac Lobo
- Department of Internal Medicine, Division of Nephrology, Center of Immunology, Inflammation and Regenerative Medicine, University of Virginia Health Center, Charlottesville, VA, USA
| |
Collapse
|
19
|
Gruber S, Hendrikx T, Tsiantoulas D, Ozsvar-Kozma M, Göderle L, Mallat Z, Witztum JL, Shiri-Sverdlov R, Nitschke L, Binder CJ. Sialic Acid-Binding Immunoglobulin-like Lectin G Promotes Atherosclerosis and Liver Inflammation by Suppressing the Protective Functions of B-1 Cells. Cell Rep 2016; 14:2348-61. [PMID: 26947073 PMCID: PMC4802221 DOI: 10.1016/j.celrep.2016.02.027] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 12/21/2015] [Accepted: 02/01/2016] [Indexed: 12/21/2022] Open
Abstract
Atherosclerosis is initiated and sustained by hypercholesterolemia, which results in the generation of oxidized LDL (OxLDL) and other metabolic byproducts that trigger inflammation. Specific immune responses have been shown to modulate the inflammatory response during atherogenesis. The sialic acid-binding immunoglobulin-like lectin G (Siglec-G) is a negative regulator of the functions of several immune cells, including myeloid cells and B-1 cells. Here, we show that deficiency of Siglec-G in atherosclerosis-prone mice inhibits plaque formation and diet-induced hepatic inflammation. We further demonstrate that selective deficiency of Siglec-G in B cells alone is sufficient to mediate these effects. Levels of B-1 cell-derived natural IgM with specificity for OxLDL were significantly increased in the plasma and peritoneal cavity of Siglec-G-deficient mice. Consistent with the neutralizing functions of OxLDL-specific IgM, Siglec-G-deficient mice were protected from OxLDL-induced sterile inflammation. Thus, Siglec-G promotes atherosclerosis and hepatic inflammation by suppressing protective anti-inflammatory effector functions of B cells.
Collapse
MESH Headings
- Animals
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- B-Lymphocyte Subsets/cytology
- B-Lymphocyte Subsets/immunology
- B-Lymphocyte Subsets/metabolism
- Chemokines/analysis
- Chemokines/blood
- Cytokines/analysis
- Cytokines/blood
- Diet, High-Fat
- Immunoassay
- Immunoglobulin M/blood
- Inflammation/pathology
- Lectins/deficiency
- Lectins/genetics
- Lectins/metabolism
- Leukocyte Common Antigens/metabolism
- Lipoproteins, LDL/blood
- Lipoproteins, LDL/immunology
- Lipoproteins, LDL/metabolism
- Liver/metabolism
- Liver/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Peritonitis/prevention & control
- Peritonitis/veterinary
- RNA, Messenger/metabolism
- Receptors, Antigen, B-Cell/deficiency
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
- Receptors, LDL/deficiency
- Receptors, LDL/genetics
- Serum Amyloid A Protein/analysis
- Sialic Acid Binding Immunoglobulin-like Lectins
Collapse
Affiliation(s)
- Sabrina Gruber
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria; Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Tim Hendrikx
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria; Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria; Department of Molecular Genetics, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6229 ER Maastricht, the Netherlands
| | - Dimitrios Tsiantoulas
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria; Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Maria Ozsvar-Kozma
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria; Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Laura Göderle
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria; Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Ziad Mallat
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, CB2 0SZ Cambridge, UK
| | - Joseph L Witztum
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA 92110, USA
| | - Ronit Shiri-Sverdlov
- Department of Molecular Genetics, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6229 ER Maastricht, the Netherlands
| | - Lars Nitschke
- Division of Genetics, Department of Biology, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Christoph J Binder
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria; Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
20
|
Regnault B, Melanitou E. Genetic architecture of early pre-inflammatory stage transcription signatures of autoimmune diabetes in the pancreatic lymph nodes of the NOD mouse reveals significant gene enrichment on chromosomes 6 and 7. Meta Gene 2015; 6:96-104. [PMID: 26629415 PMCID: PMC4634356 DOI: 10.1016/j.mgene.2015.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/11/2015] [Accepted: 09/18/2015] [Indexed: 12/01/2022] Open
Abstract
Autoimmune diseases are characterized by the stimulation of an excessive immune response to self-tissues by inner and/or outer organism factors. Common characteristics in their etiology include a complex genetic predisposition and environmental triggers as well as the implication of the major histocompatibility (MHC) locus on human chromosome 6p21. A restraint number of non-MHC susceptibility genes, part of the genetic component of type 1 diabetes have been identified in human and in animal models, while the complete spectrum of genes involved remains unknown. We elaborate herein patterns of chromosomal organization of 162 genes differentially expressed in the pancreatic lymph nodes of Non-Obese Diabetic mice, carefully selected by early sub-phenotypic evaluation (presence or absence of insulin autoantibodies). Chromosomal assignment of these genes revealed a non-random distribution on five chromosomes (47%). Significant gene enrichment was observed in particular for two chromosomes, 6 and 7. While a subset of these genes coding for secreted proteins showed significant enrichment on both chromosomes, the overall pool of genes was significantly enriched on chromosome 7. The significance of this unexpected gene distribution on the mouse genome is discussed in the light of novel findings indicating that genes affecting common diseases map to recombination “hotspot” regions of mammalian genomes. The genetic architecture of transcripts differentially expressed in specific stages of autoimmune diabetes offers novel venues towards our understanding of patterns of inheritance potentially affecting the pathological disease mechanisms. Chromosomal organization of differentially expressed genes in early autoimmunity Non-random distribution of type 1 diabetes-related transcripts on the mouse genome High density of genetic polymorphisms on specific loci of chromosomes 6 and 7 Correlation of mapping positions on chromosomes 6 and 7 with known T1D loci Our study offers candidate genes and loci drawn in the genomics of T1D initiation.
Collapse
Affiliation(s)
- Beatrice Regnault
- Department of Genomes and Genetics, Eukaryote Genotyping Platform, Institut Pasteur, 25-28 rue du Dr Roux, 75725 Paris, Cedex 15, France
| | - Evie Melanitou
- Department of Parasites and Insect-Vectors, Institut Pasteur, 25-28 rue du Dr Roux, 75725 Paris, Cedex 15, France
| |
Collapse
|
21
|
BAFF-driven autoimmunity requires CD19 expression. J Autoimmun 2015; 62:1-10. [DOI: 10.1016/j.jaut.2015.06.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/29/2015] [Accepted: 06/01/2015] [Indexed: 11/19/2022]
|
22
|
High SIPA-1 expression in proximal tubules of human kidneys under pathological conditions. ACTA ACUST UNITED AC 2015; 35:64-70. [PMID: 25673195 DOI: 10.1007/s11596-015-1390-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 01/18/2015] [Indexed: 01/27/2023]
Abstract
Systemic lupus erythematosus (SLE) and clear cell renal cell carcinoma (CC-RCC) are serious disorders and usually fatal, and always accompanied with pathological changes in the kidney. Signal-induced proliferation-associated protein 1 (SIPA-1) is a Rap1GTPase activating protein (Rap1GAP) expressed in the normal distal and collecting tubules of the murine kidney. Lupus-like autoimmune disease and leukemia have been observed in SIPA-1 deficient mice, suggesting a pathological relevance of SIPA-1 to SLE and carcinoma in human being. The expression pattern of SIPA-1 is as yet undefined and the pathogenesis of these diseases in humans remains elusive. In this study, we used both immunohistochemistry and quantum dot (QD)-based immunofluorescence staining to investigate the expression of SIPA-1 in renal specimens from SLE and CC-RCC patients. MTT assay and Western blotting were employed to evaluate the effects of SIPA-1 overexpression on the proliferation and apoptosis of renal cell lines. Semi-quantitative reverse transcriptase-PCR (RT-PCR) was applied to examine the changes of hypoxia-inducible factor-1α (HIF-1α) mRNA level. Results showed that SIPA-1 was highly expressed in the proximal and collecting tubules of nephrons in SLE patients compared to normal ones, and similar results were obtained in the specimens of CC-RCC patients. Although SIPA-1 overexpression did not affect cellular proliferation and apoptosis of both human 786-O renal cell carcinoma cells and rat NRK-52E renal epithelial cell lines, RT-PCR results showed that HIF-1α mRNA level was down-regulated by SIPA-1 overexpression in 786-O cells. These findings suggest that SIPA-1 may play critical roles in the pathological changes in kidney, and might provide a new biomarker to aid in the diagnosis of SLE and CC-RCC.
Collapse
|
23
|
Xiang Y, Park SK, Garrard WT. A major deletion in the Vκ-Jκ intervening region results in hyperelevated transcription of proximal Vκ genes and a severely restricted repertoire. THE JOURNAL OF IMMUNOLOGY 2014; 193:3746-54. [PMID: 25187654 DOI: 10.4049/jimmunol.1401574] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Our previous studies have shown that DNase I hypersensitive sites 1 and 2 (HS1-2) and HS3-6 within the mouse Vκ-Jκ intervening region are essential for controlling locus contraction and creating a diverse Ab repertoire. In this article, we demonstrate that a 6.3-kb deletion encompassing HS1-6 altogether not only leads to the predictable sums of these phenotypes, but also results in a novel hyperelevation of transcription of proximal Vκ genes, in both pre-B and splenic B cells. These findings reveal previously unrecognized additional functions for cis-elements within the Vκ-Jκ intervening region, namely, prevention of the production of massive levels of noncoding RNA species by silencing transcription of germline proximal Vκ genes in both developing and mature B cells.
Collapse
Affiliation(s)
- Yougui Xiang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390; and Tianjin Research Center of Basic Medical Science, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Sung-Kyun Park
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| | - William T Garrard
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| |
Collapse
|
24
|
Pye DS, Rubio I, Pusch R, Lin K, Pettitt AR, Till KJ. Chemokine unresponsiveness of chronic lymphocytic leukemia cells results from impaired endosomal recycling of Rap1 and is associated with a distinctive type of immunological anergy. THE JOURNAL OF IMMUNOLOGY 2013; 191:1496-504. [PMID: 23804711 DOI: 10.4049/jimmunol.1203484] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Trafficking of malignant lymphocytes is fundamental to the biology of chronic lymphocytic leukemia (CLL). Transendothelial migration (TEM) of normal lymphocytes into lymph nodes requires the chemokine-induced activation of Rap1 and αLβ2 integrin. However, in most cases of CLL, Rap1 is refractory to chemokine stimulation, resulting in failed αLβ2 activation and TEM unless α4β1 is coexpressed. In this study, we show that the inability of CXCL12 to induce Rap1 GTP loading in CLL cells results from failure of Rap1-containing endosomes to translocate to the plasma membrane. Furthermore, failure of chemokine-induced Rap1 translocation/GTP loading was associated with a specific pattern of cellular IgD distribution resembling that observed in normal B cells anergized by DNA-based Ags. Anergic features and chemokine unresponsiveness could be simultaneously reversed by culturing CLL cells ex vivo, suggesting that these two features are coupled and driven by stimuli present in the in vivo microenvironment. Finally, we show that failure of Rap1 translocation/GTP loading is linked to defective activation of phospholipase D1 and its upstream activator Arf1. Taken together, our findings indicate that chemokine unresponsiveness in CLL lymphocytes results from failure of Arf1/phospholipase D1-mediated translocation of Rap1 to the plasma membrane for GTP loading and may be a specific feature of anergy induced by DNA Ags.
Collapse
Affiliation(s)
- Derek S Pye
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 3GA, United Kingdom
| | | | | | | | | | | |
Collapse
|
25
|
Pfau JC, Hurley K, Peterson C, Coker L, Fowers C, Marcum R. Activation and trafficking of peritoneal B1a B-cells in response to amphibole asbestos. J Immunotoxicol 2013; 11:90-8. [PMID: 23746315 DOI: 10.3109/1547691x.2013.796024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
B1a B-cells are concentrated in peritoneal and pleural cavities, are producers of 'natural auto-antibodies', and have been implicated in autoimmune responses. Their numbers are increased in humans and mice with systemic autoimmune diseases, but their role in the immune pathology is not known. Asbestos causes pulmonary, pleural, and peritoneal pathologies by accessing these tissues after inhalation. Amphibole asbestos has been shown to elicit immune dysfunction, including chronic inflammation, fibrosis, and autoantibody production. This study tested the hypothesis that asbestos affects immune dysfunction by activating B1a B-cells to traffic to secondary lymphatic tissue. C57Bl/6 mice were exposed to amphibole asbestos (Libby 6-Mix) either endotracheally or intraperitoneally, and the B1a B-cells in pleural or peritoneal compartments were tested by multi-parameter flow cytometry. Adoptive transfer of peritoneal lymphocytes from CD45.1 transgenic to wild-type mice was used to track the migration. The percentage and numbers of B1a B-cells in pleural and peritoneal cavities decreased 3-6 days following exposure. During that time, asbestos exposure led to a decrease in cells expressing alpha-4 (α4) integrin and MHC II antigen. Peritoneal cells treated in vitro showed decreased α4 integrin with no change in CD5, IgM, or MHC II antigen. Therefore, B1a cells (IgM(+), CD5(+), MHC II(+)) traffic from the peritoneal cavity following loss of α4 integrin expression. Following adoptive transfer into the peritoneum of asbestos-exposed mice, CD45.1(+) B1a cells were detected in the spleen and mesenteric lymph nodes after 3 days, peaking at 6 days. Interestingly, the percentage of splenic suppressor B-cells (IgM(+), CD5(+), CD11b(+), CD1d(+)) decreased following amphibole exposure, demonstrating that the B1a cells did not contribute to an increased pool of suppressive B-cells. These results show that B1a B-cells respond to asbestos exposure by trafficking to secondary lymphatic tissue where they may affect ultimate immune dysfunction.
Collapse
Affiliation(s)
- Jean C Pfau
- Idaho State University , Pocatello, ID , USA and
| | | | | | | | | | | |
Collapse
|
26
|
Minato N. Rap G protein signal in normal and disordered lymphohematopoiesis. Exp Cell Res 2013; 319:2323-8. [PMID: 23603280 DOI: 10.1016/j.yexcr.2013.04.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 04/05/2013] [Indexed: 10/26/2022]
Abstract
Rap proteins (Rap1, Rap2a, b, c) are small molecular weight GTPases of the Ras family. Rap G proteins mediate diverse cellular events such as cell adhesion, proliferation, and gene activation through various signaling pathways. Activation of Rap signal is regulated tightly by several specific regulatory proteins including guanine nucleotide exchange factors and GTPase-activating proteins. Beyond cell biological studies, increasing attempts have been made in the past decade to define the roles of Rap signal in specific functions of normal tissue systems as well as in cancer. In the immune and hematopoietic systems, Rap signal plays crucial roles in the development and function of essentially all lineages of lymphocytes and hematopoietic cells, and importantly, deregulated Rap signal may lead to unique pathological conditions depending on the affected cell types, including various types of leukemia and autoimmunity. The phenotypical studies have unveiled novel, even unexpected functional aspects of Rap signal in cells from a variety of tissues, providing potentially important clues for controlling human diseases, including malignancy.
Collapse
Affiliation(s)
- Nagahiro Minato
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan. :
| |
Collapse
|
27
|
Xiang Y, Park SK, Garrard WT. Vκ gene repertoire and locus contraction are specified by critical DNase I hypersensitive sites within the Vκ-Jκ intervening region. THE JOURNAL OF IMMUNOLOGY 2013; 190:1819-26. [PMID: 23296705 DOI: 10.4049/jimmunol.1203127] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The processes of Ig gene locus contraction and looping during V(D)J-recombination are essential for creating a diverse Ab repertoire. However, no cis-acting sequence that plays a major role in specifying locus contraction has been uncovered within the Igκ gene locus. In this article, we demonstrate that a 650-bp sequence corresponding to DNase I hypersensitive sites HS1-2 within the mouse Igκ gene V-J intervening region binds CCCTC-binding factor and specifies locus contraction and long-range Vκ gene usage spanning 3.2 Mb in pre-B cells. We call this novel element Cer (for "contracting element for recombination"). Targeted deletion of Cer caused markedly increased proximal and greatly diminished upstream Vκ gene usage, higher allele usage, more splenic Igκ(+) B cells, and nonlineage-specific Igκ rearrangement in T cells. Relative to wild-type mice, Cer-deletion mice exhibited similar levels of Vκ gene germline transcription and H3K4me3 epigenetic marks but displayed a dramatic decrease in locus contraction in pre-B cells. Thus, our studies demonstrate that DNase I hypersensitive sites HS1-2 within the Vκ-Jκ intervening region are essential for controlling locus contraction and creating a diverse Ab repertoire.
Collapse
Affiliation(s)
- Yougui Xiang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | | | | |
Collapse
|
28
|
Seifert M, Sellmann L, Bloehdorn J, Wein F, Stilgenbauer S, Dürig J, Küppers R. Cellular origin and pathophysiology of chronic lymphocytic leukemia. ACTA ACUST UNITED AC 2012; 209:2183-98. [PMID: 23091163 PMCID: PMC3501361 DOI: 10.1084/jem.20120833] [Citation(s) in RCA: 193] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Unmutated CLL derives from unmutated mature CD5+ B cells and mutated CLL derives from CD5+CD27+ post–germinal center B cells. The cellular origin of chronic lymphocytic leukemia (CLL) is still debated, although this information is critical to understanding its pathogenesis. Transcriptome analyses of CLL and the main normal B cell subsets from human blood and spleen revealed that immunoglobulin variable region (IgV) gene unmutated CLL derives from unmutated mature CD5+ B cells and mutated CLL derives from a distinct, previously unrecognized CD5+CD27+ post–germinal center B cell subset. Stereotyped V gene rearrangements are enriched among CD5+ B cells, providing independent evidence for a CD5+ B cell derivation of CLL. Notably, these CD5+ B cell populations include oligoclonal expansions already found in young healthy adults, putatively representing an early phase in CLL development before the CLL precursor lesion monoclonal B cell lymphocytosis. Finally, we identified deregulated proteins, including EBF1 and KLF transcription factors, that were not detected in previous comparisons of CLL and conventional B cells.
Collapse
Affiliation(s)
- Marc Seifert
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen 45122, Germany
| | | | | | | | | | | | | |
Collapse
|
29
|
Investigation of secreted protein transcripts as early biomarkers for type 1 diabetes in the mouse model. Gene 2012; 512:161-5. [PMID: 23031813 DOI: 10.1016/j.gene.2012.09.055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Revised: 09/12/2012] [Accepted: 09/14/2012] [Indexed: 12/28/2022]
Abstract
Type 1 diabetes (T1D) represents a serious health burden in the world, complicated by the fact that disease onset can be preceded by a long time period without evident clinical signs. It would be then of critical importance to detect the disease in its early stages. In this direction, we seek here to identify early preinflammatory markers for autoimmune diabetes, mining our previously reported transcriptome data relevant to distinct early sub-phenotypes in the NOD mouse, associated with early insulin autoantibodies (E-IAA). More specifically we focus on secreted or transmembrane protein transcripts, identifying in this category 71 differentially expressed transcripts which are regulated at the early preinflammatory stages of T1D in the pancreatic lymph nodes (PLN). Following the expression patterns of these 71 transcripts, correspondence analysis (a multivariate analysis method) reveals a clear-cut segregation of the individual samples according to the early subphenotype used. Thus the 71 transcripts coding for secreted proteins constitute a candidate-set of predictive biomarkers for the development of autoimmune damage of the β cells of the pancreas. The majority of these genes have human orthologs and accordingly they represent potential candidate biomarkers for the human disease. In addition, for predictive purposes, the analysis reveals the possibility to reduce significantly the size of the candidate-set in practice, with various genes displaying identical expression profiles.
Collapse
|
30
|
Reedquist KA, Tak PP. Signal transduction pathways in chronic inflammatory autoimmune disease: small GTPases. Open Rheumatol J 2012; 6:259-72. [PMID: 23028410 PMCID: PMC3460313 DOI: 10.2174/1874312901206010259] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 06/19/2012] [Accepted: 06/21/2012] [Indexed: 01/28/2023] Open
Abstract
Ras superfamily small GTPases represent a wide and diverse class of intracellular signaling proteins that are highly conserved during evolution. These enzymes serve as key checkpoints in coupling antigen receptor, growth factor, cytokine and chemokine stimulation to cellular responses. Once activated, via their ability to regulate multiple downstream signaling pathways, small GTPases amplify and diversify signaling cascades which regulate cellular proliferation, survival, cytokine expression, trafficking and retention. Small GTPases, particularly members of the Ras, Rap, and Rho family, critically coordinate the function and interplay of immune and stromal cells during inflammatory respones, and increasing evidence indicates that alterations in small GTPase signaling contribute to the pathological behavior of these cell populations in human chronic inflammatory diseases such as rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). Here, we review how Ras, Rap, and Rho family GTPases contribute to the biology of cell populations relevant to human chronic inflammatory disease, highlight recent advances in understanding how alterations in these pathways contribute to pathology in RA and SLE, and discuss new therapeutic strategies that may allow specific targeting of small GTPases in the clinic.
Collapse
Affiliation(s)
- Kris A Reedquist
- Division of Clinical Immunology and Rheumatology, Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, The Netherlands
| | | |
Collapse
|
31
|
Puri KD, Gold MR. Selective inhibitors of phosphoinositide 3-kinase delta: modulators of B-cell function with potential for treating autoimmune inflammatory diseases and B-cell malignancies. Front Immunol 2012; 3:256. [PMID: 22936933 PMCID: PMC3425960 DOI: 10.3389/fimmu.2012.00256] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 07/31/2012] [Indexed: 12/22/2022] Open
Abstract
The delta isoform of the p110 catalytic subunit (p110δ) of phosphoinositide 3-kinase is expressed primarily in hematopoietic cells and plays an essential role in B-cell development and function. Studies employing mice lacking a functional p110δ protein, as well as the use of highly-selective chemical inhibitors of p110δ, have revealed that signaling via p110δ-containing PI3K complexes (PI3Kδ) is critical for B-cell survival, migration, and activation, functioning downstream of key receptors on B cells including the B-cell antigen receptor, chemokine receptors, pro-survival receptors such as BAFF-R and the IL-4 receptor, and co-stimulatory receptors such as CD40 and Toll-like receptors (TLRs). Similarly, this PI3K isoform plays a key role in the survival, proliferation, and dissemination of B-cell lymphomas. Herein we summarize studies showing that these processes can be inhibited in vitro and in vivo by small molecule inhibitors of p110δ enzymatic activity, and that these p110δ inhibitors have shown efficacy in clinical trials for the treatment of several types of B-cell malignancies including chronic lymphocytic leukemia (CLL) and non-Hodgkin lymphoma (NHL). PI3Kδ also plays a critical role in the activation, proliferation, and tissue homing of self-reactive B cells that contribute to autoimmune diseases, in particular innate-like B-cell populations such as marginal zone (MZ) B cells and B-1 cells that have been strongly linked to autoimmunity. We discuss the potential utility of p110δ inhibitors, either alone or in combination with B-cell depletion, for treating autoimmune diseases such as lupus, rheumatoid arthritis, and type 1 diabetes. Because PI3Kδ plays a major role in both B-cell-mediated autoimmune inflammation and B-cell malignancies, PI3Kδ inhibitors may represent a promising therapeutic approach for treating these diseases.
Collapse
|
32
|
Amezcua Vesely MC, Schwartz M, Bermejo DA, Montes CL, Cautivo KM, Kalergis AM, Rawlings DJ, Acosta-Rodríguez EV, Gruppi A. FcγRIIb and BAFF differentially regulate peritoneal B1 cell survival. THE JOURNAL OF IMMUNOLOGY 2012; 188:4792-800. [PMID: 22516957 DOI: 10.4049/jimmunol.1102070] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
B1 cells produce most natural Abs in unimmunized mice and play a key role in the response to thymus-independent Ags and microbial infection. Enlargement of B1 cell number in mice is often associated with autoimmunity. However, the factors that control peripheral B1 cell survival remain poorly characterized. Mice lacking the inhibitory receptor FcγRIIb exhibit a massive expansion in peritoneal B1 cells, implicating this receptor in B1 cell homeostasis. In this study, we show that peritoneal B1 cells express the highest levels of FcγRIIb among B cell subsets and are highly susceptible to FcγRIIb-mediated apoptosis. B1 cells upregulate FcγRIIb in response to innate signals, including CpG, and the B cell homeostatic cytokine BAFF efficiently protects activated B1 cells from FcγRIIb-mediated apoptosis via receptor downregulation. BAFF-transgenic mice manifest an expansion of peritoneal B1 cells that express lower levels of FcγRIIb and exhibit reduced susceptibility to apoptosis. Whereas both peritoneal B1 cells from wild-type and BAFF-transgenic mice immunized with CpG exhibit an increase in FcγRIIb levels, this change is blunted in BAFF-transgenic animals. Our combined results demonstrate that FcγRIIb controls peritoneal B1 cell survival and this program can be modulated by the BAFF signaling axis.
Collapse
Affiliation(s)
- María C Amezcua Vesely
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba CP 5000, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Vilagos B, Hoffmann M, Souabni A, Sun Q, Werner B, Medvedovic J, Bilic I, Minnich M, Axelsson E, Jaritz M, Busslinger M. Essential role of EBF1 in the generation and function of distinct mature B cell types. J Exp Med 2012; 209:775-92. [PMID: 22473956 PMCID: PMC3328360 DOI: 10.1084/jem.20112422] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 03/15/2012] [Indexed: 11/05/2022] Open
Abstract
The transcription factor EBF1 is essential for lineage specification in early B cell development. In this study, we demonstrate by conditional mutagenesis that EBF1 is required for B cell commitment, pro-B cell development, and subsequent transition to the pre-B cell stage. Later in B cell development, EBF1 was essential for the generation and maintenance of several mature B cell types. Marginal zone and B-1 B cells were lost, whereas follicular (FO) and germinal center (GC) B cells were reduced in the absence of EBF1. Activation of the B cell receptor resulted in impaired intracellular signaling, proliferation and survival of EBF1-deficient FO B cells. Immune responses were severely reduced upon Ebf1 inactivation, as GCs were formed but not maintained. ChIP- and RNA-sequencing of FO B cells identified EBF1-activated genes that encode receptors, signal transducers, and transcriptional regulators implicated in B cell signaling. Notably, ectopic expression of EBF1 efficiently induced the development of B-1 cells at the expense of conventional B cells. These gain- and loss-of-function analyses uncovered novel important functions of EBF1 in controlling B cell immunity.
Collapse
Affiliation(s)
- Bojan Vilagos
- Research Institute of Molecular Pathology, Vienna Biocenter, Dr. Bohr-Gasse 7, A-1030 Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Jensen F, Wallukat G, Herse F, Budner O, El-Mousleh T, Costa SD, Dechend R, Zenclussen AC. CD19
+
CD5
+
Cells as Indicators of Preeclampsia. Hypertension 2012; 59:861-8. [DOI: 10.1161/hypertensionaha.111.188276] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Preeclampsia is a devastating pregnancy-associated disorder affecting 5% to 8% of pregnant women worldwide. It emerges as an autoimmune-driven disease, and, among others, the autoantibodies against angiotensin type 1 receptor II have been proposed to account for preeclampsia symptoms. Despite much attention focused on describing autoantibodies associated with preeclampsia, there is no clue concerning the cell population producing them. CD19
+
CD5
+
B-1a B cells constitute the main source of natural and polyreactive antibodies, which can be directed against own structures. Here, we aimed to identify the B-cell subpopulation responsible for autoantibody production during preeclampsia and to study their regulation, as well as their possible use as markers for the disease. The frequency of CD19
+
CD5
+
cells in peripheral blood of preeclamptic patients is dramatically increased compared with normal pregnant women as analyzed by flow cytometry. This seems to be driven by the high human chorionic gonadotropin levels present in the serum and placenta supernatant of preeclamptic patients versus normal pregnant women. Not only ≈95% of CD19
+
CD5
+
cells express the human chorionic gonadotropin receptor, but these cells also expand on human chorionic gonadotropin stimulation in a lymphocyte culture. Most importantly, isolated CD19
+
CD5
+
cells produce autoantibodies against angiotensin type 1 receptor II, and CD19
+
CD5
+
cells were further detected in the placenta of preeclamptic but not of normal pregnancies where barely B cells are present. Our results identify a B-cell population able to produce pregnancy-pathological autoantibodies as possible markers for preeclampsia, which opens vast diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Federico Jensen
- From the Experimental Obstetrics and Gynecology (F.J., T.E.-M., A.C.Z.), Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany; Experimental and Clinical Research Center (G.W., F.H., R.D.), a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany; University Women's Clinic (O.B., S.-D.C.), Otto-von-Guericke University, Magdeburg, Germany; HELIOS Klinikum Berlin-Buch (R.D.), Berlin, Germany
| | - Gerd Wallukat
- From the Experimental Obstetrics and Gynecology (F.J., T.E.-M., A.C.Z.), Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany; Experimental and Clinical Research Center (G.W., F.H., R.D.), a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany; University Women's Clinic (O.B., S.-D.C.), Otto-von-Guericke University, Magdeburg, Germany; HELIOS Klinikum Berlin-Buch (R.D.), Berlin, Germany
| | - Florian Herse
- From the Experimental Obstetrics and Gynecology (F.J., T.E.-M., A.C.Z.), Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany; Experimental and Clinical Research Center (G.W., F.H., R.D.), a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany; University Women's Clinic (O.B., S.-D.C.), Otto-von-Guericke University, Magdeburg, Germany; HELIOS Klinikum Berlin-Buch (R.D.), Berlin, Germany
| | - Oliver Budner
- From the Experimental Obstetrics and Gynecology (F.J., T.E.-M., A.C.Z.), Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany; Experimental and Clinical Research Center (G.W., F.H., R.D.), a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany; University Women's Clinic (O.B., S.-D.C.), Otto-von-Guericke University, Magdeburg, Germany; HELIOS Klinikum Berlin-Buch (R.D.), Berlin, Germany
| | - Tarek El-Mousleh
- From the Experimental Obstetrics and Gynecology (F.J., T.E.-M., A.C.Z.), Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany; Experimental and Clinical Research Center (G.W., F.H., R.D.), a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany; University Women's Clinic (O.B., S.-D.C.), Otto-von-Guericke University, Magdeburg, Germany; HELIOS Klinikum Berlin-Buch (R.D.), Berlin, Germany
| | - Serban-Dan Costa
- From the Experimental Obstetrics and Gynecology (F.J., T.E.-M., A.C.Z.), Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany; Experimental and Clinical Research Center (G.W., F.H., R.D.), a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany; University Women's Clinic (O.B., S.-D.C.), Otto-von-Guericke University, Magdeburg, Germany; HELIOS Klinikum Berlin-Buch (R.D.), Berlin, Germany
| | - Ralf Dechend
- From the Experimental Obstetrics and Gynecology (F.J., T.E.-M., A.C.Z.), Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany; Experimental and Clinical Research Center (G.W., F.H., R.D.), a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany; University Women's Clinic (O.B., S.-D.C.), Otto-von-Guericke University, Magdeburg, Germany; HELIOS Klinikum Berlin-Buch (R.D.), Berlin, Germany
| | - Ana Claudia Zenclussen
- From the Experimental Obstetrics and Gynecology (F.J., T.E.-M., A.C.Z.), Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany; Experimental and Clinical Research Center (G.W., F.H., R.D.), a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany; University Women's Clinic (O.B., S.-D.C.), Otto-von-Guericke University, Magdeburg, Germany; HELIOS Klinikum Berlin-Buch (R.D.), Berlin, Germany
| |
Collapse
|
35
|
Wang JY, Lee J, Yan M, Rho JH, Roehrl MHA. Dermatan sulfate interacts with dead cells and regulates CD5(+) B-cell fate: implications for a key role in autoimmunity. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:2168-76. [PMID: 21514431 DOI: 10.1016/j.ajpath.2011.01.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 12/17/2010] [Accepted: 01/25/2011] [Indexed: 12/31/2022]
Abstract
CD5(+) (B-1a) B cells play pivotal roles in autoimmunity through expression of autoreactive B-cell receptors and production of autoantibodies. The mechanism underlying their positive selection and expansion is currently unknown. This study demonstrates that dermatan sulfate (DS) expands the B-1a cell population and augments the specific antibody response to an antigen when it is in complex with DS. DS displays preferential affinity for apoptotic and dead cells, and DS-stimulated cell cultures produce antibodies to various known autoantigens. The companion article further illustrates that autoantigens can be identified by affinity to DS, suggesting that molecules with affinity to DS have a high propensity to become autoantigens. We thus propose that the association of antigens from dead cells with DS is a possible origin of autoantigens and that autoreactive B-1a cells are positively selected and expanded by DS∙autoantigen complexes. This mechanism may also explain the clonal expansion of B-1a cells in certain B-cell malignancies.
Collapse
Affiliation(s)
- Julia Y Wang
- Department of Medicine, Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
36
|
Wang P, Zangerl B, Werner P, Mauldin EA, Casal ML. Familial cutaneous lupus erythematosus (CLE) in the German shorthaired pointer maps to CFA18, a canine orthologue to human CLE. Immunogenetics 2011; 63:197-207. [PMID: 21132284 PMCID: PMC3230530 DOI: 10.1007/s00251-010-0499-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 11/18/2010] [Indexed: 12/29/2022]
Abstract
A familial form of lupus, termed exfoliative cutaneous lupus erythematosus (ECLE) has been recognized for decades in German shorthaired pointer dogs (GSP). Previous studies were suggestive of autosomal recessive inheritance. The disease presents as a severe dermatitis with age of onset between 16 and 40 weeks, and mirrors cutaneous lupus erythematosus (CLE) in humans. Lameness and, in advanced cases, renal disease may be present. Most affected dogs are euthanized before reaching the age of 4 years. The diagnosis is made by clinical observations and microscopic examination of skin biopsies. In humans, many different forms of CLE exist and various genes and chromosomal locations have been implicated. The large number of potential candidate loci combined with often weak association prevented in depth screening of the dog population thus far. During the course of our studies, we developed a colony of dogs with ECLE as a model for human CLE and the genetic analysis of these dogs confirmed the autosomal recessive mode of inheritance of CLE in GSPs. Using canine patient material, we performed a genome-wide association study (GWAS) to identify the genomic region harboring the gene involved in the development of the disease in GSPs. We identified a SNP allele on canine chromosome 18 that segregated with the disease in the 267 dogs tested. The data generated should allow identification of the mutant gene responsible for this form of cutaneous lupus erythematosus in dogs and assist in the understanding of the development of similar disease in humans.
Collapse
Affiliation(s)
- Ping Wang
- School of Veterinary Medicine, Section of Medical Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | |
Collapse
|
37
|
Xiang Y, Zhou X, Hewitt SL, Skok JA, Garrard WT. A multifunctional element in the mouse Igκ locus that specifies repertoire and Ig loci subnuclear location. THE JOURNAL OF IMMUNOLOGY 2011; 186:5356-66. [PMID: 21441452 DOI: 10.4049/jimmunol.1003794] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Nonbiased V gene usage for V(D)J joining is essential for providing an optimal immune system, but no cis-acting sequence with this function has been uncovered. We previously identified a recombination silencer and heterochromatin targeting element in the Vκ-Jκ intervening sequence of germline Igκ transgenes, which we termed Sis. We now have generated Sis knockout mice in the endogenous locus. Intriguingly, Sis(-/-) mice exhibit a skewed Igκ repertoire with markedly decreased distal and enhanced proximal Vκ gene usage for primary rearrangement, which is associated with reduced occupancy of Ikaros and CCCTC-binding factor in the Vκ-Jκ intervening sequence in pre-B cells, proteins believed to be responsible for dampening the recombination of nearby Vκ genes and altering higher-order chromatin looping. Furthermore, monoallelic heterochromatin localization is significantly reduced in Sis(-/-) mice for Igκ in cis and IgH loci in trans in pre-B cells. Because Sis(-/-) mice still allelically excluded Igκ and IgH loci and still exhibited IgL isotype exclusion, we concluded that stable localization at pericentromeric heterochromatin is neither necessary nor sufficient for the establishment or maintenance of allelic exclusion. Hence, Sis is a novel multifunctional element that specifies repertoire and heterochromatin localization to Ig genes.
Collapse
Affiliation(s)
- Yougui Xiang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | |
Collapse
|
38
|
Tanaka H, Tamura A, Sekai M, Hamazaki Y, Minato N. Increased c-Myc activity and DNA damage in hematopoietic progenitors precede myeloproliferative disease in Spa-1-deficiency. Cancer Sci 2011; 102:784-91. [PMID: 21205094 DOI: 10.1111/j.1349-7006.2011.01850.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Mice deficient for Spa-1 encoding Rap GTPase-activating protein develop myeloproliferative disorder (MPD) of late onset with frequent blast crises. The mechanisms for MPD development as well as the reasons for long latency, however, remain elusive. We demonstrate here that preleukemic, disease-free Spa-1(-/-) mice show reduced steady-state hematopoiesis and attenuated resistance to whole body γ-ray irradiation, which are attributable to the sustained p53 response in hematopoietic progenitor cells (HPCs). Preleukemic Spa-1(-/-) HPCs show c-Myc overexpression with increased p19Arf as well as enhanced γH2AX expression with activation of Atm/Chk pathway. We also show that deregulated Rap signaling in the absence of Spa-1 enhances post-transcriptional c-Myc stability and induces DNA damage in a p38MAPK-dependent manner, leading to p53 activation. Genetic studies indicate that the introduction of p53(+/-) and p53(-/-) mutations in Spa-1(-/-) mice results in the acceleration of typical MPD and rapid development of blastic leukemia, respectively. These results suggest that increased c-Myc expression and DNA damage in HPCs precede MPD development in Spa-1(-/-) mice, and the resulting p53 response functions as a barrier for the onset of MPD and blast crises progression.
Collapse
Affiliation(s)
- Hiroki Tanaka
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | |
Collapse
|
39
|
Noda M, Takahashi C, Matsuzaki T, Kitayama H. What we learn from transformation suppressor genes: lessons from RECK. Future Oncol 2010; 6:1105-16. [DOI: 10.2217/fon.10.80] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Expression cloning is a powerful approach to finding genes that induce appreciable changes in cultured cells. One way to use this technique in cancer research is to isolate cDNAs that induce flat reversion in transformed cells. Such screening, however, is inherently artificial, and therefore requires independent validation of the clinical relevance of isolated genes. Studies of the mechanisms of actions, physiological functions and mechanisms of regulation of these genes at various levels may enrich our knowledge of cancer biology and supplement our toolbox in developing new cancer diagnoses and therapies. In this article we discuss the promise, limitations and recent innovations in this approach, taking one transformation suppressor gene, RECK, as an example.
Collapse
Affiliation(s)
| | - Chiaki Takahashi
- Division of Oncology & Molecular Biology, Center for Cancer & Stem Cell Research, Cancer Research Institute, Kanazawa University, Kakuma-cho, Kanazawa 920-1192, Japan
| | - Tomoko Matsuzaki
- Department of Molecular Oncology & Global COE Program, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hitoshi Kitayama
- Department of Molecular Oncology & Global COE Program, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
40
|
Minato N. Rap signaling in normal lymphocyte development and leukemia genesis. Immune Netw 2010; 9:35-40. [PMID: 20107541 PMCID: PMC2803306 DOI: 10.4110/in.2009.9.2.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Accepted: 03/18/2009] [Indexed: 12/03/2022] Open
Abstract
Although Rap GTPases of the Ras family remained enigmatic for years, extensive studies in this decade have revealed diverse functions of Rap signaling in the control of cell proliferation, differentiation, survival, adhesion, and movement. With the use of gene-engineered mice, we have uncovered essential roles of endogenous Rap signaling in normal lymphocyte development of both T- and B-lineage cells. Deregulation of Rap signaling, on the other hand, results in the development of characteristic leukemia in manners highly dependent on the contexts of cell lineages. These results highlight crucial roles of Rap signaling in the physiology and pathology of lymphocyte development.
Collapse
Affiliation(s)
- Nagahiro Minato
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
41
|
Durand CA, Hartvigsen K, Fogelstrand L, Kim S, Iritani S, Vanhaesebroeck B, Witztum JL, Puri KD, Gold MR. Phosphoinositide 3-kinase p110 delta regulates natural antibody production, marginal zone and B-1 B cell function, and autoantibody responses. THE JOURNAL OF IMMUNOLOGY 2009; 183:5673-84. [PMID: 19843950 DOI: 10.4049/jimmunol.0900432] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
B-1 and marginal zone (MZ) B cells produce natural Abs, make Ab responses to microbial pathogens, and contribute to autoimmunity. Although the delta isoform of the PI3K p110 catalytic subunit is essential for development of these innate-like B cells, its role in the localization, activation, and function of normal B-1 and MZ B cells is not known. Using IC87114, a highly selective inhibitor of p110delta enzymatic activity, we show that p110delta is important for murine B-1 and MZ B cells to respond to BCR clustering, the TLR ligands LPS and CpG DNA, and the chemoattractants CXCL13 and sphingosine 1-phosphate. In these innate-like B cells, p110delta activity mediates BCR-, TLR- and chemoattractant-induced activation of the Akt prosurvival kinase, chemoattractant-induced migration, and TLR-induced proliferation. Moreover, we found that TLR-stimulated Ab responses by B-1 and MZ B cells, as well as the localization of MZ B cells in the spleen, depend on p110delta activity. Finally, we show that the in vivo production of natural Abs requires p110delta and that p110delta inhibitors can reduce in vivo autoantibody responses. Thus, targeting p110delta may be a novel approach for regulating innate-like B cells and for treating Ab-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Caylib A Durand
- Department of Microbiology and Immunology, Infection, Inflammation, and Immunity (I(3)) and CELL Research Groups, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Minato N, Hattori M. Spa-1 (Sipa1) and Rap signaling in leukemia and cancer metastasis. Cancer Sci 2009; 100:17-23. [PMID: 19037996 PMCID: PMC11158263 DOI: 10.1111/j.1349-7006.2008.01011.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 09/03/2008] [Accepted: 09/16/2008] [Indexed: 01/15/2023] Open
Abstract
Although Rap GTPases of the Ras family remained enigmatic for years, extensive studies in this decade have revealed diverse functions of Rap in the control of cell proliferation, differentiation, survival, adhesion, and movement. With the use of genetic engineering strategies, we have uncovered essential roles of Rap signaling in normal lymphohematopoietic cell development as well as its crucial involvement in the development of a wide spectrum of leukemia in manners highly dependent on the contexts of cell lineages. Incidentally, recent results also indicate an important role of Spa-1, a Rap GTPase-activating protein, in invasion and metastasis in human cancers. While it is unlikely that Rap can function as a classic oncogene by itself, like Ras, emerging findings unveil crucial involvements of Rap GTPases in the distinct aspects of malignancy, including leukemia genesis and cancer metastasis.
Collapse
Affiliation(s)
- Nagahiro Minato
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| | | |
Collapse
|
43
|
Till KJ, Harris RJ, Linford A, Spiller DG, Zuzel M, Cawley JC. Cell motility in chronic lymphocytic leukemia: defective Rap1 and alphaLbeta2 activation by chemokine. Cancer Res 2008; 68:8429-36. [PMID: 18922916 DOI: 10.1158/0008-5472.can-08-1758] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chemokine-induced activation of alpha4beta1 and alphaLbeta2 integrins (by conformational change and clustering) is required for lymphocyte transendothelial migration (TEM) and entry into lymph nodes. We have previously reported that chemokine-induced TEM is defective in chronic lymphocytic leukemia (CLL) and that this defect is a result of failure of the chemokine to induce polar clustering of alphaLbeta2; engagement of alpha4beta1 and autocrine vascular endothelial growth factor (VEGF) restore clustering and TEM. The aim of the present study was to characterize the nature of this defect in alphaLbeta2 activation and determine how it is corrected. We show here that the alphaLbeta2 of CLL cells is already in variably activated conformations, which are not further altered by chemokine treatment. Importantly, such treatment usually does not cause an increase in the GTP-loading of Rap1, a GTPase central to chemokine-induced activation of integrins. Furthermore, we show that this defect in Rap1 GTP-loading is at the level of the GTPase and is corrected in CLL cells cultured in the absence of exogenous stimuli, suggesting that the defect is the result of in vivo stimulation. Finally, we show that, because Rap1-induced activation of both alpha4beta1 and alphaLbeta2 is defective, autocrine VEGF and chemokine are necessary to activate alpha4beta1 for ligand binding. Subsequently, this binding and both VEGF and chemokine stimulation are all needed for alphaLbeta2 activation for motility and TEM. The present study not only clarifies the nature of the alphaLbeta2 defect of CLL cells but is the first to implicate activation of Rap1 in the pathophysiology of CLL.
Collapse
Affiliation(s)
- Kathleen J Till
- Division of Hematology, School of Cancer Studies, School of Biological Sciences, University of Liverpool, Liverpool, United Kingdom.
| | | | | | | | | | | |
Collapse
|
44
|
Essential role of Rap signal in pre-TCR-mediated beta-selection checkpoint in alphabeta T-cell development. Blood 2008; 112:4565-73. [PMID: 18802005 DOI: 10.1182/blood-2008-06-164517] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We demonstrate that lck promoter-driven conditional expression of transgenic SPA-1, a Rap GTPase-activation protein, causes a profound defect of alphabeta T-cell development at the CD4/CD8 double-negative (DN) stage due to enhanced cell death without affecting gammadelta T-cell development. The effect was specific to the DN stage, because CD4 promoter-driven SPA-1 expression hardly affected T-cell development. Rap1A17, a dominant-negative Rap mutant, interfered with the generation of double-positive (DP) cells from Rag2(-/-) fetal thymocytes in vitro in the presence of anti-CD3epsilon antibody and Notch ligand. Rap GTPases were activated in a DN cell line by the expression of self-oligomerizing CD3 (CD8:CD3epsilon chimera), which substituted autonomous pre-T-cell receptor (TCR) signal, inducing CD69 expression and CD25 down-regulation. Reciprocally, expression of C3G, a Rap guanine nucleotide exchange factor, in both normal and Rag2(-/-) DN cells markedly enhanced Notch-dependent generation and expansion of DP cells without additional anti-CD3epsilon antibody, thus bypassing pre-TCR. Defective alphabeta T-cell development in the conditional SPA-1-transgenic mice was restored completely by introducing a p53(-/-) mutation. These results suggest that endogenous Rap GTPases downstream of pre-TCR play an essential role in rescuing pre-T cells from the p53-mediated checkpoint response, thus allowing Notch-mediated expansion and differentiation.
Collapse
|
45
|
Chu H, Awasthi A, White GC, Chrzanowska-Wodnicka M, Malarkannan S. Rap1b regulates B cell development, homing, and T cell-dependent humoral immunity. THE JOURNAL OF IMMUNOLOGY 2008; 181:3373-83. [PMID: 18714009 DOI: 10.4049/jimmunol.181.5.3373] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Rap1 is a small GTPase that belongs to Ras superfamily. This ubiquitously expressed GTPase is a key regulator of integrin functions. Rap1 exists in two isoforms: Rap1a and Rap1b. Although Rap1 has been extensively studied, its isoform-specific functions in B cells have not been elucidated. In this study, using gene knockout mice, we show that Rap1b is the dominant isoform in B cells. Lack of Rap1b significantly reduced the absolute number of B220(+)IgM(-) pro/pre-B cells and B220(+)IgM(+) immature B cells in bone marrow. In vitro culture of bone marrow-derived Rap1b(-/-) pro/pre-B cells with IL-7 showed similar proliferation levels but reduced adhesion to stromal cell line compared with wild type. Rap1b(-/-) mice displayed reduced splenic marginal zone (MZ) B cells, and increased newly forming B cells, whereas the number of follicular B cells was normal. Functionally, Rap1b(-/-) mice showed reduced T-dependent but normal T-independent humoral responses. B cells from Rap1b(-/-) mice showed reduced migration to SDF-1, CXCL13 and in vivo homing to lymph nodes. MZ B cells showed reduced sphingosine-1-phosphate-induced migration and adhesion to ICAM-1. However, absence of Rap1b did not affect splenic B cell proliferation, BCR-mediated activation of Erk1/2, p38 MAPKs, and AKT. Thus, Rap1b is crucial for early B cell development, MZ B cell homeostasis and T-dependent humoral immunity.
Collapse
Affiliation(s)
- Haiyan Chu
- Laboratory of Molecular Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | |
Collapse
|
46
|
Abstract
B-cell development is orchestrated by complex signaling networks. Rap1 is a member of the Ras superfamily of small GTP-binding proteins and has 2 isoforms, Rap1a and Rap1b. Although Rap1 has been suggested to have an important role in a variety of cellular processes, no direct evidence demonstrates a role for Rap1 in B-cell biology. In this study, we found that Rap1b was the dominant isoform of Rap1 in B cells. We discovered that Rap1b deficiency in mice barely affected early development of B cells but markedly reduced marginal zone (MZ) B cells in the spleen and mature B cells in peripheral and mucosal lymph nodes. Rap1b-deficient B cells displayed normal survival and proliferation in vivo and in vitro. However, Rap1b-deficient B cells had impaired adhesion and reduced chemotaxis in vitro, and lessened homing to lymph nodes in vivo. Furthermore, we found that Rap1b deficiency had no marked effect on LPS-, BCR-, or SDF-1-induced activation of mitogen-activated protein kinases and AKT but clearly impaired SDF-1-mediated activation of Pyk-2, a key regulator of SDF-1-mediated B-cell migration. Thus, we have discovered a critical and distinct role of Rap1b in mature B-cell trafficking and development of MZ B cells.
Collapse
|
47
|
Zouali M. Receptor editing and receptor revision in rheumatic autoimmune diseases. Trends Immunol 2008; 29:103-9. [DOI: 10.1016/j.it.2007.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 12/17/2007] [Accepted: 12/18/2007] [Indexed: 11/16/2022]
|
48
|
Abstract
SPA-1 (signal-induced proliferation associated gene-1) functions as a suppressor of myeloid leukemia by negatively regulating Rap1 signaling in hematopoietic progenitor cells (HPCs). Herein, we showed that transplantation of HPCs expressing farnesylated C3G (C3G-F), a Rap1 guanine nucleotide exchange factor, resulted in a marked expansion of thymocytes bearing unique phenotypes (CD4/CD8 double positive [DP] CD3− TCRβ−) in irradiated recipients. SPA-1−/− HPCs expressing C3G-F caused a more extensive expansion of DP thymocytes, resulting in lethal T-cell acute lymphoblastic leukemia (T-ALL) with massive invasion of clonal T-cell blasts into vital organs. The C3G-F+ blastic thymocytes exhibited constitutive Rap1 activation and markedly enhanced expression of Notch1, 3 as well as the target genes, Hes1, pTα, and c-Myc. All the T-ALL cell lines from C3G-F+ SPA-1−/− HPC recipients expressed high levels of Notch1 with characteristic mutations resulting in the C-terminal truncation. This proliferation was inhibited completely in the presence of a γ-secretase inhibitor. Transplantation of Rag2−/− SPA-1−/− HPCs expressing C3G-F also resulted in a marked expansion and transformation of DP thymocytes. The results suggested that deregulated constitutive Rap1 activation caused abnormal expansion of DP thymocytes, bypassing the pre-T-cell receptor and eventually leading to Notch1 mutations and Notch-dependent T-ALL.
Collapse
|
49
|
Shair KHY, Bendt KM, Edwards RH, Bedford EC, Nielsen JN, Raab-Traub N. EBV latent membrane protein 1 activates Akt, NFkappaB, and Stat3 in B cell lymphomas. PLoS Pathog 2008; 3:e166. [PMID: 17997602 PMCID: PMC2065877 DOI: 10.1371/journal.ppat.0030166] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Accepted: 09/24/2007] [Indexed: 11/18/2022] Open
Abstract
Latent membrane protein 1 (LMP1) is the major oncoprotein of Epstein-Barr virus (EBV). In transgenic mice, LMP1 promotes increased lymphoma development by 12 mo of age. This study reveals that lymphoma develops in B-1a lymphocytes, a population that is associated with transformation in older mice. The lymphoma cells have deregulated cell cycle markers, and inhibitors of Akt, NFκB, and Stat3 block the enhanced viability of LMP1 transgenic lymphocytes and lymphoma cells in vitro. Lymphoma cells are independent of IL4/Stat6 signaling for survival and proliferation, but have constitutively activated Stat3 signaling. These same targets are also deregulated in wild-type B-1a lymphomas that arise spontaneously through age predisposition. These results suggest that Akt, NFκB, and Stat3 pathways may serve as effective targets in the treatment of EBV-associated B cell lymphomas. Epstein-Barr virus (EBV) is linked to the development of multiple cancers, including post-transplant lymphoma, Hodgkin disease, and nasopharyngeal carcinoma. Latent membrane protein 1 (LMP1) is expressed in many EBV-associated cancers and is responsible for most of the altered cellular growth properties that are induced by EBV infection. This study reveals that LMP1 induces lymphomas in B-1a lymphocytes, a cell type that is susceptible to transformation in aged mice. The lymphomas require Akt, NFκB, and Stat3 signaling for enhanced growth and survival. The activation of the Stat3, Akt, and NFκB signaling pathways likely underlies the ability of LMP1 to promote malignant transformation.
Collapse
Affiliation(s)
- Kathy H. Y Shair
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Katherine M Bendt
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Rachel H Edwards
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Elisabeth C Bedford
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Judith N Nielsen
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Nancy Raab-Traub
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology-Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
50
|
Lafuente EM, Iwamoto Y, Carman CV, van Puijenbroek AAFL, Constantine E, Li L, Boussiotis VA. Active Rap1, a small GTPase that induces malignant transformation of hematopoietic progenitors, localizes in the nucleus and regulates protein expression. Leuk Lymphoma 2007; 48:987-1002. [PMID: 17487743 DOI: 10.1080/10428190701242341] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Rap1, a member of the Ras superfamily, regulates cytoskeletal changes in lower eukaryots and integrin-mediated adhesion in hematopoietic cells. Sustained activation of Rap1 in mouse hematopoietic stem cells causes expansion of hematopoietic progenitors, followed by a myeloproliferative disorder mimicking chronic myeloid leukemia. Moreover, these mice develop a B-cell lymphoproliferative disorder resembling chronic lymphocytic leukemia. Here, we used HEK 293 cells as a tool to examine the molecular effects of Rap1. We observed that a constitutively active Rap1 mutant localized predominantly in the nucleus. Nuclear localization of endogenous Rap1-GTP was also detected upon physiologic activation. A potential consequence of nuclear localization of Rap1-GTP is the regulation of gene expression. We used a high throughput proteomic approach to identify gene products potentially modulated by Rap1-GTP. Out of 1000 proteins examined, 64 proteins were upregulated and 66 proteins were downregulated. The differentially expressed gene products belong to cytoskeletal regulator proteins, signaling molecules, transcription factors, viability regulators, and protein transporters. This analysis provides the first fingerprint of gene product expression regulated by Rap1 and may contribute to our understanding of malignant transformation mechanisms regulated by this small GTPase.
Collapse
Affiliation(s)
- Esther M Lafuente
- Transplantation Biology Research Center, Massachusetts General Hospital, Boston, MA 02129, USA
| | | | | | | | | | | | | |
Collapse
|