1
|
Yang M, Jiang Z, Zhou L, Chen N, He H, Li W, Yu Z, Jiao S, Song D, Wang Y, Jin M, Lu Z. 3'-Sialyllactose and B. infantis synergistically alleviate gut inflammation and barrier dysfunction by enriching cross-feeding bacteria for short-chain fatty acid biosynthesis. Gut Microbes 2025; 17:2486512. [PMID: 40195063 PMCID: PMC11988227 DOI: 10.1080/19490976.2025.2486512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/07/2025] [Accepted: 03/25/2025] [Indexed: 04/09/2025] Open
Abstract
Ulcerative colitis (UC) poses significant threats to human health and quality of life worldwide, as it is a chronic inflammatory bowel disease. 3'-sialyllactose (3'-SL) is a key functional component of milk oligosaccharides. This study systematically evaluates the prebiotic effects of 3'-SL and its therapeutic potential in combination with Bifidobacterium infantis (B. infantis) for UC. The findings reveal that 3'-SL and B. infantis synergistically mitigate intestinal inflammation and barrier dysfunction by promoting the production of short-chain fatty acids (SCFAs) through cross-feeding mechanisms among gut microbiota. Individually, 3'-SL, B. infantis, and the synbiotic treatment all effectively alleviated UC symptoms, including reduced weight loss, improved disease activity scores, and prevention of colon shortening. Histopathological and immunofluorescence analyses further demonstrated that the synbiotic treatment significantly ameliorated colonic injury, enhanced barrier function, restored goblet cell counts, increased glycoprotein content in crypt goblet cells, and upregulated the expression of tight junction proteins (ZO-1, occludin, and claudin-1). Notably, the synbiotic treatment outperformed the individual components by better restoring gut microbiota balance, elevating SCFA levels, and modulating serum cytokine profiles, thereby reducing inflammation. These findings provide mechanistic insights into the protective effects of the synbiotic and underscore its therapeutic potential for UC and other intestinal inflammatory disorders.
Collapse
Affiliation(s)
- Mingzhi Yang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China
- National Engineering Research Center of Green Feed and Healthy Breeding, Hangzhou, China
- Zhejiang Key Laboratory of Nutrition and Breeding for High-Quality Animal Products, Hangzhou, China
| | - Zipeng Jiang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China
- National Engineering Research Center of Green Feed and Healthy Breeding, Hangzhou, China
- Zhejiang Key Laboratory of Nutrition and Breeding for High-Quality Animal Products, Hangzhou, China
| | - Lutong Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China
- National Engineering Research Center of Green Feed and Healthy Breeding, Hangzhou, China
- Zhejiang Key Laboratory of Nutrition and Breeding for High-Quality Animal Products, Hangzhou, China
| | - Nana Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China
- National Engineering Research Center of Green Feed and Healthy Breeding, Hangzhou, China
- Zhejiang Key Laboratory of Nutrition and Breeding for High-Quality Animal Products, Hangzhou, China
| | - Huan He
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China
- National Engineering Research Center of Green Feed and Healthy Breeding, Hangzhou, China
- Zhejiang Key Laboratory of Nutrition and Breeding for High-Quality Animal Products, Hangzhou, China
| | - Wentao Li
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China
- National Engineering Research Center of Green Feed and Healthy Breeding, Hangzhou, China
- Zhejiang Key Laboratory of Nutrition and Breeding for High-Quality Animal Products, Hangzhou, China
| | - Zhixin Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China
- National Engineering Research Center of Green Feed and Healthy Breeding, Hangzhou, China
- Zhejiang Key Laboratory of Nutrition and Breeding for High-Quality Animal Products, Hangzhou, China
| | - Siming Jiao
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Deguang Song
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Yizhen Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China
- National Engineering Research Center of Green Feed and Healthy Breeding, Hangzhou, China
- Zhejiang Key Laboratory of Nutrition and Breeding for High-Quality Animal Products, Hangzhou, China
| | - Mingliang Jin
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China
- National Engineering Research Center of Green Feed and Healthy Breeding, Hangzhou, China
- Zhejiang Key Laboratory of Nutrition and Breeding for High-Quality Animal Products, Hangzhou, China
| | - Zeqing Lu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China
- National Engineering Research Center of Green Feed and Healthy Breeding, Hangzhou, China
- Zhejiang Key Laboratory of Nutrition and Breeding for High-Quality Animal Products, Hangzhou, China
| |
Collapse
|
2
|
Taylor H, Uhlig HH, Powrie F. Autoimmunity in inflammatory bowel disease: a holobiont perspective. Curr Opin Immunol 2025; 94:102557. [PMID: 40252635 DOI: 10.1016/j.coi.2025.102557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/20/2025] [Accepted: 03/23/2025] [Indexed: 04/21/2025]
Abstract
Adaptive immunity towards self-antigens (autoimmunity) and intestinal commensal microbiota is a key feature of inflammatory bowel disease (IBD). Considering mucosal adaptive immunity from a holobiont perspective, where the host and its microbiome form a single physiological unit, emphasises the challenge of avoiding damaging responses to self-antigen and symbiotic microbial communities in the gut while protecting against potential pathogens. Intestinal tolerance mechanisms prevent maladaptive T and B cell responses to microbial, environmental, and self-antigens, which drive inflammation. We discuss the spectrum of antimicrobial and autoantibody responses and highlight mechanisms by which common IBD-associated adaptive immune responses contribute to disease.
Collapse
Affiliation(s)
- Henry Taylor
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.
| | - Holm H Uhlig
- Centre for Human Genetics, University of Oxford, Oxford, UK; Translational Gastroenterology Liver Unit, University of Oxford, Oxford, UK; NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Fiona Powrie
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK; NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Yang L, Zheng SG. Role of regulatory T cells in inflammatory liver diseases. Autoimmun Rev 2025; 24:103806. [PMID: 40139456 DOI: 10.1016/j.autrev.2025.103806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 03/21/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
The liver is the human body's largest digestive gland, which can participate in digestion, metabolism, excretion, detoxification and immunity. Chronic liver diseases such as metabolic dysfunction-associated fatty liver disease (MAFLD) or viral hepatitis involve ongoing inflammation and resulting liver fibrosis may ultimately lead to the development of hepatobiliary cancers (HCC). Inflammation is the coordinated reaction of different liver cell types to cell signals and death of inflammation, which are linked to injury pathways within the liver or external agents from the gut-liver axis and the circulation. Regulatory T (Treg) cells play a crucial role in controlling inflammation and are essential for maintaining immune tolerance and balance. In this review, we highlight the recent discoveries related to the function of immune systems in liver inflammation and discuss the role of Treg cells in the different liver diseases (including MAFLD, autoimmune hepatitis and others).
Collapse
Affiliation(s)
- Linjie Yang
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Song Guo Zheng
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; Department of Immunology, School of Cell and Gene Therapy, Songjiang Research Institute, Shanghai Songjiang District Central Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China; State Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 201600, China.
| |
Collapse
|
4
|
Yang J, Zhang H, Wang W, Yin Q, He X, Tao D, Wang H, Liu W, Wang Y, Dong Z, Chen X, Li B. CD80 Antibody and MTX Co-Engineered Extracellular Vesicles Targets CD80 + Macrophages to Suppress Inflammation and Alleviate Chronic Inflammatory Diseases. Int J Nanomedicine 2025; 20:6379-6398. [PMID: 40416732 PMCID: PMC12103861 DOI: 10.2147/ijn.s517357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 05/13/2025] [Indexed: 05/27/2025] Open
Abstract
Introduction Aberrant interaction between innate immune and adaptive immune cells can disrupt tissue homeostasis, consequently triggering chronic inflammatory diseases such as rheumatoid arthritis (RA) and periodontitis (PD). Pro-inflammatory macrophages serve as critical mediators in the early immune response, constituting a major population of CD80+ cells, while anti-inflammatory macrophages modulating inflammatory processes through the secretion of transforming growth factor-beta (TGF-β). This cytokine facilitates the differentiation of peripheral regulatory T cells (Tregs) and contributes to the establishment of immune tolerance. However, there are no definitive therapies to reshape the tissue homeostasis between innate immune and adaptive immune cells. Methods (1) anti-CD80-MTX-EVs was obtained by gradient centrifugation, which were characterized by TEM and DLS, and the associated membrane proteins were identified by Western Blot. (2) The mouse bone marrow-derived macrophages were co-cultured separately with EVs, anti-CD80-EVs, and anti-CD80-MTX-EVs in vitro, and the expression of CD80 on the macrophages surface as well as the proportion of Treg cell generation were detected. (3) EVs, anti-CD80-EVs and anti-CD80-MTX-EVs were injected into mice models of arthritis and periodontitis for treatment, the therapeutic effect was evaluated by the expressions of related cytokines, staining of HE, the proportion of CD80+ macrophages and the phenotypic differentiation of T cells in the tissues. Results We successfully constructed engineered EVs (anti-CD80-MTX-EVs) targeting inflammatory macrophages for intracellular MTX delivering, which inducing the anti-inflammatory transformation while upregulating the expression of TGF-β of macrophages. Furthermore, our findings demonstrate that anti-CD80-MTX-EVs effectively reduce CD80+ macrophage levels, promote Treg cell generation, and inhibit Th1 cell production in vivo. Conclusion In this study, the anti-CD80-MTX-Evs demonstrated significant therapeutic effects in both rheumatoid arthritis and periodontitis models through a triple mechanism: reducing CD80+ macrophage population, enhancing Treg cell differentiation, and suppressing Th1 cell development. Overall, this study presents an innovative strategy for resolving inflammation within chronic inflammatory diseases.
Collapse
Affiliation(s)
- Jianhua Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Handan Zhang
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an, 710049, People’s Republic of China
| | - Wenzhe Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Qiqi Yin
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an, 710049, People’s Republic of China
| | - Xiaoning He
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Dihao Tao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Hanzhe Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Wenhao Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Yiming Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Zhiwei Dong
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Xi’an Jiaotong University, Xi’an, People’s Republic of China
| | - Xin Chen
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an, 710049, People’s Republic of China
| | - Bei Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, People’s Republic of China
| |
Collapse
|
5
|
Lecky DA, Sheriff L, Rouvray ST, George LS, Copland A, Drummond RA, Wraith DC, Bending D. Interferon-γ and IL-27 positively regulate type 1 regulatory T cell development during adaptive tolerance. iScience 2025; 28:112308. [PMID: 40276760 PMCID: PMC12018090 DOI: 10.1016/j.isci.2025.112308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/31/2024] [Accepted: 03/21/2025] [Indexed: 04/26/2025] Open
Abstract
Strong T cell receptor (TCR) and interleukin (IL)-27 signaling influence type 1 regulatory (Tr1) T cell development, but whether other signals determine their differentiation is unclear. Utilizing Tg4 TCR transgenic mice, we established a model for rapid Tr1 cell induction. A single high dose of [4Y]-MBP peptide drove the differentiation of Il10 + T cells with Tr1 cell mRNA and protein signatures. Kinetic transcriptional and phenotypic analyses revealed that the Tr1 cell module was transient and preceded by Ifng transcription in other CD4+ T cells. Changes in Tr1 cell frequency correlated with altered macrophage activation, while neutralization of interferon (IFN)γ reduced Tr1 cell frequency and the TCR signal strength markers Nur77, inducible T cell costimulator (ICOS), and OX40. Antibody depletion experiments inferred that the relevant source of IFNγ was not natural killer (NK) cell derived. Additionally, blocking IL-27 in combination with IFNγ neutralization additively reduced Tr1 cell frequency in vivo. These findings reveal that IFNγ has a non-redundant role in augmenting Tr1 cell differentiation in vivo.
Collapse
Affiliation(s)
- David A.J. Lecky
- Department of Immunology and Immunotherapy, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
| | - Lozan Sheriff
- Department of Immunology and Immunotherapy, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
| | - Sophie T. Rouvray
- Department of Immunology and Immunotherapy, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
| | - Lorna S. George
- Department of Immunology and Immunotherapy, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
| | - Alastair Copland
- Department of Immunology and Immunotherapy, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
| | - Rebecca A. Drummond
- Department of Immunology and Immunotherapy, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
| | - David C. Wraith
- Department of Immunology and Immunotherapy, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
| | - David Bending
- Department of Immunology and Immunotherapy, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
6
|
Schimmer S, Kerkmann L, Kahlert N, Jubeh SA, Werner T, Corkish C, Prendeville H, Finlay DK, Sutter K, Dittmer U, Littwitz-Salomon E. Dietary lipid overload creates a suppressive environment that impedes the antiviral functions of NK cells. iScience 2025; 28:112396. [PMID: 40352719 PMCID: PMC12063142 DOI: 10.1016/j.isci.2025.112396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/03/2025] [Accepted: 04/07/2025] [Indexed: 05/14/2025] Open
Abstract
Natural killer (NK) cells are innate immune cells able to recognize and eliminate virus-infected cells. NK cell activity strongly correlates with a metabolic reprogramming and breakdown of fatty acids by β-oxidation during virus infections. However, there is limited knowledge regarding the impact of obesity on antiviral NK cell functions. Here, employing the Friend retrovirus mouse model, we show that the cytotoxicity and cytokine production of NK cells was impaired in obesity, leading to higher viral loads. NK cells suppression in obesity was mediated by activated Tregs. Furthermore, obese mice that were switched back to a regular diet showed complete recovery of the NK cell activity. Interestingly, feeding mice with a high-fat diet (HFD) for just ten days caused NK cell dysfunction and increased retroviral burden. This study is the first to link the detrimental impact of an obesity-induced immunosuppressive microenvironment with NK cell dysfunction during an acute retroviral infection.
Collapse
Affiliation(s)
- Simone Schimmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Leonie Kerkmann
- Institute for the Research on HIV and AIDS-associated Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Nele Kahlert
- Institute for the Research on HIV and AIDS-associated Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Shahd al Jubeh
- Institute for the Research on HIV and AIDS-associated Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Tanja Werner
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Carrie Corkish
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Hannah Prendeville
- Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway, Ireland
| | - David K. Finlay
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Kathrin Sutter
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Institute for the Research on HIV and AIDS-associated Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Elisabeth Littwitz-Salomon
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Institute for the Research on HIV and AIDS-associated Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
7
|
Sáenz-Narciso B, Bell SE, Matheson LS, Venigalla RKC, Turner M. ZFP36-family RNA-binding proteins in regulatory T cells reinforce immune homeostasis. Nat Commun 2025; 16:4192. [PMID: 40328742 PMCID: PMC12056042 DOI: 10.1038/s41467-025-58993-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 04/09/2025] [Indexed: 05/08/2025] Open
Abstract
RNA binding proteins (RBP) of the ZFP36 family limit the differentiation and effector functions of CD4 and CD8 T cells, but little is known of their expression or function in regulatory T (Treg) cells. By using Treg cell-restricted deletion of Zfp36 family members we identify the role of Zfp36l1 and Zfp36l2 in Treg cells to maintain immune homeostasis. Mice with Treg cells deficient in these RBP display an inflammatory phenotype with an expansion in the numbers of type-2 conventional dendritic cells, T effector cells, T follicular helper and germinal center B cells and elevated serum cytokines and immunoglobulins. In the absence of Zfp36l1 and Zfp36l2, the pool of cycling CTLA-4 in naïve Treg cells is reduced, Treg cells are less sensitive to IL-2 and IL-7 but are more sensitive to IFNγ. In mice lacking both RBP in Treg cells, the deletion of a single allele of Ifng is sufficient to ameliorate the pathology. Our results indicate that ZFP36L1 and ZFP36L2 regulate the availability of IFNγ and are required for the maintenance of Treg cell stability. Thus, ZFP36L1 and ZFP36L2 regulate multiple pathways that enable Treg cells to enforce immune homeostasis.
Collapse
Affiliation(s)
- Beatriz Sáenz-Narciso
- Immunology Programme, The Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Sarah E Bell
- Immunology Programme, The Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Louise S Matheson
- Immunology Programme, The Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Ram K C Venigalla
- Immunology Programme, The Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Martin Turner
- Immunology Programme, The Babraham Institute, Babraham Research Campus, Cambridge, UK.
| |
Collapse
|
8
|
Mishra S, Srivastava S, Mohanty B. Efficacy of the neurotensin receptor 1 analog PD149163 in modulation of the kidney inflammation: Inhibition of the nuclear factor kappa β signaling pathway and oxidative stress in endotoxemic mice. Eur J Pharmacol 2025; 994:177398. [PMID: 39978709 DOI: 10.1016/j.ejphar.2025.177398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/23/2024] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
This study elucidated that the neurotensin receptor 1 agonist PD149163 ameliorated the kidney inflammation in endotoxemic mice inhibiting the nuclear factor kappa β (NF-kβ) pathway and reducing the oxidative stress in a dose-dependent manner. Swiss albino female mice (8 weeks; 25 ± 5 gms) were maintained in six groups (n = 6): Group 1/control, Group 2, Group 3 and Group 4 were exposed to lipopolysaccharide/LPS (1 mg/kg bw; i.p; 5 days) followed by PD149163 treatment with low dose/NTS50 (50 μg/kg BW i.p. 28 days) and high dose/NTS100 (100 μg/kg BW i.p. 28 days) to Group 3 and Group 4 respectively. Group 5 and Group 6 mice were only treated with the agonist, similar low and high doses respectively for the same duration. The results showed LPS-induced significant increase in the plasma levels of the NF-kβ, pro-inflammatory cytokines (TNF-α, IL-6) and a decrease in the anti-inflammatory cytokine IL-10. A significant increase in the pro-oxidant (LPx) and decrease of the anti-oxidants (SOD, CAT) in the kidney tissue was noted. Plasma NTS level was significantly decreased along with a significant increase of the corticosterone. The inflammation was reflected in the kidney histopathology. PD149163 significantly reduced inflammation by down-regulating NF-kβ, TNF-α, IL-6, CORT levels, oxidative stress and alleviated kidney injury. PD149163 enhanced the plasma level of NT. The role of PD149163 in the modulation of inflammation of kidney tissue by its anti-inflammatory and anti-oxidative effects is suggested. Further studies may better confirm the efficacy of the NTS analog for therapeutic intervention in inflammation-related diseases of the kidney.
Collapse
Affiliation(s)
- Swarnima Mishra
- Department of Zoology, University of Allahabad, Uttar Pradesh, 211002, Prayagraj, India
| | - Sonia Srivastava
- Department of Zoology, University of Allahabad, Uttar Pradesh, 211002, Prayagraj, India
| | - Banalata Mohanty
- Department of Zoology, University of Allahabad, Uttar Pradesh, 211002, Prayagraj, India
| |
Collapse
|
9
|
Lin YR, Lam LY, Chang CM, Lam HYP. Concomitant occurrence of chronic Schistosoma mansoni infection and chronic colitis restore immune imbalance and dysbiosis leading to protection against intestinal colitis and schistosome egg-induced intestinal fibrosis. Mem Inst Oswaldo Cruz 2025; 120:e240045. [PMID: 40332187 PMCID: PMC12051921 DOI: 10.1590/0074-02760240045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 12/23/2024] [Indexed: 05/08/2025] Open
Abstract
BACKGROUND Schistosomiasis is one of the most devastating tropical diseases in developing countries and is usually misdiagnosed with colitis because the prevalence of co-occurrence of both diseases is high. Previously, infection of Schistosoma japonicum cercariae has been shown to provide immediate protection against dextran sodium sulphate (DSS)-induced acute colitis in mice models. Studies using synthesised peptides or soluble proteins from parasites also revealed similar protection against colitis. However, most of these studies were done within a short timeframe, which cannot completely represent the actual situation where natural infection of Schistosoma or colitis is usually chronic. OBJECTIVES This study aims to investigate how chronic schistosomiasis affects chronic intestinal inflammation. METHODS Mice were infected with Schistosoma mansoni and induced simultaneously with chronic colitis. The symptoms and severity of intestinal inflammation and fibrosis were investigated by disease activity index, histology, enzyme-linked immunosorbent assay (ELISA), and quantitative polymerase chain reaction (qPCR). Furthermore, immune analysis by ELISA and qPCR and microbiome analysis by 16S rDNA sequencing were done to investigate the underlying mechanism. FINDINGS Concomitant occurrence of chronic schistosomiasis and chronic colitis significantly alleviated colitis symptoms, lessened intestinal inflammation, and reduced egg-induced fibrosis. Further analysis revealed an alternation of the intestinal immunity and gut microbiome community in mice with both diseases, which could be the potential reason for this outcome. MAIN CONCLUSIONS Our results represent a mechanism of how schistosomiasis and chronic intestinal inflammation affect each other.
Collapse
Affiliation(s)
- You-Ren Lin
- Tzu Chi University, School of Medicine, Master Program in Biomedical Sciences, Hualien, Taiwan
| | - Long Yin Lam
- The Hong Kong Polytechnic University, Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, Kowloon, Hong Kong SAR, China
| | - Chun-Ming Chang
- Buddhist Tzu Chi Medical Foundation, Hualien Tzu Chi Hospital, Department of General Surgery, Hualien, Taiwan
- Tzu Chi University, Institute of Medical Sciences, Hualien, Taiwan
| | - Ho Yin Pekkle Lam
- Tzu Chi University, School of Medicine, Master Program in Biomedical Sciences, Hualien, Taiwan
- Tzu Chi University, Institute of Medical Sciences, Hualien, Taiwan
- Tzu Chi University, School of Medicine, Department of Biochemistry, Hualien, Taiwan
| |
Collapse
|
10
|
Xi Y, Ma H, Liu X, Mu Q, An X, Li S, Liang H, Sun D, Ma R, Deng H, Wu Z, Zhang C, Liu G, Liu C. Epigenetically Reprogrammed Nanovesicles as Inverse Vaccines for Antigen-Specific Immune Tolerance in Autoimmune Diseases. NANO LETTERS 2025; 25:6725-6734. [PMID: 40213869 DOI: 10.1021/acs.nanolett.5c00986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
The development of antigen-specific immunotherapy for autoimmune diseases constitutes an important unmet clinical need. Here we present an innovative inverse vaccine platform leveraging epigenetic reprogramming to induce durable antigen-specific immune tolerance. This inverse vaccine (mDCNVreg) is constructed using artificial cell membrane nanovesicles derived from IFN-γ-primed regulatory dendritic cells subjected to epigenetic modulation. The engineered mDCNVreg features upregulated MHC-II expression enabling targeted antigen presentation, suppressed costimulatory molecules expression, and an enhanced coinhibitory molecules display. Through coordinated mechanisms involving enhanced lymphoid trafficking and phenotype stabilization, this platform significantly enhances antigen delivery to secondary lymphoid organs while maintaining tolerogenic potency. Crucially, mDCNVreg directly induces CD4+ T cell clonal anergy through epitope-specific interactions, establishing long-lasting immune tolerance. This work demonstrates a promising epigenetic engineering approach for reverse vaccine design in personalized autoimmune disease therapy.
Collapse
Affiliation(s)
- Yue Xi
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Huifeng Ma
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xue Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Qianwen Mu
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Xiaoyu An
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Shuo Li
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Hao Liang
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Di Sun
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Rongrong Ma
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Haolan Deng
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Zhengyu Wu
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Chenhao Zhang
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Chao Liu
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| |
Collapse
|
11
|
Kato A, Kita H. The immunology of asthma and chronic rhinosinusitis. Nat Rev Immunol 2025:10.1038/s41577-025-01159-0. [PMID: 40240657 DOI: 10.1038/s41577-025-01159-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2025] [Indexed: 04/18/2025]
Abstract
Asthma and chronic rhinosinusitis (CRS) are common chronic inflammatory diseases of the respiratory tract that have increased in prevalence over the past five decades. The clinical relationship between asthma and CRS has been well recognized, suggesting a common pathogenesis between these diseases. Both diseases are driven by complex airway epithelial cell and immune cell interactions that occur in response to environmental triggers such as allergens, microorganisms and irritants. Advances, including a growing understanding of the biology of the cells involved in the disease, the application of multiomics technologies and the performance of large-scale clinical studies, have led to a better understanding of the pathophysiology and heterogeneity of asthma and CRS. This research has promoted the concept that these diseases consist of several endotypes, in which airway epithelial cells, innate lymphoid cells, T cells, B cells, granulocytes and their mediators are distinctly involved in the immunopathology. Identification of the disease heterogeneity and immunological markers has also greatly improved the protocols for biologic therapies and the clinical outcomes in certain subsets of patients. However, many clinical and research questions remain. In this Review, we discuss recent advances in characterizing the immunological mechanisms of asthma and CRS, with a focus on the main cell types and molecules involved in these diseases.
Collapse
Affiliation(s)
- Atsushi Kato
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Hirohito Kita
- Division of Allergy, Asthma, and Clinical Immunology, Mayo Clinic Arizona, Scottsdale, AZ, USA.
- Department of Immunology, Mayo Clinic Arizona, Scottsdale, AZ, USA.
| |
Collapse
|
12
|
Yang L, Han X, Wang M, Zhang X, Wang L, Xu N, Wu H, Shi H, Pan W, Huang F, Wu X. Early Growth Response Gene 1 Benefits Autoimmune Disease by Promoting Regulatory T Cell Differentiation as a Regulator of Foxp3. RESEARCH (WASHINGTON, D.C.) 2025; 8:0662. [PMID: 40235598 PMCID: PMC11997311 DOI: 10.34133/research.0662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/10/2025] [Accepted: 03/13/2025] [Indexed: 04/17/2025]
Abstract
Foxp3+ regulatory T (Treg) cells, as one of the subtypes of CD4+ T cells, are the crucial gatekeeper in the pathogenesis of self-antigen reactive diseases. In this context, we demonstrated that the selective ablation of early growth response gene 1 (Egr-1) in CD4+ T cells exacerbated experimental autoimmune encephalomyelitis (EAE) in murine models. The absence of Egr-1 in CD4+ T cells, obtained from EAE mice and naïve CD4+ T cells, impeded the differentiation and influence of Treg. Importantly, in CD4+ T cells of multiple sclerosis patients, both Egr-1 and Foxp3 were found to decrease. Further studies showed that distinct from the classical Smad3 route, TGF-β could activate Egr-1 through the Raf-Erk signaling route to promote Foxp3 genetic modulation, thereby promoting Treg cell differentiation and reducing EAE inflammation. A novel natural Egr-1 agonist, calycosin, was found to attenuate EAE progression by regulating the differentiation of Treg. Together, the above results indicate the value of Egr-1, as a novel Foxp3 transactivator, for the differentiation of Treg cells in the development of self-antigen reactive diseases.
Collapse
Affiliation(s)
- Liu Yang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica,
Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Central Laboratory,
Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinyan Han
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica,
Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Neurology, Tangdu Hospital,
Air Force Medical University, Xi’an, China
| | - Mengxue Wang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica,
Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaojuan Zhang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica,
Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lupeng Wang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica,
Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Nuo Xu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica,
Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hui Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica,
Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hailian Shi
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica,
Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weidong Pan
- Department of Neurology,
Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fei Huang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica,
Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaojun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica,
Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
13
|
Gheorghiu M, Trandafir MF, Savu O, Pasarica D, Bleotu C. Unexpectedly High and Difficult-to-Explain Regenerative Capacity in an 82-Year-Old Patient with Insulin-Requiring Type 2 Diabetes and End-Stage Renal Disease. J Clin Med 2025; 14:2556. [PMID: 40283387 PMCID: PMC12027714 DOI: 10.3390/jcm14082556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/02/2025] [Accepted: 04/05/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: The case we present is part of a large study that we conducted on hemodialysis patients with type 2 diabetes mellitus (T2DM) and which set the following objectives: studying changes in the intestinal microbiota, innate and acquired immune response capacity, and tissue regeneration. Methods: (1) For the genetic study of the gut microbiota, special techniques that are not based on cultivation were used since most of the species in the intestinal flora are not cultivable. (2) The immunological study had two targets: innate immunity (inflammation) and adaptive immunity (we chose to address the cellular immune response because, unlike the humoral one, it is insufficiently studied in this category of associated pathologies). As markers for innate immunity (inflammation), the following were determined: IL-6, sIL-6R, IL-1β, TNFα, IL-10, and NGAL. TNFβ/LTα was determined as a marker for adaptive immunity (the cellular immune response). (3) The study of tissue regeneration capacity was performed using NT-3 (this is the first study to do so) and VEGFβ (another marker that is scarce in this category of patients) as markers. All the aforementioned compounds were determined from serum samples, utilizing Merck Millipore ELISA kits for IL-6, IL-1β, IL-10, NT-3, and VEGF β, and Elabscience ELISA kits for IL-6R, TNFα, TNFβ, and NGAL. Results: We were very surprised to find unexpected immunological changes and tissue regenerative capacity in one of the patients studied, an 82-year-old female patient diagnosed with insulin-dependent T2DM with multiple complications, including end-stage renal disease (ESRD). The patient showed a huge capacity for tissue regeneration, combined with amplification of immunological capacity, in comparison to patients in the same group (T2DM and ESRD) and to those in the control group (ESRD). Thus, extremely elevated serum concentrations of IL-1β, IL-6, IL-10, and TNF-β, as well as the tissue regeneration indicators NT-3 and VEGFβ, were obtained in comparison to all other members of the patient group. At the same time, serum levels of the soluble IL-6 receptor (sIL6-R) and TNFα were greatly reduced compared to the test group's mean. Conclusions: All the data obtained during our research were corroborated with those from the specialized literature and entitle us to support the hypothesis that the cause of these unexpected behaviors is the genetically conditioned overproduction (possibly acquired post-infection) of IL-6, along with its predominant anti-inflammatory and pro-regenerative signaling through the membrane-bound receptor IL-6R.
Collapse
Affiliation(s)
- Mihaela Gheorghiu
- Pathophysiology and Immunology Department, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.-F.T.); (O.S.); (D.P.)
| | - Maria-Florina Trandafir
- Pathophysiology and Immunology Department, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.-F.T.); (O.S.); (D.P.)
| | - Octavian Savu
- “N.C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 020475 Bucharest, Romania
- Doctoral School of “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Daniela Pasarica
- Pathophysiology and Immunology Department, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.-F.T.); (O.S.); (D.P.)
| | - Coralia Bleotu
- “Stefan S. Nicolau” Institute of Virology, 030304 Bucharest, Romania;
| |
Collapse
|
14
|
Tan SN, Hao J, Ge J, Yang Y, Liu L, Huang J, Lin M, Zhao X, Wang G, Yang Z, Ni L, Dong C. Regulatory T cells converted from Th1 cells in tumors suppress cancer immunity via CD39. J Exp Med 2025; 222:e20240445. [PMID: 39907686 PMCID: PMC11797014 DOI: 10.1084/jem.20240445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/17/2024] [Accepted: 01/10/2025] [Indexed: 02/06/2025] Open
Abstract
Regulatory T (Treg) cells are known to impede antitumor immunity, yet the regulatory mechanisms and functional roles of these cells remain poorly understood. In this study, through the characterization of multiple cancer models, we identified a substantial presence of peripherally induced Treg cells in the tumor microenvironment (TME). Depletion of these cells triggered antitumor responses and provided potent therapeutic effects by increasing functional CD8+ T cells. Fate-mapping and transfer experiments revealed that IFN-γ-expressing T helper (Th) 1 cells differentiated into Treg cells in response to TGF-β signaling in tumors. Pseudotime trajectory analysis further revealed the terminal differentiation of Th1-like Treg cells from Th1 cells in the TME. Tumor-resident Treg cells highly expressed T-bet, which was essential for their functions in the TME. Additionally, CD39 was highly expressed by T-bet+ Treg cells in both mouse and human tumors, and was necessary for Treg cell-mediated suppression of CD8+ T cell responses. Our study elucidated the developmental pathway of intratumoral Treg cells and highlighted novel strategies for targeting them in cancer patients.
Collapse
Affiliation(s)
- Sang-Nee Tan
- School of Medicine, Westlake University, Hangzhou, China
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Jing Hao
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine-affiliated Renji Hospital, Shanghai, China
| | - Jing Ge
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine-affiliated Renji Hospital, Shanghai, China
| | - Yazheng Yang
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Liguo Liu
- Department of Hepatobiliary Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Jia Huang
- Department of Hepatobiliary Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Meng Lin
- School of Medicine, Westlake University, Hangzhou, China
| | - Xiaohong Zhao
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Genyu Wang
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiying Yang
- Department of Hepatobiliary Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Ling Ni
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Chen Dong
- School of Medicine, Westlake University, Hangzhou, China
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine-affiliated Renji Hospital, Shanghai, China
| |
Collapse
|
15
|
Meng X, Zhu Y, Liu K, Wang Y, Liu X, Liu C, Zeng Y, Wang S, Gao X, Shen X, Chen J, Tao S, Xu Q, Dong L, Shen L, Wang L. CXXC-finger protein 1 associates with FOXP3 to stabilize homeostasis and suppressive functions of regulatory T cells. eLife 2025; 13:RP103417. [PMID: 40183773 PMCID: PMC11970909 DOI: 10.7554/elife.103417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025] Open
Abstract
FOXP3-expressing regulatory T (Treg) cells play a pivotal role in maintaining immune homeostasis and tolerance, with their activation being crucial for preventing various inflammatory responses. However, the mechanisms governing the epigenetic program in Treg cells during their dynamic activation remain unclear. In this study, we demonstrate that CXXC-finger protein 1 (CXXC1) interacts with the transcription factor FOXP3 and facilitates the regulation of target genes by modulating H3K4me3 deposition. Cxxc1 deletion in Treg cells leads to severe inflammatory disease and spontaneous T cell activation, with impaired immunosuppressive function. As a transcriptional regulator, CXXC1 promotes the expression of key Treg functional markers under steady-state conditions, which are essential for the maintenance of Treg cell homeostasis and their suppressive functions. Epigenetically, CXXC1 binds to the genomic regulatory regions of Treg program genes in mouse Treg cells, overlapping with FOXP3-binding sites. Given its critical role in Treg cell homeostasis, CXXC1 presents itself as a promising therapeutic target for autoimmune diseases.
Collapse
Affiliation(s)
- Xiaoyu Meng
- Institute of Immunology and Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Zhejiang University School of MedicineHangzhouChina
- Liangzhu Laboratory, Zhejiang University Medical CenterHangzhouChina
| | - Yezhang Zhu
- Department of Hematology, Tongji Hospital, School of Medicine, Tongji UniversityShanghaiChina
- Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center of Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji UniversityShanghaiChina
| | - Kuai Liu
- Institute of Immunology and Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Zhejiang University School of MedicineHangzhouChina
- Liangzhu Laboratory, Zhejiang University Medical CenterHangzhouChina
| | - Yuxi Wang
- Laboratory Animal Center, Zhejiang UniversityHangzhouChina
| | - Xiaoqian Liu
- Institute of Immunology and Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Zhejiang University School of MedicineHangzhouChina
- Liangzhu Laboratory, Zhejiang University Medical CenterHangzhouChina
| | - Chenxin Liu
- Zhejiang University School of MedicineHangzhouChina
| | - Yan Zeng
- Institute of Immunology and Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Zhejiang University School of MedicineHangzhouChina
- Liangzhu Laboratory, Zhejiang University Medical CenterHangzhouChina
| | - Shuai Wang
- Institute of Immunology and Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Zhejiang University School of MedicineHangzhouChina
- Liangzhu Laboratory, Zhejiang University Medical CenterHangzhouChina
| | - Xianzhi Gao
- Institute of Immunology and Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Zhejiang University School of MedicineHangzhouChina
- Liangzhu Laboratory, Zhejiang University Medical CenterHangzhouChina
| | - Xin Shen
- Co-Facility Center, Zhejiang University School of MedicineHangzhouChina
| | - Jing Chen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Sijue Tao
- Laboratory Animal Center, Zhejiang UniversityHangzhouChina
| | - Qianying Xu
- Zhejiang University School of MedicineHangzhouChina
| | - Linjia Dong
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical CollegeHangzhouChina
| | - Li Shen
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang UniversityHangzhouChina
- Department of Orthopedics Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouChina
| | - Lie Wang
- Institute of Immunology and Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Zhejiang University School of MedicineHangzhouChina
- Liangzhu Laboratory, Zhejiang University Medical CenterHangzhouChina
- Laboratory Animal Center, Zhejiang UniversityHangzhouChina
- Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang UniversityJiaxingChina
| |
Collapse
|
16
|
Norton EG, Chapman NM, Shi H, Meng X, Huang H, KC A, Rankin S, Saravia J, Yuan S, Hu H, Vogel P, Chi H. Vps34-orchestrated lipid signaling processes regulate the transitional heterogeneity and functional adaptation of effector regulatory T cells. PLoS Biol 2025; 23:e3003074. [PMID: 40215232 PMCID: PMC11990774 DOI: 10.1371/journal.pbio.3003074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/19/2025] [Indexed: 04/14/2025] Open
Abstract
Regulatory T cell (Treg) heterogeneity exists in lymphoid and non-lymphoid tissues, but we have limited understanding of context-dependent functions and spatiotemporal regulators of heterogenous Treg states, especially during perinatal life when immune tolerance is established. Here, we revealed that the class III PI3K Vps34 orchestrates effector Treg (eTreg) transitional heterogeneity during perinatal life. We found that loss of Vps34 reduced terminal eTreg accumulation in lymphoid tissues, associated with decreased Treg generation in non-lymphoid tissues and development of an early-onset autoimmune-like disease. After perinatal life, Vps34-deficient eTreg accumulation was further impaired due to reduced cell survival, highlighting temporal regulation of eTreg heterogeneity and maintenance by Vps34. Accordingly, inhibition of Vps34 in mature Tregs disrupted immune homeostasis but boosted anti-tumor immunity. Mechanistically, multiomics profiling approaches uncovered that Vps34-orchestrated transcriptional and epigenetic remodeling promotes terminal eTreg programming. Further, via genetic deletion of the Vps34-interacting proteins Atg14 or Uvrag in Tregs, we established that Atg14 but not Uvrag was required for the overall survival, but not terminal differentiation, of eTregs, suggesting that autophagy but not endocytosis partly contributed to Vps34-dependent effects. Accordingly, mice with Treg-specific loss of Atg14, but not Uvrag, had moderately disrupted immune homeostasis and reduced tumor growth, with Vps34- or Atg14-dependent gene signatures also being elevated in intratumoral Tregs from human cancer patients. Collectively, our study reveals distinct Vps34-orchestrated signaling events that regulate eTreg heterogeneity and functional adaptation and the pathophysiological consequences on autoimmunity versus anti-tumor immunity.
Collapse
Affiliation(s)
- Erienne G. Norton
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- St. Jude Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Nicole M. Chapman
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Hao Shi
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Xiaoxi Meng
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Hongling Huang
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Anil KC
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Sherri Rankin
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Jordy Saravia
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Sujing Yuan
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Haoran Hu
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Peter Vogel
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Hongbo Chi
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- St. Jude Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| |
Collapse
|
17
|
Wu L, Zhu L, Chen J. Diverse potential of chimeric antigen receptor-engineered cell therapy: Beyond cancer. Clin Transl Med 2025; 15:e70306. [PMID: 40205818 PMCID: PMC11982526 DOI: 10.1002/ctm2.70306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 03/24/2025] [Accepted: 03/31/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR)-engineered cell therapies have made significant progress in haematological cancer treatment. This success has motivated researchers to investigate its potential applications in non-cancerous diseases, with substantial strides already made in this field. MAIN BODY This review summarises the latest research on CAR-engineered cell therapies, with a particular focus on CAR-T cell therapy for non-cancerous diseases, including but not limited to infectious diseases, autoimmune diseases, cardiac diseases and immune-mediated disorders in transplantation. Additionally, the review discusses the current obstacles that need to be addressed for broader clinical applications. CONCLUSION With ongoing research and continuous improvements, CAR-engineered cell therapy holds promise as a potent tool for treating various diseases in the future. KEY POINTS CAR-engineered cell therapy has expanded beyond cancer to treat autoimmune diseases, infections, cardiac diseases, and transplant-related rejection. The CAR platform is diverse, with various cell types such as CAR-T, CAR-NK, and CAR-M potentially suited for different disease contexts. The safety, efficacy, and practicality of CAR cell therapy in non-cancer diseases remain challenging, requiring further technological optimization and clinical translation.
Collapse
Affiliation(s)
- Lvying Wu
- Institute of Clinical MedicineThe Second Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
| | - Lingfeng Zhu
- Minimally Invasive Urology and Translational Medicine CenterFuzhou First General Hospital Affiliated With Fujian Medical UniversityFuzhouFujianChina
| | - Jin Chen
- Institute of Clinical MedicineThe Second Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
- Minimally Invasive Urology and Translational Medicine CenterFuzhou First General Hospital Affiliated With Fujian Medical UniversityFuzhouFujianChina
| |
Collapse
|
18
|
Tani-Ichi S, Abe S, Miyachi H, Kitano S, Shimba A, Ejima A, Hara T, Cui G, Kado T, Hori S, Tobe K, Ikuta K. IL-7Rα signaling in regulatory T cells of adipose tissue is essential for systemic glucose homeostasis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025; 214:666-679. [PMID: 40107286 DOI: 10.1093/jimmun/vkae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 12/17/2024] [Indexed: 03/22/2025]
Abstract
Regulatory T cells (Tregs) mediate tissue homeostasis and repair. The function of the interleukin-7 receptor α (IL-7Rα) in nonlymphoid tissue Tregs is still unknown, although low expression of IL-7Rα is a widely accepted marker for Tregs. Here, we show that IL-33R (ST2)-expressing Tregs in the visceral adipose tissue (VAT) express the IL-7Rα at high levels. Treg-specific IL-7Rα-deficient mice exhibited reduced adipose ST2+ Tregs and impaired glucose tolerance, whereas IL-7Rα was dispensable for Tregs in lymphoid tissues. Mice deficient in thymic stromal lymphopoietin (TSLP), an additional ligand for IL-7Rα, displayed a modest decrease in adipose ST2+ Tregs and a reduced accumulation of adipose eosinophils, accompanied by slightly impaired glucose tolerance. In the VAT, mesothelial cells expressed IL-7, whereas adipose stem cells and folate receptor β-expressing tissue-resident macrophages expressed TSLP. Thus, this study indicates the significance of IL-7Rα signaling in the maintenance of VAT Tregs and glucose homeostasis, revealing a novel role for IL-7 and TSLP in immunometabolism.
Collapse
Affiliation(s)
- Shizue Tani-Ichi
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinya Abe
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hitoshi Miyachi
- Reproductive Engineering Team, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Satsuki Kitano
- Reproductive Engineering Team, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Akihiro Shimba
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Aki Ejima
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Takahiro Hara
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Guangwei Cui
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Tomonobu Kado
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Shohei Hori
- Laboratory of Immunology and Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuyuki Tobe
- Research Center for Pre-Disease Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Koichi Ikuta
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
19
|
Kumagai S, Momoi Y, Nishikawa H. Immunogenomic cancer evolution: A framework to understand cancer immunosuppression. Sci Immunol 2025; 10:eabo5570. [PMID: 40153489 DOI: 10.1126/sciimmunol.abo5570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 06/26/2024] [Accepted: 03/05/2025] [Indexed: 03/30/2025]
Abstract
The process of tumor development involves tumor cells eluding detection and suppression of immune responses, which can cause decreased tumor cell antigenicity, expression of immunosuppressive molecules, and immunosuppressive cell recruitment to the tumor microenvironment (TME). Immunologically and genomically integrated analysis (immunogenomic analysis) of patient specimens has revealed that oncogenic aberrant signaling is involved in both carcinogenesis and immune evasion. In noninflamed cancers such as epidermal growth factor receptor (EGFR)-mutated lung cancers, genetic abnormalities in cancer cells contribute to the formation of an immunosuppressive TME by recruiting immunosuppressive cells, which cannot be fully explained by the cancer immunoediting hypothesis. This review summarizes the latest findings regarding the links between cancer genetic abnormalities and immunosuppression causing clinical resistance to immunotherapy. We propose the concepts of immunogenomic cancer evolution, in which cancer cell genomic evolution shapes the immunosuppressive TME, and immunogenomic precision medicine, in which cancer immunotherapy can be combined with molecularly targeted reagents that modulate the immunosuppressive TME.
Collapse
Affiliation(s)
- Shogo Kumagai
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo 104-0045, Japan
- Division of Cancer Immunology, Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Chiba 277-8577, Japan
- Division of Cellular Signaling, Research Institute, National Cancer Center, Tokyo 104-0045, Japan
| | - Yusaku Momoi
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo 104-0045, Japan
- Department of Tumor Pathology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroyoshi Nishikawa
- Division of Cancer Immunology, Research Institute, National Cancer Center, Tokyo 104-0045, Japan
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Division of Cancer Immune Multicellular System Regulation, Center for Cancer Immunotherapy and Immunology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
- Kindai University Faculty of Medicine, Osaka-sayama 589-8511, Japan
| |
Collapse
|
20
|
Klawon DE, Pagane N, Walker MT, Ganci NK, Miller CH, Gai E, Rodriguez DM, Ryan-Payseur BK, Duncombe RK, Adams EJ, Maienschein-Cline M, Freitag NE, Germain RN, Wong HS, Savage PA. Regulatory T cells constrain T cells of shared specificity to enforce tolerance during infection. Science 2025; 387:eadk3248. [PMID: 40014689 PMCID: PMC12006836 DOI: 10.1126/science.adk3248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/16/2024] [Accepted: 12/17/2024] [Indexed: 03/01/2025]
Abstract
During infections, CD4+ Foxp3+ regulatory T (Treg) cells must control autoreactive CD4+ conventional T (Tconv) cell responses against self-peptide antigens while permitting those against pathogen-derived "nonself" peptides. We defined the basis of this selectivity using mice in which Treg cells reactive to a single prostate-specific self-peptide were selectively depleted. We found that self-peptide-specific Treg cells were dispensable for the control of Tconv cells of matched specificity at homeostasis. However, they were required to control such Tconv cells and prevent autoimmunity toward the prostate after exposure to elevated self-peptide during infection. Notably, the Treg cell response to self-peptide did not affect protective Tconv cell responses to a pathogen-derived peptide. Thus, self-peptide-specific Treg cells promoted self-nonself discrimination during infection by selectively controlling Tconv cells of shared self-specificity.
Collapse
Affiliation(s)
- David E.J. Klawon
- Department of Pathology, University of Chicago; Chicago, IL 60637, USA
- Present address: Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nicole Pagane
- The Ragon Institute of Mass General, MIT and Harvard; Cambridge, MA 02139, USA
- Program in Computational and Systems Biology, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - Matthew T. Walker
- Department of Pathology, University of Chicago; Chicago, IL 60637, USA
| | - Nicole K. Ganci
- Department of Pathology, University of Chicago; Chicago, IL 60637, USA
| | - Christine H. Miller
- Department of Pathology, University of Chicago; Chicago, IL 60637, USA
- Interdisciplinary Scientist Training Program, University of Chicago; Chicago, IL 60637, USA
- Present address: Department of Pathology, University of California, San Francisco School of Medicine, San Francisco, CA 94117, USA
| | - Eric Gai
- The Ragon Institute of Mass General, MIT and Harvard; Cambridge, MA 02139, USA
- Program in Computational and Systems Biology, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - Donald M. Rodriguez
- Department of Pathology, University of Chicago; Chicago, IL 60637, USA
- Interdisciplinary Scientist Training Program, University of Chicago; Chicago, IL 60637, USA
| | - Bridgett K. Ryan-Payseur
- Department of Microbiology and Immunology, University of Illinois Chicago; Chicago, Illinois 60612 USA
| | - Ryan K. Duncombe
- Department of Biochemistry and Molecular Biology, University of Chicago; Chicago, IL 60637, USA
| | - Erin J. Adams
- Department of Biochemistry and Molecular Biology, University of Chicago; Chicago, IL 60637, USA
| | - Mark Maienschein-Cline
- Research Informatics Core, Research Resources Center, University of Illinois Chicago; Chicago, IL 60612 USA
| | - Nancy E. Freitag
- Department of Pharmaceutical Sciences, University of Illinois Chicago; Chicago, IL 60612, USA
| | - Ronald N. Germain
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, MD 20892, USA
| | - Harikesh S. Wong
- The Ragon Institute of Mass General, MIT and Harvard; Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Peter A. Savage
- Department of Pathology, University of Chicago; Chicago, IL 60637, USA
| |
Collapse
|
21
|
Yuan Z, Wang JH, Cui H, Wang SY, Wei B, Cui JX. Mapping the landscape of gastric cancer immunotherapy: Bibliometric insights into advances and hotspots. World J Gastrointest Oncol 2025; 17:100997. [PMID: 40092931 PMCID: PMC11866247 DOI: 10.4251/wjgo.v17.i3.100997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/11/2024] [Accepted: 12/31/2024] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Immunotherapy has surfaced as a promising therapeutic modality for gastric cancer (GC). A comprehensive review of advancements, current status, and research trends in GC immunotherapy is essential to inform future investigative efforts. AIM To delineate the trends, advancements, and focal points in immunotherapy for GC. METHODS We performed a bibliometric analysis of 2906 articles in English concerning GC immunotherapy published from 2000 to December 20, 2023, indexed in the Web of Science Core Collection. Data analysis and visualization were facilitated by CiteSpace (6.1.6R), VOSviewer v.1.6.17, and GraphPad Prism v8.0.2. RESULTS There has been an increase in the annual publication rate of GC immunotherapy research. China leads in publication volume, while the United States demonstrates the highest citation impact. Fudan University is notable for its citation frequency and publication output. Co-citation analysis and keyword frequency revealed and highlighted a focus on GC prognosis, the tumor microenvironment (TME), and integrative immunotherapy with targeted therapy. Emerging research areas include gastroesophageal junction cancer, adoptive immunotherapy, and the role of Treg cell in immunotherapy. CONCLUSION GC immunotherapy research is an expanding field attracting considerable scientific interest. With the clinical adoption of immunotherapy in GC, the primary goals are to enhance treatment efficacy and patient outcomes. Unlike hematological malignancies, GC's solid TME presents distinct immunological challenges that may attenuate the cytotoxic effects of immune cells on cancer cells. For instance, although CAR-T therapy is effective in hematological malignancies, it has underperformed in GC settings. Current research is centered on overcoming immunosuppression within the TME, with a focus on combinations of targeted therapy, adoptive immunotherapy, Treg cell dynamics, and precise prognosis prediction in immunotherapy. Additionally, immunotherapy's role in treating gastroesophageal junction cancer has become a novel research focus.
Collapse
Affiliation(s)
- Zhen Yuan
- School of Medicine, Nankai University, Tianjin 300071, China
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Jing-Hang Wang
- School of Medicine, Nankai University, Tianjin 300071, China
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Hao Cui
- School of Medicine, Nankai University, Tianjin 300071, China
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Shu-Yuan Wang
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Bo Wei
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Jian-Xin Cui
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
22
|
Zhang P, Wang J, Miao J, Zhu P. The dual role of tissue regulatory T cells in tissue repair: return to homeostasis or fibrosis. Front Immunol 2025; 16:1560578. [PMID: 40114929 PMCID: PMC11922884 DOI: 10.3389/fimmu.2025.1560578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 02/18/2025] [Indexed: 03/22/2025] Open
Abstract
Tissue resident regulatory T cells (tissue Tregs) are vital for maintaining immune homeostasis and controlling inflammation. They aid in repairing damaged tissues and influencing the progression of fibrosis. However, despite extensive research on how tissue Tregs interact with immune and non-immune cells during tissue repair, their pro- and anti-fibrotic effects in chronic tissue injury remain unclear. Understanding how tissue Tregs interact with various cell types, as well as their roles in chronic injury and fibrosis, is crucial for uncovering the mechanisms behind these conditions. In this review, we describe the roles of tissue Tregs in repair and fibrosis across different tissues and explore potential strategies for regulating tissue homeostasis. These insights hold promise for providing new perspectives and approaches for the treatment of irreversible fibrotic diseases.
Collapse
Affiliation(s)
| | | | - Jinlin Miao
- Department of Clinical Immunology of Xijing Hospital and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Ping Zhu
- Department of Clinical Immunology of Xijing Hospital and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
23
|
Cui Y, David M, Bouchareychas L, Rouquier S, Sajuthi S, Ayrault M, Navarin C, Lara G, Lafon A, Saviane G, Boulakirba S, Menardi A, Demory A, Frikeche J, de la Forest Divonne Beghelli S, Lu HH, Dumont C, Abel T, Fenard D, de la Rosa M, Gertner-Dardenne J. IL23R-Specific CAR Tregs for the Treatment of Crohn's Disease. J Crohns Colitis 2025; 19:jjae135. [PMID: 39252592 PMCID: PMC11945296 DOI: 10.1093/ecco-jcc/jjae135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/18/2024] [Accepted: 09/09/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND AND AIMS Regulatory T cells (Tregs) are key regulators in maintaining tissue homeostasis. Disrupted immune homeostasis is associated with Crohn's disease (CD) pathogenesis. Thus, Treg therapy represents a promising long-acting treatment to restore immune balance in the diseased intestine. Chimeric antigen receptor (CAR) T-cell therapy has revolutionized cancer treatment. This innovative approach also provides the opportunity to improve therapy for CD. By targeting a disease-relevant protein, interleukin-23 receptor (IL23R), we engineered Tregs expressing IL23R-CAR for treating active CD. METHODS Intestinal IL23R expression from active CD was verified by immunohistochemical analysis. Phenotypic and functional characteristics of IL23R-CAR Tregs were assessed using in vitro assays and their migration capacity was monitored in a xenograft tumor model. Transcriptomic and proteomic analyses were performed to associate molecular profiles with IL23R-CAR Treg activation against colon biopsy-derived cells from active CD patients. RESULTS Our study showed that IL23R-CAR displayed negligible tonic signaling and a strong signal-to-noise ratio. IL23R-CAR Tregs maintained regulatory phenotype during in vitro expansion, even when chronically exposed to proinflammatory cytokines and target antigen. IL23R engagement on IL23R-CAR Tregs triggered CAR-specific activation and significantly enhanced their suppressive activity. Also, IL23R-CAR Tregs migrated to IL23R-expressing tissue in humanized mice. Finally, IL23R-CAR Tregs elicited a specific activation against colon biopsy-derived cells from active CD, suggesting an efficient CAR engagement in active CD. Molecular profiling of CD patient biopsies also revealed transcriptomic and proteomic patterns associated with IL23R-CAR activation. CONCLUSIONS Overall, our results demonstrate that IL23R-CAR Tregs represent a promising therapy for active CD.
Collapse
Affiliation(s)
- Yue Cui
- Research, Sangamo Therapeutics, Valbonne, France
| | - Marion David
- Research, Sangamo Therapeutics, Valbonne, France
| | | | | | | | | | | | - Gregory Lara
- Research, Sangamo Therapeutics, Valbonne, France
| | - Audrey Lafon
- Research, Sangamo Therapeutics, Valbonne, France
| | | | | | | | | | | | | | | | | | - Tobias Abel
- Research, Sangamo Therapeutics, Valbonne, France
| | - David Fenard
- Research, Sangamo Therapeutics, Valbonne, France
| | | | | |
Collapse
|
24
|
Dikiy S, Ghelani AP, Levine AG, Martis S, Giovanelli P, Wang ZM, Beroshvili G, Pritykin Y, Krishna C, Huang X, Glasner A, Greenbaum BD, Leslie CS, Rudensky AY. Terminal differentiation and persistence of effector regulatory T cells essential for preventing intestinal inflammation. Nat Immunol 2025; 26:444-458. [PMID: 39905200 PMCID: PMC11876075 DOI: 10.1038/s41590-024-02075-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 12/30/2024] [Indexed: 02/06/2025]
Abstract
Regulatory T (Treg) cells are a specialized CD4+ T cell lineage with essential anti-inflammatory functions. Analysis of Treg cell adaptations to non-lymphoid tissues that enable their specialized immunosuppressive and tissue-supportive functions raises questions about the underlying mechanisms of these adaptations and whether they represent stable differentiation or reversible activation states. Here, we characterize distinct colonic effector Treg cell transcriptional programs. Attenuated T cell receptor (TCR) signaling and acquisition of substantial TCR-independent functionality seems to facilitate the terminal differentiation of a population of colonic effector Treg cells that are distinguished by stable expression of the immunomodulatory cytokine IL-10. Functional studies show that this subset of effector Treg cells, but not their expression of IL-10, is indispensable for colonic health. These findings identify core features of the terminal differentiation of effector Treg cells in non-lymphoid tissues and their function.
Collapse
Affiliation(s)
- Stanislav Dikiy
- Howard Hughes Medical Institute and Immunology Program, Ludwig Center at Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA.
| | - Aazam P Ghelani
- Howard Hughes Medical Institute and Immunology Program, Ludwig Center at Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Andrew G Levine
- Howard Hughes Medical Institute and Immunology Program, Ludwig Center at Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Stephen Martis
- Computational Oncology, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Paolo Giovanelli
- Howard Hughes Medical Institute and Immunology Program, Ludwig Center at Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Zhong-Min Wang
- Howard Hughes Medical Institute and Immunology Program, Ludwig Center at Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Giorgi Beroshvili
- Howard Hughes Medical Institute and Immunology Program, Ludwig Center at Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Yuri Pritykin
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Lewis-Sigler Institute for Integrative Genomics and Department of Computer Science, Princeton University, Princeton, NJ, USA
| | - Chirag Krishna
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xiao Huang
- Howard Hughes Medical Institute and Immunology Program, Ludwig Center at Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ariella Glasner
- Howard Hughes Medical Institute and Immunology Program, Ludwig Center at Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Benjamin D Greenbaum
- Computational Oncology, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christina S Leslie
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexander Y Rudensky
- Howard Hughes Medical Institute and Immunology Program, Ludwig Center at Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
| |
Collapse
|
25
|
Ruan L, Wang L. Adoptive cell therapy against tumor immune evasion: mechanisms, innovations, and future directions. Front Oncol 2025; 15:1530541. [PMID: 40094019 PMCID: PMC11906336 DOI: 10.3389/fonc.2025.1530541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/06/2025] [Indexed: 03/19/2025] Open
Abstract
Tumors employ a range of strategies to evade detection and eradication by the host's immune system. These include downregulating antigen expression, altering antigen presentation processes, and inhibiting immune checkpoint pathways. etc. Adoptive Cell Therapy (ACT) represents a strategy that boosts anti-tumor immunity. This is achieved by amplifying or genetically engineering immune cells, which are either sourced from the patient or a donor, in a laboratory setting. Subsequently, these cells are reintroduced into the patient to bolster their immune response against cancer. ACT has successfully restored anti-tumor immune responses by amplifying the activity of T cells from patients or donors. This review focuses on the mechanisms underlying tumor escape, including alterations in tumor cell antigens, the immunosuppressive tumor microenvironment (TME), and modulation of immune checkpoint pathways. It further explores how ACT can avddress these factors to enhance therapeutic efficacy. Additionally, the review discusses the application of gene-editing technologies (such as CRISPR) in ACT, highlighting their potential to strengthen the anti-tumor capabilities of T cells. Looking forward, the personalized design of ACT, combined with immune checkpoint inhibitors and targeted therapies, is expected to significantly improve treatment outcomes, positioning this approach as a key strategy in the field of cancer immunotherapy.
Collapse
Affiliation(s)
- Liqin Ruan
- Department of Hepatobiliary Surgery, JiuJiang City Key Laboratory of Cell Therapy, JiuJiang No.1 People's Hospital, Jiujiang, Jiangxi, China
| | - Lu Wang
- Department of Oncology, JiuJiang City Key Laboratory of Cell Therapy, JiuJiang No.1 People's Hospital, Jiujiang, Jiangxi, China
| |
Collapse
|
26
|
Li J, Jacobse J, Pilat JM, Kaur H, Gu W, Kang SW, Rusznak M, Huang HI, Barrera J, Oloo PA, Roland JT, Hawkins CV, Pahnke AP, Khalil M, Washington MK, Wilson KT, Williams CS, Peebles RS, Konnikova L, Choksi YA, Hammer GE, Lau KS, Goettel JA. Interleukin-10 production by innate lymphoid cells restricts intestinal inflammation in mice. Mucosal Immunol 2025:S1933-0219(25)00023-6. [PMID: 39988202 DOI: 10.1016/j.mucimm.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 02/13/2025] [Accepted: 02/18/2025] [Indexed: 02/25/2025]
Abstract
Interleukin-10 (IL-10) is an immunomodulatory cytokine critical for intestinal immune homeostasis. IL-10 is produced by various immune cells but IL-10 receptor signaling in intestinal CX3CR1+ mononuclear phagocytes is necessary to prevent spontaneous colitis in mice. Here, we utilized fluorescent protein reporters and cell-specific targeting and found that Rorc-expressing innate lymphoid cells (ILCs) produce IL-10 in response to anti-CD40-mediated intestinal inflammation. Deletion of Il10 specifically in Rorc-expressing ILCs led to phenotypic changes in intestinal macrophages and exacerbated both innate and adaptive immune-mediated models of experimental colitis. The population of IL-10+ producing ILCs shared markers with both ILC2 and ILC3 with nearly all ILC3s being of the NCR+ subtype. Interestingly, Ccl26 was enriched in IL-10+ ILCs and was markedly reduced in IL-10-deficient ILC3s. Since CCL26 is a ligand for CX3CR1, we employed RNA in situ hybridization and observed increased numbers of ILCs in close proximity to Cx3cr1-expressing cells under inflammatory conditions. Finally, we generated transgenic RorctdTomato reporter mice that faithfully marked RORγt+ cells that could rescue disease pathology and aberrant macrophage phenotype following adoptive transfer into mice with selective Il10 deficiency in ILC3s. These results demonstrate that IL-10 production by a population of ILCs functions to promote immune homeostasis in the intestine possibly via direct effects on intestinal macrophages.
Collapse
Affiliation(s)
- Jing Li
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Justin Jacobse
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, USA; Willem-Alexander Children's Hospital, Department of Pediatrics, Leiden University Medical Center, Leiden, the Netherlands; Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN USA 37212
| | - Jennifer M Pilat
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, USA; Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Harsimran Kaur
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Weihong Gu
- Department of Pediatrics, Yale Medical School, New Haven, CT 06520, USA
| | - Seung Woo Kang
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Mark Rusznak
- Department of Internal Medicine Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hsin-I Huang
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA
| | - Julio Barrera
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA
| | - Pauline A Oloo
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA
| | - Joseph T Roland
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Internal Medicine Vanderbilt University Medical Center, Nashville, TN, USA
| | - Caroline V Hawkins
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Andrew P Pahnke
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Marian Khalil
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, USA
| | - M Kay Washington
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Keith T Wilson
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, USA; Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN USA 37212; Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christopher S Williams
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, USA; Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN USA 37212; Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
| | - R Stokes Peebles
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN USA 37212; Department of Internal Medicine Vanderbilt University Medical Center, Nashville, TN, USA
| | - Liza Konnikova
- Department of Pediatrics, Yale Medical School, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA; Center for Systems and Engineering Immunology, Yale School of Medicine, New Haven, CT 06520, USA; Human and Translational Immunology Program, Yale School of Medicine, New Haven, CT 06520, USA; Program in Translational Biomedicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Obstetrics Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT 06520, USA
| | - Yash A Choksi
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, USA; Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN USA 37212; Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Gianna Elena Hammer
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA
| | - Ken S Lau
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA; Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Center for Computational Systems Biology, Vanderbilt University, Nashville, TN, USA
| | - Jeremy A Goettel
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, USA; Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
27
|
Dadey RE, Cui J, Rajasundaram D, Yano H, Liu C, Cohen JA, Liu AW, Kaplan DH, Workman CJ, Vignali DAA. Regulatory T cells in the tumor microenvironment display a unique chromatin accessibility profile. Immunohorizons 2025; 9:vlae014. [PMID: 39965167 PMCID: PMC11841976 DOI: 10.1093/immhor/vlae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 02/20/2025] Open
Abstract
Regulatory T cells (Tregs) are a suppressive CD4+ T cell population that limit the antitumor immune response. In this study, we analyzed the chromatin accessibility of Tregs in the murine tumor microenvironment (TME) to identify tumor-specific accessible peaks and if these are altered over time in the tumor microenvironment, with or without anti-PD-1 immunotherapy. We found that despite little change in chromatin accessibility of Tregs in the tumor over time, Tregs have a distinct chromatin accessibility signature in the TME compared with Tregs in the periphery. This distinct tumor Treg chromatin accessibility profile highlights reduced accessibility at loci important for an CD4+ conventional T cell (CD4+ Foxp3-) effector phenotype. Analysis of chromatin accessibility in Tregs from B16 and MC38 tumor models indicated that Tregs from skin-resident tumors are most similar to naïve skin resident Tregs but still bear key differences attributable to the TME. We also found that Tregs do not alter their transcriptome or chromatin accessibility following immunotherapy. We conclude that although chromatin accessibility in Tregs is somewhat similar to their tissue residency, the TME may drive a unique chromatin accessibility profile. Treg chromatin accessibility in the tumor appears remarkably stable and unaltered by tumor type, over time, or following immunotherapy.
Collapse
Affiliation(s)
- Rebekah E Dadey
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, United States
- Graduate Program of Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Jian Cui
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| | - Dhivyaa Rajasundaram
- Division of Health Informatics, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Hiroshi Yano
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, United States
- Graduate Program of Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Chang Liu
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| | - Jonathan A Cohen
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Andrew W Liu
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Daniel H Kaplan
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Creg J Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, United States
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| |
Collapse
|
28
|
Soussi S, Maione AS, Lefèvre L, Pizzinat N, Iacovoni J, Gonzalez-Fuentes I, Cussac D, Iengo L, Santin Y, Tundo F, Tondo C, Pompilio G, Parini A, Douin-Echinard V, Sommariva E. Analysis of effector/memory regulatory T cells from arrhythmogenic cardiomyopathy patients identified IL-32 as a novel player in ACM pathogenesis. Cell Death Dis 2025; 16:87. [PMID: 39934117 PMCID: PMC11814135 DOI: 10.1038/s41419-025-07364-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/23/2024] [Accepted: 01/16/2025] [Indexed: 02/13/2025]
Abstract
Arrhythmogenic cardiomyopathy (ACM) is an inherited cardiac disorder that causes sudden cardiac death and progressive heart failure. Besides fibro-fatty replacement and myocyte degenerative changes, inflammatory patchy infiltrates are found in myocardial histological analysis of ACM patients. Inflammatory cells could actively participate in ACM pathogenesis, contributing to the alteration of cardiac microenvironment homeostasis, thus triggering disease evolution. In order to characterize the immune-derived mediators involved in ACM pathogenesis, peripheral blood mononuclear cells from ACM patients were characterized and compared to healthy controls' ones. Flow cytometry analysis revealed a lower frequency of CD4+ T helper type 1 cells, NK cells, and terminally differentiated CD8+ EMRA+ T cells in ACM patients compared to age-matched controls. In contrast, a higher proportion of effector/memory FOXP3+ CCR4+ CD45RO+ regulatory CD4+ T cells (Treg) were found in ACM patients. Single-cell RNA-seq performed on isolated memory Treg cells (mTreg) from ACM patients and healthy controls identified 6 clusters characterized by specific gene signatures related to tissue repair and immunosuppressive pathways. Notably, interleukin 32 (IL-32) was the most differentially expressed gene in ACM patients mTreg with respect to healthy controls. Treatment of human cardiac mesenchymal stromal cells with recombinant IL-32 in vitro promoted lipid droplet accumulation and collagen deposition, thus identifying IL-32 as a new potential player in the immune-mediated trigger of cardiac fibro-fatty replacement in ACM. Overall, we here provide the first complete characterization of circulating ACM immune cells, revealing an abundance of Treg. The high expression of IL-32 in ACM Treg may contribute to accelerated cardiac remodeling in ACM patients' hearts.
Collapse
Affiliation(s)
| | - Angela Serena Maione
- Unit of Inherited Cardiomyopathies, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy
| | - Lise Lefèvre
- I2MC, INSERM, UMR-1297, Toulouse, France
- RESTORE Research Center, UMR-1301, Paul Sabatier University, Toulouse, France
| | | | | | | | | | - Lara Iengo
- Unit of Inherited Cardiomyopathies, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Yohan Santin
- Unit of Inherited Cardiomyopathies, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy
| | - Fabrizio Tundo
- Department of Clinical Electrophysiology and Cardiac Pacing, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy
| | - Claudio Tondo
- Department of Clinical Electrophysiology and Cardiac Pacing, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy
| | - Giulio Pompilio
- Unit of Inherited Cardiomyopathies, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy
| | | | - Victorine Douin-Echinard
- I2MC, INSERM, UMR-1297, Toulouse, France
- RESTORE Research Center, UMR-1301, Paul Sabatier University, Toulouse, France
| | - Elena Sommariva
- Unit of Inherited Cardiomyopathies, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy
| |
Collapse
|
29
|
Wang AYL, Aviña AE, Liu YY, Chang YC, Kao HK. Transcription Factor Blimp-1: A Central Regulator of Oxidative Stress and Metabolic Reprogramming in Chronic Inflammatory Diseases. Antioxidants (Basel) 2025; 14:183. [PMID: 40002370 PMCID: PMC11851694 DOI: 10.3390/antiox14020183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/17/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
B-lymphocyte-induced maturation protein 1 (Blimp-1) is a transcription factor that, among other functions, modulates metabolism and helps to regulate antioxidant pathways, which is important in the context of chronic inflammatory diseases like diabetes, cardiovascular disease, and autoimmune disease. In immune cell function, Blimp-1 has a modulatory role in the orchestration of metabolic reprogramming and as a promoter of anti-inflammatory cytokines, including IL-10, responsible for modulating oxidative stress and immune homeostasis. Moreover, Blimp-1 also modulates key metabolic aspects, such as glycolysis and fatty acid oxidation, which regulate reactive oxygen species levels, as well as tissue protection. This review depicts Blimp-1 as an important regulator of antioxidant defenses and anti-inflammation and suggests that the protein could serve as a therapeutic target in chronic inflammatory and metabolic dysregulation conditions. The modulation of Blimp-1 in diseases such as diabetic coronary heart disease and atherosclerosis could alleviate oxidative stress, augment the protection of tissues, and improve disease outcomes. The therapeutic potential for the development of new treatments for these chronic conditions lies in the synergy between the regulation of Blimp-1 and antioxidant therapies, which are future directions that may be pursued. This review emphasizes Blimp-1's emerging importance as a novel regulator in the pathogenesis of inflammatory diseases, providing new opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Aline Yen Ling Wang
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (A.E.A.); (Y.-Y.L.)
| | - Ana Elena Aviña
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (A.E.A.); (Y.-Y.L.)
- International PhD Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Yen-Yu Liu
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (A.E.A.); (Y.-Y.L.)
| | - Yun-Ching Chang
- Department of Health Industry Technology Management, Chung Shan Medical University, Taichung 402, Taiwan;
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Huang-Kai Kao
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
30
|
Søndergaard JN, Tulyeu J, Priest D, Sakaguchi S, Wing JB. Single cell suppression profiling of human regulatory T cells. Nat Commun 2025; 16:1325. [PMID: 39900891 PMCID: PMC11791207 DOI: 10.1038/s41467-024-55746-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 12/23/2024] [Indexed: 02/05/2025] Open
Abstract
Regulatory T cells (Treg) play an important role in regulating immune homeostasis in health and disease. Traditionally their suppressive function has been assayed by mixing purified cell populations, which does not provide an accurate picture of a physiologically relevant response. To overcome this limitation, we here develop 'single cell suppression profiling of human Tregs' (scSPOT). scSPOT uses a 52-marker CyTOF panel, a cell division detection algorithm, and a whole PBMC system to assess the effect of Tregs on all other cell types simultaneously. In this head-to-head comparison, we find Tregs having the clearest suppressive effects on effector memory CD8 T cells through partial division arrest, cell cycle inhibition, and effector molecule downregulation. Additionally, scSPOT identifies a Treg phenotypic split previously observed in viral infection and propose modes of action by the FDA-approved drugs Ipilimumab and Tazemetostat. scSPOT is thus scalable, robust, widely applicable, and may be used to better understand Treg immunobiology and screen for therapeutic compounds.
Collapse
Affiliation(s)
- Jonas Nørskov Søndergaard
- Human Immunology Team, Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Japan.
| | - Janyerkye Tulyeu
- Human Immunology Team, Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Japan
| | - David Priest
- Laboratory of Human Single Cell Immunology, WPI-IFReC, Osaka University, Suita, Japan
| | - Shimon Sakaguchi
- Laboratory of Experimental Immunology, WPI-IFReC, Osaka University, Suita, Japan
- Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - James B Wing
- Human Immunology Team, Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Japan.
- Laboratory of Human Single Cell Immunology, WPI-IFReC, Osaka University, Suita, Japan.
- Center for Advanced Modalities and DDS (CAMaD), Osaka University, Osaka, Japan.
| |
Collapse
|
31
|
Wardell CM, Boardman DA, Levings MK. Harnessing the biology of regulatory T cells to treat disease. Nat Rev Drug Discov 2025; 24:93-111. [PMID: 39681737 DOI: 10.1038/s41573-024-01089-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2024] [Indexed: 12/18/2024]
Abstract
Regulatory T (Treg) cells are a suppressive subset of CD4+ T cells that maintain immune homeostasis and restrain inflammation. Three decades after their discovery, the promise of strategies to harness Treg cells for therapy has never been stronger. Multiple clinical trials seeking to enhance endogenous Treg cells or deliver them as a cell-based therapy have been performed and hint at signs of success, as well as to important limitations and unanswered questions. Strategies to deplete Treg cells in cancer are also in active clinical testing. Furthermore, multi-dimensional methods to interrogate the biology of Treg cells are leading to a refined understanding of Treg cell biology and new approaches to harness tissue-specific functions for therapy. A new generation of Treg cell clinical trials is now being fuelled by advances in nanomedicine and synthetic biology, seeking more precise ways to tailor Treg cell function. This Review will discuss recent advances in our understanding of human Treg cell biology, with a focus on mechanisms of action and strategies to assess outcomes of Treg cell-targeted therapies. It highlights results from recent clinical trials aiming to enhance or inhibit Treg cell activity in a variety of diseases, including allergy, transplantation, autoimmunity and cancer, and discusses ongoing strategies to refine these approaches.
Collapse
Affiliation(s)
- Christine M Wardell
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dominic A Boardman
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Megan K Levings
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada.
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
32
|
Wang A, Wang Y, Liang R, Li B, Pan F. Improving regulatory T cell-based therapy: insights into post-translational modification regulation. J Genet Genomics 2025; 52:145-156. [PMID: 39357622 DOI: 10.1016/j.jgg.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
Regulatory T (Treg) cells are pivotal for maintaining immune homeostasis and play essential roles in various diseases, such as autoimmune diseases, graft-versus-host disease (GVHD), tumors, and infectious diseases. Treg cells exert suppressive function via distinct mechanisms, including inhibitory cytokines, granzyme or perforin-mediated cytolysis, metabolic disruption, and suppression of dendritic cells. Forkhead Box P3 (FOXP3), the characteristic transcription factor, is essential for Treg cell function and plasticity. Cumulative evidence has demonstrated that FOXP3 activity and Treg cell function are modulated by a variety of post-translational modifications (PTMs), including ubiquitination, acetylation, phosphorylation, methylation, glycosylation, poly(ADP-ribosyl)ation, and uncharacterized modifications. This review describes Treg cell suppressive mechanisms and summarizes the current evidence on PTM regulation of FOXP3 and Treg cell function. Understanding the regulatory role of PTMs in Treg cell plasticity and function will be helpful in designing therapeutic strategies for autoimmune diseases, GVHD, tumors, and infectious diseases.
Collapse
Affiliation(s)
- Aiting Wang
- Center for Cancer Immunology Research, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| | - Yanwen Wang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Rui Liang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Bin Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Fan Pan
- Center for Cancer Immunology Research, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
33
|
Liu B, Zhu S, Zhang Q, Xie F, Wei D, Fu G, Yang L, Gao Y, Wei W. Fluoride-Mediated Immune Damage Through Cytokine Network Regulation of Tregs. TOXICS 2025; 13:95. [PMID: 39997909 PMCID: PMC11861542 DOI: 10.3390/toxics13020095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/26/2025]
Abstract
Long-term fluoride exposure can induce inflammatory responses in various tissues of the body, thereby affecting the inflammatory microenvironment. To explore how fluoride induces changes in immune function within this microenvironment, this study collected baseline information and biological samples from participants in areas with the drinking water type of fluorosis, and simultaneously established Wistar rat models with a 12-week and 24-week fluoride exposure, as well as a 12-week fluoride exposure followed by 12-week pure water feeding regimen. Luminex multiplex assays and enzyme-linked immunosorbent assays (ELISAs) were used to measure cytokine expression levels. Subsequently, correlation analysis, multiple linear regression, and mediation analysis were employed to explore the long-term effects induced by the complex cytokine network during fluoride exposure. The population survey results indicated that fluoride suppressed the expression of pro-inflammatory factors such as Interleukin-2 (IL-2), Interleukin-12 (IL-12), Interferon-γ (IFN-γ), Tumor necrosis factor-α (TNF-α), and anti-inflammatory factors such as Interleukin-4 (IL-4), Interleukin-13 (IL-13), and Interleukin-37 (IL-37), while promoting an increase in the proportion of regulatory T cells (Tregs) in peripheral blood. Among these, IL-2 and IFN-γ mediated the fluoride-induced peripheral Tregs expansion. Animal experiments indicate that the proportion of Tregs in peripheral blood and immune organs increases in a time-dependent manner with fluoride exposure. After reducing the fluoride concentration in the drinking water of rats, the number of Tregs remained significantly elevated. The changes in Treg numbers in the 12-week fluoride feeding group, 24-week fluoride feeding group, and 12-week fluoride feeding followed by 12-week water improvement group were related to the cytokine levels. Therefore, the impact of fluoride on the immune homeostasis has cumulative and long-term effects, and may be related to the accumulation and migration of Tregs induced by fluoride in an inflammatory environment, mediated by cytokines.
Collapse
Affiliation(s)
- Bingshu Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China; (B.L.); (S.Z.); (Q.Z.); (F.X.); (D.W.); (L.Y.)
| | - Siqi Zhu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China; (B.L.); (S.Z.); (Q.Z.); (F.X.); (D.W.); (L.Y.)
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Lab of Trace Elements, Human Health Harbin Medical University, Harbin 150081, China
| | - Qiong Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China; (B.L.); (S.Z.); (Q.Z.); (F.X.); (D.W.); (L.Y.)
| | - Fengyu Xie
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China; (B.L.); (S.Z.); (Q.Z.); (F.X.); (D.W.); (L.Y.)
| | - Dan Wei
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China; (B.L.); (S.Z.); (Q.Z.); (F.X.); (D.W.); (L.Y.)
| | - Guiyu Fu
- Jining Center For Disease Control And Prevention, Shandong Province, Jining 272000, China;
| | - Liu Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China; (B.L.); (S.Z.); (Q.Z.); (F.X.); (D.W.); (L.Y.)
| | - Yanhui Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China; (B.L.); (S.Z.); (Q.Z.); (F.X.); (D.W.); (L.Y.)
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Lab of Trace Elements, Human Health Harbin Medical University, Harbin 150081, China
| | - Wei Wei
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China; (B.L.); (S.Z.); (Q.Z.); (F.X.); (D.W.); (L.Y.)
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Lab of Trace Elements, Human Health Harbin Medical University, Harbin 150081, China
| |
Collapse
|
34
|
Elkins C, Ye C, Sivasami P, Mulpur R, Diaz-Saldana PP, Peng A, Xu M, Chiang YP, Moll S, Rivera-Rodriguez DE, Cervantes-Barragan L, Wu T, Au-Yeung BB, Scharer CD, Ford ML, Kissick H, Li C. Obesity reshapes regulatory T cells in the visceral adipose tissue by disrupting cellular cholesterol homeostasis. Sci Immunol 2025; 10:eadl4909. [PMID: 39792637 PMCID: PMC11786953 DOI: 10.1126/sciimmunol.adl4909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 09/08/2024] [Accepted: 11/22/2024] [Indexed: 01/12/2025]
Abstract
Regulatory T cells (Tregs) accumulate in the visceral adipose tissue (VAT) to maintain systemic metabolic homeostasis but decline during obesity. Here, we explored the metabolic pathways controlling the homeostasis, composition, and function of VAT Tregs under normal and high-fat diet feeding conditions. We found that cholesterol metabolism was specifically up-regulated in ST2hi VAT Treg subsets. Treg-specific deletion of Srebf2, the master regulator of cholesterol homeostasis, selectively reduced ST2hi VAT Tregs, increasing VAT inflammation and insulin resistance. Single-cell RNA/T cell receptor (TCR) sequencing revealed a specific loss and reduced clonal expansion of ST2hi VAT Treg subsets after Srebf2 deletion. Srebf2-mediated cholesterol homeostasis potentiated strong TCR signaling, which preferentially promoted ST2hi VAT Treg accumulation. However, long-term high-fat diet feeding disrupted VAT Treg cholesterol homeostasis and impaired clonal expansion of the ST2hi subset. Restoring Treg cholesterol homeostasis rescued VAT Treg accumulation in obese mice, suggesting that modulation of cholesterol homeostasis could be a promising strategy for Treg-targeted therapies in obesity-associated metabolic diseases.
Collapse
Affiliation(s)
- Cody Elkins
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Chengyu Ye
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Pulavendran Sivasami
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Roy Mulpur
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Pamela P. Diaz-Saldana
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Amy Peng
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Miaoer Xu
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Yeun-po Chiang
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Samara Moll
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Dormarie E. Rivera-Rodriguez
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Luisa Cervantes-Barragan
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Tuoqi Wu
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Byron B. Au-Yeung
- Division of Immunology, Lowance Center for Human Immunology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Christopher D. Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Mandy L. Ford
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
- Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Haydn Kissick
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - Chaoran Li
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
35
|
Gurram RK, Li P, Oh J, Chen X, Spolski R, Yao X, Lin JX, Roy S, Liao MJ, Liu C, Yu ZX, Levine SJ, Zhu J, Leonard WJ. TSLP acts on regulatory T cells to maintain their identity and limit allergic inflammation. Sci Immunol 2025; 10:eadk0073. [PMID: 39792638 DOI: 10.1126/sciimmunol.adk0073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 07/08/2024] [Accepted: 12/12/2024] [Indexed: 01/30/2025]
Abstract
Thymic stromal lymphopoietin (TSLP) is a type I cytokine that promotes allergic responses and mediates type 2 immunity. A balance between effector T cells (Teffs), which drive the immune response, and regulatory T cells (Tregs), which suppress the response, is required for proper immune homeostasis. Here, we report that TSLP differentially acts on Teffs versus Tregs to balance type 2 immunity. As expected, deletion of TSLP receptor (TSLPR) on all T cells (Cd4CreCrlf2fl/fl mice) resulted in lower numbers of T helper 2 (TH2) cells and diminished ovalbumin-induced airway inflammation, but selective deletion of TSLPR on Tregs (Foxp3YFP-Cre/YCrlf2fl/fl mice) resulted in increased interleukin-5 (IL-5)- and IL-13-secreting TH2 cells and lung eosinophilia. Moreover, TSLP augmented the expression of factors that stabilize Tregs. During type 2 immune responses, TSLPR-deficient Tregs acquired TH2-like properties, with augmented GATA3 expression and secretion of IL-13. TSLP not only is a driver of TH2 effector cells but also acts in a negative feedback loop, thus promoting the ability of Tregs to limit allergic inflammation.
Collapse
Affiliation(s)
- Rama K Gurram
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Peng Li
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Jangsuk Oh
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Xi Chen
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Rosanne Spolski
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Xianglan Yao
- Critical Care Medicine and Pulmonary Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892-1674, USA
| | - Jian-Xin Lin
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Suyasha Roy
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Matthew J Liao
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Chengyu Liu
- Transgenic Core, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Zu-Xi Yu
- Pathology Core, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Stewart J Levine
- Critical Care Medicine and Pulmonary Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892-1674, USA
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Warren J Leonard
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| |
Collapse
|
36
|
Lee KY, Mei Y, Liu H, Schwarz H. CD137-expressing regulatory T cells in cancer and autoimmune diseases. Mol Ther 2025; 33:51-70. [PMID: 39668561 PMCID: PMC11764688 DOI: 10.1016/j.ymthe.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/25/2024] [Accepted: 12/06/2024] [Indexed: 12/14/2024] Open
Abstract
Regulatory T cells (Tregs) are essential for maintaining immune homeostasis, with critical roles in preventing aberrant immune responses that occur in autoimmune diseases and chronic inflammation. Conversely, the abundance of Tregs in cancer is associated with impaired anti-tumor immunity, and tumor immune evasion. Recent work demonstrates that CD137, a well-known costimulatory molecule for T cells, is highly expressed on Tregs in pathological conditions, while its expression is minimal or negligible on peripheral Tregs. The expression of CD137 marks Tregs with potent immunosuppressive phenotype that foster cancer progression and are protective against certain autoimmune diseases. Hence CD137 has emerged as a marker for Tregs. However, several important questions still remain regarding the expression and function of CD137 in Tregs. Here, we provide an overview of our current knowledge of Treg mechanisms of action, with a focus on the role of CD137 in modulating Treg activity. We also explore the implications of CD137+ Tregs in both cancer and autoimmune diseases, emphasizing the significance of targeting these cells for therapeutic intervention in these conditions.
Collapse
Affiliation(s)
- Kang Yi Lee
- NUS Immunology Programme, Life Sciences Institute, Department of Microbiology and Immunology, National University of Singapore, Singapore 117545, Singapore; NUSMED Immunology Translational Research Programme, National University of Singapore, Singapore 117456, Singapore
| | - Yu Mei
- NUS Immunology Programme, Life Sciences Institute, Department of Microbiology and Immunology, National University of Singapore, Singapore 117545, Singapore; NUSMED Immunology Translational Research Programme, National University of Singapore, Singapore 117456, Singapore
| | - Haiyan Liu
- NUS Immunology Programme, Life Sciences Institute, Department of Microbiology and Immunology, National University of Singapore, Singapore 117545, Singapore; NUSMED Immunology Translational Research Programme, National University of Singapore, Singapore 117456, Singapore.
| | - Herbert Schwarz
- NUS Immunology Programme, Life Sciences Institute, Department of Microbiology and Immunology, National University of Singapore, Singapore 117545, Singapore; NUSMED Immunology Translational Research Programme, National University of Singapore, Singapore 117456, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore.
| |
Collapse
|
37
|
Pandey H, Tang DWT, Wong SH, Lal D. Helminths in alternative therapeutics of inflammatory bowel disease. Intest Res 2025; 23:8-22. [PMID: 39916482 PMCID: PMC11834367 DOI: 10.5217/ir.2023.00059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 02/20/2025] Open
Abstract
Inflammatory bowel disease (IBD), which includes Crohn's disease and ulcerative colitis, is a nonspecific chronic inflammation of the gastrointestinal tract. Despite recent advances in therapeutics and newer management strategies, IBD largely remains untreatable. Helminth therapy is a promising alternative therapeutic for IBD that has gained some attention in the last two decades. Helminths have immunomodulatory effects and can alter the gut microbiota. The immunomodulatory effects include a strong Th2 immune response, T-regulatory cell response, and the production of regulatory cytokines. Although concrete evidence regarding the efficacy of helminth therapy in IBD is lacking, clinical studies and studies done in animal models have shown some promise. Most clinical studies have shown that helminth therapy is safe and easily tolerable. Extensive work has been done on the whipworm Trichuris, but other helminths, including Schistosoma, Trichinella, Heligmosomoides, and Ancylostoma, have also been explored for pre-clinical and animal studies. This review article summarizes the potential of helminth therapy as an alternative therapeutic or an adjuvant to the existing therapeutic procedures for IBD treatment.
Collapse
Affiliation(s)
| | - Daryl W. T. Tang
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Sunny H. Wong
- Centre for Microbiome Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Devi Lal
- Department of Zoology, Ramjas College, University of Delhi, Delhi, India
| |
Collapse
|
38
|
Shiri AM, Fard-Aghaie M, Bedke T, Papazoglou ED, Sabihi M, Zazara DE, Zhang S, Lücke J, Seeger P, Evers M, Hackert T, Oldhafer KJ, Gondolesi GE, Huber S, Giannou AD. Foxp3 + Treg-derived IL-10 promotes colorectal cancer-derived lung metastasis. Sci Rep 2024; 14:30483. [PMID: 39681594 DOI: 10.1038/s41598-024-80437-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
The lung is one of the most frequently metastasized organs from various cancer entities, especially colorectal cancer (CRC). The occurrence of lung metastasis correlates with worse prognosis in CRC patients. Here, we aimed to investigate the role of IL-10 in lung metastasis development and identify the cellular source and target cells of IL-10 during lung metastatic establishment. To induce lung metastasis in mice, we injected MC38 murine colon cancer cells intravenously. Mice with Il10-deficiency were used to test the role of IL-10. The lung metastatic burden was assessed both macroscopically and histologically. IL-10- and Foxp3-reporter mice were employed to identify the cellular source and target cells of IL-10 in lung metastasis using flow cytometry. These findings were further confirmed using mice with cell-specific deletion of Il10- and IL-10 receptor (Il10ra). Interestingly, Il10 ablation led to reduced lung metastasis formation, suggesting a pathogenic role of IL-10 in lung metastasis. Moreover, using reporter mice, we identified Foxp3 + regulatory T cells (Tregs) as the predominant cellular source of IL-10 in lung metastasis. Accordingly, Foxp3 + Treg-specific deletion of Il10 resulted in decreased lung metastasis formation. In terms of target cells, myeloid cells and Foxp3 + Tregs expressed high IL-10Ra levels. Indeed, IL-10 signaling blockade in these two immune cell populations resulted in reduced lung metastatic burden. In conclusion, Foxp3 + Treg-derived IL-10 was found to act on Foxp3 + Tregs and myeloid cells, thereby promoting lung metastasis formation. These findings provide insights into lung metastasis-related immunity and establish the groundwork for optimizing metastasis-targeting immunotherapies through targeting of IL-10 as a novel therapeutic strategy.
Collapse
Affiliation(s)
- Ahmad Mustafa Shiri
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Mohammad Fard-Aghaie
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Tanja Bedke
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Eleftherios D Papazoglou
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Morsal Sabihi
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Dmitra E Zazara
- Division for Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- University Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Siwen Zhang
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Jöran Lücke
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Philipp Seeger
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Maximilian Evers
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Asklepios Hospital Barmbek, Hamburg, Germany
- Semmelweis University Budapest, Asklepios Campus Hamburg, Hamburg, Germany
| | - Thilo Hackert
- University Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Karl J Oldhafer
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Asklepios Hospital Barmbek, Hamburg, Germany
- Semmelweis University Budapest, Asklepios Campus Hamburg, Hamburg, Germany
| | - Gabriel E Gondolesi
- General Surgery, Liver, Pancreas and Intestinal Transplantat Unit, Hospital Universitario-Fundación Favaloro, Buenos Aires, Argentina
| | - Samuel Huber
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Anastasios D Giannou
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Asklepios Hospital Barmbek, Hamburg, Germany.
- Semmelweis University Budapest, Asklepios Campus Hamburg, Hamburg, Germany.
- General Surgery, Liver, Pancreas and Intestinal Transplantat Unit, Hospital Universitario-Fundación Favaloro, Buenos Aires, Argentina.
- Section of Molecular Immunology and Gastroenterology, I. Department of Medicine, Center of Internal Medicine and Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
| |
Collapse
|
39
|
Hattori K, Tanaka S, Hashiba D, Tamura J, Etori K, Kageyama T, Ito T, Meguro K, Iwata A, Suto A, Suzuki K, Nakamura J, Ohtori S, Ziegler SF, Nakajima H. Synovial regulatory T cells expressing ST2 deteriorate joint inflammation through the suppression of immunoregulatory eosinophils. J Autoimmun 2024; 149:103333. [PMID: 39509740 DOI: 10.1016/j.jaut.2024.103333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 11/15/2024]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic polyarthritis. It is well-established that helper T cells play crucial roles in the development and deterioration of RA. Recent studies also revealed the significant roles of regulatory T (Treg) cells in this context. Although Treg cells distributed in peripheral tissues exhibit various functions, the characteristics of synovial Treg cells remain unknown. In this study, we demonstrate that synovial Treg cells exacerbate synovial inflammation by reducing the number of immunoregulatory eosinophils through competitive consumption of IL-33. Synovial Treg cells expressed ST2 in a murine arthritis model, and surprisingly, Treg-specific ST2 knockout (ST2ΔTreg) mice exhibited attenuated arthritis. In ST2ΔTreg mice, an increase in immunoregulatory synovial eosinophils was observed. Additionally, immunoregulatory eosinophils were found to express ST2, and ST2-expressing Treg cells controlled the abundance of immunoregulatory eosinophils, possibly by consuming IL-33. Our results highlight that a subset of synovial Treg cells possesses the machinery to worsen arthritis by suppressing eosinophils. In the future landscape where Treg cell-based therapies are employed for autoimmune diseases, it is important to comprehend the characteristics of disease-related Treg cells. Understanding these aspects is crucial for ensuring safer treatment modalities that do not inadvertently worsen the diseases.
Collapse
MESH Headings
- Animals
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Eosinophils/immunology
- Eosinophils/metabolism
- Mice
- Interleukin-1 Receptor-Like 1 Protein/metabolism
- Interleukin-1 Receptor-Like 1 Protein/genetics
- Mice, Knockout
- Interleukin-33/metabolism
- Interleukin-33/immunology
- Interleukin-33/genetics
- Synovial Membrane/immunology
- Synovial Membrane/pathology
- Synovial Membrane/metabolism
- Disease Models, Animal
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/pathology
- Arthritis, Experimental/immunology
- Arthritis, Experimental/pathology
- Humans
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Koto Hattori
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba City, Chiba, 260-8670, Japan.
| | - Shigeru Tanaka
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba City, Chiba, 260-8670, Japan.
| | - Daisuke Hashiba
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba City, Chiba, 260-8670, Japan; Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba City, Chiba, 260-8670, Japan.
| | - Jun Tamura
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba City, Chiba, 260-8670, Japan.
| | - Keishi Etori
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba City, Chiba, 260-8670, Japan.
| | - Takahiro Kageyama
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba City, Chiba, 260-8670, Japan.
| | - Takashi Ito
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba City, Chiba, 260-8670, Japan.
| | - Kazuyuki Meguro
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba City, Chiba, 260-8670, Japan.
| | - Arifumi Iwata
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba City, Chiba, 260-8670, Japan.
| | - Akira Suto
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba City, Chiba, 260-8670, Japan.
| | - Kotaro Suzuki
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba City, Chiba, 260-8670, Japan.
| | - Junichi Nakamura
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba City, Chiba, 260-8670, Japan.
| | - Seiji Ohtori
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba City, Chiba, 260-8670, Japan.
| | - Steven F Ziegler
- Center for Fundamental Immunology, Benaroya Research Institute, 1201 9th Ave, Seattle, WA, 98101-2795, USA.
| | - Hiroshi Nakajima
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba City, Chiba, 260-8670, Japan.
| |
Collapse
|
40
|
Branchett WJ, Saraiva M, O'Garra A. Regulation of inflammation by Interleukin-10 in the intestinal and respiratory mucosa. Curr Opin Immunol 2024; 91:102495. [PMID: 39357078 DOI: 10.1016/j.coi.2024.102495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/29/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024]
Abstract
Intricate immune regulation is required at mucosal surfaces to allow tolerance to microbiota and harmless allergens and to prevent overexuberant inflammatory responses to pathogens. The cytokine Interleukin-10 (IL-10) is a key mediator of mucosal immune regulation. While IL-10 can be produced by virtually all cells of the immune system, many of its in vivo functions depend upon its production by regulatory or effector T cell populations and its signalling to macrophages, dendritic cells and specific T cell subsets. In this review, we discuss our current understanding of the role of IL-10 in regulation of immune responses, with a focus on its context-specific roles in intestinal homeostasis, respiratory infection and asthma. We highlight the importance of appropriate production and function of IL-10 for balancing pathogen clearance, control of microbiota and host tissue damage, and that precise modulation of IL-10 functions in vivo could present therapeutic opportunities.
Collapse
Affiliation(s)
- William J Branchett
- Immunoregulation and Infection Laboratory, The Francis Crick Institute, London, United Kingdom.
| | - Margarida Saraiva
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Anne O'Garra
- Immunoregulation and Infection Laboratory, The Francis Crick Institute, London, United Kingdom; National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
41
|
Bæk O, Muk T, Aunsholt L, Zachariasen G, Sangild PT, Nguyen DN. Systemic immune markers and infection risk in preterm infants fed human milk fortified with bovine colostrum or conventional fortifier, a secondary analysis of the FortiColos trial. Infection 2024; 52:2315-2324. [PMID: 38775927 PMCID: PMC11621174 DOI: 10.1007/s15010-024-02280-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/21/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND For very preterm infants, human milk is often fortified with formula products based on processed bovine milk. Intact bovine colostrum (BC), rich in anti-inflammatory milk factors, is considered an alternative. We investigated if BC affects anti-inflammatory/TH2 immunity and infection risk in very preterm infants. METHODS For a secondary analysis of a multicenter, randomized controlled trial (NCT03537365), very preterm infants (26-31 weeks gestation, 23% small for gestational age, SGA) were randomized to receive BC (ColoDan, Biofiber, Denmark, n = 113) or conventional fortifier (PreNAN, Nestlé, Switzerland, n = 116). Infection was defined as antibiotic treatment for five or more consecutive days and 29 cytokines/chemokines were measured in plasma before and after start of fortification. RESULTS In general, infection risk after start of fortification was associated with low gestational age, SGA status and antibiotics use prior to fortification. Adjusted for confounders, infants fortified with BC showed more infection episodes (20 vs 12%, P < 0.05) and higher cumulative infection risk (hazard ratio, HR 1.9, P = 0.06), particularly for SGA infants (HR 3.6, P < 0.05). Additionally, BC-fortified infants had higher levels of TH2-related cytokines/chemokines (IL-10, MDC, MCP4) and reduced levels of cytokines related to TH1/TH17-responses (IL-15, IL-17, GM-CSF). The differences were most pronounced in SGA infants, displaying higher levels of TH2-related IL-4, IL-6, and IL-13, and lower interferon-γ and IL-1α levels in the BC group. CONCLUSION Infants fortified with BC displayed a delayed shift from TH2- to TH1-biased systemic immunity, notably in SGA infants, possibly influenced by multiple confounding factors, alongside elevated antibiotic use, suggesting increased susceptibility to infection.
Collapse
Affiliation(s)
- Ole Bæk
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
- Department of Neonatology, Rigshospitalet, Copenhagen, Denmark
| | - Tik Muk
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Lise Aunsholt
- Department of Neonatology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Gitte Zachariasen
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark
- University of Southern Denmark, Odense, Denmark
- Open Patient Explorative Network, Odense University Hospital, Odense, Denmark
| | - Per Torp Sangild
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark.
- Department of Neonatology, Rigshospitalet, Copenhagen, Denmark.
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark.
- Faculty of Theology, University of Copenhagen, Copenhagen, Denmark.
| | - Duc Ninh Nguyen
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark.
| |
Collapse
|
42
|
Sharma A, Sharma G, Gao Z, Li K, Li M, Wu M, Kim CJ, Chen Y, Gautam A, Choi HB, Kim J, Kwak JM, Lam SM, Shui G, Paul S, Feng Y, Kang K, Im SH, Rudra D. Glut3 promotes cellular O-GlcNAcylation as a distinctive tumor-supportive feature in Treg cells. Cell Mol Immunol 2024; 21:1474-1490. [PMID: 39468304 PMCID: PMC11606946 DOI: 10.1038/s41423-024-01229-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024] Open
Abstract
Regulatory T cells (Tregs) establish dominant immune tolerance but obstruct tumor immune surveillance, warranting context-specific mechanistic insights into the functions of tumor-infiltrating Tregs (TIL-Tregs). We show that enhanced posttranslational O-linked N-acetylglucosamine modification (O-GlcNAcylation) of cellular factors is a molecular feature that promotes a tumor-specific gene expression signature and distinguishes TIL-Tregs from their systemic counterparts. We found that altered glucose utilization through the glucose transporter Glut3 is a major facilitator of this process. Treg-specific deletion of Glut3 abrogates tumor immune tolerance, while steady-state immune homeostasis remains largely unaffected in mice. Furthermore, by employing mouse tumor models and human clinical data, we identified the NF-κB subunit c-Rel as one such factor that, through Glut3-dependent O-GlcNAcylation, functionally orchestrates gene expression in Tregs at tumor sites. Together, these results not only identify immunometabolic alterations and molecular events contributing to fundamental aspects of Treg biology, specifically at tumor sites but also reveal tumor-specific cellular properties that can aid in the development of Treg-targeted cancer immunotherapies.
Collapse
Affiliation(s)
- Amit Sharma
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Innovation Research Center for Biofuture Technology (B-IRC), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Garima Sharma
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- ImmmunoBiome Inc, Pohang, 37673, Republic of Korea
| | - Zhen Gao
- School of Life Science & Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Ke Li
- School of Life Science & Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Mutong Li
- School of Life Science & Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Menglin Wu
- School of Life Science & Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Chan Johng Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Yingjia Chen
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Anupam Gautam
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Sand 14, Tübingen, 72076, Germany
- International Max Planck Research School "From Molecules to Organisms", Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, Tübingen, 72076, Germany
| | | | - Jin Kim
- Department of Surgery, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Jung-Myun Kwak
- Department of Surgery, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology Chinese Academy of Sciences, Beijing, 100101, China
- Lipidall Technologies Company Limited, Changzhou, 213022, Jiangsu Province, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Sandip Paul
- Center for Health Science and Technology, JIS Institute of Advanced Studies and Research, JIS University, Kolkata, 700091, India
| | - Yongqiang Feng
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Keunsoo Kang
- Department of Microbiology, College of Natural Sciences, Dankook University, Cheonan, 31116, Republic of Korea
| | - Sin-Hyeog Im
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
- ImmmunoBiome Inc, Pohang, 37673, Republic of Korea.
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul, 03722, Republic of Korea.
| | - Dipayan Rudra
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
- School of Life Science & Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
43
|
Chandwaskar R, Dalal R, Gupta S, Sharma A, Parashar D, Kashyap VK, Sohal JS, Tripathi SK. Dysregulation of T cell response in the pathogenesis of inflammatory bowel disease. Scand J Immunol 2024; 100:e13412. [PMID: 39394898 DOI: 10.1111/sji.13412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 08/26/2024] [Accepted: 09/17/2024] [Indexed: 10/14/2024]
Abstract
Inflammatory bowel disease (IBD), comprised of Crohn's disease (CD) and ulcerative colitis (UC), are gut inflammatory diseases that were earlier prevalent in the Western Hemisphere but now are on the rise in the East, with India standing second highest in the incidence rate in the world. Inflammation in IBD is a cause of dysregulated immune response, wherein helper T (Th) cell subsets and their cytokines play a major role in the pathogenesis of IBD. In addition, gut microbiota, environmental factors such as dietary factors and host genetics influence the outcome and severity of IBD. Dysregulation between effector and regulatory T cells drives gut inflammation, as effector T cells like Th1, Th17 and Th9 subsets Th cell lineages were found to be increased in IBD patients. In this review, we attempted to discuss the role of different Th cell subsets together with other T cells like CD8+ T cells, NKT and γδT cells in the outcome of gut inflammation in IBD. We also highlighted the potential therapeutic candidates for IBD.
Collapse
Affiliation(s)
- Rucha Chandwaskar
- Amity Institute of Microbial Technology (AIMT), Amity University Jaipur, Rajasthan, India
| | - Rajdeep Dalal
- Infection and Immunology Lab, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, India
| | - Saurabh Gupta
- Centre for Vaccines and Diagnostic Research, GLA University, Mathura, Uttar Pradesh, India
| | - Aishwarya Sharma
- Sri Siddhartha Medical College and Research Center, Tumkur, Karnataka, India
| | - Deepak Parashar
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Vivek K Kashyap
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas, USA
| | - Jagdip Singh Sohal
- Centre for Vaccines and Diagnostic Research, GLA University, Mathura, Uttar Pradesh, India
| | - Subhash K Tripathi
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, Washington, USA
| |
Collapse
|
44
|
Courreges CJF, Davenport ECM, Bilanges B, Rebollo-Gomez E, Hukelmann J, Schoenfelder P, Edgar JR, Sansom D, Scudamore CL, Roychoudhuri R, Garden OA, Vanhaesebroeck B, Okkenhaug K. Lack of phosphatidylinositol 3-kinase VPS34 in regulatory T cells leads to a fatal lymphoproliferative disorder without affecting their development. Front Immunol 2024; 15:1374621. [PMID: 39664390 PMCID: PMC11631860 DOI: 10.3389/fimmu.2024.1374621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 10/31/2024] [Indexed: 12/13/2024] Open
Abstract
Regulatory T (Treg) cells are essential for the maintenance of immunological tolerance, yet the molecular components required for their maintenance and effector functions remain incompletely defined. Inactivation of VPS34 in Treg cells led to an early, lethal phenotype, with massive effector T cell activation and inflammation, like mice lacking Treg cells completely. However, VPS34-deficient Treg cells developed normally, populated the peripheral lymphoid organs and effectively supressed conventional T cells in vitro. Our data suggest that VPS34 is required for the maintaining normal numbers of mature Treg. Functionally, we observed that lack of VPS34 activity impairs cargo processing upon transendocytosis, that defective autophagy may contribute to, but is not sufficient to explain this lethal phenotype, and that loss of VPS34 activity induces a state of heightened metabolic activity that may interfere with metabolic networks required for maintenance or suppressive functions of Treg cells.
Collapse
Affiliation(s)
- Christina J. F. Courreges
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, United Kingdom
- Department of Pathology, The University of Cambridge, Cambridge, United Kingdom
| | - Elizabeth C. M. Davenport
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, United Kingdom
- Royal Veterinary College, London, United Kingdom
| | - Benoit Bilanges
- UCL Cancer Institute, University College London, London, United Kingdom
| | | | - Jens Hukelmann
- The School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Priya Schoenfelder
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, United Kingdom
| | - James R. Edgar
- Department of Pathology, The University of Cambridge, Cambridge, United Kingdom
| | - David Sansom
- Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | | | - Rahul Roychoudhuri
- Department of Pathology, The University of Cambridge, Cambridge, United Kingdom
| | | | | | - Klaus Okkenhaug
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, United Kingdom
- Department of Pathology, The University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
45
|
Inclan-Rico JM, Napuri CM, Lin C, Hung LY, Ferguson AA, Liu X, Wu Q, Pastore CF, Stephenson A, Femoe UM, Musaigwa F, Rossi HL, Freedman BD, Reed DR, Macháček T, Horák P, Abdus-Saboor I, Luo W, Herbert DR. MrgprA3 neurons drive cutaneous immunity against helminths through selective control of myeloid-derived IL-33. Nat Immunol 2024; 25:2068-2084. [PMID: 39354200 PMCID: PMC12032830 DOI: 10.1038/s41590-024-01982-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 09/11/2024] [Indexed: 10/03/2024]
Abstract
Skin uses interdependent cellular networks for barrier integrity and host immunity, but most underlying mechanisms remain obscure. Herein, we demonstrate that the human parasitic helminth Schistosoma mansoni inhibited pruritus evoked by itch-sensing afferents bearing the Mas-related G-protein-coupled receptor A3 (MrgprA3) in mice. MrgprA3 neurons controlled interleukin (IL)-17+ γδ T cell expansion, epidermal hyperplasia and host resistance against S. mansoni through shaping cytokine expression in cutaneous antigen-presenting cells. MrgprA3 neuron activation downregulated IL-33 but induced IL-1β and tumor necrosis factor in macrophages and type 2 conventional dendritic cells partially through the neuropeptide calcitonin gene-related peptide. Macrophages exposed to MrgprA3-derived secretions or bearing cell-intrinsic IL-33 deletion showed increased chromatin accessibility at multiple inflammatory cytokine loci, promoting IL-17/IL-23-dependent changes to the epidermis and anti-helminth resistance. This study reveals a previously unrecognized intercellular communication mechanism wherein itch-inducing MrgprA3 neurons initiate host immunity against skin-invasive parasites by directing cytokine expression patterns in myeloid antigen-presenting cell subsets.
Collapse
Affiliation(s)
- Juan M Inclan-Rico
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Camila M Napuri
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Cailu Lin
- Monell Chemical Senses Center, Philadelphia, PA, USA
| | - Li-Yin Hung
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Annabel A Ferguson
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiaohong Liu
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Qinxue Wu
- Department of Neuroscience, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher F Pastore
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Adriana Stephenson
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ulrich M Femoe
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Fungai Musaigwa
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Heather L Rossi
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bruce D Freedman
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Tomáš Macháček
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr Horák
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Ishmail Abdus-Saboor
- Department of Biological Sciences, Zuckerman Mind, Brain, Behavior Institute, Columbia University, New York, NY, USA
| | - Wenqin Luo
- Department of Neuroscience, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Regenerative Medicine, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - De'Broski R Herbert
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
46
|
Ohara D, Takeuchi Y, Hirota K. Type 17 immunity: novel insights into intestinal homeostasis and autoimmune pathogenesis driven by gut-primed T cells. Cell Mol Immunol 2024; 21:1183-1200. [PMID: 39379604 PMCID: PMC11528014 DOI: 10.1038/s41423-024-01218-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/11/2024] [Indexed: 10/10/2024] Open
Abstract
The IL-23 signaling pathway in both innate and adaptive immune cells is vital for orchestrating type 17 immunity, which is marked by the secretion of signature cytokines such as IL-17, IL-22, and GM-CSF. These proinflammatory mediators play indispensable roles in maintaining intestinal immune equilibrium and mucosal host defense; however, their involvement has also been implicated in the pathogenesis of chronic inflammatory disorders, such as inflammatory bowel diseases and autoimmunity. However, the implications of type 17 immunity across diverse inflammation models are complex. This review provides a comprehensive overview of the multifaceted roles of these cytokines in maintaining gut homeostasis and in perturbing gut barrier integrity, leading to acute and chronic inflammation in various models of gut infection and colitis. Additionally, this review focuses on type 17 immunity interconnecting multiple organs in autoimmune conditions, with a particular emphasis on the pathogenesis of autoimmune arthritis and neuroinflammation driven by T cells primed within the gut microenvironment.
Collapse
Affiliation(s)
- Daiya Ohara
- Laboratory of Integrative Biological Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yusuke Takeuchi
- Laboratory of Integrative Biological Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Keiji Hirota
- Laboratory of Integrative Biological Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan.
- ImmunoSensation Cluster of Excellence, University of Bonn, Bonn, Germany.
| |
Collapse
|
47
|
Jiang Z, Wang H, Wang X, Duo H, Tao Y, Li J, Li X, Liu J, Ni J, Wu EJ, Xiang H, Guan C, Wang X, Zhang K, Zhang P, Hou Z, Liu Y, Wang Z, Su B, Li B, Hao Y, Li B, Wu X. TMED4 facilitates regulatory T cell suppressive function via ROS homeostasis in tumor and autoimmune mouse models. J Clin Invest 2024; 135:e179874. [PMID: 39480507 PMCID: PMC11684806 DOI: 10.1172/jci179874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024] Open
Abstract
Endoplasmic reticulum stress (ERS) plays crucial roles in maintaining Treg stability and function, yet the underlying mechanism remains largely unexplored. Here, we demonstrate that (Tmed4ΔTreg) mice with Treg-specific KO of ERS-related protein transmembrane p24 trafficking protein 4 (TMED4) had more Tregs with impaired Foxp3 stability, Treg signatures, and suppressive activity, which led to T cell hyperactivation and an exacerbated inflammatory phenotype and boosted antitumor immunity in mice. Mechanistically, loss of Tmed4 caused defects in ERS and a nuclear factor erythroid 2-related factor 2-related (NRF2-related) antioxidant response, which resulted in excessive ROS that reduced the Foxp3 stability and suppressive function of Tregs in an IRE1α/XBP1 axis-dependent manner. The abnormalities could be effectively rescued by the ROS scavenger, NRF2 inducer, or by forcible expression of IRE1α. Moreover, TMED4 suppressed IRE1α proteosome degradation via the ER-associated degradation (ERAD) system including the ER chaperone binding immunoglobulin protein (BIP). Our study reveals that TMED4 maintained the stability of Tregs and their suppressive function through IRE1α-dependent ROS and the NRF2-related antioxidant response.
Collapse
Affiliation(s)
- Zhenyan Jiang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, and
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Huizi Wang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, and
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Xiaoxia Wang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, and
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
- Songjiang Research Institute, Songjiang District Central Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Hongrui Duo
- Research Group of Computational and Integrative Biology, College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Yuexiao Tao
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, and
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Jia Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, and
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Xin Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, and
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Jiamin Liu
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, and
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Jun Ni
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, and
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Emily Jiatong Wu
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, and
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Hongrui Xiang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, and
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Chenyang Guan
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, and
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Xinyu Wang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, and
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Kun Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Key Laboratory of Emotions and Affective Disorders, SJTU-SM, Shanghai, China
| | - Peng Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Key Laboratory of Emotions and Affective Disorders, SJTU-SM, Shanghai, China
| | - Zhaoyuan Hou
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, SJTU-SM, Shanghai, China
| | - Yong Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhengting Wang
- Department of Gastroenterology, Ruijin Hospital, SJTU-SM, Shanghai, China
| | - Bing Su
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, and
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Bo Li
- Research Group of Computational and Integrative Biology, College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Youjin Hao
- Research Group of Computational and Integrative Biology, College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Bin Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, and
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Xuefeng Wu
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, and
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| |
Collapse
|
48
|
Stolz V, de Freitas e Silva R, Rica R, Zhu C, Preglej T, Hamminger P, Hainberger D, Alteneder M, Müller L, Waldherr M, Waltenberger D, Hladik A, Agerer B, Schuster M, Frey T, Krausgruber T, Knapp S, Campbell C, Schmetterer K, Trauner M, Bergthaler A, Bock C, Boucheron N, Ellmeier W. Nuclear receptor corepressor 1 controls regulatory T cell subset differentiation and effector function. eLife 2024; 13:e78738. [PMID: 39466314 PMCID: PMC11517256 DOI: 10.7554/elife.78738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 09/25/2024] [Indexed: 10/29/2024] Open
Abstract
FOXP3+ regulatory T cells (Treg cells) are key for immune homeostasis. Here, we reveal that nuclear receptor corepressor 1 (NCOR1) controls naïve and effector Treg cell states. Upon NCOR1 deletion in T cells, effector Treg cell frequencies were elevated in mice and in in vitro-generated human Treg cells. NCOR1-deficient Treg cells failed to protect mice from severe weight loss and intestinal inflammation associated with CD4+ T cell transfer colitis, indicating impaired suppressive function. NCOR1 controls the transcriptional integrity of Treg cells, since effector gene signatures were already upregulated in naïve NCOR1-deficient Treg cells while effector NCOR1-deficient Treg cells failed to repress genes associated with naïve Treg cells. Moreover, genes related to cholesterol homeostasis including targets of liver X receptor (LXR) were dysregulated in NCOR1-deficient Treg cells. However, genetic ablation of LXRβ in T cells did not revert the effects of NCOR1 deficiency, indicating that NCOR1 controls naïve and effector Treg cell subset composition independent from its ability to repress LXRβ-induced gene expression. Thus, our study reveals that NCOR1 maintains naïve and effector Treg cell states via regulating their transcriptional integrity. We also reveal a critical role for this epigenetic regulator in supporting the suppressive functions of Treg cells in vivo.
Collapse
Affiliation(s)
- Valentina Stolz
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of ImmunologyViennaAustria
| | - Rafael de Freitas e Silva
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of ImmunologyViennaAustria
| | - Ramona Rica
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of ImmunologyViennaAustria
| | - Ci Zhu
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of ImmunologyViennaAustria
| | - Teresa Preglej
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of ImmunologyViennaAustria
| | - Patricia Hamminger
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of ImmunologyViennaAustria
| | - Daniela Hainberger
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of ImmunologyViennaAustria
| | - Marlis Alteneder
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of ImmunologyViennaAustria
| | - Lena Müller
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of ImmunologyViennaAustria
| | - Monika Waldherr
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of ImmunologyViennaAustria
| | - Darina Waltenberger
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of ImmunologyViennaAustria
| | - Anastasiya Hladik
- Medical University of Vienna, Vienna, Department of Medicine I, Laboratory of Infection BiologyViennaAustria
| | - Benedikt Agerer
- CeMM Research Centre for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Michael Schuster
- CeMM Research Centre for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Tobias Frey
- Medical University of Vienna, Department of Laboratory MedicineViennaAustria
| | - Thomas Krausgruber
- CeMM Research Centre for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
- Medical University of Vienna, Center for Medical Statistics, Informatics, and Intelligent Systems, Institute of Artificial IntelligenceViennaAustria
| | - Sylvia Knapp
- Medical University of Vienna, Vienna, Department of Medicine I, Laboratory of Infection BiologyViennaAustria
| | - Clarissa Campbell
- CeMM Research Centre for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Klaus Schmetterer
- Medical University of Vienna, Department of Laboratory MedicineViennaAustria
| | - Michael Trauner
- Medical University of Vienna, Department of Internal Medicine III, Division of Gastroenterology and Hepatology, Hans Popper Laboratory of Molecular HepatologyViennaAustria
| | - Andreas Bergthaler
- CeMM Research Centre for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
- Medical University of Vienna, Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied ImmunologyViennaAustria
| | - Christoph Bock
- CeMM Research Centre for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
- Medical University of Vienna, Center for Medical Statistics, Informatics, and Intelligent Systems, Institute of Artificial IntelligenceViennaAustria
| | - Nicole Boucheron
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of ImmunologyViennaAustria
| | - Wilfried Ellmeier
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Institute of ImmunologyViennaAustria
| |
Collapse
|
49
|
Fahlquist-Hagert C, Wittenborn TR, Pedersen MK, Jensen L, Degn SE. T-follicular regulatory cells expand to control germinal center plasma cell output but fail to curb autoreactivity. iScience 2024; 27:110887. [PMID: 39319261 PMCID: PMC11417334 DOI: 10.1016/j.isci.2024.110887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/17/2024] [Accepted: 09/03/2024] [Indexed: 09/26/2024] Open
Abstract
Autoantibodies generated in germinal centers (GCs) contribute to the pathogenesis of autoimmune diseases. GCs are controlled by specialized FoxP3+ T-follicular regulatory cells (Tfr), but their role in established autoimmunity is unclear. We generated autoimmune bone marrow chimeras in which Tfr could be specifically ablated by diphtheria toxin. Furthermore, we tracked the clonal persistence and evolution of Tfr populations using Confetti reporters. Ablation of Tfr caused increased early plasma cell output, but longer-term ablation did not increase plasma cell levels beyond those of Tfr-sufficient controls, suggesting that Tfr fail to contain chronic autoreactive GC responses. In agreement, Tfr were robustly induced in early autoreactive GCs but then waned. Moreover, we observed polyclonal Tfr expansion when ablating part of the Tfr subset. Hence, under homeostatic conditions, a polyclonal population of Tfr operates to control autoreactivity by limiting the output of plasma cells from GCs, but in chronic autoimmunity, this mechanism fails.
Collapse
Affiliation(s)
- Cecilia Fahlquist-Hagert
- Laboratory for Lymphocyte Biology, Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Thomas Rea Wittenborn
- Laboratory for Lymphocyte Biology, Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Mattias Krogh Pedersen
- Laboratory for Lymphocyte Biology, Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Lisbeth Jensen
- Laboratory for Lymphocyte Biology, Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Søren Egedal Degn
- Laboratory for Lymphocyte Biology, Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
50
|
Scott EN, Ye C, Yano H, Lipatova Z, Brunazzi E, Vignali KM, Workman CJ, Vignali DA. Ebi3 Binding to IFN-γ and IL-10 Limits Their Function. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1115-1124. [PMID: 39240167 PMCID: PMC11458358 DOI: 10.4049/jimmunol.2400236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024]
Abstract
EBV-induced gene 3 (Ebi3) is a β subunit within the IL-12 cytokine family that canonically binds to α subunits p19, p28, or p35 to form the heterodimeric cytokines IL-39, IL-27, and IL-35, respectively. In the last decade, the binding partners for Ebi3 have continued to expand to include IL-6 and the other IL-12 family β subunit p40, revealing the possibility that Ebi3 may be able to bind to other cytokines and have distinct functions. We first explored this possibility utilizing an in vivo mouse model of regulatory T cell-restricted deletions of the subunits composing the cytokine IL-35, p35, and Ebi3, and we observed a differential impact on CD8+ T cell inhibitory receptor expression despite comparable reduction in tumor growth. We then screened the ability of Ebi3 to bind to different cytokines with varying structural resemblance to the IL-12 family α subunits. These in vitro screens revealed extracellular binding of Ebi3 to both IFN-γ and IL-10. Ebi3 bound to IFN-γ and IL-10 abrogated signal transduction and downstream functions of both cytokines. Lastly, we validated that extracellular complex formation after mixing native proteins resulted in loss of function. These data suggest that secreted partnerless Ebi3 may bind to cytokines within the extracellular microenvironment and act as a cytokine sink, further expanding the potential immunological impact of Ebi3.
Collapse
Affiliation(s)
- Ellen N. Scott
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Program in Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA
| | - Cheng Ye
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA
- Present address: Neurophth Therapeutics, Minhang District, Shanghai, China
| | - Hiroshi Yano
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Program in Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA
- Present address and affiliation: Jill Roberts Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY
| | - Zhanna Lipatova
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA
| | - Erin Brunazzi
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA
| | - Kate M. Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA
| | - Creg J. Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA
| | - Dario A.A. Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA
| |
Collapse
|