1
|
Ruiz-Torres DA, Bryan ME, Hirayama S, Merkin RD, Luciani E, Roberts TJ, Patel M, Park JC, Wirth LJ, Sadow PM, Sade-Feldman M, Stott SL, Faden DL. Spatial characterization of tertiary lymphoid structures as predictive biomarkers for immune checkpoint blockade in head and neck squamous cell carcinoma. Oncoimmunology 2025; 14:2466308. [PMID: 39963988 PMCID: PMC11845054 DOI: 10.1080/2162402x.2025.2466308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/27/2025] [Accepted: 02/08/2025] [Indexed: 02/23/2025] Open
Abstract
Immune checkpoint blockade (ICB) is the standard of care for recurrent/metastatic head and neck squamous cell carcinoma (HNSCC), yet efficacy remains low. The combined positive score (CPS) for PD-L1 is the only biomarker approved to predict response to ICB and has limited performance. Tertiary Lymphoid Structures (TLS) have shown promising potential for predicting response to ICB. However, their exact composition, size, and spatial biology in HNSCC remain understudied. To elucidate the impact of TLS spatial biology in response to ICB, we utilized pre-ICB tumor tissue sections from 9 responders (complete response, partial response, or stable disease) and 11 non-responders (progressive disease) classified via RECISTv1.1. A custom multi-immunofluorescence (mIF) staining assay was applied to characterize tumor cells (pan-cytokeratin), T cells (CD4, CD8), B cells (CD19, CD20), myeloid cells (CD16, CD56, CD163), dendritic cells (LAMP3), fibroblasts (α Smooth Muscle Actin), proliferative status (Ki67) and immunoregulatory molecules (PD1). A machine learning model was employed to measure the effect of spatial metrics on achieving a response to ICB. A higher density of B cells (CD20+) was found in responders compared to non-responders to ICB (p = 0.022). The presence of TLS within 100 µm of the tumor was associated with improved overall (p = 0.04) and progression-free survival (p = 0.03). A multivariate machine learning model identified TLS density as a leading predictor of response to ICB with 80% accuracy. Immune cell densities and TLS spatial location play a critical role in the response to ICB in HNSCC and may potentially outperform CPS as a predictor of response.
Collapse
Affiliation(s)
- Daniel A. Ruiz-Torres
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, USA
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michael E. Bryan
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Shun Hirayama
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, USA
| | - Ross D. Merkin
- Department of Medicine, Harvard Medical School, Boston MA, USA
- Department of Medicine, Center for Head and Neck Cancers, Massachusetts General Hospital, Boston MA, USA
| | - Evelyn Luciani
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Thomas J. Roberts
- Department of Medicine, Harvard Medical School, Boston MA, USA
- Department of Medicine, Center for Head and Neck Cancers, Massachusetts General Hospital, Boston MA, USA
| | - Manisha Patel
- Department of Medicine, Harvard Medical School, Boston MA, USA
- Department of Medicine, Center for Head and Neck Cancers, Massachusetts General Hospital, Boston MA, USA
| | - Jong C. Park
- Department of Medicine, Harvard Medical School, Boston MA, USA
- Department of Medicine, Center for Head and Neck Cancers, Massachusetts General Hospital, Boston MA, USA
| | - Lori J. Wirth
- Department of Medicine, Harvard Medical School, Boston MA, USA
- Department of Medicine, Center for Head and Neck Cancers, Massachusetts General Hospital, Boston MA, USA
| | - Peter M. Sadow
- Department of Medicine, Harvard Medical School, Boston MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Moshe Sade-Feldman
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Shannon L. Stott
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Engineering in Medicine and BioMEMS Resource Center, Surgical Services, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Daniel L. Faden
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Center for Head and Neck Cancers, Massachusetts General Hospital, Boston MA, USA
| |
Collapse
|
2
|
Cui M, Zhou M, Zhou L, Zhou G, Liu Y. Tertiary lymphoid structures achieve 'cold' to 'hot' transition by remodeling the cold tumor microenvironment. Biochim Biophys Acta Rev Cancer 2025; 1880:189312. [PMID: 40189114 DOI: 10.1016/j.bbcan.2025.189312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 03/30/2025] [Accepted: 03/31/2025] [Indexed: 04/10/2025]
Abstract
Immune checkpoint blockade (ICB) therapies have demonstrated significant clinical efficacy in immune-infiltrated tumors such as melanoma and non-small cell lung cancer. However, "cold tumors"-including ovarian cancer, pancreatic cancer, and gliomas-exhibit insufficient immune infiltration, leading to poor therapeutic responses to ICBs and limited improvement in patient prognosis. Recent studies have shown that tumor-associated tertiary lymphoid structures (TLSs) can induce strong local immune responses within the tumor microenvironment (TME), serving as important biological markers for predicting ICB therapy efficacy. Notably, preclinical and clinical studies on cold tumors have confirmed that TLSs can potently enhance ICB efficacy through TME remodeling-a breakthrough that has attracted considerable attention. Here, we systematically examine the immunological profile of cold tumors and decipher the mechanistic basis for their impaired immune cell infiltration. We further delineate the distinctive features of tumor-associated TLSs in generating antitumor immunity and establish criteria for their identification. Significantly, we emphasize the unique capability of TLSs to reprogram the immunosuppressive tumor microenvironment characteristic of cold tumors. Based on these insights, we evaluate clinical evidence supporting TLS-mediated enhancement of ICB efficacy and discuss emerging strategies for exogenous TLSs induction.
Collapse
Affiliation(s)
- Mengke Cui
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road Changsha, 410008, PR China; National Laboratory of Medical Genetics, Central South University, Changsha 410078, PR China
| | - Mengfan Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road Changsha, 410008, PR China; National Laboratory of Medical Genetics, Central South University, Changsha 410078, PR China
| | - Lu Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road Changsha, 410008, PR China; National Laboratory of Medical Genetics, Central South University, Changsha 410078, PR China
| | - Gan Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road Changsha, 410008, PR China; National Laboratory of Medical Genetics, Central South University, Changsha 410078, PR China; National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, 110 Xiangya Road, Changsha, Hunan 410008, PR China.
| | - Yingzi Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road Changsha, 410008, PR China; National Laboratory of Medical Genetics, Central South University, Changsha 410078, PR China.
| |
Collapse
|
3
|
Amisaki M, Zebboudj A, Yano H, Zhang SL, Payne G, Chandra AK, Yu R, Guasp P, Sethna ZM, Ohmoto A, Rojas LA, Cheng C, Waters T, Solovyov A, Martis S, Doane AS, Reiche C, Bruno EM, Milighetti M, Soares K, Odgerel Z, Moral JA, Zhao JN, Gönen M, Gardner R, Tumanov AV, Khan AG, Vergnolle O, Nyakatura EK, Lorenz IC, Baca M, Patterson E, Greenbaum B, Artis D, Merghoub T, Balachandran VP. IL-33-activated ILC2s induce tertiary lymphoid structures in pancreatic cancer. Nature 2025; 638:1076-1084. [PMID: 39814891 PMCID: PMC11864983 DOI: 10.1038/s41586-024-08426-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/19/2024] [Indexed: 01/18/2025]
Abstract
Tertiary lymphoid structures (TLSs) are de novo ectopic lymphoid aggregates that regulate immunity in chronically inflamed tissues, including tumours. Although TLSs form due to inflammation-triggered activation of the lymphotoxin (LT)-LTβ receptor (LTβR) pathway1, the inflammatory signals and cells that induce TLSs remain incompletely identified. Here we show that interleukin-33 (IL-33), the alarmin released by inflamed tissues2, induces TLSs. In mice, Il33 deficiency severely attenuates inflammation- and LTβR-activation-induced TLSs in models of colitis and pancreatic ductal adenocarcinoma (PDAC). In PDAC, the alarmin domain of IL-33 activates group 2 innate lymphoid cells (ILC2s) expressing LT that engage putative LTβR+ myeloid organizer cells to initiate tertiary lymphoneogenesis. Notably, lymphoneogenic ILC2s migrate to PDACs from the gut, can be mobilized to PDACs in different tissues and are modulated by gut microbiota. Furthermore, we detect putative lymphoneogenic ILC2s and IL-33-expressing cells within TLSs in human PDAC that correlate with improved prognosis. To harness this lymphoneogenic pathway for immunotherapy, we engineer a recombinant human IL-33 protein that expands intratumoural lymphoneogenic ILC2s and TLSs and demonstrates enhanced anti-tumour activity in PDAC mice. In summary, we identify the molecules and cells of a druggable pathway that induces inflammation-triggered TLSs. More broadly, we reveal a lymphoneogenic function for alarmins and ILC2s.
Collapse
Affiliation(s)
- Masataka Amisaki
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Abderezak Zebboudj
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hiroshi Yano
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Allen Discovery Center for Neuroimmune Interactions, New York, NY, USA
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Siqi Linsey Zhang
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - George Payne
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Adrienne Kaya Chandra
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rebecca Yu
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pablo Guasp
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zachary M Sethna
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Akihiro Ohmoto
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Luis A Rojas
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Charlotte Cheng
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Theresa Waters
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexander Solovyov
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Stephen Martis
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ashley S Doane
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Charlotte Reiche
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Emmanuel M Bruno
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Martina Milighetti
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kevin Soares
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zagaa Odgerel
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John Alec Moral
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Julia N Zhao
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mithat Gönen
- Department of Biostatistics & Epidemiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rui Gardner
- Flow Cytometry Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexei V Tumanov
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Abdul G Khan
- Tri-Institutional Therapeutics Discovery Institute, New York, NY, USA
| | - Olivia Vergnolle
- Tri-Institutional Therapeutics Discovery Institute, New York, NY, USA
| | | | - Ivo C Lorenz
- Tri-Institutional Therapeutics Discovery Institute, New York, NY, USA
| | - Manuel Baca
- Tri-Institutional Therapeutics Discovery Institute, New York, NY, USA
| | - Erin Patterson
- The Olayan Center for Cancer Vaccines, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Benjamin Greenbaum
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Biostatistics & Epidemiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- The Olayan Center for Cancer Vaccines, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Physiology, Biophysics & Systems Biology, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, USA
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Allen Discovery Center for Neuroimmune Interactions, New York, NY, USA
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Taha Merghoub
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, Weill Cornell Medicine, New York, NY, USA
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Vinod P Balachandran
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- The Olayan Center for Cancer Vaccines, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
4
|
Mathias K, Machado RS, Cardoso T, Tiscoski ADB, Kursancew ACDS, Prophiro JS, Generoso J, Petronilho F. Innate lymphoid cells in the brain: Focus on ischemic stroke. Microvasc Res 2025; 157:104755. [PMID: 39427988 DOI: 10.1016/j.mvr.2024.104755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
The innate immune system consists of a diverse set of immune cells, including innate lymphoid cells (ILCs), which are grouped into subsets based on their transcription factors and cytokine profiles. Among these are natural killer (NK) cells, group 1 ILCs, group 2 ILCs, group 3 ILCs, and lymphoid tissue inducers (LTi). Unlike T and B cells, ILCs do not express the diverse antigen receptors typically found on those cells. Although ILCs function in various systems, further research is needed to understand their role in the brain and their involvement in neurological diseases such as stroke. This review explores the general immunological aspects of ILCs, with a particular focus on their role in the central nervous system and the pathophysiology of ischemic stroke.
Collapse
Affiliation(s)
- Khiany Mathias
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil; Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Richard Simon Machado
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil; Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Taise Cardoso
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Anita Dal Bó Tiscoski
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Amanda Christine da Silva Kursancew
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Josiane Somariva Prophiro
- Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Jaqueline Generoso
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Fabricia Petronilho
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil.
| |
Collapse
|
5
|
Zhang X, Yao J, Xie M, Liang Y, Lin X, Song J, Bao X, Ma X, Wang Y, Zhang Y, Liu Y, Han W, Pan L, Xue X. Tertiary lymphoid structures as potential biomarkers for cancer prediction and prognosis. Int Immunopharmacol 2024; 140:112790. [PMID: 39088920 DOI: 10.1016/j.intimp.2024.112790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/05/2024] [Accepted: 07/23/2024] [Indexed: 08/03/2024]
Abstract
Tertiary lymphoid structures (TLSs) are ectopic lymphocyte aggregates formed in non-lymphoid tissues, including cancers, and are loci for the generation of in situ anti-tumor immune responses, which play a crucial role in cancer control. The state of TLS presence in cancer and its composition can significantly impact the treatment response and prognosis of patients. TLSs have the potential to serve as predictive and prognostic biomarkers for cancer. However, the mechanisms underlying TLS formation in cancer and how the essential components of TLSs affect cancer are not fully understood. In this review, we summarized TLS formation in cancer, the value of the TLS in different states of existence, and its key constituents for cancer prediction and prognosis. Finally, we discussed the impact of cancer treatment on TLSs.
Collapse
Affiliation(s)
- Xin Zhang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261000, China
| | - Jie Yao
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Mei Xie
- Department of Respiratory and Critical Care, Chinese PLA General Hospital, Beijing, 100835, China
| | - Yiran Liang
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Xuwen Lin
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Jialin Song
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261000, China
| | - Xinyu Bao
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261000, China
| | - Xidong Ma
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Yuanyong Wang
- Department of Thoracic Surgery, Tangdu Hospital of Air Force Military Medical University, Xi'an, Shanxi, 710038, China
| | - Yinguang Zhang
- Department of Thoracic Surgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Yiming Liu
- Department of Respiratory and Critical Care, Chinese PLA General Hospital, Beijing, 100835, China
| | - Wenya Han
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Lei Pan
- Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China.
| | - Xinying Xue
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261000, China; Department of Respiratory and Critical Care, Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China.
| |
Collapse
|
6
|
Zhao L, Jin S, Wang S, Zhang Z, Wang X, Chen Z, Wang X, Huang S, Zhang D, Wu H. Tertiary lymphoid structures in diseases: immune mechanisms and therapeutic advances. Signal Transduct Target Ther 2024; 9:225. [PMID: 39198425 PMCID: PMC11358547 DOI: 10.1038/s41392-024-01947-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/02/2024] [Accepted: 08/01/2024] [Indexed: 09/01/2024] Open
Abstract
Tertiary lymphoid structures (TLSs) are defined as lymphoid aggregates formed in non-hematopoietic organs under pathological conditions. Similar to secondary lymphoid organs (SLOs), the formation of TLSs relies on the interaction between lymphoid tissue inducer (LTi) cells and lymphoid tissue organizer (LTo) cells, involving multiple cytokines. Heterogeneity is a distinguishing feature of TLSs, which may lead to differences in their functions. Growing evidence suggests that TLSs are associated with various diseases, such as cancers, autoimmune diseases, transplant rejection, chronic inflammation, infection, and even ageing. However, the detailed mechanisms behind these clinical associations are not yet fully understood. The mechanisms by which TLS maturation and localization affect immune function are also unclear. Therefore, it is necessary to enhance the understanding of TLS development and function at the cellular and molecular level, which may allow us to utilize them to improve the immune microenvironment. In this review, we delve into the composition, formation mechanism, associations with diseases, and potential therapeutic applications of TLSs. Furthermore, we discuss the therapeutic implications of TLSs, such as their role as markers of therapeutic response and prognosis. Finally, we summarize various methods for detecting and targeting TLSs. Overall, we provide a comprehensive understanding of TLSs and aim to develop more effective therapeutic strategies.
Collapse
Affiliation(s)
- Lianyu Zhao
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Song Jin
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Shengyao Wang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Zhe Zhang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, China
| | - Xuan Wang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Zhanwei Chen
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Xiaohui Wang
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Shengyun Huang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| | - Dongsheng Zhang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| | - Haiwei Wu
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
- School of Stomatology, Shandong First Medical University, Jinan, China.
| |
Collapse
|
7
|
Xu Z, Wang Q, Zhang Y, Li X, Wang M, Zhang Y, Pei Y, Li K, Yang M, Luo L, Wu C, Wang W. Exploiting tertiary lymphoid structures gene signature to evaluate tumor microenvironment infiltration and immunotherapy response in colorectal cancer. Front Oncol 2024; 14:1383096. [PMID: 38846981 PMCID: PMC11153738 DOI: 10.3389/fonc.2024.1383096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/06/2024] [Indexed: 06/09/2024] Open
Abstract
Background Tertiary lymphoid structures (TLS) is a particular component of tumor microenvironment (TME). However, its biological mechanisms in colorectal cancer (CRC) have not yet been understood. We desired to reveal the TLS gene signature in CRC and evaluate its role in prognosis and immunotherapy response. Methods The data was sourced from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases. Based on TLS-related genes (TRGs), the TLS related subclusters were identified through unsupervised clustering. The TME between subclusters were evaluated by CIBERSORT and xCell. Subsequently, developing a risk model and conducting external validation. Integrating risk score and clinical characteristics to create a comprehensive nomogram. Further analyses were conducted to screen TLS-related hub genes and explore the relationship between hub genes, TME, and biological processes, using random forest analysis, enrichment and variation analysis, and competing endogenous RNA (ceRNA) network analysis. Multiple immunofluorescence (mIF) and immunohistochemistry (IHC) were employed to characterize the existence of TLS and the expression of hub gene. Results Two subclusters that enriched or depleted in TLS were identified. The two subclusters had distinct prognoses, clinical characteristics, and tumor immune infiltration. We established a TLS-related prognostic risk model including 14 genes and validated its predictive power in two external datasets. The model's AUC values for 1-, 3-, and 5-year overall survival (OS) were 0.704, 0.737, and 0.746. The low-risk group had a superior survival rate, more abundant infiltration of immune cells, lower tumor immune dysfunction and exclusion (TIDE) score, and exhibited better immunotherapy efficacy. In addition, we selected the top important features within the model: VSIG4, SELL and PRRX1. Enrichment analysis showed that the hub genes significantly affected signaling pathways related to TLS and tumor progression. The ceRNA network: PRRX1-miRNA (hsa-miR-20a-5p, hsa-miR-485-5p) -lncRNA has been discovered. Finally, IHC and mIF results confirmed that the expression level of PRRX1 was markedly elevated in the TLS- CRC group. Conclusion We conducted a study to thoroughly describe TLS gene signature in CRC. The TLS-related risk model was applicable for prognostic prediction and assessment of immunotherapy efficacy. The TLS-hub gene PRRX1, which had the potential to function as an immunomodulatory factor of TLS, could be a therapeutic target for CRC.
Collapse
Affiliation(s)
- Zhu Xu
- Department of Oncology, School of Clinical Medicine, Southwest Medical University, Luzhou, China
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Qin Wang
- Department of Pathology, QuXian People’s Hospital, Dazhou, China
| | - Yiyao Zhang
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaolan Li
- Department of Pathology, QuXian People’s Hospital, Dazhou, China
| | - Mei Wang
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuhong Zhang
- Department of Oncology, School of Clinical Medicine, Southwest Medical University, Luzhou, China
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yaxin Pei
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Kezhen Li
- Department of Oncology, School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Man Yang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Liping Luo
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Chuan Wu
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Weidong Wang
- Department of Oncology, School of Clinical Medicine, Southwest Medical University, Luzhou, China
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
8
|
Ruddle NH. Posttransplant Tertiary Lymphoid Organs. Transplantation 2024; 108:1090-1099. [PMID: 37917987 PMCID: PMC11042531 DOI: 10.1097/tp.0000000000004812] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/20/2023] [Accepted: 07/07/2023] [Indexed: 11/04/2023]
Abstract
Tertiary lymphoid organs (TLOs), also known as tertiary or ectopic lymphoid structures or tissues, are accumulations of lymphoid cells in sites other than canonical lymphoid organs, that arise through lymphoid neogenesis during chronic inflammation in autoimmunity, microbial infection, cancer, aging, and transplantation, the focus of this review. Lymph nodes and TLOs are compared regarding their cellular composition, organization, vascular components, and migratory signal regulation. These characteristics of posttransplant TLOs (PT-TLOs) are described with individual examples in a wide range of organs including heart, kidney, trachea, lung, artery, skin, leg, hand, and face, in many species including human, mouse, rat, and monkey. The requirements for induction and maintenance of TLOs include sustained exposure to autoantigens, alloantigens, tumor antigens, ischemic reperfusion, nephrotoxic agents, and aging. Several staging schemes have been put forth regarding their function in organ rejection. PT-TLOs most often are associated with organ rejection, but in some cases contribute to tolerance. The role of PT-TLOs in cancer is considered in the case of immunosuppression. Furthermore, TLOs can be associated with development of lymphomas. Challenges for PT-TLO research are considered regarding staging, imaging, and opportunities for their therapeutic manipulation to inhibit rejection and encourage tolerance.
Collapse
Affiliation(s)
- Nancy H. Ruddle
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT
| |
Collapse
|
9
|
Sheikhlary S, Lopez DH, Moghimi S, Sun B. Recent Findings on Therapeutic Cancer Vaccines: An Updated Review. Biomolecules 2024; 14:503. [PMID: 38672519 PMCID: PMC11048403 DOI: 10.3390/biom14040503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/06/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Cancer remains one of the global leading causes of death and various vaccines have been developed over the years against it, including cell-based, nucleic acid-based, and viral-based cancer vaccines. Although many vaccines have been effective in in vivo and clinical studies and some have been FDA-approved, there are major limitations to overcome: (1) developing one universal vaccine for a specific cancer is difficult, as tumors with different antigens are different for different individuals, (2) the tumor antigens may be similar to the body's own antigens, and (3) there is the possibility of cancer recurrence. Therefore, developing personalized cancer vaccines with the ability to distinguish between the tumor and the body's antigens is indispensable. This paper provides a comprehensive review of different types of cancer vaccines and highlights important factors necessary for developing efficient cancer vaccines. Moreover, the application of other technologies in cancer therapy is discussed. Finally, several insights and conclusions are presented, such as the possibility of using cold plasma and cancer stem cells in developing future cancer vaccines, to tackle the major limitations in the cancer vaccine developmental process.
Collapse
Affiliation(s)
- Sara Sheikhlary
- Department of Biomedical Engineering, College of Engineering, The University of Arizona, Tucson, AZ 85721, USA
| | - David Humberto Lopez
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (D.H.L.); (S.M.)
| | - Sophia Moghimi
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (D.H.L.); (S.M.)
| | - Bo Sun
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (D.H.L.); (S.M.)
| |
Collapse
|
10
|
Hao J, Liu C, Gu Z, Yang X, Lan X, Guo X. Dysregulation of Wnt/β-catenin signaling contributes to intestinal inflammation through regulation of group 3 innate lymphoid cells. Nat Commun 2024; 15:2820. [PMID: 38561332 PMCID: PMC10985070 DOI: 10.1038/s41467-024-45616-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 01/30/2024] [Indexed: 04/04/2024] Open
Abstract
RORγt+ group 3 innate lymphoid cells (ILC3s) are essential for intestinal homeostasis. Dysregulation of ILC3s has been found in the gut of patients with inflammatory bowel disease and colorectal cancer, yet the specific mechanisms still require more investigation. Here we observe increased β-catenin in intestinal ILC3s from inflammatory bowel disease and colon cancer patients compared with healthy donors. In contrast to promoting RORγt expression in T cells, activation of Wnt/β-catenin signaling in ILC3s suppresses RORγt expression, inhibits its proliferation and function, and leads to a deficiency of ILC3s and subsequent intestinal inflammation in mice. Activated β-catenin and its interacting transcription factor, TCF-1, cannot directly suppress RORγt expression, but rather alters global chromatin accessibility and inhibits JunB expression, which is essential for RORγt expression in ILC3s. Together, our findings suggest that dysregulated Wnt/β-catenin signaling impairs intestinal ILC3s through TCF-1/JunB/RORγt regulation, further disrupting intestinal homeostasis, and promoting inflammation and cancer.
Collapse
Affiliation(s)
- Jiacheng Hao
- Institute for Immunology, Tsinghua University, 100084, Beijing, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, 100084, Beijing, China
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
- Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, 100084, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Chang Liu
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Zhijie Gu
- Institute for Immunology, Tsinghua University, 100084, Beijing, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, 100084, Beijing, China
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
- Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, 100084, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Xuanming Yang
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, 200240, Shanghai, China
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Xun Lan
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, 100084, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Xiaohuan Guo
- Institute for Immunology, Tsinghua University, 100084, Beijing, China.
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, 100084, Beijing, China.
- Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
11
|
Zhang T, Liu W, Yang YG. B cell development and antibody responses in human immune system mice: current status and future perspective. SCIENCE CHINA. LIFE SCIENCES 2024; 67:645-652. [PMID: 38270770 DOI: 10.1007/s11427-023-2462-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/28/2023] [Indexed: 01/26/2024]
Abstract
Humanized immune system (HIS) mice have been developed and used as a small surrogate model to study human immune function under normal or disease conditions. Although variations are found between models, most HIS mice show robust human T cell responses. However, there has been unsuccessful in constructing HIS mice that produce high-affinity human antibodies, primarily due to defects in terminal B cell differentiation, antibody affinity maturation, and development of primary follicles and germinal centers. In this review, we elaborate on the current knowledge about and previous attempts to improve human B cell development in HIS mice, and propose a potential strategy for constructing HIS mice with improved humoral immunity by transplantation of human follicular dendritic cells (FDCs) to facilitate the development of secondary follicles.
Collapse
Affiliation(s)
- Tao Zhang
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, 130061, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun, 130061, China
| | - Wentao Liu
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, 130061, China.
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun, 130061, China.
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, 130061, China.
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun, 130061, China.
- International Center of Future Science, Jilin University, Changchun, 130061, China.
| |
Collapse
|
12
|
Leone P, Malerba E, Susca N, Favoino E, Perosa F, Brunori G, Prete M, Racanelli V. Endothelial cells in tumor microenvironment: insights and perspectives. Front Immunol 2024; 15:1367875. [PMID: 38426109 PMCID: PMC10902062 DOI: 10.3389/fimmu.2024.1367875] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
The tumor microenvironment is a highly complex and dynamic mixture of cell types, including tumor, immune and endothelial cells (ECs), soluble factors (cytokines, chemokines, and growth factors), blood vessels and extracellular matrix. Within this complex network, ECs are not only relevant for controlling blood fluidity and permeability, and orchestrating tumor angiogenesis but also for regulating the antitumor immune response. Lining the luminal side of vessels, ECs check the passage of molecules into the tumor compartment, regulate cellular transmigration, and interact with both circulating pathogens and innate and adaptive immune cells. Thus, they represent a first-line defense system that participates in immune responses. Tumor-associated ECs are involved in T cell priming, activation, and proliferation by acting as semi-professional antigen presenting cells. Thus, targeting ECs may assist in improving antitumor immune cell functions. Moreover, tumor-associated ECs contribute to the development at the tumor site of tertiary lymphoid structures, which have recently been associated with enhanced response to immune checkpoint inhibitors (ICI). When compared to normal ECs, tumor-associated ECs are abnormal in terms of phenotype, genetic expression profile, and functions. They are characterized by high proliferative potential and the ability to activate immunosuppressive mechanisms that support tumor progression and metastatic dissemination. A complete phenotypic and functional characterization of tumor-associated ECs could be helpful to clarify their complex role within the tumor microenvironment and to identify EC specific drug targets to improve cancer therapy. The emerging therapeutic strategies based on the combination of anti-angiogenic treatments with immunotherapy strategies, including ICI, CAR T cells and bispecific antibodies aim to impact both ECs and immune cells to block angiogenesis and at the same time to increase recruitment and activation of effector cells within the tumor.
Collapse
Affiliation(s)
- Patrizia Leone
- Internal Medicine Unit, Department of Interdisciplinary Medicine, Aldo Moro University of Bari, Bari, Italy
| | - Eleonora Malerba
- Department of Precision and Regenerative Medicine and Ionian Area-(DiMePRe-J), Aldo Moro University of Bari, Bari, Italy
| | - Nicola Susca
- Internal Medicine Unit, Department of Interdisciplinary Medicine, Aldo Moro University of Bari, Bari, Italy
| | - Elvira Favoino
- Rheumatic and Systemic Autoimmune Diseases Unit, Department of Interdisciplinary Medicine, Aldo Moro University of Bari, Bari, Italy
| | - Federico Perosa
- Rheumatic and Systemic Autoimmune Diseases Unit, Department of Interdisciplinary Medicine, Aldo Moro University of Bari, Bari, Italy
| | - Giuliano Brunori
- Centre for Medical Sciences, University of Trento and Nephrology and Dialysis Division, Santa Chiara Hospital, Provincial Health Care Agency (APSS), Trento, Italy
| | - Marcella Prete
- Internal Medicine Unit, Department of Interdisciplinary Medicine, Aldo Moro University of Bari, Bari, Italy
| | - Vito Racanelli
- Centre for Medical Sciences, University of Trento and Internal Medicine Division, Santa Chiara Hospital, Provincial Health Care Agency (APSS), Trento, Italy
| |
Collapse
|
13
|
Ribatti D. Tertiary lymphoid structures, a historical reappraisal. Tissue Cell 2024; 86:102288. [PMID: 38101028 DOI: 10.1016/j.tice.2023.102288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Tertiary lymphoid structures (TLSs) are accumulations of lymphoid cells within non-lymphoid organs that share the cellular compartments, spatial organization, vasculature, chemokines, and function with secondary lymphoid organs, especially lymph nodes. TLSs are organized into a separate T cell and B cell compartments which contain germinal centers with follicular dendritic cells. In most cases, TLSs contain Peripheral Node addressin (PNAD) expressing high endothelial venules (HEVs). TLSs have been described in various mouse models of inflammation and are associated with a wide range of autoimmune diseases. Other than these, TLSs have been described in chronic allograft rejection and cancer.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Translational Biomedicine and Neuroscience, University of Bari Medical School, Bari, Italy.
| |
Collapse
|
14
|
Zhang K, Xie X, Zheng SL, Deng YR, Liao D, Yan HC, Kang X, Jiang HP, Guo SQ. Tertiary lymphoid structures in gynecological cancers: prognostic role, methods for evaluating, antitumor immunity, and induction for therapy. Front Oncol 2023; 13:1276907. [PMID: 38023214 PMCID: PMC10667730 DOI: 10.3389/fonc.2023.1276907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Tertiary lymphoid structures (TLSs), referred to as tertiary lymphoid organs and lymphoid tissue neogenesis, are aggregates of immune cells that occur in nonlymphoid tissues. In recent years, it has been found that TLSs within the tumor microenvironment have been associated with local adaptive immune immunity against cancer and favorable prognosis in several human solid tumors, including gynecological cancers. The issue of the prognosis of gynecological cancers, including endometrial, cervical, and ovarian cancer, is an enormous challenge that many clinical doctors and researchers are now facing. Concerning the predictive prognostic role of TLSs, effective evaluation, and quantification of TLSs in human tissues may be used to assist gynecologists in assessing the clinical outcome of gynecological cancer patients. This review summarizes the current knowledge of TLSs in gynecological cancers, mainly focusing on the potential mechanism of TLS neogenesis, methods for evaluating TLSs, their prognostic value, and their role in antitumor immune immunity. This review also discusses the new therapeutic methods currently being explored in gynecological cancers to induce the formation of TLSs.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Gynecology, Pingxiang People's Hospital, Pingxiang, Jiangxi, China
| | - Xiao Xie
- Department of Urology, Pingxiang People's Hospital, Pingxiang, Jiangxi, China
| | - Shuang-Lin Zheng
- Department of Gynecology, The Third Hospital of Mianyang, Mianyang, Sichuan, China
| | - Yuan-Run Deng
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The Third Clinical College, Southern Medical University, Guangzhou, Guangdong, China
| | - Dan Liao
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The Third Clinical College, Southern Medical University, Guangzhou, Guangdong, China
| | - Hai-Chen Yan
- Department of Urology, Pingxiang People's Hospital, Pingxiang, Jiangxi, China
| | - Xi Kang
- Department of Urology, Pingxiang People's Hospital, Pingxiang, Jiangxi, China
| | - Hui-Ping Jiang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The Third Clinical College, Southern Medical University, Guangzhou, Guangdong, China
| | - Sui-Qun Guo
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The Third Clinical College, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
15
|
Wang M, Rajkumar S, Lai Y, Liu X, He J, Ishikawa T, Nallapothula D, Singh RR. Tertiary lymphoid structures as local perpetuators of organ-specific immune injury: implication for lupus nephritis. Front Immunol 2023; 14:1204777. [PMID: 38022566 PMCID: PMC10644380 DOI: 10.3389/fimmu.2023.1204777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
In response to inflammatory stimuli in conditions such as autoimmune disorders, infections and cancers, immune cells organize in nonlymphoid tissues, which resemble secondary lymphoid organs. Such immune cell clusters are called tertiary lymphoid structures (TLS). Here, we describe the potential role of TLS in the pathogenesis of autoimmune disease, focusing on lupus nephritis, a condition that incurs major morbidity and mortality. In the kidneys of patients and animals with lupus nephritis, the presence of immune cell aggregates with similar cell composition, structure, and gene signature as lymph nodes and of lymphoid tissue-inducer and -organizer cells, along with evidence of communication between stromal and immune cells are indicative of the formation of TLS. TLS formation in kidneys affected by lupus may be instigated by local increases in lymphorganogenic chemokines such as CXCL13, and in molecules associated with leukocyte migration and vascularization. Importantly, the presence of TLS in kidneys is associated with severe tubulointerstitial inflammation, higher disease activity and chronicity indices, and poor response to treatment in patients with lupus nephritis. TLS may contribute to the pathogenesis of lupus nephritis by increasing local IFN-I production, facilitating the recruitment and supporting survival of autoreactive B cells, maintaining local production of systemic autoantibodies such as anti-dsDNA and anti-Sm/RNP autoantibodies, and initiating epitope spreading to local autoantigens. Resolution of TLS, along with improvement in lupus, by treating animals with soluble BAFF receptor, docosahexaenoic acid, complement inhibitor C4BP(β-), S1P1 receptor modulator Cenerimod, dexamethasone, and anti-CXCL13 further emphasizes a role of TLS in the pathogenesis of lupus. However, the mechanisms underlying TLS formation and their roles in the pathogenesis of lupus nephritis are not fully comprehended. Furthermore, the lack of non-invasive methods to visualize/quantify TLS in kidneys is also a major hurdle; however, recent success in visualizing TLS in lupus-prone mice by photon emission computed tomography provides hope for early detection and manipulation of TLS.
Collapse
Affiliation(s)
- Meiying Wang
- Department of Rheumatology and Immunology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Peking University Shenzhen Hosiptal, Shenzhen, China
- Autoimmunity and Tolerance Laboratory, Division of Rheumatology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Snehin Rajkumar
- Autoimmunity and Tolerance Laboratory, Division of Rheumatology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Yupeng Lai
- Department of Rheumatology and Immunology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xingjiao Liu
- Department of Rheumatology and Immunology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Jing He
- Department of Rheumatology and Immunology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Department of Nephrology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Tatsuya Ishikawa
- Autoimmunity and Tolerance Laboratory, Division of Rheumatology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Dhiraj Nallapothula
- Autoimmunity and Tolerance Laboratory, Division of Rheumatology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Ram Raj Singh
- Autoimmunity and Tolerance Laboratory, Division of Rheumatology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, United States
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- Molecular Toxicology Interdepartmental Program, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| |
Collapse
|
16
|
Bao J, Betzler AC, Hess J, Brunner C. Exploring the dual role of B cells in solid tumors: implications for head and neck squamous cell carcinoma. Front Immunol 2023; 14:1233085. [PMID: 37868967 PMCID: PMC10586314 DOI: 10.3389/fimmu.2023.1233085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/06/2023] [Indexed: 10/24/2023] Open
Abstract
In the tumor milieu of head and neck squamous cell carcinoma (HNSCC), distinct B cell subpopulations are present, which exert either pro- or anti-tumor activities. Multiple factors, including hypoxia, cytokines, interactions with tumor cells, and other immune infiltrating lymphocytes (TILs), alter the equilibrium between the dual roles of B cells leading to cancerogenesis. Certain B cell subsets in the tumor microenvironment (TME) exhibit immunosuppressive function. These cells are known as regulatory B (Breg) cells. Breg cells suppress immune responses by secreting a series of immunosuppressive cytokines, including IL-10, IL-35, TGF-β, granzyme B, and adenosine or dampen effector TILs by intercellular contacts. Multiple Breg phenotypes have been discovered in human and mouse cancer models. However, when compartmentalized within a tertiary lymphoid structure (TLS), B cells predominantly play anti-tumor effects. A mature TLS contains a CD20+ B cell zone with several important types of B cells, including germinal-center like B cells, antibody-secreting plasma cells, and memory B cells. They kill tumor cells via antibody-dependent cytotoxicity and phagocytosis, and local complement activation effects. TLSs are also privileged sites for local T and B cell coordination and activation. Nonetheless, in some cases, TLSs may serve as a niche for hidden tumor cells and indicate a bad prognosis. Thus, TIL-B cells exhibit bidirectional immune-modulatory activity and are responsive to a variety of immunotherapies. In this review, we discuss the functional distinctions between immunosuppressive Breg cells and immunogenic effector B cells that mature within TLSs with the focus on tumors of HNSCC patients. Additionally, we review contemporary immunotherapies that aim to target TIL-B cells. For the development of innovative therapeutic approaches to complement T-cell-based immunotherapy, a full understanding of either effector B cells or Breg cells is necessary.
Collapse
Affiliation(s)
- Jiantong Bao
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Ulm, Head & Neck Cancer Center of the Comprehensive Cancer Center Ulm, Ulm, Germany
- School of Medicine, Southeast University, Nanjing, China
| | - Annika C. Betzler
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Ulm, Head & Neck Cancer Center of the Comprehensive Cancer Center Ulm, Ulm, Germany
| | - Jochen Hess
- Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg University Hospital, Heidelberg, Germany
- Molecular Mechanisms of Head and Neck Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Cornelia Brunner
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Ulm, Head & Neck Cancer Center of the Comprehensive Cancer Center Ulm, Ulm, Germany
| |
Collapse
|
17
|
Shen C, Zhang DL, Cheng XL, Zhang WC, Zhao JJ. Urological Tumor: A Narrative Review of Tertiary Lymphatic Structures. Urol Int 2023; 107:841-847. [PMID: 37769625 PMCID: PMC10623398 DOI: 10.1159/000532127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/17/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND Tertiary lymphoid structures (TLSs), as ectopic lymphoid-like tissues, are highly similar to secondary lymphoid organs and are not only involved in chronic inflammation and autoimmune responses but are also closely associated with tumor immunotherapy and prognosis. The complex composition of the urological tumor microenvironment not only varies greatly in response to immunotherapy, but the prognostic value of TLSs in different urological tumors remains controversial. SUMMARY We searched PubMed, Web of Science, and other full-text database systems. TLSs, kidney cancer, uroepithelial cancer, bladder cancer, and prostate cancer as keywords, relevant literature was searched from the time the library was built to 2023. Systematically explore the role and mechanism of TLSs in urological tumors. It includes the characteristics of TLSs, the role and mechanism of TLSs in urological tumors, and the clinical significance of TLSs in urological tumors. KEY MESSAGES The prognostic role of TLSs in different urological tumors was significantly different. It is not only related to its enrichment in the tumor but also highly correlated with the location of the tumor. In addition, autoimmune toxicity may be a potential barrier to its role in the formation of TLSs through induction. Therefore, studying the mechanisms of TLSs in autoimmune diseases may help in the development of antitumor target drugs.
Collapse
Affiliation(s)
- Chong Shen
- College of Clinical Medicine, Hebei University of Engineering, Handan, China
| | - Dong-Li Zhang
- College of Clinical Medicine, Hebei University of Engineering, Handan, China
| | - Xiao-Long Cheng
- Department of Urology II, Affiliated Hospital of Hebei Engineering University, Handan, China
| | - Wei-Chuan Zhang
- Department of Urology II, Affiliated Hospital of Hebei Engineering University, Handan, China
| | - Jian-Jun Zhao
- Department of Urology II, Affiliated Hospital of Hebei Engineering University, Handan, China
| |
Collapse
|
18
|
Shen X, Gao X, Luo Y, Xu Q, Fan Y, Hong S, Huang Z, Liu X, Wang Q, Chen Z, Wang D, Lu L, Wu C, Liang H, Wang L. Cxxc finger protein 1 maintains homeostasis and function of intestinal group 3 innate lymphoid cells with aging. NATURE AGING 2023; 3:965-981. [PMID: 37429951 DOI: 10.1038/s43587-023-00453-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 06/09/2023] [Indexed: 07/12/2023]
Abstract
Aging is accompanied by homeostatic and functional dysregulation of multiple immune cell subsets. Group 3 innate lymphoid cells (ILC3s) constitute a heterogeneous cell population that plays pivotal roles in intestinal immunity. In this study, we found that ILC3s in aged mice exhibited dysregulated homeostasis and function, leading to bacterial and fungal infection susceptibility. Moreover, our data revealed that the enrichment of the H3K4me3 modification in effector genes of aged gut CCR6+ ILC3s was specifically decreased compared to young mice counterparts. Disruption of Cxxc finger protein 1 (Cxxc1) activity, a key subunit of H3K4 methyltransferase, in ILC3s led to similar aging-related phenotypes. An integrated analysis revealed Kruppel-like factor 4 (Klf4) as a potential Cxxc1 target. Klf4 overexpression partially restored the differentiation and functional defects seen in both aged and Cxxc1-deficient intestinal CCR6+ ILC3s. Therefore, these data suggest that targeting intestinal ILC3s may provide strategies to protect against age-related infections.
Collapse
Affiliation(s)
- Xin Shen
- Institute of Immunology and Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Co-Facility Center, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Xianzhi Gao
- Institute of Immunology and Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Hangzhou, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK
| | - Yikai Luo
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Program of Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, USA
| | - Qianying Xu
- Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Fan
- Laboratory Animal Center, Zhejiang University, Hangzhou, China
| | - Shenghui Hong
- Laboratory Animal Center, Zhejiang University, Hangzhou, China
| | | | - Xiaoqian Liu
- Institute of Immunology and Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University School of Medicine, Hangzhou, China
| | - Qianqian Wang
- Laboratory Animal Center, Zhejiang University, Hangzhou, China
| | - Zuojia Chen
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Di Wang
- Zhejiang University School of Medicine, Hangzhou, China
| | - Linrong Lu
- Zhejiang University School of Medicine, Hangzhou, China
| | - Chuan Wu
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Han Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Program of Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, USA.
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Lie Wang
- Institute of Immunology and Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang University School of Medicine, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China.
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Hangzhou, China.
- Laboratory Animal Center, Zhejiang University, Hangzhou, China.
- Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, China.
| |
Collapse
|
19
|
Li H, Ding JY, Zhang MJ, Yu HJ, Sun ZJ. Tertiary lymphoid structures and cytokines interconnections: The implication in cancer immunotherapy. Cancer Lett 2023:216293. [PMID: 37392991 DOI: 10.1016/j.canlet.2023.216293] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
Tertiary lymphoid structures (TLSs) are organized aggregates of lymphocytes and antigen-presenting cells that develop in non-lymphoid tissues during chronic inflammation, resembling the structure and features of secondary lymphoid organs. Numerous studies have shown that TLSs may be an important source of antitumor immunity within solid tumors, facilitating T cell and B cell differentiation and the subsequent production of antitumor antibodies, which are beneficial for cancer prognosis and responses to immunotherapy. The formation of TLS relies on the cytokine signaling network between heterogeneous cell populations, such as stromal cells, lymphocytes and cancer cells. The coordinated action of various cytokines drives the complex process of TLS development. In this review, we will comprehensively describe the mechanisms by which various cytokines regulate TLS formation and function, and the recent advancements and therapeutic potential of exploiting these mechanisms to induce TLS as an emerging immunotherapeutic approach or to enhance existing immunotherapy.
Collapse
Affiliation(s)
- Hao Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, China; Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, China.
| | - Jia-Yi Ding
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, China.
| | - Meng-Jie Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, China.
| | - Hai-Jun Yu
- Department of Radiation and Medical Oncology, Hubei Province Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, 430071, Wuhan, China.
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, China; Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan, 430079, China.
| |
Collapse
|
20
|
Kawka L, Felten R, Schleiss C, Fauny JD, Le Van Quyen P, Dumortier H, Monneaux F, Gottenberg JE. Alteration of innate lymphoid cell homeostasis mainly concerns salivary glands in primary Sjögren's syndrome. RMD Open 2023; 9:rmdopen-2023-003051. [PMID: 37230761 DOI: 10.1136/rmdopen-2023-003051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
OBJECTIVE Innate lymphoid cells (ILCs) are a cell population implicated in the pathogenesis of various chronic inflammatory diseases, but little is known about their role in primary Sjögren's syndrome (pSS). The aim of this study was to assess the frequency of ILC subsets in peripheral blood (PB) and their quantity and location in minor salivary glands (MSGs) in pSS. METHODS The frequency of ILC subsets was analysed in the PB of patients with pSS and healthy controls (HCs) by flow cytometry. The amount and location of ILC subsets in MSGs were studied in patients with pSS and sicca controls by immunofluorescence assay. RESULTS In PB, the frequency of ILC subsets did not differ between patients with pSS and HCs. The circulating frequency of the ILC1 subset was increased in patients with pSS with positive anti-SSA antibodies and that of the ILC3 subset was reduced in patients with pSS with glandular swelling. In MSGs, the ILC3 number was higher in lymphocytic-infiltrated than non-infiltrated tissue in patients with pSS and normal glandular tissues in sicca controls. The ILC3 subset was preferentially located at the periphery of infiltrates and was more abundant in small infiltrates of recently diagnosed pSS. CONCLUSION Altered ILC homeostasis mainly concerns salivary glands in pSS. Most ILCs in MSGs consist of the ILC3 subset, located at the periphery of lymphocytic infiltrates. The ILC3 subset is more abundant in smaller infiltrates and in recently diagnosed pSS. It might play a pathogenic role in the development of T and B lymphocyte infiltrates in the early stages of pSS.
Collapse
Affiliation(s)
- Lou Kawka
- Service de rhumatologie, Centre National de Référence des Maladies Autoimmunes et Systémiques Rares, Hôpitaux universitaires de Strasbourg, Strasbourg, France
- Laboratoire d'Immunologie, Immunopathologie et Chimie Thérapeutique, CNRS UPR3572, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Renaud Felten
- Service de rhumatologie, Centre National de Référence des Maladies Autoimmunes et Systémiques Rares, Hôpitaux universitaires de Strasbourg, Strasbourg, France
- Laboratoire d'Immunologie, Immunopathologie et Chimie Thérapeutique, CNRS UPR3572, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Cédric Schleiss
- Laboratoire d'Immunologie, Immunopathologie et Chimie Thérapeutique, CNRS UPR3572, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Jean-Daniel Fauny
- Laboratoire d'Immunologie, Immunopathologie et Chimie Thérapeutique, CNRS UPR3572, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Pauline Le Van Quyen
- Service d'anatomopathologie, Hôpitaux universitaires de Strasbourg, Strasbourg, France
| | - Hélène Dumortier
- Laboratoire d'Immunologie, Immunopathologie et Chimie Thérapeutique, CNRS UPR3572, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Fanny Monneaux
- Laboratoire d'Immunologie, Immunopathologie et Chimie Thérapeutique, CNRS UPR3572, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Jacques-Eric Gottenberg
- Service de rhumatologie, Centre National de Référence des Maladies Autoimmunes et Systémiques Rares, Hôpitaux universitaires de Strasbourg, Strasbourg, France
- Laboratoire d'Immunologie, Immunopathologie et Chimie Thérapeutique, CNRS UPR3572, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| |
Collapse
|
21
|
Pandit H, Valentin A, Angel M, Deleage C, Bergamaschi C, Bear J, Sowder R, Felber BK, Pavlakis GN. Step-dose IL-7 treatment promotes systemic expansion of T cells and alters immune cell landscape in blood and lymph nodes. iScience 2023; 26:105929. [PMID: 36685042 PMCID: PMC9852696 DOI: 10.1016/j.isci.2023.105929] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/06/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
We employed a dose-escalation regimen in rhesus macaques to deliver glycosylated IL-7, a cytokine critical for development and maintenance of T lymphocytes. IL-7 increased proliferation and survival of T cells and triggered several chemokines and cytokines. Induction of CXCL13 in lymph nodes (LNs) led to a remarkable increase of B cells in the LNs, proliferation of germinal center follicular T helper cells and elevated IL-21 levels suggesting an increase in follicle activity. Transcriptomics analysis showed induction of IRF-7 and Flt3L, which was linked to increased frequency of circulating plasmacytoid dendritic cells (pDCs) on IL-7 treatment. These pDCs expressed higher levels of CCR7, homed to LNs, and were associated with upregulation of type-1 interferon gene signature and increased production of IFN-α2a on TLR stimulation. Superior effects and dose-sparing advantage was observed by the step-dose regimen. Thus, IL-7 treatment leads to systemic effects involving both lymphoid and myeloid compartments.
Collapse
Affiliation(s)
- Hrishikesh Pandit
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Antonio Valentin
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Matthew Angel
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Center for Cancer Research Collaborative Bioinformatics Resource, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Claire Deleage
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Cristina Bergamaschi
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Jenifer Bear
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Raymond Sowder
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Barbara K. Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - George N. Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| |
Collapse
|
22
|
Hernández-Torres DC, Stehle C. Embryonic ILC-poiesis across tissues. Front Immunol 2022; 13:1040624. [PMID: 36605193 PMCID: PMC9807749 DOI: 10.3389/fimmu.2022.1040624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
The family of innate lymphoid cells (ILCs), consisting of Group 1 ILCs (natural killer cells and ILC1), ILC2, and ILC3, are critical effectors of innate immunity, inflammation, and homeostasis post-natally, but also exert essential functions before birth. Recent studies during critical developmental periods in the embryo have hinted at complex waves of tissue colonization, and highlighted the breadth of multipotent and committed ILC progenitors from both classic fetal hematopoietic organs such as the liver, as well as tissue sites such as the lung, thymus, and intestine. Assessment of the mechanisms driving cell fate and function of the ILC family in the embryo will be vital to the understanding ILC biology throughout fetal life and beyond.
Collapse
Affiliation(s)
- Daniela Carolina Hernández-Torres
- Innate Immunity, German Rheumatism Research Center (DRFZ), Leibniz Association, Berlin, Germany,Medical Department I, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany,*Correspondence: Daniela Carolina Hernández-Torres, ; Christina Stehle,
| | - Christina Stehle
- Innate Immunity, German Rheumatism Research Center (DRFZ), Leibniz Association, Berlin, Germany,Medical Department I, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany,*Correspondence: Daniela Carolina Hernández-Torres, ; Christina Stehle,
| |
Collapse
|
23
|
IL-7: Comprehensive review. Cytokine 2022; 160:156049. [DOI: 10.1016/j.cyto.2022.156049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 01/08/2023]
|
24
|
Monaco G, Khavaran A, Gasull AD, Cahueau J, Diebold M, Chhatbar C, Friedrich M, Heiland DH, Sankowski R. Transcriptome Analysis Identifies Accumulation of Natural Killer Cells with Enhanced Lymphotoxin-β Expression during Glioblastoma Progression. Cancers (Basel) 2022; 14:4915. [PMID: 36230839 PMCID: PMC9563981 DOI: 10.3390/cancers14194915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Glioblastomas are the most common primary brain tumors. Despite extensive clinical and molecular insights into these tumors, the prognosis remains dismal. While targeted immunotherapies have shown remarkable success across different non-brain tumor entities, they failed to show efficacy in glioblastomas. These failures prompted the field to reassess the idiosyncrasies of the glioblastoma microenvironment. Several high-dimensional single-cell RNA sequencing studies generated remarkable findings about glioblastoma-associated immune cells. To build on the collective strength of these studies, we integrated several murine and human datasets that profiled glioblastoma-associated immune cells at different time points. We integrated these datasets and utilized state-of-the-art algorithms to investigate them in a hypothesis-free, purely exploratory approach. We identified a robust accumulation of a natural killer cell subset that was characterized by a downregulation of activation-associated genes with a concomitant upregulation of apoptosis genes. In both species, we found a robust upregulation of the Lymphotoxin-β gene, a cytokine from the TNF superfamily and a key factor for the development of adaptive immunity. Further validation analyses uncovered a correlation of lymphotoxin signaling with mesenchymal-like glioblastoma regions in situ and in TCGA and CGGA glioblastoma cohorts. In summary, we identify lymphotoxin signaling as a potential therapeutic target in glioblastoma-associated natural killer cells.
Collapse
Affiliation(s)
- Gianni Monaco
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Single-Cell Omics Platform Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Ashkan Khavaran
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Adrià Dalmau Gasull
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Jonathan Cahueau
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Martin Diebold
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Chintan Chhatbar
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Mirco Friedrich
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Dieter Henrik Heiland
- Department of Neurosurgery, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Microenvironment and Immunology Research Laboratory, Medical Center-University of Freiburg, 79106 Freiburg, Germany
- Comprehensive Cancer Center Freiburg (CCCF), Faculty of Medicine and Medical Center-University of Freiburg, 79106 Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, 79106 Freiburg, Germany
| | - Roman Sankowski
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Single-Cell Omics Platform Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
25
|
Ferreira CM, Micheli C, Barreira-Silva P, Barbosa AM, Resende M, Vilanova M, Silvestre R, Cunha C, Carvalho A, Rodrigues F, Correia-Neves M, Castro AG, Torrado E. IL-10 Overexpression After BCG Vaccination Does Not Impair Control of Mycobacterium tuberculosis Infection. Front Immunol 2022; 13:946181. [PMID: 35935958 PMCID: PMC9353026 DOI: 10.3389/fimmu.2022.946181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Control of tuberculosis depends on the rapid expression of protective CD4+ T-cell responses in the Mycobacterium tuberculosis (Mtb)-infected lungs. We have recently shown that the immunomodulatory cytokine IL-10 acts intrinsically in CD4+ T cells and impairs their parenchymal migratory capacity, thereby preventing control of Mtb infection. Herein, we show that IL-10 overexpression does not impact the protection conferred by the established memory CD4+ T-cell response, as BCG-vaccinated mice overexpressing IL-10 only during Mtb infection display an accelerated, BCG-induced, Ag85b-specific CD4+ T-cell response and control Mtb infection. However, IL-10 inhibits the migration of recently activated ESAT-6-specific CD4+ T cells into the lung parenchyma and impairs the development of ectopic lymphoid structures associated with reduced expression of the chemokine receptors CXCR5 and CCR7. Together, our data support a role for BCG vaccination in preventing the immunosuppressive effects of IL-10 in the fast progression of Mtb infection and may provide valuable insights on the mechanisms contributing to the variable efficacy of BCG vaccination.
Collapse
Affiliation(s)
- Catarina M. Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Consuelo Micheli
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Palmira Barreira-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana Margarida Barbosa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Mariana Resende
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto (ICBAS-UP), Porto, Portugal
| | - Manuel Vilanova
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto (ICBAS-UP), Porto, Portugal
| | - Ricardo Silvestre
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Cristina Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Fernando Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Margarida Correia-Neves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - António Gil Castro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Egídio Torrado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- *Correspondence: Egídio Torrado,
| |
Collapse
|
26
|
Liang Y, Zhang Z, Li J, Luo W, Jiang T, Yang Z. Association between IL-7 and primary Sjögren's syndrome: A single-center study and a systematic scoping review. Int Immunopharmacol 2022; 108:108758. [PMID: 35405597 DOI: 10.1016/j.intimp.2022.108758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND There is a lack of single marker reflecting systemic activity of primary Sjögren's syndrome (pSS). Our aim is to determine the association between interleukin(IL)-7 and pSS by combining a single-center study and a systematic scoping review. METHODS There were 58 patients with pSS and 30 healthy controls (HCs) included in the single-center study. The multiplex immunoassay was used for detecting concentrations of IL-7, IL-4, IL-9, IL-10, IL-17, interferon(IFN) -γ, INF-α and INF-β in sera. pSS patients were evaluated for systemic activity in accordance with the European League against Rheumatism SS Disease Activity Index (ESSDAI). In the systematic scoping review, all studies regarding association of IL-7 with pSS were included. RESULTS pSS patients showed higher serum IL-7 levels (P = 0.028 vs HCs) which were associated with neutrophil, neutrophil-to-lymphocyte ratio(NLR), platelet-to-lymphacyte ratio(PLR), red blood cell distribution width(RDW), erythrocyte sedimentation rate(ESR), immunoglobulin(Ig)G, C-reactive protein (CRP), fever, lymphadenopathy and ESSDAI. Serum IL-7 correlated with Th cell related cytokines. Findings of the systematic scoping review on 15 articles were as follows. Firstly, IL-7 expression in salivary glands (SGs), serum and saliva increased in pSS, while IL-7 receptor(IL-7R) expression increased in SGs but decreased in peripheral blood. Secondly, increased IL-7 was mainly from SGs of pSS patients, but whether IL-7 was mainly produced by SG epithelial cells remained to be validated. Thirdly, IL-7 could exert a key role in pSS immunopathology. Although IL-7 had no direct effect on SGECs, it could activate B and T cells and stimulate secretion of IL-17, IL-4 and IFNs. CONCLUSION Not only are IL-7 and soluble IL-7R potential biomarkers for monitoring pSS activity, but also targeting IL-7/IL-7R pathway may be a promising therapeutic strategy.
Collapse
Affiliation(s)
- Yan Liang
- Department of Laboratory Diagnostics, Changzheng Hospital, Naval Medical University, Shanghai, China.
| | - Zhiyu Zhang
- Department of General Practice, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jie Li
- Department of Laboratory Medicine, Huangyan Hospital of Wenzhou Medical University, Taizhou First People's Hospital, Taizhou, Zhejiang, China
| | - Wanwan Luo
- Department of Laboratory Medicine, Huangyan Hospital of Wenzhou Medical University, Taizhou First People's Hospital, Taizhou, Zhejiang, China
| | - Tingwang Jiang
- Key Laboratory, Department of Science and Technology, The Second People's Hospital of Changshu, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, Jiangsu, China
| | - Zaixing Yang
- Department of Laboratory Medicine, Huangyan Hospital of Wenzhou Medical University, Taizhou First People's Hospital, Taizhou, Zhejiang, China.
| |
Collapse
|
27
|
LTα, TNF, and ILC3 in Peyer's Patch Organogenesis. Cells 2022; 11:cells11121970. [PMID: 35741098 PMCID: PMC9221848 DOI: 10.3390/cells11121970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/11/2022] [Accepted: 06/17/2022] [Indexed: 02/05/2023] Open
Abstract
TNF and LTα are structurally related cytokines of the TNF superfamily. Their genes are located in close proximity to each other and to the Ltb gene within the TNF/LT locus inside MHC. Unlike Ltb, transcription of Tnf and of Lta is tightly controlled, with the Tnf gene being an immediate early gene that is rapidly induced in response to various inflammatory stimuli. Genes of the TNF/LT locus play a crucial role in lymphoid tissue organogenesis, although some aspects of their specific contribution remain controversial. Here, we present new findings and discuss the distinct contribution of TNF produced by ILC3 cells to Peyer’s patch organogenesis.
Collapse
|
28
|
Zhang R, Tang L, Li Q, Tian Y, Zhao B, Zhou B, Yang L. Cholesterol modified DP7 and pantothenic acid induce dendritic cell homing to enhance the efficacy of dendritic cell vaccines. MOLECULAR BIOMEDICINE 2021; 2:37. [PMID: 35006477 PMCID: PMC8643384 DOI: 10.1186/s43556-021-00058-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/26/2021] [Indexed: 02/08/2023] Open
Abstract
Dendritic cell (DC)-based cancer vaccines have so far achieved good therapeutic effects in animal experiments and early clinical trials for certain malignant tumors. However, the overall objective response rate in clinical trials rarely exceeds 15%. The poor efficiency of DC migration to lymph nodes (LNs) (< 5%) is one of the main factors limiting the effectiveness of DC vaccines. Therefore, increasing the efficiency of DC migration is expected to further enhance the efficacy of DC vaccines. Here, we used DP7-C (cholesterol modified VQWRIRVAVIRK), which can promote DC migration, as a medium. Through multiomics sequencing and biological experiments, we found that it is the metabolite pantothenic acid (PA) that improves the migration and effectiveness of DC vaccines. We clarified that both DP7-C and PA regulate DC migration by regulating the chemokine receptor CXCR2 and inhibiting miR-142a-3p to affect the NF-κB signaling pathway. This study will lay the foundation for the subsequent use of DP7-C as a universal substance to promote DC migration, further enhance the antitumor effect of DC vaccines, and solve the bottleneck problem of the low migration efficiency and unsatisfactory clinical response rate of DC vaccines.
Collapse
Affiliation(s)
- Rui Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Lin Tang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Qing Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Yaomei Tian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Binyan Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Bailing Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Li Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
29
|
Hinrichs AC, Blokland SLM, Lopes AP, Wichers CGK, Kruize AA, Pandit A, Radstake TRDJ, van Roon JAG. Transcriptome Analysis of CCR9+ T Helper Cells From Primary Sjögren's Syndrome Patients Identifies CCL5 as a Novel Effector Molecule. Front Immunol 2021; 12:702733. [PMID: 34386009 PMCID: PMC8354142 DOI: 10.3389/fimmu.2021.702733] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/09/2021] [Indexed: 12/27/2022] Open
Abstract
Introduction CCR9+ Tfh-like pathogenic T helper (Th) cells are elevated in patients with primary Sjögren’s syndrome (pSS) and indicated to play a role in pSS immunopathology. Here we delineate the CCR9+ Th cell-specific transcriptome to study the molecular dysregulation of these cells in pSS patients. Methods CCR9+, CXCR5+ and CCR9-CXCR5- Th cells from blood of 7 healthy controls (HC) and 7 pSS patients were FACS sorted and RNA sequencing was performed. Computational analysis was used to identify differentially expressed genes (DEGs), coherent gene expression networks and differentially regulated pathways. Target genes were replicated in additional cohorts. Results 5131 genes were differentially expressed between CCR9+ and CXCR5+ Th cells; 6493 and 4783 between CCR9+ and CCR9-CXCR5- and between CXCR5+ and CCR9-CXCR5-, respectively. In the CCR9+ Th cell subset 2777 DEGs were identified between HC and pSS patients, 1416 and 1077 in the CXCR5+ and CCR9-CXCR5- subsets, respectively. One gene network was selected based on eigengene expression differences between the Th cell subsets and pathways enriched for genes involved in migration and adhesion, cytokine and chemokine production. Selected DEGs of interest (HOPX, SOX4, ITGAE, ITGA1, NCR3, ABCB1, C3AR1, NT5E, CCR5 and CCL5) from this module were validated and found upregulated in blood CCR9+ Th cells, but were similarly expressed in HC and pSS patients. Increased frequencies of CCR9+ Th cells were shown to express higher levels of CCL5 than CXCR5+ and CCR9-CXCR5- Th cells, with the highest expression confined to effector CCR9+ Th cells. Antigenic triggering and stimulation with IL-7 of the Th cell subsets co-cultured with monocytes strongly induced CCL5 secretion in CCR9+ Th cell cocultures. Additionally, effector CCR9+ Th cells rapidly released CCL5 and secreted the highest CCL5 levels upon stimulation. Conclusion Transcriptomic analysis of circulating CCR9+ Th cells reveals CCR9-specific pathways involved in effector T cell function equally expressed in pSS patients and HC. Given the increased numbers of CCR9+ Th cells in the blood and inflamed glands of pSS patients and presence of inflammatory stimuli to activate these cells this suggests that CCR9-specific functions, such as cell recruitment upon CCL5 secretion, could significantly contribute to immunopathology in pSS.
Collapse
Affiliation(s)
- Anneline C Hinrichs
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Sofie L M Blokland
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Ana P Lopes
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Catharina G K Wichers
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Aike A Kruize
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Aridaman Pandit
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Timothy R D J Radstake
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Joel A G van Roon
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
30
|
Gillot L, Baudin L, Rouaud L, Kridelka F, Noël A. The pre-metastatic niche in lymph nodes: formation and characteristics. Cell Mol Life Sci 2021; 78:5987-6002. [PMID: 34241649 PMCID: PMC8316194 DOI: 10.1007/s00018-021-03873-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 05/10/2021] [Accepted: 06/05/2021] [Indexed: 02/06/2023]
Abstract
Lymph node metastasis is a crucial prognostic parameter in many different types of cancers and a gateway for further dissemination to distant organs. Prior to metastatic dissemination, the primary tumor prepares for the remodeling of the draining (sentinel) lymph node by secreting soluble factors or releasing extracellular vesicles that are transported by lymphatic vessels. These important changes occur before the appearance of the first metastatic cell and create what is known as a pre-metastatic niche giving rise to the subsequent survival and growth of metastatic cells. In this review, the lymph node structure, matrix composition and the emerging heterogeneity of cells forming it are described. Current knowledge of the major cellular and molecular processes associated with nodal pre-metastatic niche formation, including lymphangiogenesis, extracellular matrix remodeling, and immunosuppressive cell enlisting in lymph nodes are additionally summarized. Finally, future directions that research could possibly take and the clinical impact are discussed.
Collapse
Affiliation(s)
- Lionel Gillot
- Laboratory of Tumor and Development Biology, GIGA-Cancer, Liege University, Avenue Hippocrate 13, 4000 Liege, Belgium
| | - Louis Baudin
- Laboratory of Tumor and Development Biology, GIGA-Cancer, Liege University, Avenue Hippocrate 13, 4000 Liege, Belgium
| | - Loïc Rouaud
- Laboratory of Tumor and Development Biology, GIGA-Cancer, Liege University, Avenue Hippocrate 13, 4000 Liege, Belgium
| | - Frédéric Kridelka
- Department of Obstetrics and Gynecology, CHU of Liege, 4000 Liege, Belgium
| | - Agnès Noël
- Laboratory of Tumor and Development Biology, GIGA-Cancer, Liege University, Avenue Hippocrate 13, 4000 Liege, Belgium
| |
Collapse
|
31
|
Jimenez MT, Michieletto MF, Henao-Mejia J. A new perspective on mesenchymal-immune interactions in adipose tissue. Trends Immunol 2021; 42:375-388. [PMID: 33849777 DOI: 10.1016/j.it.2021.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/11/2022]
Abstract
The mammalian immune system has crucial homeostatic functions in different adipose depots. However, white adipose tissue (WAT) inflammation is a hallmark of obesity and can contribute to type 2 diabetes mellitus (T2DM). Recently, mesenchymal cells were identified as highly heterogenous populations displaying specialized immune functions in immune cell migration, activation, survival, and overall lymphoid tissue organization in several tissues. How they regulate the inflammatory milieu within different adipose depots remains unknown. Using recently published single-cell RNA-sequencing (scRNAseq) data sets, we analyze cytokine and chemokine expression of mouse WAT mesenchymal cell subpopulations to highlight potential immunological heterogeneity and specialization, hypothesizing on their immunological functions. This new perspective on immune-mesenchymal cell interactions in adipose tissue may promote studies that heighten our understanding of immune cell processes within WAT during health and obesity. We hope that these studies redefine our knowledge of the roles of mesenchymal cells in regulating adipose tissue inflammation and physiology.
Collapse
Affiliation(s)
- Monica T Jimenez
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michaël F Michieletto
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jorge Henao-Mejia
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Protective Immunity, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
32
|
Paijens ST, Vledder A, de Bruyn M, Nijman HW. Tumor-infiltrating lymphocytes in the immunotherapy era. Cell Mol Immunol 2021; 18:842-859. [PMID: 33139907 PMCID: PMC8115290 DOI: 10.1038/s41423-020-00565-9] [Citation(s) in RCA: 544] [Impact Index Per Article: 136.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023] Open
Abstract
The clinical success of cancer immune checkpoint blockade (ICB) has refocused attention on tumor-infiltrating lymphocytes (TILs) across cancer types. The outcome of immune checkpoint inhibitor therapy in cancer patients has been linked to the quality and magnitude of T cell, NK cell, and more recently, B cell responses within the tumor microenvironment. State-of-the-art single-cell analysis of TIL gene expression profiles and clonality has revealed a remarkable degree of cellular heterogeneity and distinct patterns of immune activation and exhaustion. Many of these states are conserved across tumor types, in line with the broad responses observed clinically. Despite this homology, not all cancer types with similar TIL landscapes respond similarly to immunotherapy, highlighting the complexity of the underlying tumor-immune interactions. This observation is further confounded by the strong prognostic benefit of TILs observed for tumor types that have so far respond poorly to immunotherapy. Thus, while a holistic view of lymphocyte infiltration and dysfunction on a single-cell level is emerging, the search for response and prognostic biomarkers is just beginning. Within this review, we discuss recent advances in the understanding of TIL biology, their prognostic benefit, and their predictive value for therapy.
Collapse
Affiliation(s)
- Sterre T Paijens
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Annegé Vledder
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marco de Bruyn
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hans W Nijman
- Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
33
|
N J, J T, Sl N, Gt B. Tertiary lymphoid structures and B lymphocytes in cancer prognosis and response to immunotherapies. Oncoimmunology 2021; 10:1900508. [PMID: 33854820 PMCID: PMC8018489 DOI: 10.1080/2162402x.2021.1900508] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Tertiary lymphoid structures (TLS) are ectopic cellular aggregates that resemble secondary lymphoid organs in their composition and structural organization. In contrast to secondary lymphoid organs, TLS are not imprinted during embryogenesis but are formed in non-lymphoid tissues in response to local inflammation. TLS structures exhibiting a variable degree of maturation are found in solid tumors. They are composed of various immune cell types including dendritic cells and antigen-specific B and T lymphocytes, that together, actively drive the immune response against tumor development and progression. This review highlights the successive steps leading to tumor TLS formation and its association with clinical outcomes. We discuss the role played by tumor-infiltrating B lymphocytes and plasma cells, their prognostic value in solid tumors and immunotherapeutic responses and their potential for future targeting.
Collapse
Affiliation(s)
- Jacquelot N
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Tellier J
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Nutt Sl
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Belz Gt
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia.,The University of Queensland Diamantina Institute, the University of Queensland, Brisbane, Australia
| |
Collapse
|
34
|
Groeneveld CS, Fontugne J, Cabel L, Bernard-Pierrot I, Radvanyi F, Allory Y, de Reyniès A. Tertiary lymphoid structures marker CXCL13 is associated with better survival for patients with advanced-stage bladder cancer treated with immunotherapy. Eur J Cancer 2021; 148:181-189. [PMID: 33743486 DOI: 10.1016/j.ejca.2021.01.036] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/22/2020] [Accepted: 01/29/2021] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Immune checkpoint inhibitors (ICIs) have proved to be an effective treatment for up to 40% of muscle-invasive bladder cancer (MIBC), but there is still a need for better performing biomarkers allowing to improve prediction of response to ICI. Response to immunotherapy in soft-tissue sarcoma, melanoma and renal cell carcinoma have been recently linked to the presence of tertiary lymphoid structures (TLS) in the tumour. TLS are organised aggregates of T, B and dendritic cells, participating in adaptive antitumor immune response. The chemokine CXCL13 is involved in the formation of TLS, and is reported as a reliable transcriptomic marker of TLS. OBJECTIVES In this study, we sought to assess whether CXCL13 transcript expression can be a prognostic biomarker for ICI-treated MIBC patients and also investigated whether it can serve a biomarker of TLS in MIBC. METHODS We analysed transcriptomic data from three publicly available MIBC cohorts and evaluated pathological slides from the TCGA-BLCA cohort for TLS presence and stage of maturation. RESULTS We showed that CXCL13 was independently associated with both prolonged survival (HR = 0.8, 95% CI [0.68-0.94]) and objective response (p < 0.0001) in patients treated with ICI, at the difference of others immunological signatures. However, it was not a predictor for non-ICI-treated MIBC, suggesting a predictive effect of ICI efficacy. Finally, we validated that CXCL13 expression was correlated with tumour TLS in TCGA data set (p < 0.001), and can serve as a marker of TLS in bladder cancer. CONCLUSION These results support that CXCL13 expression, as a surrogate for tumour TLS, is a relevant candidate predictive biomarker of response to ICI for patients with advanced-stage bladder cancer.
Collapse
Affiliation(s)
- Clarice S Groeneveld
- Cartes d'Identité des Tumeurs (CIT) Program, Ligue Nationale Contre le Cancer, Paris, France; Molecular Oncology, PSL Research University, CNRS, UMR 144, Institut Curie, Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Jacqueline Fontugne
- Molecular Oncology, PSL Research University, CNRS, UMR 144, Institut Curie, Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France; Department of Pathology, Institut Curie, Saint-Cloud, France
| | - Luc Cabel
- Molecular Oncology, PSL Research University, CNRS, UMR 144, Institut Curie, Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Isabelle Bernard-Pierrot
- Molecular Oncology, PSL Research University, CNRS, UMR 144, Institut Curie, Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - François Radvanyi
- Molecular Oncology, PSL Research University, CNRS, UMR 144, Institut Curie, Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Yves Allory
- Molecular Oncology, PSL Research University, CNRS, UMR 144, Institut Curie, Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France; Department of Pathology, Institut Curie, Saint-Cloud, France
| | - Aurélien de Reyniès
- Cartes d'Identité des Tumeurs (CIT) Program, Ligue Nationale Contre le Cancer, Paris, France.
| |
Collapse
|
35
|
Logerot S, Figueiredo-Morgado S, Charmeteau-de-Muylder B, Sandouk A, Drillet-Dangeard AS, Bomsel M, Bourgault-Villada I, Couëdel-Courteille A, Cheynier R, Rancez M. IL-7-Adjuvanted Vaginal Vaccine Elicits Strong Mucosal Immune Responses in Non-Human Primates. Front Immunol 2021; 12:614115. [PMID: 33717097 PMCID: PMC7947860 DOI: 10.3389/fimmu.2021.614115] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/11/2021] [Indexed: 12/26/2022] Open
Abstract
Mucosal immune responses are crucial in protecting against pathogens entering through mucosal surfaces. However, due to poor T-cell responsiveness upon mucosal antigenic stimulation, mucosal immunity remains difficult to obtain through vaccines and requires appropriate adjuvants. We previously demonstrated that administered systemically to healthy macaques or locally expressed in the intestinal mucosa of acutely SIV-infected macaques, interleukin-7 (IL-7) triggers chemokine expression and immune cell homing into mucosae, suggesting its important role in the development of mucosal immune responses. We therefore examined whether local delivery of recombinant glycosylated simian IL-7 (rs-IL-7gly) to the vaginal mucosa of rhesus macaques could prepare the lower female genital tract (FGT) for subsequent immunization and act as an efficient mucosal adjuvant. First, we showed that local administration of rs-IL-7gly triggers vaginal overexpression of chemokines and infiltration of mDCs, macrophages, NKs, B- and T-cells in the lamina propria while MamuLa-DR+ APCs accumulated in the epithelium. Subsequent mucosal anti-DT immunization in macaques resulted in a faster, stronger, and more persistent mucosal antibody response compared to DT-immunization alone. Indeed, we detected robust productions of DT-specific IgAs and IgGs in their vaginal secretions and identified cells secreting DT-specific IgAs in their vaginal mucosa and IgGs in draining lymph nodes. Finally, the expression of chemokines involved in the organization of tertiary lymphoid structures (TLS) was only increased in the vaginal mucosa of IL-7-adjuvanted immunized macaques. Interestingly, TLSs developed around PNAd+ high endothelial venules in their lower FGT sampled 2 weeks after the last immunization. Non-traumatic vaginal administration of rs-IL-7gly prepares the mucosa to respond to subsequent local immunization and allows the development of a strong mucosal immune response in macaques, through the chemokine-dependent recruitment of immune cells, the activation of mDCs and the formation of TLSs. The localization of DT-specific IgA+ plasma cells in the upper vaginal mucosa argues for their contribution to the production of specific immunoglobulins in the vaginal secretions. Our results highlight the potential of IL-7 as a potent mucosal adjuvant to stimulate the FGT immune system and elicit vaginal antibody responses to local immunization, which is the most promising way to confer protection against many sexually transmitted diseases.
Collapse
Affiliation(s)
- Sandrine Logerot
- Laboratory of Dendritic Cells, B Lymphocytes and Cytokines in their Microenvironment During Viral Infections and Cancer, Department of Infection, Immunity and Inflammation, Université de Paris, INSERM, CNRS, Institut Cochin, Paris, France
| | - Suzanne Figueiredo-Morgado
- Laboratory of Dendritic Cells, B Lymphocytes and Cytokines in their Microenvironment During Viral Infections and Cancer, Department of Infection, Immunity and Inflammation, Université de Paris, INSERM, CNRS, Institut Cochin, Paris, France
| | - Bénédicte Charmeteau-de-Muylder
- Laboratory of Dendritic Cells, B Lymphocytes and Cytokines in their Microenvironment During Viral Infections and Cancer, Department of Infection, Immunity and Inflammation, Université de Paris, INSERM, CNRS, Institut Cochin, Paris, France
| | - Abdelkader Sandouk
- Laboratory of Dendritic Cells, B Lymphocytes and Cytokines in their Microenvironment During Viral Infections and Cancer, Department of Infection, Immunity and Inflammation, Université de Paris, INSERM, CNRS, Institut Cochin, Paris, France
| | - Anne-Sophie Drillet-Dangeard
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Université de Paris, INSERM, CNRS, Institut Cochin, Paris, France
| | - Morgane Bomsel
- Laboratory of Mucosal Entry of HIV-1 and Mucosal Immunity, Department of Infection, Immunity and Inflammation, Université de Paris, INSERM, CNRS, Institut Cochin, Paris, France
| | - Isabelle Bourgault-Villada
- Laboratory of Dendritic Cells, B Lymphocytes and Cytokines in their Microenvironment During Viral Infections and Cancer, Department of Infection, Immunity and Inflammation, Université de Paris, INSERM, CNRS, Institut Cochin, Paris, France
| | - Anne Couëdel-Courteille
- Laboratory of Dendritic Cells, B Lymphocytes and Cytokines in their Microenvironment During Viral Infections and Cancer, Department of Infection, Immunity and Inflammation, Université de Paris, INSERM, CNRS, Institut Cochin, Paris, France
| | - Rémi Cheynier
- Laboratory of Dendritic Cells, B Lymphocytes and Cytokines in their Microenvironment During Viral Infections and Cancer, Department of Infection, Immunity and Inflammation, Université de Paris, INSERM, CNRS, Institut Cochin, Paris, France
| | - Magali Rancez
- Laboratory of Dendritic Cells, B Lymphocytes and Cytokines in their Microenvironment During Viral Infections and Cancer, Department of Infection, Immunity and Inflammation, Université de Paris, INSERM, CNRS, Institut Cochin, Paris, France
| |
Collapse
|
36
|
Bednarz-Misa I, Bromke MA, Krzystek-Korpacka M. Interleukin (IL)-7 Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1290:9-49. [PMID: 33559853 DOI: 10.1007/978-3-030-55617-4_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Interleukin (IL)-7 plays an important immunoregulatory role in different types of cells. Therefore, it attracts researcher's attention, but despite the fact, many aspects of its modulatory action, as well as other functionalities, are still poorly understood. The review summarizes current knowledge on the interleukin-7 and its signaling cascade in context of cancer development. Moreover, it provides a cancer-type focused description of the involvement of IL-7 in solid tumors, as well as hematological malignancies.The interleukin has been discovered as a growth factor crucial for the early lymphocyte development and supporting the growth of malignant cells in certain leukemias and lymphomas. Therefore, its targeting has been explored as a treatment modality in hematological malignancies, while the unique ability to expand lymphocyte populations selectively and without hyperinflammation has been used in experimental immunotherapies in patients with lymphopenia. Ever since the early research demonstrated a reduced growth of solid tumors in the presence of IL-7, the interleukin application in boosting up the anticancer immunity has been investigated. However, a growing body of evidence indicative of IL-7 upregulation in carcinomas, facilitating tumor growth and metastasis and aiding drug-resistance, is accumulating. It therefore becomes increasingly apparent that the response to the IL-7 stimulus strongly depends on cell type, their developmental stage, and microenvironmental context. The interleukin exerts its regulatory action mainly through phosphorylation events in JAK/STAT and PI3K/Akt pathways, while the significance of MAPK pathway seems to be limited to solid tumors. Given the unwavering interest in IL-7 application in immunotherapy, a better understanding of interleukin role, source in tumor microenvironment, and signaling pathways, as well as the identification of cells that are likely to respond should be a research priority.
Collapse
Affiliation(s)
- Iwona Bednarz-Misa
- Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw, Poland
| | - Mariusz A Bromke
- Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw, Poland
| | | |
Collapse
|
37
|
Song D, Lai L, Ran Z. Metabolic Regulation of Group 3 Innate Lymphoid Cells and Their Role in Inflammatory Bowel Disease. Front Immunol 2020; 11:580467. [PMID: 33193381 PMCID: PMC7649203 DOI: 10.3389/fimmu.2020.580467] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/30/2020] [Indexed: 12/16/2022] Open
Abstract
Inflammatory bowel disease (IBD) is characterized by chronic and relapsing inflammatory disorder of the intestine. IBD is associated with complex pathogenesis, and considerable data suggest that innate lymphoid cells contribute to the development and progression of the condition. Group 3 innate lymphoid cells (ILC3s) not only play a protective role in maintaining intestinal homeostasis and gut barrier function, but also a pathogenic role in intestinal inflammation. ILC3s can sense environmental and host-derived signals and combine these cues to modulate cell expansion, migration and function, and transmit information to the broader immune system. Herein, we review current knowledge of how ILC3s can be regulated by dietary nutrients, microbiota and their metabolites, as well as other metabolites. In addition, we describe the phenotypic and functional alterations of ILC3s in IBD and discuss the therapeutic potential of ILC3s in the treatment of IBD.
Collapse
Affiliation(s)
| | | | - Zhihua Ran
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| |
Collapse
|
38
|
Nagl L, Horvath L, Pircher A, Wolf D. Tumor Endothelial Cells (TECs) as Potential Immune Directors of the Tumor Microenvironment - New Findings and Future Perspectives. Front Cell Dev Biol 2020; 8:766. [PMID: 32974337 PMCID: PMC7466447 DOI: 10.3389/fcell.2020.00766] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/21/2020] [Indexed: 12/30/2022] Open
Abstract
The tumor microenvironment (TME) plays a central role in cancer development and progression. It represents a complex network of cancer cell (sub-)clones and a variety of stromal cell types. Recently, new technology platforms shed light on the cellular composition of the TME at very high resolution and identified a complex landscape of multi-lineage immune cells (e.g., T and B lymphocytes, myeloid cells, and dendritic cells), cancer associated fibroblasts (CAF) and tumor endothelial cells (TECs). A growing body of evidence suggests that metabolically, genetically and on their transcriptomic profile TECs exhibit unique phenotypic and functional characteristics when compared to normal endothelial cells (NECs). Furthermore, the functional role of TECs is multifaceted as they are not only relevant for promoting tumor angiogenesis but have also evolved as key mediators of immune regulation in the TME. Regulatory mechanisms are complex and profoundly impact peripheral immune cell trafficking into the tumor compartment by acting as major gatekeepers of cellular transmigration. Moreover, TECs are associated with T cell priming, activation and proliferation by acting as antigen-presenting cells themselves. TECs are also essential for the formation of tertiary lymphoid structures (TLS) within the tumor, which have recently been associated with treatment response to checkpoint antibody therapy. Further essential characteristics of TECs compared to NECs are their high proliferative potential as well as greatly altered gene expression profile (e.g., upregulation of pro-angiogenic, extracellular matrix remodeling, and stemness genes), which results in enhanced secretion of immunomodulatory cytokines and altered cell-surface receptors [e.g., major histocompatibility complex (MHC) and immune checkpoints]. The TEC phenotype may be rooted in an aggressive tumor micro-milieu based on cellular stress via hypoxia and reactive oxygen species (ROS). Vice versa TECs might modulate TME immunogenicity thereby fostering cancer-associated immune suppression. This review aims to elucidate the currently emergent pathophysiological aspects of TECs with a particular focus on their potential role as regulators of immune cell function in the TME. It is a main future challenge to deeply characterize the phenotypic and functional profile of TECs to illuminate their complex role within the TME. The ultimate goal is the identification of TEC-specific drug targets to improve cancer (immuno-)therapy.
Collapse
Affiliation(s)
- Laurenz Nagl
- Department of Internal Medicine V (Haematology and Oncology), Medical University of Innsbruck, Innsbruck, Austria
| | - Lena Horvath
- Department of Internal Medicine V (Haematology and Oncology), Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas Pircher
- Department of Internal Medicine V (Haematology and Oncology), Medical University of Innsbruck, Innsbruck, Austria
| | - Dominik Wolf
- Department of Internal Medicine V (Haematology and Oncology), Medical University of Innsbruck, Innsbruck, Austria.,Tyrolean Cancer Research Institute (TKFI), Innsbruck, Austria.,Department of Oncology, Hematology, Rheumatology and Immunoncology, University Hospital Bonn (UKB), Bonn, Germany
| |
Collapse
|
39
|
Saito Y, Shultz LD, Ishikawa F. Understanding Normal and Malignant Human Hematopoiesis Using Next-Generation Humanized Mice. Trends Immunol 2020; 41:706-720. [PMID: 32631635 DOI: 10.1016/j.it.2020.06.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 06/12/2020] [Accepted: 06/14/2020] [Indexed: 12/11/2022]
Abstract
Rodent models for human diseases contribute significantly to understanding human physiology and pathophysiology. However, given the accelerating pace of drug development, there is a crucial need for in vivo preclinical models of human biology and pathology. The humanized mouse is one tool to bridge the gap between traditional animal models and the clinic. The development of immunodeficient mouse strains with high-level engraftment of normal and diseased human immune/hematopoietic cells has made in vivo functional characterization possible. As a patient-derived xenograft (PDX) model, humanized mice functionally correlate putative mechanisms with in vivo behavior and help to reveal pathogenic mechanisms. Combined with single-cell genomics, humanized mice can facilitate functional precision medicine such as risk stratification and individually optimized therapeutic approaches.
Collapse
Affiliation(s)
- Yoriko Saito
- RIKEN Center for Integrative Medical Sciences, Yokohama City, Kanagawa, 230-0045, Japan
| | | | - Fumihiko Ishikawa
- RIKEN Center for Integrative Medical Sciences, Yokohama City, Kanagawa, 230-0045, Japan.
| |
Collapse
|
40
|
Luo S, Zhu R, Yu T, Fan H, Hu Y, Mohanta SK, Hu D. Chronic Inflammation: A Common Promoter in Tertiary Lymphoid Organ Neogenesis. Front Immunol 2019; 10:2938. [PMID: 31921189 PMCID: PMC6930186 DOI: 10.3389/fimmu.2019.02938] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 11/29/2019] [Indexed: 12/15/2022] Open
Abstract
Tertiary lymphoid organs (TLOs) frequently develop locally in adults in response to non-resolving inflammation. Chronic inflammation leads to the differentiation of stromal fibroblast cells toward lymphoid tissue organizer-like cells, which interact with lymphotoxin α1β2+ immune cells. The interaction initiates lymphoid neogenesis by recruiting immune cells to the site of inflammation and ultimately leads to the formation of TLOs. Mature TLOs harbor a segregated T-cell zone, B-cell follicles with an activated germinal center, follicular dendritic cells, and high endothelial venules, which architecturally resemble those in secondary lymphoid organs. Since CXCL13 and LTα1β2 play key roles in TLO neogenesis, they might constitute potential biomarkers of TLO activity. The well-developed TLOs actively regulate local immune responses and influence disease progression, and they are thereby regarded as the powerhouses of local immunity. In this review, we recapitulated the determinants for TLOs development, with great emphasis on the fundamental role of chronic inflammation and tissue-resident stromal cells for TLO neogenesis, hence offering guidance for therapeutic interventions in TLO-associated diseases.
Collapse
Affiliation(s)
- Shanshan Luo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Zhu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Yu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Fan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sarajo Kumar Mohanta
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany
| | - Desheng Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
41
|
Flip the coin: IL-7 and IL-7R in health and disease. Nat Immunol 2019; 20:1584-1593. [PMID: 31745336 DOI: 10.1038/s41590-019-0479-x] [Citation(s) in RCA: 227] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 07/26/2019] [Indexed: 12/14/2022]
Abstract
The cytokine IL-7 and its receptor, IL-7R, are critical for T cell and, in the mouse, B cell development, as well as differentiation and survival of naive T cells, and generation and maintenance of memory T cells. They are also required for innate lymphoid cell (ILC) development and maintenance, and consequently for generation of lymphoid structures and barrier defense. Here we discuss the central role of IL-7 and IL-7R in the lymphoid system and highlight the impact of their deregulation, placing a particular emphasis on their 'dark side' as promoters of cancer development. We also explore therapeutic implications and opportunities associated with either positive or negative modulation of the IL-7-IL-7R signaling axis.
Collapse
|
42
|
Functional interactions between innate lymphoid cells and adaptive immunity. Nat Rev Immunol 2019; 19:599-613. [PMID: 31350531 PMCID: PMC6982279 DOI: 10.1038/s41577-019-0194-8] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2019] [Indexed: 12/19/2022]
Abstract
Innate lymphoid cells (ILCs) are enriched at barrier surfaces of the mammalian body where they rapidly respond to host, microbial or environmental stimuli to promote immunity or tissue homeostasis. Furthermore, ILCs are dysregulated in multiple human diseases. Over the past decade, substantial advances have been made in identifying the heterogeneity and functional diversity of ILCs, which have revealed striking similarities to T cell subsets. However, emerging evidence indicates that ILCs also have a complex role in directly influencing the adaptive immune response in the context of development, homeostasis, infection or inflammation. In turn, adaptive immunity reciprocally regulates ILCs, which indicates that these interactions are a crucial determinant of immune responses within tissues. Here, we summarize our current understanding of functional interactions between ILCs and the adaptive immune system, discuss limitations and future areas of investigation, and consider the potential for these interactions to be therapeutically harnessed to benefit human health.
Collapse
|
43
|
Sautès-Fridman C, Petitprez F, Calderaro J, Fridman WH. Tertiary lymphoid structures in the era of cancer immunotherapy. Nat Rev Cancer 2019; 19:307-325. [PMID: 31092904 DOI: 10.1038/s41568-019-0144-6] [Citation(s) in RCA: 1096] [Impact Index Per Article: 182.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Tertiary lymphoid structures (TLSs) are ectopic lymphoid organs that develop in non-lymphoid tissues at sites of chronic inflammation including tumours. Key common characteristics between secondary lymphoid organogenesis and TLS neogenesis have been identified. TLSs exist under different maturation states in tumours, culminating in germinal centre formation. The mechanisms that underlie the role of TLSs in the adaptive antitumour immune response are being deciphered. The description of the correlation between TLS presence and clinical benefit in patients with cancer, suggesting that TLSs could be a prognostic and predictive factor, has drawn strong interest into investigating the role of TLSs in tumours. A current major challenge is to exploit TLSs to promote lymphocyte infiltration, activation by tumour antigens and differentiation to increase the antitumour immune response. Several approaches are being developed using chemokines, cytokines, antibodies, antigen-presenting cells or synthetic scaffolds to induce TLS formation. Strategies aiming to induce TLS neogenesis in immune-low tumours and in immune-high tumours, in this case, in combination with therapeutic agents dampening the inflammatory environment and/or with immune checkpoint inhibitors, represent promising avenues for cancer treatment.
Collapse
Affiliation(s)
- Catherine Sautès-Fridman
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université de Paris, Equipe Inflammation, complément et cancer, F-75006, Paris, France.
| | - Florent Petitprez
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université de Paris, Equipe Inflammation, complément et cancer, F-75006, Paris, France
- Programme Cartes d'Identité des Tumeurs, Ligue Nationale Contre le Cancer, Paris, France
| | - Julien Calderaro
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université de Paris, Equipe Inflammation, complément et cancer, F-75006, Paris, France
- Département de Pathologie, Assistance Publique Hôpitaux de Paris, Groupe Hospitalier Henri Mondor, Créteil, France; Université Paris-Est, Créteil, France
- INSERM U955, Equipe 18, Institut Mondor de Recherche Biomédicale, Créteil, France
| | - Wolf Herman Fridman
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université de Paris, Equipe Inflammation, complément et cancer, F-75006, Paris, France
| |
Collapse
|
44
|
Schropp V, Rohde J, Rovituso DM, Jabari S, Bharti R, Kuerten S. Contribution of LTi and T H17 cells to B cell aggregate formation in the central nervous system in a mouse model of multiple sclerosis. J Neuroinflammation 2019; 16:111. [PMID: 31138214 PMCID: PMC6540524 DOI: 10.1186/s12974-019-1500-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 05/06/2019] [Indexed: 01/26/2023] Open
Abstract
Background In a subgroup of patients suffering from progressive multiple sclerosis (MS), which is an inflammation-mediated neurodegenerative disease of the central nervous system (CNS), B cell aggregates were discovered within the meninges. Occurrence of these structures was associated with a more severe disease course and cortical histopathology. We have developed the B cell-dependent MP4-induced experimental autoimmune encephalomyelitis (EAE) as a mouse model to mimic this trait of the human disease. The aim of this study was to determine a potential role of lymphoid tissue inducer (LTi) and TH17 cells in the process of B cell aggregate formation in the MP4 model. Methods We performed flow cytometry of cerebellar and splenic tissue of MP4-immunized mice in the acute and chronic stage of the disease to analyze the presence of CD3−CD5−CD4+RORγt+ LTi and CD3+CD5+CD4+RORγt+ TH17 cells. Myelin oligodendrocyte glycoprotein (MOG):35–55-induced EAE was used as B cell-independent control model. We further determined the gene expression profile of B cell aggregates using laser capture microdissection, followed by RNA sequencing. Results While we were able to detect LTi cells in the embryonic spleen and adult intestine, which served as positive controls, there was no evidence for the existence of such a population in acute or chronic EAE in neither of the two models. Yet, we detected CD3−CD5−CD4−RORγt+ innate lymphoid cells (ILCs) and TH17 cells in the CNS, the latter especially in the chronic stage of MP4-induced EAE. Moreover, we observed a unique gene signature in CNS B cell aggregates compared to draining lymph nodes of MP4-immunized mice and to cerebellum as well as draining lymph nodes of mice with MOG:35–55-induced EAE. Conclusion The absence of LTi cells in the cerebellum suggests that other cells might take over the function as an initiator of lymphoid tissue formation in the CNS. Overall, the development of ectopic lymphoid organs is a complex process based on an interplay between several molecules and signals. Here, we propose some potential candidates, which might be involved in the formation of B cell aggregates in the CNS of MP4-immunized mice.
Collapse
Affiliation(s)
- Verena Schropp
- Institute of Anatomy, Chair of Anatomy and Cell Biology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Jörn Rohde
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Damiano M Rovituso
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Samir Jabari
- Institute of Anatomy, Chair of Anatomy and Cell Biology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Richa Bharti
- Core Unit Systems Medicine, University Hospitals of Würzburg, Würzburg, Germany
| | - Stefanie Kuerten
- Institute of Anatomy, Chair of Anatomy and Cell Biology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
45
|
Blokland SLM, Flessa CM, van Roon JAG, Mavragani CP. Emerging roles for chemokines and cytokines as orchestrators of immunopathology in Sjögren's syndrome. Rheumatology (Oxford) 2019; 60:3072-3087. [PMID: 30838419 DOI: 10.1093/rheumatology/key438] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/03/2018] [Indexed: 12/14/2022] Open
Abstract
In primary SS (pSS), chemokines and cytokines orchestrate immunopathology driven by a complex network of interacting inflammatory cells. In recent years, the importance of chemotactic and non-chemotactic cytokines that control function, movement and placing of all cells within the inflamed exocrine glands and directing immunopathology has become increasingly clear. This paper reviews the current knowledge on chemokines and focuses on the emerging roles of novel chemotactic and non-chemotactic mediators in pSS. It highlights their contribution to pathogenic processes such as B cell hyperactivity and the formation of ectopic lymphoid structures. To this end, the role of acquired (CXCR5/CCR9 Th-cell-mediated) and innate (inflammasome/IL-1/IL-18-mediated) pathways in steering immunopathology is discussed.
Collapse
Affiliation(s)
- Sofie L M Blokland
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, The Netherlands.,Laboratory of Translational Immunology, Department of Immunology, Utrecht University, Utrecht, The Netherlands
| | - Christina-Maria Flessa
- Department of Physiology, National and Kapodistrian University of Athens, Athens, Greece
| | - Joel A G van Roon
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, The Netherlands.,Laboratory of Translational Immunology, Department of Immunology, Utrecht University, Utrecht, The Netherlands
| | - Clio P Mavragani
- Department of Physiology, National and Kapodistrian University of Athens, Athens, Greece.,Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.,Joint Academic Rheumatology Program, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
46
|
Ellis J, van Maurik A, Fortunato L, Gisbert S, Chen K, Schwartz A, McHugh S, Want A, Santos Franco S, Oliveira JJ, Price J, Coles A, Brown K, Su D, Craigen JL, Yang J, Brett S, Davis B, Cheriyan J, Kousin-Ezewu O, Gray F, Thompson PW, Fernando D. Anti-IL-7 receptor α monoclonal antibody (GSK2618960) in healthy subjects - a randomized, double-blind, placebo-controlled study. Br J Clin Pharmacol 2018; 85:304-315. [PMID: 30161291 PMCID: PMC6339973 DOI: 10.1111/bcp.13748] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/23/2018] [Accepted: 06/20/2018] [Indexed: 12/12/2022] Open
Abstract
Aim Interleukin (IL)‐7 signalling modulates T cell activity and is implicated in numerous autoimmune diseases. The present study investigated the safety, pharmacokinetics, target engagement, pharmacodynamics and immunogenicity of GSK2618960, an IL‐7 receptor‐α subunit (CD127) monoclonal antibody. Methods A double‐blind (sponsor‐unblind) study of a single intravenous infusion of either GSK2618960 (0.6 mg kg–1 or 2.0 mg kg–1) or placebo was carried out in 18 healthy subjects over 24 weeks. Results GSK2618960 was well tolerated; there were no serious or significant adverse events. The observed half‐life was 5 (±1) days (2.0 mg kg–1), with nonlinear pharmacokinetics. Full receptor occupancy (>95%) was observed until day 8 (0.6 mg kg–1) and day 22 (2.0 mg kg–1). Maximal inhibition of IL‐7‐mediated signal transducer and activator of transcription 5 (STAT5) phosphorylation was observed in 5/6 subjects until day 22 (2.0 mg kg–1). Mean circulating IL‐7 and soluble receptor (CD127) levels were increased above baseline during days 2 and 15 (0.6 mg kg–1) and days 2 and 22 (2.0 mg kg–1). No meaningful changes were observed in absolute numbers or proportions of immune cell populations or inflammatory cytokine profiles (IL‐6, tumour necrosis factor‐α, interferon‐γ, IL‐2). Persistent antidrug antibodies (ADAs) were detected in 5/6 subjects administered a dose of 0.6 mg kg–1 (neutralizing in 2/6) and in 6/6 subjects administered 2.0 mg kg–1 (neutralizing in 5/6). Conclusion GSK2618960 was well tolerated and blocked IL‐7 receptor signalling upon full target engagement. Although there was no discernible impact on peripheral T cell subsets in healthy subjects, GSK2618960 may effectively modulate the autoinflammatory activity of pathogenic T cells in diseased tissue. A relatively short half‐life is likely the result of target‐mediated rather than ADA‐mediated clearance.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Simon McHugh
- GlaxoSmithKline R&D, Addenbrooke's Centre for Clinical Investigation, Cambridge, UK
| | - Andrew Want
- GlaxoSmithKline R&D, Addenbrooke's Centre for Clinical Investigation, Cambridge, UK
| | - Sara Santos Franco
- GlaxoSmithKline R&D, Addenbrooke's Centre for Clinical Investigation, Cambridge, UK
| | | | - Jeffrey Price
- GlaxoSmithKline R&D, Addenbrooke's Centre for Clinical Investigation, Cambridge, UK
| | | | - Kim Brown
- GlaxoSmithKline, Stevenage, Herts, UK
| | - Donggang Su
- GlaxoSmithKline, Shanghai, China.,Shanghai Henlius Biotech, Inc., Shanghai, China
| | - Jenny L Craigen
- GlaxoSmithKline, Stevenage, Herts, UK.,Crescendo Biologics, Cambridge, UK
| | - Jiansong Yang
- GlaxoSmithKline, Shanghai, China.,Mosim Co. Ltd, Shanghai, China
| | | | - Bill Davis
- GlaxoSmithKline R&D, Addenbrooke's Centre for Clinical Investigation, Cambridge, UK
| | - Joseph Cheriyan
- GlaxoSmithKline R&D, Addenbrooke's Centre for Clinical Investigation, Cambridge, UK.,Cambridge University Hospitals, NHS Foundation Trust, Cambridge, UK
| | - Onajite Kousin-Ezewu
- GlaxoSmithKline R&D, Addenbrooke's Centre for Clinical Investigation, Cambridge, UK.,Clinical Neurosciences, University of Cambridge, UK
| | | | - Paul W Thompson
- Mission Therapeutics Ltd, Babraham Research Campus, Cambridge, UK
| | - Disala Fernando
- GlaxoSmithKline R&D, Addenbrooke's Centre for Clinical Investigation, Cambridge, UK
| |
Collapse
|
47
|
Montoya-Zegarra JA, Russo E, Runge P, Jadhav M, Willrodt AH, Stoma S, Nørrelykke SF, Detmar M, Halin C. AutoTube: a novel software for the automated morphometric analysis of vascular networks in tissues. Angiogenesis 2018; 22:223-236. [PMID: 30370470 PMCID: PMC6475513 DOI: 10.1007/s10456-018-9652-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 10/19/2018] [Indexed: 12/17/2022]
Abstract
Due to their involvement in many physiologic and pathologic processes, there is a great interest in identifying new molecular pathways that mediate the formation and function of blood and lymphatic vessels. Vascular research increasingly involves the image-based analysis and quantification of vessel networks in tissue whole-mounts or of tube-like structures formed by cultured endothelial cells in vitro. While both types of experiments deliver important mechanistic insights into (lymph)angiogenic processes, the manual analysis and quantification of such experiments are typically labour-intensive and affected by inter-experimenter variability. To bypass these problems, we developed AutoTube, a new software that quantifies parameters like the area covered by vessels, vessel width, skeleton length and branching or crossing points of vascular networks in tissues and in in vitro assays. AutoTube is freely downloadable, comprises an intuitive graphical user interface and helps to perform otherwise highly time-consuming image analyses in a rapid, automated and reproducible manner. By analysing lymphatic and blood vascular networks in whole-mounts prepared from different tissues or from gene-targeted mice with known vascular abnormalities, we demonstrate the ability of AutoTube to determine vascular parameters in close agreement to the manual analyses and to identify statistically significant differences in vascular morphology in tissues and in vascular networks formed in in vitro assays.
Collapse
Affiliation(s)
- Javier A Montoya-Zegarra
- Scientific Center for Optical and Electron Microscopy (ScopeM), ETH Zürich, Wolfgang-Pauli-Str. 14, 8093, Zurich, Switzerland
| | - Erica Russo
- Institute of Pharmaceutical Sciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
| | - Peter Runge
- Institute of Pharmaceutical Sciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
| | - Maria Jadhav
- Institute of Pharmaceutical Sciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
| | - Ann-Helen Willrodt
- Institute of Pharmaceutical Sciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
| | - Szymon Stoma
- Scientific Center for Optical and Electron Microscopy (ScopeM), ETH Zürich, Wolfgang-Pauli-Str. 14, 8093, Zurich, Switzerland
| | - Simon F Nørrelykke
- Scientific Center for Optical and Electron Microscopy (ScopeM), ETH Zürich, Wolfgang-Pauli-Str. 14, 8093, Zurich, Switzerland
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
| | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland.
| |
Collapse
|
48
|
Abstract
Innate lymphoid cells (ILC) are a recently identified group of innate lymphocytes that are preferentially located at barrier surfaces. Barrier surfaces are in direct contact with complex microbial ecosystems, collectively referred to as the microbiota. It is now believed that the interplay of the microbiota with host components (i.e. epithelial cells and immune cells) promotes host fitness by regulating organ homeostasis, metabolism, and host defense against pathogens. In this review, we will give an overview of this multifaceted interplay between ILC and components of the microbiota.
Collapse
Affiliation(s)
- Liudmila Britanova
- Research Centre Immunotherapy and Institute of Microbiology and Hygiene, Mainz, Germany
| | - Andreas Diefenbach
- Department of Microbiology, Charité - Universitätsmedizin Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
49
|
Onder L, Ludewig B. A Fresh View on Lymph Node Organogenesis. Trends Immunol 2018; 39:775-787. [DOI: 10.1016/j.it.2018.08.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/07/2018] [Accepted: 08/07/2018] [Indexed: 01/18/2023]
|
50
|
Role of Common γ-Chain Cytokines in Lung Interleukin-22 Regulation after Acute Exposure to Aspergillus fumigatus. Infect Immun 2018; 86:IAI.00157-18. [PMID: 30104211 DOI: 10.1128/iai.00157-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 08/04/2018] [Indexed: 12/12/2022] Open
Abstract
Humans are constantly exposed to the opportunistic mold Aspergillus fumigatus, and disease caused by this pathogen is often determined by the magnitude of local and systemic immune responses. We have previously shown a protective role for interleukin-22 (IL-22) after acute A. fumigatus exposure. Here, employing IL-22Cre R26ReYFP reporter mice, we identified iNKT cells, γδ T cells, and type 3 innate lymphoid cells (ILC3s) as lung cell sources of IL-22 in response to acute A. fumigatus exposure. As these cells often utilize common γ-chain cytokines for their development or maintenance, we determined the role of IL-7, IL-21, and IL-15 in lung IL-22 induction and A. fumigatus lung clearance. We observed that IL-7, IL-21, and IL-15 were essential for, partially required for, or negatively regulated the production of IL-22, respectively. Deficiency in IL-7 and IL-21, but not IL-15R, resulted in impaired fungal clearance. Surprisingly, however, the absence of IL-7, IL-21, or IL-15R signaling had no effect on neutrophil recruitment. The levels of IL-1α, an essential anti-A. fumigatus proinflammatory cytokine, were increased in the absence of IL-7 and IL-15R but decreased in the absence of IL-21. IL-7 was responsible for maintaining lung iNKT cells and γδ T cells, whereas IL-21 was responsible for maintaining lung iNKT cells and ILC3s. In contrast, IL-15R deficiency had no effect on the absolute numbers of any IL-22 cell source, rather resulting in enhanced per cell production of IL-22 by iNKT cells and γδ T cells. Collectively, these results provide insight into how the IL-22 response in the lung is shaped after acute A. fumigatus exposure.
Collapse
|