1
|
Silva PH, Peñaloza HF, Cordero J, Kalergis AM, Barrera NP, Bueno SM. Clustering analyses of murine bone marrow-derived neutrophils reveal a phenotypic heterogeneity that can respond differentially to stimulation. Heliyon 2025; 11:e42227. [PMID: 40040995 PMCID: PMC11876930 DOI: 10.1016/j.heliyon.2025.e42227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 01/17/2025] [Accepted: 01/22/2025] [Indexed: 03/06/2025] Open
Abstract
Neutrophils are granulocytic cells produced in the bone marrow from a granulocytic progenitor cell. During infection, the production of chemokines and cytokines induces the recruitment of neutrophils to the infected tissue to promote the clearance of microbial pathogens. Several studies have shown that different subpopulations of neutrophils can be identified during infection. However, no previous studies evaluated subpopulations of neutrophils purified from the bone marrow (BM), which are typically used to study the biology of these cells based on the assumption that the neutrophil population is homogeneous. In the present study, responses of purified BM-derived neutrophils to various stimuli such as PMA, LPS, and Streptococcus pneumoniae were evaluated using flow cytometry and bh-SNE analyses. Further, neutrophil population heterogeneity was assessed by clustering analyses. Our data suggest that purified BM-derived neutrophils were not a homogeneous cell population and were clustered into 12 subsets, each displaying a unique marker profile, where CD11b and CD62L emerged as pivotal markers for neutrophil function. Importantly, the subsets responded differentially to each stimulus, suggesting a nuanced activation pattern. Changes in biomarker expression were analyzed via Ingenuity Pathway Analysis (IPA) to unravel functional implications of the identified clusters, revealing subsets associated with different neutrophil functions, such as "Migration of neutrophils" or "Phagocytosis in neutrophils". This study contributes to understanding the diversity of purified BM-derived neutrophils and the implications of using these cellular preparations to raise conclusions about the functionality of these cells in various infection models.
Collapse
Affiliation(s)
- Pedro H. Silva
- Millennium Institute on Immunology and Immunotherapy, Santiago, 8330025, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
| | - Hernán F. Peñaloza
- Millennium Institute on Immunology and Immunotherapy, Santiago, 8330025, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
- Departamento de Laboratorios Clínicos, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José Cordero
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Santiago, 8330025, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, 8330023, Chile
| | - Nelson P. Barrera
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Santiago, 8330025, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
| |
Collapse
|
2
|
De la Cruz A, Garcés M, Larios E, Madera-Salcedo IK, Crispín JC, Rosetti F. Immune complex deposition promotes NK cell accumulation in the kidney. PLoS One 2024; 19:e0312141. [PMID: 39570975 PMCID: PMC11581347 DOI: 10.1371/journal.pone.0312141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/01/2024] [Indexed: 11/24/2024] Open
Abstract
In systemic lupus erythematosus, immune complexes deposited in the kidney vasculature represent a potent inflammatory trigger with a high potential to progress to glomerulonephritis and organ failure. These immune complexes can be recognized by multiple effector cells via complement and Fcγ receptors. The transcriptome of CD16-bearing NK cells has been documented in kidneys from patients with SLE. In this study, we show that NK cells accumulate in the kidney in response to immune complex deposition and modulate the behavior of local T cells. Depletion of NK cells transiently ameliorated disease, suggesting NK cells may play a role in lupus nephritis and other immune complex-mediated conditions.
Collapse
Affiliation(s)
- Abigail De la Cruz
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Plan de Estudios Combinados en Medicina (PECEM), Facultad de Medicina, UNAM, Mexico City, Mexico
| | - Marco Garcés
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Becario de la Dirección General de Calidad y Educación en Salud, Secretaría de Salud, México
| | - Emiliano Larios
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Becario de la Dirección General de Calidad y Educación en Salud, Secretaría de Salud, México
| | - Iris K. Madera-Salcedo
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - José C. Crispín
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Monterrey, Mexico
| | - Florencia Rosetti
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
3
|
Gan SY, Tye GJ, Chew AL, Lai NS. Current development of Fc gamma receptors (FcγRs) in diagnostics: a review. Mol Biol Rep 2024; 51:937. [PMID: 39190190 DOI: 10.1007/s11033-024-09877-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024]
Abstract
The ability of the immune system to fight against pathogens relies on the intricate collaboration between antibodies and Fc gamma receptors (FcγRs). These receptors are a group of transmembrane glycoprotein molecules, which can specifically detect and bind to the Fc portion of immunoglobulin G (IgG) molecules. They are distributed on a diverse array of immune cells, forming a strong defence system to eliminate invading threats. FcγRs have gained increasing attention as potential biomarkers for various diseases in recent years due to their ability to reflect immune dysregulation and disease pathogenesis. Increasing lines of evidence have shed new light on the remarkable association of FcγRs polymorphisms with the susceptibility of autoimmune diseases such as systemic lupus erythematosus (SLE) and lupus nephritis. Several studies have also reported the application of FcγR as a novel biomarker for the diagnosis of infection and cancer. Due to the surge in interest and concern regarding the potential of FcγRs as promising diagnostic biomarkers, this review, thereby, serves to provide a comprehensive overview of the structural characteristics, functional roles, and expression patterns of FcγRs, with a particular focus on their evolving role as diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Shin Yi Gan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang, Malaysia
- Malaysian Institute of Pharmaceuticals and Nutraceuticals, National Institutes of Biotechnology Malaysia, Halaman Bukit Gambir, Gelugor, Penang, 11700, Malaysia
| | - Ai Lan Chew
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Ngit Shin Lai
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Pulau Pinang, Malaysia.
| |
Collapse
|
4
|
Quoc QL, Cao TBT, Seo S, An BS, Hwang DY, Choi Y, Park HS. Association Between Cytokeratin 19-Specific IgG and Neutrophil Activation in Asthma. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2024; 16:353-371. [PMID: 39155736 PMCID: PMC11331195 DOI: 10.4168/aair.2024.16.4.353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/29/2024] [Accepted: 03/21/2024] [Indexed: 08/20/2024]
Abstract
PURPOSE Patients with non-eosinophilic asthma (NEA) are less responsive to anti-inflammatory drugs and suffer from frequent asthma exacerbations. The pathogenic mechanism of NEA is not fully understood; however, the roles of monocytes and autoimmune mechanisms targeting airway epithelial cell (AEC) antigens have been proposed. METHODS The effects of monocyte extracellular traps (MoETs) on cytokeratin 19 (CK19) production in AECs, as well as the impact of CK19-specific immunoglobulin (Ig) G on neutrophil and monocyte activation, were investigated both in vivo and in vitro. Sixty asthmatic patients and 15 healthy controls (HCs) were enrolled, and the levels of serum immune complexes containing CK19-specific IgG and neutrophil extracellular trap (NET)-specific IgG were measured using enzyme-linked immunoassay. RESULTS MoETs induced CK19 and CK19-specific IgG production. Furthermore, the levels of serum CK19-specific IgG were significantly higher in the NEA group than in the eosinophilic asthma group. Among patients with NEA, asthmatics with high levels of CK19-specific IgG had higher levels of myeloperoxidase and NET-specific IgG than those with low levels of CK19-specific IgG (P = 0.020 and P = 0.017; respectively). Moreover, the immune complexes from asthmatics with high CK19-specific IgG enhanced NET formation and reactive oxygen species production (neutrophil activation), which were suppressed by N-acetylcysteine and anti-CD16 antibody treatment. CONCLUSIONS These findings suggest that circulating CK19 and CK19-specific IgG may contribute to NET formation, leading to airway inflammation and steroid resistance in NEA.
Collapse
Affiliation(s)
- Quang Luu Quoc
- Department of Oral & Maxillofacial Surgery, Loma Linda University School of Dentistry, Loma Linda, CA, USA
| | - Thi Bich Tra Cao
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea
| | - Sungbaek Seo
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science, Pusan National University, Miryang, Korea
| | - Beum-Soo An
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science, Pusan National University, Miryang, Korea
| | - Dae Youn Hwang
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science, Pusan National University, Miryang, Korea
| | - Youngwoo Choi
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science, Pusan National University, Miryang, Korea.
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea.
| |
Collapse
|
5
|
Chen W, Jin B, Cheng C, Peng H, Zhang X, Tan W, Tang R, Lian X, Diao H, Luo N, Li X, Fan J, Shi J, Yin C, Wang J, Peng S, Yu L, Li J, Wu RQ, Kuang DM, Shi GP, Zhou Y, Wang F, Jiang X. Single-cell profiling reveals kidney CD163 + dendritic cell participation in human lupus nephritis. Ann Rheum Dis 2024; 83:608-623. [PMID: 38290829 DOI: 10.1136/ard-2023-224788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/12/2024] [Indexed: 02/01/2024]
Abstract
OBJECTIVES The current work aimed to provide a comprehensive single-cell landscape of lupus nephritis (LN) kidneys, including immune and non-immune cells, identify disease-associated cell populations and unravel their participation within the kidney microenvironment. METHODS Single-cell RNA and T cell receptor sequencing were performed on renal biopsy tissues from 40 patients with LN and 6 healthy donors as controls. Matched peripheral blood samples from seven LN patients were also sequenced. Multiplex immunohistochemical analysis was performed on an independent cohort of 60 patients and validated using flow cytometric characterisation of human kidney tissues and in vitro assays. RESULTS We uncovered a notable enrichment of CD163+ dendritic cells (DC3s) in LN kidneys, which exhibited a positive correlation with the severity of LN. In contrast to their counterparts in blood, DC3s in LN kidney displayed activated and highly proinflammatory phenotype. DC3s showed strong interactions with CD4+ T cells, contributing to intrarenal T cell clonal expansion, activation of CD4+ effector T cell and polarisation towards Th1/Th17. Injured proximal tubular epithelial cells (iPTECs) may orchestrate DC3 activation, adhesion and recruitment within the LN kidneys. In cultures, blood DC3s treated with iPTECs acquired distinct capabilities to polarise Th1/Th17 cells. Remarkably, the enumeration of kidney DC3s might be a potential biomarker for induction treatment response in LN patients. CONCLUSION The intricate interplay involving DC3s, T cells and tubular epithelial cells within kidneys may substantially contribute to LN pathogenesis. The enumeration of renal DC3 holds potential as a valuable stratification feature for guiding LN patient treatment decisions in clinical practice.
Collapse
Affiliation(s)
- Wei Chen
- Department of Nephrology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- National Health Commission (NHC), Key Laboratory of Clinical Nephrology (SunYat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, Guangdong, China
| | - Bei Jin
- Department of Pediatric Rheumatology and Nephrology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Cheng Cheng
- Department of Pediatric Rheumatology and Nephrology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Huajing Peng
- Department of Nephrology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- National Health Commission (NHC), Key Laboratory of Clinical Nephrology (SunYat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, Guangdong, China
| | - Xinxin Zhang
- Department of Nephrology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- National Health Commission (NHC), Key Laboratory of Clinical Nephrology (SunYat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, Guangdong, China
| | - Weiping Tan
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ruihan Tang
- Department of Nephrology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- National Health Commission (NHC), Key Laboratory of Clinical Nephrology (SunYat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, Guangdong, China
| | - Xingji Lian
- Department of Nephrology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- National Health Commission (NHC), Key Laboratory of Clinical Nephrology (SunYat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, Guangdong, China
| | - Hui Diao
- Department of Nephrology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- National Health Commission (NHC), Key Laboratory of Clinical Nephrology (SunYat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, Guangdong, China
| | - Ning Luo
- Department of Nephrology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- National Health Commission (NHC), Key Laboratory of Clinical Nephrology (SunYat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, Guangdong, China
| | - Xiaoyan Li
- Department of Nephrology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- National Health Commission (NHC), Key Laboratory of Clinical Nephrology (SunYat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, Guangdong, China
| | - Jinjin Fan
- Department of Nephrology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- National Health Commission (NHC), Key Laboratory of Clinical Nephrology (SunYat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, Guangdong, China
| | - Jian Shi
- Institute of Precision Medicine, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Changjun Yin
- Institute of Precision Medicine, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, Munich, Germany
| | - Ji Wang
- Institute of Precision Medicine, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Sui Peng
- Institute of Precision Medicine, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- Clinical Trials Unit, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- Department of Gastroenterology and Hepatology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Li Yu
- Department of Pediatrics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jun Li
- Organ Transplant Center, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Rui-Qi Wu
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, and Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Dong-Ming Kuang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, and Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Yi Zhou
- Department of Nephrology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- National Health Commission (NHC), Key Laboratory of Clinical Nephrology (SunYat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, Guangdong, China
| | - Fang Wang
- Institute of Precision Medicine, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Xiaoyun Jiang
- Department of Pediatric Rheumatology and Nephrology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Alemán OR, Rosales C. Human neutrophil Fc gamma receptors: different buttons for different responses. J Leukoc Biol 2023; 114:571-584. [PMID: 37437115 DOI: 10.1093/jleuko/qiad080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/31/2023] [Accepted: 06/28/2023] [Indexed: 07/14/2023] Open
Abstract
Neutrophils are fundamental cells in host defense. These leukocytes are quickly recruited from the blood to sites of infection or tissue damage. At these sites, neutrophils initiate several innate immune responses, including phagocytosis, production of reactive oxygen species, degranulation to release proteases and other antimicrobial compounds, production of inflammatory mediators, and formation of neutrophil extracellular traps. In addition to their role in innate immunity, neutrophils are now recognized as cells that also regulate adaptive immunity, via interaction with dendritic cells and lymphocytes. Neutrophils also respond to adaptive immunity by interacting with antibody molecules. Indeed, antibody molecules allow neutrophils to have antigen-specific responses. Neutrophils express different receptors for antibodies. The receptors for immunoglobulin G molecules are known as Fcγ receptors. Upon Fcγ receptor aggregation on the cell membrane, these receptors trigger distinct signal transduction cascades that activate particular cellular responses. In this review, we describe the major Fcγ receptors expressed on human neutrophils and discuss how each Fcγ receptor activates a choice of signaling pathways to stimulate particular neutrophil responses.
Collapse
Affiliation(s)
- Omar Rafael Alemán
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apdo. Postal 70228, Ciudad Universitaria, Ciudad de México 04510, México
| | - Carlos Rosales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apdo. Postal 70228, Ciudad Universitaria, Ciudad de México 04510, México
| |
Collapse
|
7
|
Tatsumoto N, Saito S, Rifkin IR, Bonegio RG, Leal DN, Sen GC, Arditi M, Yamashita M. EGF-Receptor-Dependent TLR7 Signaling in Macrophages Promotes Glomerular Injury in Crescentic Glomerulonephritis. J Transl Med 2023; 103:100190. [PMID: 37268107 PMCID: PMC10527264 DOI: 10.1016/j.labinv.2023.100190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/04/2023] Open
Abstract
Glomerulonephritis (GN) is a group of inflammatory diseases and an important cause of morbidity and mortality worldwide. The initiation of the inflammatory process is quite different for each type of GN; however, each GN is characterized commonly and variably by acute inflammation with neutrophils and macrophages and crescent formation, leading to glomerular death. Toll-like receptor (TLR) 7 is a sensor for self-RNA and implicated in the pathogenesis of human and murine GN. Here, we show that TLR7 exacerbates glomerular injury in nephrotoxic serum nephritis (NTN), a murine model of severe crescentic GN. TLR7-/- mice were resistant to NTN, although TLR7-/- mice manifested comparable immune-complex deposition to wild-type mice without significant defects in humoral immunity, suggesting that endogenous TLR7 ligands accelerate glomerular injury. TLR7 was expressed exclusively in macrophages in glomeruli in GN but not in glomerular resident cells or neutrophils. Furthermore, we discovered that epidermal growth factor receptor (EGFR), a receptor-type tyrosine kinase, is essential for TLR7 signaling in macrophages. Mechanistically, EGFR physically interacted with TLR7 upon TLR7 stimulation, and EGFR inhibitor completely blocked the phosphorylation of TLR7 tyrosine residue(s). EGFR inhibitor attenuated glomerular damage in wild-type mice, and no additional glomerular protective effects by EGFR inhibitor were observed in TLR7-/- mice. Finally, mice lacking EGFR in macrophages were resistant to NTN. This study clearly demonstrated that EGFR-dependent TLR7 signaling in macrophages is essential for glomerular injury in crescentic GN.
Collapse
Affiliation(s)
- Narihito Tatsumoto
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Suguru Saito
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Ian R Rifkin
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts; Renal Section, Department of Medicine, VA Boston Healthcare System, Boston, Massachusetts
| | - Ramon G Bonegio
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts; Renal Section, Department of Medicine, VA Boston Healthcare System, Boston, Massachusetts
| | - Daniel N Leal
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Ganes C Sen
- Department of Inflammation & Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Moshe Arditi
- Division of Infectious Diseases and Immunology, Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, California; Infectious and Immunologic Diseases Research Center, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Michifumi Yamashita
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California.
| |
Collapse
|
8
|
Ng CYJ, Bun HH, Zhao Y, Zhong LLD. TCM "medicine and food homology" in the management of post-COVID disorders. Front Immunol 2023; 14:1234307. [PMID: 37720220 PMCID: PMC10500073 DOI: 10.3389/fimmu.2023.1234307] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/10/2023] [Indexed: 09/19/2023] Open
Abstract
Background The World Health Organization declared that COVID-19 is no longer a public health emergency of global concern on May 5, 2023. Post-COVID disorders are, however, becoming more common. Hence, there lies a growing need to develop safe and effective treatment measures to manage post-COVID disorders. Investigating the use of TCM medicinal foods in the long-term therapy of post-COVID illnesses may be beneficial given contemporary research's emphasis on the development of medicinal foods. Scope and approach The use of medicinal foods for the long-term treatment of post-COVID disorders is highlighted in this review. Following a discussion of the history of the TCM "Medicine and Food Homology" theory, the pathophysiological effects of post-COVID disorders will be briefly reviewed. An analysis of TCM medicinal foods and their functions in treating post-COVID disorders will then be provided before offering some insight into potential directions for future research and application. Key findings and discussion TCM medicinal foods can manage different aspects of post-COVID disorders. The use of medicinal foods in the long-term management of post-COVID illnesses may be a safe and efficient therapy choice because they are typically milder in nature than chronic drug use. These findings may also be applied in the long-term post-disease treatment of similar respiratory disorders.
Collapse
Affiliation(s)
- Chester Yan Jie Ng
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Hung Hung Bun
- The University of Hong Kong (HKU) School of Professional and Continuing Education, Hong Kong, Hong Kong SAR, China
| | - Yan Zhao
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Linda L. D. Zhong
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
9
|
Chang Y, Cai X, Syahirah R, Yao Y, Xu Y, Jin G, Bhute VJ, Torregrosa-Allen S, Elzey BD, Won YY, Deng Q, Lian XL, Wang X, Eniola-Adefeso O, Bao X. CAR-neutrophil mediated delivery of tumor-microenvironment responsive nanodrugs for glioblastoma chemo-immunotherapy. Nat Commun 2023; 14:2266. [PMID: 37080958 PMCID: PMC10119091 DOI: 10.1038/s41467-023-37872-4] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 04/03/2023] [Indexed: 04/22/2023] Open
Abstract
Glioblastoma (GBM) is one of the most aggressive and lethal solid tumors in human. While efficacious therapeutics, such as emerging chimeric antigen receptor (CAR)-T cells and chemotherapeutics, have been developed to treat various cancers, their effectiveness in GBM treatment has been hindered largely by the blood-brain barrier and blood-brain-tumor barriers. Human neutrophils effectively cross physiological barriers and display effector immunity against pathogens but the short lifespan and resistance to genome editing of primary neutrophils have limited their broad application in immunotherapy. Here we genetically engineer human pluripotent stem cells with CRISPR/Cas9-mediated gene knock-in to express various anti-GBM CAR constructs with T-specific CD3ζ or neutrophil-specific γ-signaling domains. CAR-neutrophils with the best anti-tumor activity are produced to specifically and noninvasively deliver and release tumor microenvironment-responsive nanodrugs to target GBM without the need to induce additional inflammation at the tumor sites. This combinatory chemo-immunotherapy exhibits superior and specific anti-GBM activities, reduces off-target drug delivery and prolongs lifespan in female tumor-bearing mice. Together, this biomimetic CAR-neutrophil drug delivery system is a safe, potent and versatile platform for treating GBM and possibly other devastating diseases.
Collapse
Affiliation(s)
- Yun Chang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Purdue University Institute for Cancer Research, West Lafayette, IN, 47907, USA
| | - Xuechao Cai
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Ramizah Syahirah
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Yuxing Yao
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Yang Xu
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Gyuhyung Jin
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Purdue University Institute for Cancer Research, West Lafayette, IN, 47907, USA
| | - Vijesh J Bhute
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | | | - Bennett D Elzey
- Purdue University Institute for Cancer Research, West Lafayette, IN, 47907, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, 47907, USA
| | - You-Yeon Won
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Purdue University Institute for Cancer Research, West Lafayette, IN, 47907, USA
| | - Qing Deng
- Purdue University Institute for Cancer Research, West Lafayette, IN, 47907, USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Xiaojun Lance Lian
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Xiaoguang Wang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA.
- Sustainability Institute, The Ohio State University, Columbus, OH, 43210, USA.
| | | | - Xiaoping Bao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA.
- Purdue University Institute for Cancer Research, West Lafayette, IN, 47907, USA.
| |
Collapse
|
10
|
Chung JYF, Tang PCT, Chan MKK, Xue VW, Huang XR, Ng CSH, Zhang D, Leung KT, Wong CK, Lee TL, Lam EWF, Nikolic-Paterson DJ, To KF, Lan HY, Tang PMK. Smad3 is essential for polarization of tumor-associated neutrophils in non-small cell lung carcinoma. Nat Commun 2023; 14:1794. [PMID: 37002229 PMCID: PMC10066366 DOI: 10.1038/s41467-023-37515-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Neutrophils are dynamic with their phenotype and function shaped by the microenvironment, such as the N1 antitumor and N2 pro-tumor states within the tumor microenvironment (TME), but its regulation remains undefined. Here we examine TGF-β1/Smad3 signaling in tumor-associated neutrophils (TANs) in non-small cell lung carcinoma (NSCLC) patients. Smad3 activation in N2 TANs is negatively correlate with the N1 population and patient survival. In experimental lung carcinoma, TANs switch from a predominant N2 state in wild-type mice to an N1 state in Smad3-KO mice which associate with enhanced neutrophil infiltration and tumor regression. Neutrophil depletion abrogates the N1 anticancer phenotype in Smad3-KO mice, while adoptive transfer of Smad3-KO neutrophils reproduces this protective effect in wild-type mice. Single-cell analysis uncovers a TAN subset showing a mature N1 phenotype in Smad3-KO TME, whereas wild-type TANs mainly retain an immature N2 state due to Smad3. Mechanistically, TME-induced Smad3 target genes related to cell fate determination to preserve the N2 state of TAN. Importantly, genetic deletion and pharmaceutical inhibition of Smad3 enhance the anticancer capacity of neutrophils against NSCLC via promoting their N1 maturation. Thus, our work suggests that Smad3 signaling in neutrophils may represent a therapeutic target for cancer immunotherapy.
Collapse
Affiliation(s)
- Jeff Yat-Fai Chung
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Philip Chiu-Tsun Tang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Max Kam-Kwan Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Vivian Weiwen Xue
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin, Hong Kong
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Carson International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen, China
| | - Xiao-Ru Huang
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Calvin Sze-Hang Ng
- Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Dongmei Zhang
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Kam-Tong Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Chun-Kwok Wong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Tin-Lap Lee
- Reproduction, Development and Endocrinology Program, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Eric W-F Lam
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong, 510060, China
| | - David J Nikolic-Paterson
- Department of Nephrology and Monash University Department of Medicine, Monash Medical Centre, Clayton, VIC, 3168, Australia
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Patrick Ming-Kuen Tang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
11
|
Koch KC, Tew GN. Functional antibody delivery: Advances in cellular manipulation. Adv Drug Deliv Rev 2023; 192:114586. [PMID: 36280179 DOI: 10.1016/j.addr.2022.114586] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/10/2022] [Accepted: 10/18/2022] [Indexed: 02/03/2023]
Abstract
The current therapeutic antibody market in the U.S. consists of 100 antibody-based products and their market value is expected to explode beyond $300 billion by 2025. These therapies are presently limited to extracellular targets due to the innate inability of antibodies to transverse membranes. To expand the number of accessible therapeutic targets, intracellular antibody delivery is necessary. Many delivery vehicles for antibodies have been used with some promising results, such as nanoparticles and cell penetrating polymers. Despite the success of these delivery platforms using model antibody cargo, there is a surprisingly small number of studies that focus on functional antibody delivery into the cytosol that also measures a cellular response. Antibodies can be designed for essentially unlimited targets, including proteins and DNA, that will ultimately control cell function once delivered inside cells. Advancement in cellular manipulation depends on the application of intracellularly delivering functional antibodies to achieve a desired result. This review focuses on the emerging field of functional antibody delivery which enables various cellular responses and cell manipulation.
Collapse
Affiliation(s)
- Kayla C Koch
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, MA 01003, United States
| | - Gregory N Tew
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, MA 01003, United States; Molecular & Cellular Biology Program, University of Massachusetts, Amherst, MA 01003, United States; Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, United States.
| |
Collapse
|
12
|
Haeger SC, Kridin K, Pieper M, Griewahn L, Nimmerjahn F, Zillikens D, König P, Ludwig RJ, Hundt JE. Therapeutic effects of Fc gamma RIV inhibition are mediated by selectively blocking immune complex-induced neutrophil activation in epidermolysis bullosa acquisita. Front Immunol 2022; 13:938306. [PMID: 36311755 PMCID: PMC9606225 DOI: 10.3389/fimmu.2022.938306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 09/28/2022] [Indexed: 11/15/2022] Open
Abstract
Epidermolysis bullosa acquisita (EBA) is a subepidermal autoimmune bullous disease caused by autoantibodies targeting type VII collagen (COL7). It is characterized by inflammation and subepidermal blistering mainly through immune complex (IC)-mediated activation of neutrophils. In experimental EBA, binding of neutrophils to ICs in the skin and induction of clinical disease depends on the expression of the Fc gamma receptor (FcγR) IV. As activating FcγR mediate both neutrophil extravasation and activation, we used multiphoton imaging to obtain further insights into the mechanistic contribution of FcγRIV in the pathogenesis of EBA. First, we demonstrated that blocking FcγRIV function completely protects LysM-eGFP mice against induction of antibody transfer-induced EBA. To visualize the interactions of anti-COL7 IgG and neutrophils in vivo, fluorescently labeled anti-COL7 IgG was injected into LysM-eGFP mice. Multiphoton microscopy was sequentially performed over a period of 8 days. At all time points, we observed a significantly higher extravasation of neutrophils into the skin of mice treated with anti-FcγRIV antibody compared to controls. However, the percentage of detected neutrophils localized to the target antigen along the dermal-epidermal junction was comparable between both groups. Additionally, reactive oxygen release and migration in vitro assay data demonstrate that FcγRIV antibody treatment inhibits the activation, but not the migration, of neutrophils. Our findings underscore the importance of advanced in vivo imaging techniques to understand the complexity of IC-mediated neutrophil-dependent inflammation, and indicate that the therapeutic utility of FcγRIV blockade is achieved through impairment of IC-mediated neutrophil activation.
Collapse
Affiliation(s)
- Swantje C. Haeger
- Luebeck Institute of Experimental Dermatology, University of Luebeck, Lubeck, Germany
| | - Khalaf Kridin
- Luebeck Institute of Experimental Dermatology, University of Luebeck, Lubeck, Germany
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Mario Pieper
- Institute of Anatomy, University of Luebeck, Lubeck, Germany
| | - Laura Griewahn
- Luebeck Institute of Experimental Dermatology, University of Luebeck, Lubeck, Germany
| | - Falk Nimmerjahn
- Department of Biology, University of Erlangen-Nuremberg, Erlangen-Nuremberg, Germany
| | - Detlef Zillikens
- Luebeck Institute of Experimental Dermatology, University of Luebeck, Lubeck, Germany
- Department of Dermatology, University of Luebeck, Lubeck, Germany
| | - Peter König
- Institute of Anatomy, University of Luebeck, Lubeck, Germany
| | - Ralf J. Ludwig
- Luebeck Institute of Experimental Dermatology, University of Luebeck, Lubeck, Germany
- Department of Dermatology, University of Luebeck, Lubeck, Germany
| | - Jennifer E. Hundt
- Luebeck Institute of Experimental Dermatology, University of Luebeck, Lubeck, Germany
- *Correspondence: Jennifer E. Hundt,
| |
Collapse
|
13
|
Nam AS, Dusaj N, Izzo F, Murali R, Myers RM, Mouhieddine TH, Sotelo J, Benbarche S, Waarts M, Gaiti F, Tahri S, Levine R, Abdel-Wahab O, Godley LA, Chaligne R, Ghobrial I, Landau DA. Single-cell multi-omics of human clonal hematopoiesis reveals that DNMT3A R882 mutations perturb early progenitor states through selective hypomethylation. Nat Genet 2022; 54:1514-1526. [PMID: 36138229 PMCID: PMC10068894 DOI: 10.1038/s41588-022-01179-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 07/29/2022] [Indexed: 12/13/2022]
Abstract
Somatic mutations in cancer genes have been detected in clonal expansions across healthy human tissue, including in clonal hematopoiesis. However, because mutated and wild-type cells are admixed, we have limited ability to link genotypes with phenotypes. To overcome this limitation, we leveraged multi-modality single-cell sequencing, capturing genotype, transcriptomes and methylomes in progenitors from individuals with DNMT3A R882 mutated clonal hematopoiesis. DNMT3A mutations result in myeloid over lymphoid bias, and an expansion of immature myeloid progenitors primed toward megakaryocytic-erythroid fate, with dysregulated expression of lineage and leukemia stem cell markers. Mutated DNMT3A leads to preferential hypomethylation of polycomb repressive complex 2 targets and a specific CpG flanking motif. Notably, the hypomethylation motif is enriched in binding motifs of key hematopoietic transcription factors, serving as a potential mechanistic link between DNMT3A mutations and aberrant transcriptional phenotypes. Thus, single-cell multi-omics paves the road to defining the downstream consequences of mutations that drive clonal mosaicism.
Collapse
Affiliation(s)
- Anna S Nam
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Neville Dusaj
- New York Genome Center, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Tri-Institutional MD-PhD Program, Weill Cornell Medicine, Rockefeller University, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Franco Izzo
- New York Genome Center, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Rekha Murali
- New York Genome Center, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Robert M Myers
- New York Genome Center, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Tri-Institutional MD-PhD Program, Weill Cornell Medicine, Rockefeller University, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tarek H Mouhieddine
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jesus Sotelo
- New York Genome Center, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Salima Benbarche
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael Waarts
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Federico Gaiti
- New York Genome Center, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Sabrin Tahri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ross Levine
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lucy A Godley
- Section of Hematology/Oncology, Departments of Medicine and Human Genetics, The University of Chicago, Chicago, IL, USA
| | - Ronan Chaligne
- New York Genome Center, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Irene Ghobrial
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| | - Dan A Landau
- New York Genome Center, New York, NY, USA.
- Division of Hematology and Medical Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
14
|
Saito S, Tatsumoto N, Cao DY, Nosaka N, Nishi H, Leal DN, Bernstein E, Shimada K, Arditi M, Bernstein KE, Yamashita M. Overexpressed angiotensin-converting enzyme in neutrophils suppresses glomerular damage in crescentic glomerulonephritis. Am J Physiol Renal Physiol 2022; 323:F411-F424. [PMID: 35979968 PMCID: PMC9484997 DOI: 10.1152/ajprenal.00067.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/22/2022] [Accepted: 08/13/2022] [Indexed: 11/22/2022] Open
Abstract
While angiotensin-converting enzyme (ACE) regulates blood pressure by producing angiotensin II as part of the renin-angiotensin system, we recently reported that elevated ACE in neutrophils promotes an effective immune response and increases resistance to infection. Here, we investigate if such neutrophils protect against renal injury in immune complex (IC)-mediated crescentic glomerulonephritis (GN) through complement. Nephrotoxic serum nephritis (NTN) was induced in wild-type and NeuACE mice that overexpress ACE in neutrophils. Glomerular injury of NTN in NeuACE mice was attenuated with much less proteinuria, milder histological injury, and reduced IC deposits, but presented with more glomerular neutrophils in the early stage of the disease. There were no significant defects in T and B cell functions in NeuACE mice. NeuACE neutrophils exhibited enhanced IC uptake with elevated surface expression of FcγRII/III and complement receptor CR1/2. IC uptake in neutrophils was enhanced by NeuACE serum containing elevated complement C3b. Given no significant complement activation by ACE, this suggests that neutrophil ACE indirectly preactivates C3 and that the C3b-CR1/2 axis and elevated FcγRII/III play a central role in IC elimination by neutrophils, resulting in reduced glomerular injury. The present study identified a novel renoprotective role of ACE in glomerulonephritis; elevated neutrophilic ACE promotes elimination of locally formed ICs in glomeruli via C3b-CR1/2 and FcγRII/III, ameliorating glomerular injury.NEW & NOTEWORTHY We studied immune complex (IC)-mediated crescentic glomerulonephritis in NeuACE mice that overexpress ACE only in neutrophils. Such mice show no significant defects in humoral immunity but strongly resist nephrotoxic serum nephritis (less proteinuria, milder histological damage, reduced IC deposits, and more glomerular neutrophils). NeuACE neutrophils enhanced IC uptake via increased surface expression of CR1/2 and FcgRII/III, as well as elevated serum complement C3b. These results suggest neutrophil ACE as a novel approach to reducing glomerulonephritis.
Collapse
Affiliation(s)
- Suguru Saito
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Narihito Tatsumoto
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Duo-Yao Cao
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Nobuyuki Nosaka
- Division of Infectious Diseases and Immunology, Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, California
| | - Hiroshi Nishi
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Daniel N Leal
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Ellen Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Kenichi Shimada
- Division of Infectious Diseases and Immunology, Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Biomedical Sciences, Infectious and Immunologic Diseases Research Center, Cedars-Sinai Medical Center, Los Angeles, California
| | - Moshe Arditi
- Division of Infectious Diseases and Immunology, Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Biomedical Sciences, Infectious and Immunologic Diseases Research Center, Cedars-Sinai Medical Center, Los Angeles, California
| | - Kenneth E Bernstein
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Michifumi Yamashita
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
15
|
García-Abellán J, Fernández M, Padilla S, García JA, Agulló V, Lozano V, Ena N, García-Sánchez L, Gutiérrez F, Masiá M. Immunologic phenotype of patients with long-COVID syndrome of 1-year duration. Front Immunol 2022; 13:920627. [PMID: 36090973 PMCID: PMC9451924 DOI: 10.3389/fimmu.2022.920627] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Background The pathophysiology of long-COVID remains unknown, and information is particularly limited for symptoms of very long duration. We aimed to assess the serological, T-cell immune responses and ANA titers of patients with long-COVID-19 syndrome of 1-year duration. Methods Prospective, longitudinal study of hospitalized COVID-19 patients followed-up for 12 months. Sequential blood samples and COVID-19 symptom questionnaires (CSQ) were obtained, and humoral and cellular immune responses, antinuclear antibodies (ANA) and inflammation biomarkers were analyzed. Results Of 154 patients discharged from hospital, 72 non-vaccinated with available CSQ in all visits were included. Of them, 14 (19.4%) reported persistent symptoms both at 6-months and 12-months, mainly asthenia (15.3%), myalgia (13.9%), and difficulty concentrating/memory loss (13.9%). Symptomatic patients were more frequently women, smokers, showed higher WHO severity score, and a trend to higher ICU admission. In the adjusted analysis, long-COVID syndrome was associated with lower frequency of detectable neutralizing antibodies (adjusted hazard ratio [aHR] 0.98; 95% confidence interval [CI], 0.97-0.99) and lower SARS-CoV-2-S1/S2 titers (aHR [95%CI] 0.14 [0.03–0.65]). T-cell immune response measured with a SARS-CoV-2-interferon-γ release assay was not different between groups. There was a higher frequency of positive ANA titers (≥160) in symptomatic patients (57.1% vs 29.3%, p=0.04), that was attenuated after adjustment aHR [95% CI] 3.37 [0.84-13.57], p=0.087. Levels of C-reactive protein and D-dimer were higher during follow-up in symptomatic patients, but with no differences at 12 months. Conclusion Patients with 1-year duration long-COVID-19 syndrome exhibit a distinct immunologic phenotype that includes a poorer SARS-CoV-2 antibody response, low-degree chronic inflammation that tends to mitigate, and autoimmunity.
Collapse
Affiliation(s)
- Javier García-Abellán
- Infectious Diseases Unit, Hospital General Universitario de Elche, Alicante, Spain
- Clinical Medicine Department, Universidad Miguel Hernández, Alicante, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Fernández
- Infectious Diseases Unit, Hospital General Universitario de Elche, Alicante, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Sergio Padilla
- Infectious Diseases Unit, Hospital General Universitario de Elche, Alicante, Spain
- Clinical Medicine Department, Universidad Miguel Hernández, Alicante, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - José Alberto García
- Infectious Diseases Unit, Hospital General Universitario de Elche, Alicante, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Vanesa Agulló
- Infectious Diseases Unit, Hospital General Universitario de Elche, Alicante, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Valle Lozano
- Department of Clinical Chemistry, Hospital General Universitario de Elche, Alicante, Spain
| | - Nuria Ena
- Infectious Diseases Unit, Hospital General Universitario de Elche, Alicante, Spain
| | - Lidia García-Sánchez
- Infectious Diseases Unit, Hospital General Universitario de Elche, Alicante, Spain
| | - Félix Gutiérrez
- Infectious Diseases Unit, Hospital General Universitario de Elche, Alicante, Spain
- Clinical Medicine Department, Universidad Miguel Hernández, Alicante, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Mar Masiá, ; Félix Gutiérrez,
| | - Mar Masiá
- Infectious Diseases Unit, Hospital General Universitario de Elche, Alicante, Spain
- Clinical Medicine Department, Universidad Miguel Hernández, Alicante, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Mar Masiá, ; Félix Gutiérrez,
| |
Collapse
|
16
|
Jeong S, Kim B, Byun DJ, Jin S, Seo BS, Shin MH, Leem AY, Choung JJ, Park MS, Hyun YM. Lysophosphatidylcholine Alleviates Acute Lung Injury by Regulating Neutrophil Motility and Neutrophil Extracellular Trap Formation. Front Cell Dev Biol 2022; 10:941914. [PMID: 35859904 PMCID: PMC9289271 DOI: 10.3389/fcell.2022.941914] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/14/2022] [Indexed: 11/28/2022] Open
Abstract
Sepsis is predominantly initiated by bacterial infection and can cause systemic inflammation, which frequently leads to rapid death of the patient. However, this acute systemic inflammatory response requires further investigation from the perspectives of clinical judgment criteria and early treatment strategies for the relief of symptoms. Lysophosphatidylcholine (LPC) 18:0 may relieve septic symptoms, but the relevant mechanism is not clearly understood. Therefore, we aimed to assess the effectiveness of LPC as a therapeutic treatment for acute inflammation in the lung induced by lipopolysaccharide in mice. Systemic inflammation of mice was induced by lipopolysaccharide (LPS) inoculation to investigate the role of LPC in the migration and the immune response of neutrophils during acute lung injury. By employing two-photon intravital imaging of the LPS-stimulated LysM-GFP mice and other in vitro and in vivo assays, we examined whether LPC alleviates the inflammatory effect of sepsis. We also tested the effect of LPC to human neutrophils from healthy control and sepsis patients. Our data showed that LPC treatment reduced the infiltration of innate immune cells into the lung. Specifically, LPC altered neutrophil migratory patterns and enhanced phagocytic efficacy in the damaged lung. Moreover, LPC treatment reduced the release of neutrophil extracellular trap (NET), which can damage tissue in the inflamed organ and exacerbate disease. It also reduced human neutrophil migration under inflammatory environment. Our results suggest that LPC can alleviate sepsis-induced lung inflammation by regulating the function of neutrophils. These findings provide evidence for the beneficial application of LPC treatment as a potential therapeutic strategy for sepsis.
Collapse
Affiliation(s)
- Soi Jeong
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Bora Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea
| | - Da Jeong Byun
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Sunmin Jin
- R&D Center, AriBio Co., Ltd., Sengnam, South Korea
| | - Bo Seung Seo
- R&D Center, AriBio Co., Ltd., Sengnam, South Korea
| | - Mi Hwa Shin
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Ah Young Leem
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | | | - Moo Suk Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
- *Correspondence: Moo Suk Park, ; Young-Min Hyun,
| | - Young-Min Hyun
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
- *Correspondence: Moo Suk Park, ; Young-Min Hyun,
| |
Collapse
|
17
|
Krémer V, de Chaisemartin L, Jönsson F. The role of neutrophils in antibody-driven autoimmune cytopenias. Int J Biochem Cell Biol 2022; 147:106231. [PMID: 35644471 DOI: 10.1016/j.biocel.2022.106231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/17/2022] [Accepted: 05/23/2022] [Indexed: 10/18/2022]
Abstract
Autoimmune cytopenias are a consequence of autoantibodies that target blood cell lineages and mark them for their accelerated destruction, mostly through phagocytosis by monocytes and macrophages and complement activation. Neutrophils, although equipped with Fc and complement receptors and effector mechanisms that are critical in other autoimmune conditions, remained long overlooked. Recent reports, however, propose a new and possibly critical role of neutrophils. In this review, we gathered available evidence on the contribution of neutrophils to the development, onset, and consequences of autoantibody-dependent cytopenias.
Collapse
Affiliation(s)
- Vanessa Krémer
- Institut Pasteur, Université́ Paris Cité, Inserm UMR1222, Unit of Antibodies in Therapy and Pathology, F-75015 Paris, France; Inflammation, Microbiome and Immunosurveillance, Université Paris-Saclay, INSERM, Châtenay-Malabry, France
| | - Luc de Chaisemartin
- Institut Pasteur, Université́ Paris Cité, Inserm UMR1222, Unit of Antibodies in Therapy and Pathology, F-75015 Paris, France; Inflammation, Microbiome and Immunosurveillance, Université Paris-Saclay, INSERM, Châtenay-Malabry, France; APHP, Bichat Hospital, Immunology Department, F-75018 Paris, France
| | - Friederike Jönsson
- Institut Pasteur, Université́ Paris Cité, Inserm UMR1222, Unit of Antibodies in Therapy and Pathology, F-75015 Paris, France; CNRS, F-75015 Paris, France
| |
Collapse
|
18
|
Mysore V, Tahir S, Furuhashi K, Arora J, Rosetti F, Cullere X, Yazbeck P, Sekulic M, Lemieux ME, Raychaudhuri S, Horwitz BH, Mayadas TN. Monocytes transition to macrophages within the inflamed vasculature via monocyte CCR2 and endothelial TNFR2. J Exp Med 2022; 219:e20210562. [PMID: 35404389 PMCID: PMC9006314 DOI: 10.1084/jem.20210562] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 11/16/2021] [Accepted: 03/03/2022] [Indexed: 12/13/2022] Open
Abstract
Monocytes undergo phenotypic and functional changes in response to inflammatory cues, but the molecular signals that drive different monocyte states remain largely undefined. We show that monocytes acquire macrophage markers upon glomerulonephritis and may be derived from CCR2+CX3CR1+ double-positive monocytes, which are preferentially recruited, dwell within glomerular capillaries, and acquire proinflammatory characteristics in the nephritic kidney. Mechanistically, the transition to immature macrophages begins within the vasculature and relies on CCR2 in circulating cells and TNFR2 in parenchymal cells, findings that are recapitulated in vitro with monocytes cocultured with TNF-TNFR2-activated endothelial cells generating CCR2 ligands. Single-cell RNA sequencing of cocultures defines a CCR2-dependent monocyte differentiation path associated with the acquisition of immune effector functions and generation of CCR2 ligands. Immature macrophages are detected in the urine of lupus nephritis patients, and their frequency correlates with clinical disease. In conclusion, CCR2-dependent functional specialization of monocytes into macrophages begins within the TNF-TNFR2-activated vasculature and may establish a CCR2-based autocrine, feed-forward loop that amplifies renal inflammation.
Collapse
Affiliation(s)
- Vijayashree Mysore
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Suhail Tahir
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Kazuhiro Furuhashi
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Jatin Arora
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Florencia Rosetti
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Xavier Cullere
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Pascal Yazbeck
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Miroslav Sekulic
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY
| | | | - Soumya Raychaudhuri
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Centre for Genetics and Genomics Versus Arthritis, The University of Manchester, Manchester, UK
| | - Bruce H. Horwitz
- Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA
| | - Tanya N. Mayadas
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
19
|
Polak D, Bohle B. Neutrophils-typical atypical antigen presenting cells? Immunol Lett 2022; 247:52-58. [DOI: 10.1016/j.imlet.2022.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 11/05/2022]
|
20
|
Inoue R, Nishi H, Osaka M, Yoshida M, Nangaku M. Neutrophil Protein Kinase R Mediates Endothelial Adhesion and Migration by the Promotion of Neutrophil Actin Polymerization. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2173-2183. [PMID: 35396220 DOI: 10.4049/jimmunol.2001349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Neutrophils protect against bacterial and fungal infections, but tight regulation of cell activation is essential for avoiding tissue damage in autoimmune disorders. Protein kinase R (PKR) is a serine/threonine kinase originally characterized by its role in the defense mechanisms against viral infection. Although PKR is involved in the signaling pathways of neurodegenerative diseases and metabolic disorders, its function in neutrophils is not well delineated. In this study, we demonstrate that human neutrophil PKR mediates adhesion to endothelial cells under physiological flow conditions but does not mediate rolling on those cells. Also, neutrophil PKR activation contributes to migration toward chemoattractants. Mechanistically, neutrophil PKR mediates the cell spreading and binding to ICAM-1 in static condition. Moreover, Ab microarray reveals that calcium/calmodulin-dependent protein kinase II is phosphorylated downstream of PKR and affects actin polymerization that is a cytoskeleton rearrangement indispensable for neutrophil migration induced by fMLF. In vivo, neutrophil recruitment into the dorsal air pouch of mice is reduced by PKR inhibitor treatment. Also, in mice with nephrotoxic serum nephritis, the compound treatment suppresses neutrophil accumulation in kidney glomerulus and subsequent development of albuminuria. Thus, in vascular inflammation, neutrophil PKR plays a critical role in the recruitment process, including endothelial adhesion and migration via leukocyte actin polymerization.
Collapse
Affiliation(s)
- Reiko Inoue
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan; and
| | - Hiroshi Nishi
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan; and
| | - Mizuko Osaka
- Department of Life Science and Bioethics, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masayuki Yoshida
- Department of Life Science and Bioethics, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan; and
| |
Collapse
|
21
|
Antonelou M, Evans RDR, Henderson SR, Salama AD. Neutrophils are key mediators in crescentic glomerulonephritis and targets for new therapeutic approaches. Nephrol Dial Transplant 2022; 37:230-238. [PMID: 33057680 DOI: 10.1093/ndt/gfaa206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Indexed: 12/26/2022] Open
Abstract
Crescentic glomerulonephritis (CGN) results from a diverse set of diseases associated with immune dysregulation and the breakdown of self-tolerance to a wide range of autoantigens, some known and some that remain unknown. Experimental data demonstrate that neutrophils have an important role in the pathogenesis of CGN. Upon activation, neutrophils generate reactive oxygen species, release serine proteases and form neutrophil extracellular traps (NETs), all of which can induce direct tissue damage. In addition, serine proteases such as myeloperoxidase and proteinase 3, presented on NETs, can be processed and recognized as autoantigens, leading to the generation and maintenance of autoimmune responses in susceptible individuals. The basis of the specificity of autoimmune responses in different patients to NET proteins is unclear, but relates at least in part to differences in human leucocyte antigen expression. Conditions associated with CGN are often characterized by aberrant neutrophil activation and NETosis and, in some, impaired NET degradation. Targeting neutrophil degranulation and NETosis is now possible using a variety of novel compounds and may provide a promising therapeutic alternative to glucocorticoid use, which has been a mainstay of management in CGN for decades and is associated with significant adverse effects. In this review, we discuss the evidence supporting the role of neutrophils in the development of CGN and the pathways identified in neutrophil degranulation and NETosis that may translate to novel therapeutic applications.
Collapse
Affiliation(s)
- Marilina Antonelou
- University College London, Department of Renal Medicine, Royal Free Hospital, London, UK
| | - Rhys D R Evans
- University College London, Department of Renal Medicine, Royal Free Hospital, London, UK
| | - Scott R Henderson
- University College London, Department of Renal Medicine, Royal Free Hospital, London, UK
| | - Alan D Salama
- University College London, Department of Renal Medicine, Royal Free Hospital, London, UK
| |
Collapse
|
22
|
Mice Treated Subcutaneously with Mouse LPS-Converted PrP res or LPS Alone Showed Brain Gene Expression Profiles Characteristic of Prion Disease. Vet Sci 2021; 8:vetsci8090200. [PMID: 34564594 PMCID: PMC8473295 DOI: 10.3390/vetsci8090200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 11/16/2022] Open
Abstract
Previously, we showed that bacterial lipopolysaccharide (LPS) converts mouse PrPC protein to a beta-rich isoform (moPrPres) resistant to proteinase K. In this study, we aimed to test if the LPS-converted PrPres is infectious and alters the expression of genes related to prion pathology in brains of terminally sick mice. Ninety female FVB/N mice at 5 weeks of age were randomly assigned to 6 groups treated subcutaneously (sc) for 6 weeks either with: (1) Saline (CTR); (2) LPS from Escherichia coli 0111:B4 (LPS), (3) one-time sc administration of de novo generated mouse recombinant prion protein (moPrP; 29-232) rich in beta-sheet by incubation with LPS (moPrPres), (4) LPS plus one-time sc injection of moPrPres, (5) one-time sc injection of brain homogenate from Rocky Mountain Lab (RLM) scrapie strain, and (6) LPS plus one-time sc injection of RML. Results showed that all treatments altered the expression of various genes related to prion disease and neuroinflammation starting at 11 weeks post-infection and more profoundly at the terminal stage. In conclusion, sc administration of de novo generated moPrPres, LPS, and a combination of moPrPres with LPS were able to alter the expression of multiple genes typical of prion pathology and inflammation.
Collapse
|
23
|
Huang GH, Zhang YH, Chen L, Li Y, Huang T, Cai YD. Identifying Lung Cancer Cell Markers with Machine Learning Methods and Single-Cell RNA-Seq Data. Life (Basel) 2021; 11:life11090940. [PMID: 34575089 PMCID: PMC8467493 DOI: 10.3390/life11090940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 11/21/2022] Open
Abstract
Non-small cell lung cancer is a major lethal subtype of epithelial lung cancer, with high morbidity and mortality. The single-cell sequencing technique plays a key role in exploring the pathogenesis of non-small cell lung cancer. We proposed a computational method for distinguishing cell subtypes from the different pathological regions of non-small cell lung cancer on the basis of transcriptomic profiles, including a group of qualitative classification criteria (biomarkers) and various rules. The random forest classifier reached a Matthew’s correlation coefficient (MCC) of 0.922 by using 720 features, and the decision tree reached an MCC of 0.786 by using 1880 features. The obtained biomarkers and rules were analyzed in the end of this study.
Collapse
Affiliation(s)
- Guo-Hua Huang
- School of Life Sciences, Shanghai University, Shanghai 200444, China;
- Department of Mechanical and Energy Engineering, Shaoyang University, Shaoyang 422000, China;
| | - Yu-Hang Zhang
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Lei Chen
- Department of College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China;
| | - You Li
- Department of Mechanical and Energy Engineering, Shaoyang University, Shaoyang 422000, China;
| | - Tao Huang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
- Correspondence: (T.H.); (Y.-D.C.); Tel.: +86-21-54923269 (T.H.); +86-21-66136132 (Y.-D.C.)
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai 200444, China;
- Correspondence: (T.H.); (Y.-D.C.); Tel.: +86-21-54923269 (T.H.); +86-21-66136132 (Y.-D.C.)
| |
Collapse
|
24
|
Mysore V, Cullere X, Mears J, Rosetti F, Okubo K, Liew PX, Zhang F, Madera-Salcedo I, Rosenbauer F, Stone RM, Aster JC, von Andrian UH, Lichtman AH, Raychaudhuri S, Mayadas TN. FcγR engagement reprograms neutrophils into antigen cross-presenting cells that elicit acquired anti-tumor immunity. Nat Commun 2021; 12:4791. [PMID: 34373452 PMCID: PMC8352912 DOI: 10.1038/s41467-021-24591-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 06/17/2021] [Indexed: 12/12/2022] Open
Abstract
Classical dendritic cells (cDC) are professional antigen-presenting cells (APC) that regulate immunity and tolerance. Neutrophil-derived cells with properties of DCs (nAPC) are observed in human diseases and after culture of neutrophils with cytokines. Here we show that FcγR-mediated endocytosis of antibody-antigen complexes or an anti-FcγRIIIB-antigen conjugate converts neutrophils into nAPCs that, in contrast to those generated with cytokines alone, activate T cells to levels observed with cDCs and elicit CD8+ T cell-dependent anti-tumor immunity in mice. Single cell transcript analyses and validation studies implicate the transcription factor PU.1 in neutrophil to nAPC conversion. In humans, blood nAPC frequency in lupus patients correlates with disease. Moreover, anti-FcγRIIIB-antigen conjugate treatment induces nAPCs that can activate autologous T cells when using neutrophils from individuals with myeloid neoplasms that harbor neoantigens or those vaccinated against bacterial toxins. Thus, anti-FcγRIIIB-antigen conjugate-induced conversion of neutrophils to immunogenic nAPCs may represent a possible immunotherapy for cancer and infectious diseases.
Collapse
Affiliation(s)
- Vijayashree Mysore
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Xavier Cullere
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Joseph Mears
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Immunology, Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Florencia Rosetti
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Koshu Okubo
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Pei X Liew
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Fan Zhang
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Immunology, Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Iris Madera-Salcedo
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Frank Rosenbauer
- Institute of Molecular Tumor Biology, University of Muenster, Muenster, Germany
| | - Richard M Stone
- Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Jon C Aster
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ulrich H von Andrian
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Andrew H Lichtman
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Soumya Raychaudhuri
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Immunology, Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Arthritis Research UK Centre for Genetics and Genomics, Centre for Musculoskeletal Research, The University of Manchester, Manchester, UK
| | - Tanya N Mayadas
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
25
|
García-Abellán J, Padilla S, Fernández-González M, García JA, Agulló V, Andreo M, Ruiz S, Galiana A, Gutiérrez F, Masiá M. Antibody Response to SARS-CoV-2 is Associated with Long-term Clinical Outcome in Patients with COVID-19: a Longitudinal Study. J Clin Immunol 2021; 41:1490-1501. [PMID: 34273064 PMCID: PMC8285689 DOI: 10.1007/s10875-021-01083-7] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023]
Abstract
Background The relationship of host immune response and viral replication with health outcomes in patients with COVID-19 remains to be defined. We aimed to characterize the medium and long-term clinical, virological, and serological outcomes after hospitalization for COVID-19, and to identify predictors of long-COVID. Methods Prospective, longitudinal study conducted in COVID-19 patients confirmed by RT-PCR. Serial blood and nasopharyngeal samples (NPS) were obtained for measuring SARS-CoV-2 RNA and S-IgG/N-IgG antibodies during hospital stay, and at 1, 2, and 6 months post-discharge. Genome sequencing was performed where appropriate. Patients filled out a COVID-19 symptom questionnaire (CSQ) at 2-month and 6-month visits, and those with highest scores were characterized. Results Of 146 patients (60% male, median age 64 years) followed-up, 20.6% required hospital readmission and 5.5% died. At 2 months and 6 months, 9.6% and 7.8% patients, respectively, reported moderate/severe persistent symptoms. SARS-CoV-2 RT-PCR was positive in NPS in 11.8% (median Ct = 38) and 3% (median Ct = 36) patients at 2 months and 6 months, respectively, but no reinfections were demonstrated. Antibody titers gradually waned, with seroreversion occurring at 6 months in 27 (27.6%) patients for N-IgG and in 6 (6%) for S-IgG. Adjusted 2-month predictors of the highest CSQ scores (OR [95%CI]) were lower peak S-IgG (0.80 [0.66–0.94]) and higher WHO severity score (2.57 [1.20–5.86]); 6-month predictors were lower peak S-IgG (0.89 [0.79–0.99]) and female sex (2.41 [1.20–4.82]); no association was found with prolonged viral RNA shedding. Conclusions Long-COVID is associated with weak anti-SARS-CoV-2 antibody response, severity of illness, and female gender. Late clinical events and persistent symptoms in the medium and long term occur in a significant proportion of patients hospitalized for COVID-19. Supplementary Information The online version contains supplementary material available at 10.1007/s10875-021-01083-7.
Collapse
Affiliation(s)
- Javier García-Abellán
- Internal Medicine and Infectious Diseases Unit, Hospital General Universitario de Elche, Alicante, Spain
| | - Sergio Padilla
- Internal Medicine and Infectious Diseases Unit, Hospital General Universitario de Elche, Alicante, Spain.,Clinical Medicine Department, Universidad Miguel Hernández de Elche, Alicante, Spain
| | - Marta Fernández-González
- Internal Medicine and Infectious Diseases Unit, Hospital General Universitario de Elche, Alicante, Spain
| | - José A García
- Statistics, Operational Research Center, Universidad Miguel Hernández de Elche, Alicante, Spain
| | - Vanesa Agulló
- Internal Medicine and Infectious Diseases Unit, Hospital General Universitario de Elche, Alicante, Spain
| | - María Andreo
- Internal Medicine and Infectious Diseases Unit, Hospital General Universitario de Elche, Alicante, Spain
| | - Sandra Ruiz
- Section of Respiratory Medicine, Hospital General Universitario de Elche, Alicante, Spain
| | - Antonio Galiana
- Microbiology Service, Hospital General Universitario de Elche, Alicante, Spain
| | - Félix Gutiérrez
- Internal Medicine and Infectious Diseases Unit, Hospital General Universitario de Elche, Alicante, Spain. .,Clinical Medicine Department, Universidad Miguel Hernández de Elche, Alicante, Spain.
| | - Mar Masiá
- Internal Medicine and Infectious Diseases Unit, Hospital General Universitario de Elche, Alicante, Spain. .,Clinical Medicine Department, Universidad Miguel Hernández de Elche, Alicante, Spain.
| |
Collapse
|
26
|
Liew PX. Mired in the glomeruli: witnessing live neutrophil recruitment in the kidney. Am J Physiol Cell Physiol 2021; 321:C384-C393. [PMID: 34232747 DOI: 10.1152/ajpcell.00429.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Inflammation of the kidney is a key contributor to proliferative glomerulonephritis, and kidney damage during glomerulonephritis can lead to renal failure. The immune response associated with glomerulonephritis episodes is a major determinant of patient outcomes, and understanding this response is paramount for effective therapeutic treatment. Neutrophils are the first responders to sites of infection or tissue injury and are a significant cellular infiltrate during proliferative glomerulonephritis. This immune cell was initially recognized as a "blunt" nonspecific effector cell that was recruited to kill pathogens and then die quickly. However, recent studies have shown that the behavior and function of neutrophils are substantially more complex. Neutrophil recruitment to inflammatory sites must be carefully regulated so that these potent cells accurately arrive at tissue sites and perform their functions without nonspecific injury to other locations. As the kidney contains unique microvasculature befitting their specialized role in blood filtration, the recruitment of neutrophils in the renal environment differs from other organs. This Mini-Review will describe how advances in live-animal (intravital) imaging led to the discovery of novel recruitment pathways in the kidney, particularly in the glomeruli, and highlight these differences to canonical neutrophil recruitment. In addition, molecular engagement of surface molecules that lead to intracellular signaling, which is followed by neutrophil capture in the glomeruli, is also briefly discussed. Finally, the contribution of other immune cells in renal neutrophil recruitment, the fate of the emigrated neutrophils after inflammation, and the relevance of mouse models compared with human glomerulonephritides will also be explored.
Collapse
Affiliation(s)
- Pei Xiong Liew
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
27
|
Immune-Related Urine Biomarkers for the Diagnosis of Lupus Nephritis. Int J Mol Sci 2021; 22:ijms22137143. [PMID: 34281193 PMCID: PMC8267641 DOI: 10.3390/ijms22137143] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 12/17/2022] Open
Abstract
The kidney is one of the main organs affected by the autoimmune disease systemic lupus erythematosus. Lupus nephritis (LN) concerns 30-60% of adult SLE patients and it is significantly associated with an increase in the morbidity and mortality. The definitive diagnosis of LN can only be achieved by histological analysis of renal biopsies, but the invasiveness of this technique is an obstacle for early diagnosis of renal involvement and a proper follow-up of LN patients under treatment. The use of urine for the discovery of non-invasive biomarkers for renal disease in SLE patients is an attractive alternative to repeated renal biopsies, as several studies have described surrogate urinary cells or analytes reflecting the inflammatory state of the kidney, and/or the severity of the disease. Herein, we review the main findings in the field of urine immune-related biomarkers for LN patients, and discuss their prognostic and diagnostic value. This manuscript is focused on the complement system, antibodies and autoantibodies, chemokines, cytokines, and leukocytes, as they are the main effectors of LN pathogenesis.
Collapse
|
28
|
Okubo K, Brenner MD, Cullere X, Saggu G, Patchen ML, Bose N, Mihori S, Yuan Z, Lowell CA, Zhu C, Mayadas TN. Inhibitory affinity modulation of FcγRIIA ligand binding by glycosphingolipids by inside-out signaling. Cell Rep 2021; 35:109142. [PMID: 34010642 PMCID: PMC8218468 DOI: 10.1016/j.celrep.2021.109142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/19/2021] [Accepted: 04/26/2021] [Indexed: 12/22/2022] Open
Abstract
The interaction of the human FcγRIIA with immune complexes (ICs) promotes neutrophil activation and thus must be tightly controlled to avoid damage to healthy tissue. Here, we demonstrate that a fungal-derived soluble β-1,3/1,6-glucan binds to the glycosphingolipid long-chain lactosylceramide (LacCer) to reduce FcγRIIA-mediated recruitment to immobilized ICs under flow, a process requiring high-affinity FcγRIIA-immunoglobulin G (IgG) interactions. The inhibition requires Lyn phosphorylation of SHP-1 phosphatase and the FcγRIIA immunotyrosine-activating motif. β-glucan reduces the effective 2D affinity of FcγRIIA for IgG via Lyn and SHP-1 and, in vivo, inhibits FcγRIIA-mediated neutrophil recruitment to intravascular IgG deposited in the kidney glomeruli in a glycosphingolipid- and Lyn-dependent manner. In contrast, β-glucan did not affect FcγR functions that bypass FcγR affinity for IgG. In summary, we have identified a pathway for modulating the 2D affinity of FcγRIIA for ligand that relies on LacCer-Lyn-SHP-1-mediated inhibitory signaling triggered by β-glucan, a previously described activator of innate immunity. Okubo et al. demonstrate that β-glucan binding to the glycosphingolipid lactosylceramide engages a Lyn kinase to SHP-1 phosphatase pathway that reduces FcγRIIA binding propensity for IgG, which suggests FcγRIIA affinity regulation by “inside-out” signaling. The β-glucan-lactosylceramide-Lyn axis prevents FcγRIIA-dependent neutrophil recruitment in vitro and to intravascular IgG deposits following glomerulonephritis.
Collapse
Affiliation(s)
- Koshu Okubo
- Department of Pathology, Brigham and Women's Hospital & Harvard Medical School, Boston, MA 02115, USA
| | - Michael D Brenner
- Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Xavier Cullere
- Department of Pathology, Brigham and Women's Hospital & Harvard Medical School, Boston, MA 02115, USA
| | - Gurpanna Saggu
- Department of Pathology, Brigham and Women's Hospital & Harvard Medical School, Boston, MA 02115, USA
| | | | - Nandita Bose
- Biothera Pharmaceuticals, Inc., Eagan, Minnesota, MN 55121, USA
| | - Saki Mihori
- Department of Pathology, Brigham and Women's Hospital & Harvard Medical School, Boston, MA 02115, USA
| | - Zhou Yuan
- Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Clifford A Lowell
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143, USA
| | - Cheng Zhu
- Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Tanya N Mayadas
- Department of Pathology, Brigham and Women's Hospital & Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
29
|
Gasparoto TH, Dalboni TM, Amôr NG, Abe AE, Perri G, Lara VS, Vieira NA, Gasparoto CT, Campanelli AP. Fcγ receptors on aging neutrophils. J Appl Oral Sci 2021; 29:e20200770. [PMID: 33825754 PMCID: PMC8011831 DOI: 10.1590/1678-7757-2020-0770] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/15/2020] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Neutrophils are key effector cells of the innate immune system. They recognize antigens through membrane receptors, which are expressed during their maturation and activation. Neutrophils express FcγRII (CD32), FcγRIII (CD16), and FcγRI (CD64) after being activated by different factors such as cytokines and bacterial products. These receptors are involved with phagocytosis of IgG-opsonized microbes and enhance defense mechanisms. Based on that, our study seeks to compare the expression of FcγRII, FcγRIII, FcγRI, and CD11b on neutrophils from elderly and young subjects and their expression after in vitro activation with cytokines and LPS. METHODOLOGY Neutrophils were isolated from human peripheral blood and from mice bone marrow by density gradient. After isolation, FCγRs expression was immediately analyzed by flow cytometry or after in vitro stimulation. RESULTS In freshly isolated cells, the percentage of FcγRIIIb+ and CD11b+ neutrophils were higher in samples from young individuals; FcγRIIIa expression was more prominent on aged neutrophils; FcγRIA expression was similar in all samples analyzed. Exposure to CXCL8 and LPS resulted in a higher percentage of FcγRIa+ neutrophils on elderly individuals' samples but lower when compared with neutrophils from young donors. We observed that LPS caused an increase in FcγRIIa expression on aging human neutrophils. In contrast, FcγRIIIb expression in response to CXCL8 and LPS stimulation was not altered in the four groups. CD11b expression was lower in neutrophils from elderly individuals even in response to LPS and CXCL8. In mice, we observed differences only regarding CD11b expression, which was increased on aged neutrophils. LPS exposure caused an increase in all FcγRs. CONCLUSIONS Our results suggest that, in humans, the overall pattern of FcγR expression and integrin CD11b are altered during aging and immunosenescence might contribute to age-related infection.
Collapse
Affiliation(s)
- Thaís Helena Gasparoto
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, SP, Brasil
| | - Thalita Marcato Dalboni
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, SP, Brasil
| | - Nádia Ghinelli Amôr
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, SP, Brasil
| | - Aneli Eiko Abe
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, SP, Brasil
| | - Graziela Perri
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, SP, Brasil
| | - Vanessa Soares Lara
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Estomatologia (Patologia Oral), Bauru, SP, Brasil
| | | | - Carlos Teodoro Gasparoto
- Universidade de São Paulo, Faculdade de Medicina de São Paulo, Departamento de Saúde Pública, São Paulo, Brasil
| | - Ana Paula Campanelli
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, SP, Brasil
| |
Collapse
|
30
|
Granel J, Korkmaz B, Nouar D, Weiss SAI, Jenne DE, Lemoine R, Hoarau C. Pathogenicity of Proteinase 3-Anti-Neutrophil Cytoplasmic Antibody in Granulomatosis With Polyangiitis: Implications as Biomarker and Future Therapies. Front Immunol 2021; 12:571933. [PMID: 33679731 PMCID: PMC7930335 DOI: 10.3389/fimmu.2021.571933] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Granulomatosis with polyangiitis (GPA) is a rare but serious necrotizing auto-immune vasculitis. GPA is mostly associated with the presence of Anti-Neutrophil Cytoplasmic Antibody (ANCA) targeting proteinase 3 (PR3-ANCA), a serine protease contained in neutrophil granules but also exposed at the membrane. PR3-ANCAs have a proven fundamental role in GPA: they bind neutrophils allowing their auto-immune activation responsible for vasculitis lesions. PR3-ANCAs bind neutrophil surface on the one hand by their Fab binding PR3 and on the other by their Fc binding Fc gamma receptors. Despite current therapies, GPA is still a serious disease with an important mortality and a high risk of relapse. Furthermore, although PR3-ANCAs are a consistent biomarker for GPA diagnosis, relapse management currently based on their level is inconsistent. Indeed, PR3-ANCA level is not correlated with disease activity in 25% of patients suggesting that not all PR3-ANCAs are pathogenic. Therefore, the development of new biomarkers to evaluate disease activity and predict relapse and new therapies is necessary. Understanding factors influencing PR3-ANCA pathogenicity, i.e. their potential to induce auto-immune activation of neutrophils, offers interesting perspectives in order to improve GPA management. Most relevant factors influencing PR3-ANCA pathogenicity are involved in their interaction with neutrophils: level of PR3 autoantigen at neutrophil surface, epitope of PR3 recognized by PR3-ANCA, isotype and glycosylation of PR3-ANCA. We detailed in this review the advances in understanding these factors influencing PR3-ANCA pathogenicity in order to use them as biomarkers and develop new therapies in GPA as part of a personalized approach.
Collapse
Affiliation(s)
- Jérôme Granel
- Université de Tours, Plateforme B Cell Ressources (BCR) EA4245, Tours, France.,Service d'Immunologie Clinique et d'Allergologie, Centre Hospitalier Régional Universitaire, Tours, France
| | - Brice Korkmaz
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
| | - Dalila Nouar
- Service d'Immunologie Clinique et d'Allergologie, Centre Hospitalier Régional Universitaire, Tours, France
| | - Stefanie A I Weiss
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research (DZL) Munich and Max Planck Institute of Neurobiology, Planegg-Martinsried, Germany
| | - Dieter E Jenne
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research (DZL) Munich and Max Planck Institute of Neurobiology, Planegg-Martinsried, Germany
| | - Roxane Lemoine
- Université de Tours, Plateforme B Cell Ressources (BCR) EA4245, Tours, France
| | - Cyrille Hoarau
- Université de Tours, Plateforme B Cell Ressources (BCR) EA4245, Tours, France.,Service d'Immunologie Clinique et d'Allergologie, Centre Hospitalier Régional Universitaire, Tours, France
| |
Collapse
|
31
|
Khurana N, Pulsipher A, Ghandehari H, Alt JA. Meta-analysis of global and high throughput public gene array data for robust vascular gene expression discovery in chronic rhinosinusitis: Implications in controlled release. J Control Release 2021; 330:878-888. [PMID: 33144181 PMCID: PMC7906912 DOI: 10.1016/j.jconrel.2020.10.061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 01/21/2023]
Abstract
BACKGROUND Chronic inflammation is known to cause alterations in vascular homeostasis that directly affects blood vessel morphogenesis, angiogenesis, and tissue permeability. These phenomena have been investigated and exploited for targeted drug delivery applications in the context of cancers and other disease processes. Vascular pathophysiology and its associated genes and signaling pathways, however, have not been systematically investigated in patients with chronic rhinosinusitis (CRS). Understanding the interplay between key vascular signaling pathways and top biomarkers associated with CRS may facilitate the development of new targeted delivery strategies and treatment paradigms. Herein, we report findings from a gene meta-analysis to identify key vascular pathways and top genes involved in CRS. METHODS Proprietary software (Illumina BaseSpace Correlation Engine) and open-access data sets were used to perform a gene meta-analysis to systematically determine significant differences between key vascular biomarkers and vascular signaling pathways expressed in sinonasal tissue biopsies of controls and patients with CRS. RESULTS Thirteen studies were initially identified, and then reduced to five after applying exclusion principle algorithms. Genes associated with vasculature development and blood vessel morphogenesis signaling pathways were identified to be overexpressed among the top 15 signaling pathways. Out of many significantly upregulated genes, the levels of pro angiogenic genes such as early growth response (EGR3), platelet endothelial cell adhesion molecule (PECAM1) and L-selectin (SELL) were particularly significant in patients with CRS compared to controls. DISCUSSION Key vascular biomarkers and signaling pathways were significantly overexpressed in patients with CRS compared to controls, suggesting a contribution of vascular dysfunction in CRS pathophysiology. Vascular dysregulation and permeability may afford opportunities to develop drug delivery systems to improve efficacy and reduce toxicity of CRS treatment.
Collapse
Affiliation(s)
- Nitish Khurana
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, 84112, USA; Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, 84112, USA
| | - Abigail Pulsipher
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, 84112, USA; Division of Otolaryngology, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Hamidreza Ghandehari
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, 84112, USA; Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, 84112, USA; Division of Otolaryngology, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Jeremiah A Alt
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, 84112, USA; Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, UT, 84112, USA; Division of Otolaryngology, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
32
|
Huot S, Laflamme C, Fortin PR, Boilard E, Pouliot M. IgG-aggregates rapidly upregulate FcgRI expression at the surface of human neutrophils in a FcgRII-dependent fashion: A crucial role for FcgRI in the generation of reactive oxygen species. FASEB J 2020; 34:15208-15221. [PMID: 32946139 DOI: 10.1096/fj.202001085r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/26/2020] [Accepted: 09/02/2020] [Indexed: 01/17/2023]
Abstract
Autoimmune complexes are an important feature of several autoimmune diseases such as lupus, as they contribute to tissue damage through the activation of immune cells. Neutrophils, key players in lupus, interact with immune complexes through Fc gamma receptors (FcgR). Incubation of neutrophils with aggregated-IgGs caused degranulation and increased the surface expression of FcgRI within minutes in a concentration-dependent fashion. After 30 minutes, IgG aggregates (1 mg/mL) upregulated FcgRI by 4.95 ± 0.45-fold. FcgRI-positive neutrophils reached 67.24% ± 6.88% on HA-IgGs stimulated neutrophils, from 3.12% ± 1.62% in non-stimulated cells, ranking IgG-aggregates among the most potent known agonists. FcgRIIa, and possibly FcgRIIIa, appeared to mediate this upregulation. Also, FcgRI-dependent signaling proved necessary for reactive oxygen species (ROS) production in response to IgG-aggregates. Finally, combinations of bacterial materials with aggregates dramatically boosted ROS production. This work suggests FcgRI as an essential component in the response of human neutrophils to immune complexes leading to the production of ROS, which may help explain how neutrophils contribute to tissue damage associated with immune complex-associated diseases, such as lupus.
Collapse
Affiliation(s)
- Sandrine Huot
- Département de microbiologie et immunologie, Faculté de Médecine de l'Université Laval, Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC, Canada.,Axe maladies infectieuses et immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC, Canada
| | - Cynthia Laflamme
- Département de microbiologie et immunologie, Faculté de Médecine de l'Université Laval, Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC, Canada.,Axe maladies infectieuses et immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC, Canada
| | - Paul R Fortin
- Axe maladies infectieuses et immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC, Canada.,Division de Rhumatologie, Département de Médecine, CHU de Québec-Université Laval, Québec City, QC, Canada
| | - Eric Boilard
- Département de microbiologie et immunologie, Faculté de Médecine de l'Université Laval, Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC, Canada.,Axe maladies infectieuses et immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC, Canada
| | - Marc Pouliot
- Département de microbiologie et immunologie, Faculté de Médecine de l'Université Laval, Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC, Canada.,Axe maladies infectieuses et immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC, Canada
| |
Collapse
|
33
|
Tham EL, Freeley SJ, Bearder S, Barros FF, Cragg MS, Mócsai A, Robson MG. VISTA deficiency protects from immune complex-mediated glomerulonephritis by inhibiting neutrophil activation. J Autoimmun 2020; 113:102501. [PMID: 32586651 DOI: 10.1016/j.jaut.2020.102501] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/19/2020] [Accepted: 05/31/2020] [Indexed: 11/23/2022]
Abstract
V-type immunoglobulin domain-containing suppressor of T-cell activation (VISTA) is a negative checkpoint regulator of T cells. We assessed VISTA deficient mice in the murine nephrotoxic nephritis models of acute and chronic immune-complex mediated glomerulonephritis. We show that VISTA deficiency protects from crescentic glomerulonephritis, with no effect on the nephritogenic adaptive immune response. The early neutrophil influx was unaffected but proteinuria was reduced suggesting a reduction in neutrophil activation. In vivo, there was reduced neutrophil degranulation in VISTA deficienct mice and, in vitro, VISTA-deficient neutrophils had an impaired response to immune complexes but not to fMLP or PMA. Mice with a genetic deficiency of neutrophils due to myeloid-specific deletion of myeloid cell leukemia 1 (Mcl-1) were also protected from crescentic glomerulonephritis, indicating an essential role for neutrophils. Therefore, VISTA deficiency inhibits neutrophil activation by immune complexes and neutrophil-dependent crescentic glomerulonephritis. This suggests that VISTA is a therapeutic target for inflammatory disease. However, this would need to be balanced against a potential enhancing effect on autoimmunity.
Collapse
Affiliation(s)
- El Li Tham
- Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London, United Kingdom
| | - Simon J Freeley
- Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London, United Kingdom
| | - Siobhan Bearder
- Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London, United Kingdom
| | - Fernanda Florez Barros
- Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London, United Kingdom
| | - Mark S Cragg
- Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, United Kingdom
| | - Attila Mócsai
- Department of Physiology, Semmelweis University, School of Medicine, Budapest, Hungary
| | - Michael G Robson
- Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London, United Kingdom.
| |
Collapse
|
34
|
Leitner WW, Haraway M, Pierson T, Bergmann-Leitner ES. Role of Opsonophagocytosis in Immune Protection against Malaria. Vaccines (Basel) 2020; 8:E264. [PMID: 32486320 PMCID: PMC7350021 DOI: 10.3390/vaccines8020264] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 12/15/2022] Open
Abstract
The quest for immune correlates of protection continues to slow vaccine development. To date, only vaccine-induced antibodies have been confirmed as direct immune correlates of protection against a plethora of pathogens. Vaccine immunologists, however, have learned through extensive characterizations of humoral responses that the quantitative assessment of antibody responses alone often fails to correlate with protective immunity or vaccine efficacy. Despite these limitations, the simple measurement of post-vaccination antibody titers remains the most widely used approaches for vaccine evaluation. Developing and performing functional assays to assess the biological activity of pathogen-specific responses continues to gain momentum; integrating serological assessments with functional data will ultimately result in the identification of mechanisms that contribute to protective immunity and will guide vaccine development. One of these functional readouts is phagocytosis of antigenic material tagged by immune molecules such as antibodies and/or complement components. This review summarizes our current understanding of how phagocytosis contributes to immune defense against pathogens, the pathways involved, and defense mechanisms that pathogens have evolved to deal with the threat of phagocytic removal and destruction of pathogens.
Collapse
Affiliation(s)
- Wolfgang W. Leitner
- Basic Immunology Branch, Division of Allergy, Immunology, and Transplantation/National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20852, USA;
| | - Megan Haraway
- Immunology Core/Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (M.H.); (T.P.)
| | - Tony Pierson
- Immunology Core/Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (M.H.); (T.P.)
| | - Elke S. Bergmann-Leitner
- Immunology Core/Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (M.H.); (T.P.)
| |
Collapse
|
35
|
Nagelkerke SQ, Schmidt DE, de Haas M, Kuijpers TW. Genetic Variation in Low-To-Medium-Affinity Fcγ Receptors: Functional Consequences, Disease Associations, and Opportunities for Personalized Medicine. Front Immunol 2019; 10:2237. [PMID: 31632391 PMCID: PMC6786274 DOI: 10.3389/fimmu.2019.02237] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/04/2019] [Indexed: 12/23/2022] Open
Abstract
Fc-gamma receptors (FcγR) are the cellular receptors for Immunoglobulin G (IgG). Upon binding of complexed IgG, FcγRs can trigger various cellular immune effector functions, thereby linking the adaptive and innate immune systems. In humans, six classic FcγRs are known: one high-affinity receptor (FcγRI) and five low-to-medium-affinity FcγRs (FcγRIIA, -B and -C, FcγRIIIA and -B). In this review we describe the five genes encoding the low-to-medium -affinity FcγRs (FCGR2A, FCGR2B, FCGR2C, FCGR3A, and FCGR3B), including well-characterized functionally relevant single nucleotide polymorphisms (SNPs), haplotypes as well as copy number variants (CNVs), which occur in distinct copy number regions across the locus. The evolution of the locus is also discussed. Importantly, we recommend a consistent nomenclature of genetic variants in the FCGR2/3 locus. Next, we focus on the relevance of genetic variation in the FCGR2/3 locus in auto-immune and auto-inflammatory diseases, highlighting pathophysiological insights that are informed by genetic association studies. Finally, we illustrate how specific FcγR variants relate to variation in treatment responses and prognosis amongst autoimmune diseases, cancer and transplant immunology, suggesting novel opportunities for personalized medicine.
Collapse
Affiliation(s)
- Sietse Q Nagelkerke
- Sanquin Research and Landsteiner Laboratory, Department of Blood Cell Research, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Pediatric Hematology, Immunology and Infectious Diseases, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - David E Schmidt
- Sanquin Research and Landsteiner Laboratory, Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Masja de Haas
- Sanquin Diagnostic Services, Department of Immunohematology Diagnostics, Amsterdam, Netherlands.,Sanquin Research, Center for Clinical Transfusion Research, Leiden, Netherlands.,Jon J. van Rood Center for Clinical Transfusion Science, Leiden University Medical Center, Leiden, Netherlands.,Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Taco W Kuijpers
- Sanquin Research and Landsteiner Laboratory, Department of Blood Cell Research, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Pediatric Hematology, Immunology and Infectious Diseases, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
36
|
Yang H, Li H. CD36 identified by weighted gene co-expression network analysis as a hub candidate gene in lupus nephritis. PeerJ 2019; 7:e7722. [PMID: 31592160 PMCID: PMC6777479 DOI: 10.7717/peerj.7722] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 08/22/2019] [Indexed: 12/18/2022] Open
Abstract
Lupus nephritis (LN) is a severe manifestation of systemic lupus erythematosus (SLE), which often progresses to end-stage renal disease (ESRD) and ultimately leads to death. At present, there are no definitive therapies towards LN, so that illuminating the molecular mechanism behind the disease has become an urgent task for researchers. Bioinformatics has become a widely utilized method for exploring genes related to disease. This study set out to conduct weighted gene co-expression network analysis (WGCNA) and screen the hub gene of LN. We performed WGCNA on the microarray expression profile dataset of GSE104948 from the Gene Expression Omnibus (GEO) database with 18 normal and 21 LN samples of glomerulus. A total of 5,942 genes were divided into 5 co-expression modules, one of which was significantly correlated to LN. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted on the LN-related module, and the module was proved to be associated mainly with the activation of inflammation, immune response, cytokines, and immune cells. Genes in the most significant GO terms were extracted for sub-networks of WGNCA. We evaluated the centrality of genes in the sub-networks by Maximal Clique Centrality (MCC) method and CD36 was ultimately screened out as a hub candidate gene of the pathogenesis of LN. The result was verified by its differentially expressed level between normal and LN in GSE104948 and the other three multi-microarray datasets of GEO. Moreover, we further demonstrated that the expression level of CD36 is related to the WHO Lupus Nephritis Class of LN patients with the help of Nephroseq database. The current study proposed CD36 as a vital candidate gene in LN for the first time and CD36 may perform as a brand-new biomarker or therapeutic target of LN in the future.
Collapse
Affiliation(s)
- Huiying Yang
- Department of Nephrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Hua Li
- Department of Nephrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| |
Collapse
|
37
|
Wang Y, Jönsson F. Expression, Role, and Regulation of Neutrophil Fcγ Receptors. Front Immunol 2019; 10:1958. [PMID: 31507592 PMCID: PMC6718464 DOI: 10.3389/fimmu.2019.01958] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/02/2019] [Indexed: 12/31/2022] Open
Abstract
Neutrophils are best known for their critical role in host defense, for which they utilize multiple innate immune mechanisms, including microbe-associated pattern recognition, phagocytosis, production of reactive oxygen species, and the release of potent proteases, mediators, antimicrobials, and neutrophil extracellular traps. Beyond their well-established contribution to innate immunity, neutrophils were more recently reported to interact with various other cell types, including cells from the adaptive immune system, thereby enabling neutrophils to tune the overall immune response of the host. Neutrophils express different receptors for IgG antibodies (Fcγ receptors), which facilitate the engulfment of IgG-opsonized microbes and trigger cell activation upon cross-linking of several receptors. Indeed, FcγRs (via IgG antibodies) confer neutrophils with a key feature of the adaptive immunity: an antigen-specific cell response. This review summarizes the expression and function of FcγRs on human neutrophils in health and disease and how they are affected by polymorphisms in the FCGR loci. Additionally, we will discuss the role of neutrophils in providing help to marginal zone B cells for the production of antibodies, which in turn may trigger neutrophil effector functions when engaging FcγRs.
Collapse
Affiliation(s)
- Yu Wang
- Unit of Antibodies in Therapy and Pathology, Institut Pasteur, UMR 1222 INSERM, Paris, France
- Université Diderot Paris VII, PSL University, Paris, France
| | - Friederike Jönsson
- Unit of Antibodies in Therapy and Pathology, Institut Pasteur, UMR 1222 INSERM, Paris, France
| |
Collapse
|
38
|
Jönsson F, de Chaisemartin L, Granger V, Gouel-Chéron A, Gillis CM, Zhu Q, Dib F, Nicaise-Roland P, Ganneau C, Hurtado-Nedelec M, Paugam-Burtz C, Necib S, Keita-Meyer H, Le Dorze M, Cholley B, Langeron O, Jacob L, Plaud B, Fischler M, Sauvan C, Guinnepain MT, Montravers P, Aubier M, Bay S, Neukirch C, Tubach F, Longrois D, Chollet-Martin S, Bruhns P. An IgG-induced neutrophil activation pathway contributes to human drug-induced anaphylaxis. Sci Transl Med 2019; 11:11/500/eaat1479. [DOI: 10.1126/scitranslmed.aat1479] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 12/21/2018] [Accepted: 05/21/2019] [Indexed: 12/20/2022]
Abstract
Anaphylaxis is a systemic acute hypersensitivity reaction that is considered to depend on allergen-specific immunoglobulin E (IgE) antibodies and histamine release by mast cells and basophils. Nevertheless, allergen-specific IgG antibodies have been proposed to contribute when the allergen is an abundant circulating large molecule, e.g., after infusions of therapeutic antibodies or dextran. Data from animal models demonstrate a pathway involving platelet-activating factor (PAF) release by monocytes/macrophages and neutrophils activated via their Fc gamma receptors (FcγRs). We hypothesized that such a pathway may also apply to small drugs and could be responsible for non–IgE-mediated anaphylaxis and influence anaphylaxis severity in humans. We prospectively conducted a multicentric study of 86 patients with suspected anaphylaxis to neuromuscular-blocking agents (NMBAs) during general anesthesia and 86 matched controls. We found that concentrations of anti-NMBA IgG and markers of FcγR activation, PAF release, and neutrophil activation correlated with anaphylaxis severity. Neutrophils underwent degranulation and NETosis early after anaphylaxis onset, and plasma-purified anti-NMBA IgG triggered neutrophil activation ex vivo in the presence of NMBA. Neutrophil activation could also be observed in patients lacking evidence of classical IgE-dependent anaphylaxis. This study supports the existence of an IgG-neutrophil pathway in human NMBA-induced anaphylaxis, which may aggravate anaphylaxis in combination with the IgE pathway or underlie anaphylaxis in the absence of specific IgE. These results reconcile clinical and experimental data on the role of antibody classes in anaphylaxis and could inform diagnostic approaches to NMBA-induced acute hypersensitivity reactions.
Collapse
|
39
|
Ben Mkaddem S, Benhamou M, Monteiro RC. Understanding Fc Receptor Involvement in Inflammatory Diseases: From Mechanisms to New Therapeutic Tools. Front Immunol 2019; 10:811. [PMID: 31057544 PMCID: PMC6481281 DOI: 10.3389/fimmu.2019.00811] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 03/27/2019] [Indexed: 12/21/2022] Open
Abstract
Fc receptors (FcRs) belong to the ITAM-associated receptor family. FcRs control the humoral and innate immunity which are essential for appropriate responses to infections and prevention of chronic inflammation or auto-immune diseases. Following their crosslinking by immune complexes, FcRs play various roles such as modulation of the immune response by released cytokines or of phagocytosis. Here, we review FcR involvement in pathologies leading notably to altered intracellular signaling with functionally relevant consequences to the host, and targeting of Fc receptors as therapeutic approaches. Special emphasis will be given to some FcRs, such as the FcαRI, the FcγRIIA and the FcγRIIIA, which behave like the ancient god Janus depending on the ITAM motif to inhibit or activate immune responses depending on their targeting by monomeric/dimeric immunoglobulins or by immune complexes. This ITAM duality has been recently defined as inhibitory or activating ITAM (ITAMi or ITAMa) which are controlled by Src family kinases. Involvement of various ITAM-bearing FcRs observed during infectious or autoimmune diseases is associated with allelic variants, changes in ligand binding ability responsible for host defense perturbation. During auto-immune diseases such as rheumatoid arthritis, lupus or immune thrombocytopenia, the autoantibodies and immune complexes lead to inflammation through FcR aggregation. We will discuss the role of FcRs in autoimmune diseases, and focus on novel approaches to target FcRs for resolution of antibody-mediated autoimmunity. We will finally also discuss the down-regulation of FcR functionality as a therapeutic approach for autoimmune diseases.
Collapse
Affiliation(s)
- Sanae Ben Mkaddem
- INSERM U1149, Centre de Recherche sur l'Inflammation, Paris, France.,CNRS ERL8252, Paris, France.,Faculté de Médecine, Université Paris Diderot, Sorbonne Paris Cité, Site Xavier Bichat, Paris, France.,Inflamex Laboratory of Excellence, Paris, France
| | - Marc Benhamou
- INSERM U1149, Centre de Recherche sur l'Inflammation, Paris, France.,CNRS ERL8252, Paris, France.,Faculté de Médecine, Université Paris Diderot, Sorbonne Paris Cité, Site Xavier Bichat, Paris, France.,Inflamex Laboratory of Excellence, Paris, France
| | - Renato C Monteiro
- INSERM U1149, Centre de Recherche sur l'Inflammation, Paris, France.,CNRS ERL8252, Paris, France.,Faculté de Médecine, Université Paris Diderot, Sorbonne Paris Cité, Site Xavier Bichat, Paris, France.,Inflamex Laboratory of Excellence, Paris, France.,Service d'Immunologie, DHU Fire, Hôpital Bichat-Claude Bernard, Assistance Publique de Paris, Paris, France
| |
Collapse
|
40
|
|
41
|
Chen B, Vousden KA, Naiman B, Turman S, Sun H, Wang S, Vinall LMK, Kemp BP, Kasturiangan S, Rees DG, Grant E, Hinrichs MJ, Eck S, DiGiandomenico A, Jack Borrok M, Ly N, Xiong X, Gonzalez C, Morehouse C, Wang Y, Zhou Y, Cann J, Zhao W, Koelkebeck H, Okubo K, Mayadas TN, Howe D, Griffiths J, Kolbeck R, Herbst R, Sims GP. Humanised effector-null FcγRIIA antibody inhibits immune complex-mediated proinflammatory responses. Ann Rheum Dis 2019; 78:228-237. [PMID: 30459279 PMCID: PMC6352406 DOI: 10.1136/annrheumdis-2018-213523] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 10/25/2018] [Accepted: 10/30/2018] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Immune complexes (ICs) play a critical role in the pathology of autoimmune diseases. The aim of this study was to generate and characterise a first-in-class anti-FcγRIIA antibody (Ab) VIB9600 (previously known as MEDI9600) that blocks IgG immune complex-mediated cellular activation for clinical development. METHODS VIB9600 was humanised and optimised from the IV.3 Ab. Binding affinity and specificity were determined by Biacore and ELISA. Confocal microscopy, Flow Cytometry-based assays and binding competition assays were used to assess the mode of action of the antibody. In vitro cell-based assays were used to demonstrate suppression of IC-mediated inflammatory responses. In vivo target suppression and efficacy was demonstrated in FcγRIIA-transgenic mice. Single-dose pharmacokinetic (PK)/pharmacodynamic study multiple dose Good Laboratory Practice (GLP) toxicity studies were conducted in non-human primates. RESULTS We generated a humanised effector-deficient anti-FcγRIIA antibody (VIB9600) that potently blocks autoantibody and IC-mediated proinflammatory responses. VIB9600 suppresses FcγRIIA activation by blocking ligand engagement and by internalising FcγRIIA from the cell surface. VIB9600 inhibits IC-induced type I interferons from plasmacytoid dendritic cells (involved in SLE), antineutrophil cytoplasmic antibody (ANCA)-induced production of reactive oxygen species by neutrophils (involved in ANCA-associated vasculitis) and IC-induced tumour necrosis factor α and interleukin-6 production (involved in rheumatoid arthritis). In FcγRIIA transgenic mice, VIB9600 suppressed antiplatelet antibody-induced thrombocytopaenia, acute anti-GBM Ab-induced nephritis and anticollagen Ab-induced arthritis. VIB9600 also exhibited favourable PK and safety profiles in cynomolgus monkey studies. CONCLUSIONS VIB9600 is a specific humanised antibody antagonist of FcγRIIA with null effector function that warrants further clinical development for the treatment of IC-mediated diseases.
Collapse
Affiliation(s)
- Bo Chen
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune LLC, Gaithersburg, Maryland, USA
| | - Katherine A Vousden
- Department of Antibody Discovery and Protein Engineering, MedImmune Ltd, Granta Park, Great Abington, UK
| | - Brian Naiman
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune LLC, Gaithersburg, Maryland, USA
| | - Sean Turman
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune LLC, Gaithersburg, Maryland, USA
| | - Hong Sun
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune LLC, Gaithersburg, Maryland, USA
| | - Shu Wang
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune LLC, Gaithersburg, Maryland, USA
- Viela Bio, Gaithersburg, Maryland, USA
| | - Lisa M K Vinall
- Department of Antibody Discovery and Protein Engineering, MedImmune Ltd, Granta Park, Great Abington, UK
| | - Benjamin P Kemp
- Department of Antibody Discovery and Protein Engineering, MedImmune Ltd, Granta Park, Great Abington, UK
| | - Srinath Kasturiangan
- Department of Antibody Discovery and Protein Engineering, MedImmune LLC, Gaithersburg, Maryland, USA
| | - D Gareth Rees
- Department of Antibody Discovery and Protein Engineering, MedImmune Ltd, Granta Park, Great Abington, UK
| | - Ethan Grant
- Department of Translational Medicine, MedImmune LLC, Gaithersburg, Maryland, USA
| | - Mary Jane Hinrichs
- Department of Translational Medicine, MedImmune LLC, Gaithersburg, Maryland, USA
| | - Steven Eck
- Department of Translational Medicine, MedImmune LLC, Gaithersburg, Maryland, USA
| | | | - M Jack Borrok
- Department of Antibody Discovery and Protein Engineering, MedImmune LLC, Gaithersburg, Maryland, USA
| | - Neang Ly
- Department of Translational Medicine, MedImmune LLC, Gaithersburg, Maryland, USA
| | - Ximing Xiong
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune LLC, Gaithersburg, Maryland, USA
| | - Carlos Gonzalez
- Department of Translational Medicine, MedImmune LLC, Gaithersburg, Maryland, USA
| | | | - Yue Wang
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune LLC, Gaithersburg, Maryland, USA
| | - Yebin Zhou
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune LLC, Gaithersburg, Maryland, USA
| | - Jennifer Cann
- Department of Translational Medicine, MedImmune LLC, Gaithersburg, Maryland, USA
| | - Weiguang Zhao
- Department of Translational Medicine, MedImmune LLC, Gaithersburg, Maryland, USA
| | - Holly Koelkebeck
- Department of Translational Medicine, MedImmune LLC, Gaithersburg, Maryland, USA
| | - Koshu Okubo
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Tanya N Mayadas
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - David Howe
- Department of Clinical Development, MedImmune Ltd, Granta Park, Great Abington, UK
| | - Janet Griffiths
- Department of Translational Medicine, MedImmune LLC, Gaithersburg, Maryland, USA
| | - Roland Kolbeck
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune LLC, Gaithersburg, Maryland, USA
| | - Ronald Herbst
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune LLC, Gaithersburg, Maryland, USA
| | - Gary P Sims
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune LLC, Gaithersburg, Maryland, USA
| |
Collapse
|
42
|
Kitagawa A, Tsuboi N, Yokoe Y, Katsuno T, Ikeuchi H, Kajiyama H, Endo N, Sawa Y, Suwa J, Sugiyama Y, Hachiya A, Mimura T, Hiromura K, Maruyama S. Urinary levels of the leukocyte surface molecule CD11b associate with glomerular inflammation in lupus nephritis. Kidney Int 2019; 95:680-692. [PMID: 30712924 DOI: 10.1016/j.kint.2018.10.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 10/01/2018] [Accepted: 10/18/2018] [Indexed: 12/15/2022]
Abstract
Noninvasive biomarkers of disease activity are needed to monitor response to therapy and predict disease recurrence in patients with glomerulonephritis. The leukocyte surface markers integrin Mac-1 and CD16b have been implicated in the pathogenesis of lupus nephritis (LN). Mac-1 comprises a unique α subunit (CD11b) complexed with a common β2 subunit, which are released along with CD16b from specific leukocyte subsets under inflammatory conditions including glomerulonephritis. We investigated the association of urinary CD11b and CD16b with histopathological activity in 272 patients with biopsy-proven glomerular diseases, including 118 with LN. Urine CD11b and CD16b were measured via enzyme-linked immunosorbent assay. Urinary levels of both markers were increased in LN, but only urinary CD11b was correlated with the number of glomerular leukocytes and with overall histopathological activity. In a subset of patients with samples available from the time of biopsy and subsequent clinical remission of LN, urinary levels of CD11b decreased with successful glucocorticoid treatment. Receiver-operating characteristic curve analysis demonstrated that urinary CD11b was superior to CD16b, the scavenger receptor CD163, and monocyte chemotactic protein-1 for the prediction of proliferative LN. In anti-mouse nephrotoxic serum glomerulonephritis, urinary CD11b correlated with histologic damage and decreased with corticosteroid treatment. In vitro, CD11b levels were decreased on activated mouse neutrophils displaying Fcγ receptor clustering and transendothelial migration, suggesting that leukocyte activation and transmigration are required for CD11b shedding in urine. Together, our results suggest that urinary CD11b may be a useful biomarker to estimate histopathological activity, particularly glomerular leukocyte accumulation, in LN.
Collapse
Affiliation(s)
- Akimitsu Kitagawa
- Department of Nephrology, Internal Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Naotake Tsuboi
- Department of Nephrology, Internal Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan; Department of Nephrology, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan.
| | - Yuki Yokoe
- Department of Nephrology, Internal Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Takayuki Katsuno
- Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute, Aichi, Japan
| | - Hidekazu Ikeuchi
- Department of Nephrology and Rheumatology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Hiroshi Kajiyama
- Department of Rheumatology and Applied Immunology, Faculty of Medicine, Saitama Medical University, Iruma, Saitama, Japan
| | - Nobuhide Endo
- Department of Nephrology, Internal Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Yuriko Sawa
- Department of Nephrology, Internal Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Junya Suwa
- Department of Nephrology and Rheumatology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Yutaka Sugiyama
- Department of Nephrology, Internal Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Asaka Hachiya
- Department of Nephrology, Internal Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Toshihide Mimura
- Department of Rheumatology and Applied Immunology, Faculty of Medicine, Saitama Medical University, Iruma, Saitama, Japan
| | - Keiju Hiromura
- Department of Nephrology and Rheumatology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Shoichi Maruyama
- Department of Nephrology, Internal Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| |
Collapse
|
43
|
Treffers LW, van Houdt M, Bruggeman CW, Heineke MH, Zhao XW, van der Heijden J, Nagelkerke SQ, Verkuijlen PJJH, Geissler J, Lissenberg-Thunnissen S, Valerius T, Peipp M, Franke K, van Bruggen R, Kuijpers TW, van Egmond M, Vidarsson G, Matlung HL, van den Berg TK. FcγRIIIb Restricts Antibody-Dependent Destruction of Cancer Cells by Human Neutrophils. Front Immunol 2019; 9:3124. [PMID: 30761158 PMCID: PMC6363688 DOI: 10.3389/fimmu.2018.03124] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 12/18/2018] [Indexed: 12/31/2022] Open
Abstract
The function of the low-affinity IgG-receptor FcγRIIIb (CD16b), which is uniquely and abundantly expressed on human granulocytes, is not clear. Unlike the other Fcγ receptors (FcγR), it is a glycophosphatidyl inositol (GPI) -anchored molecule and does not have intracellular signaling motifs. Nevertheless, FcγRIIIb can cooperate with other FcγR to promote phagocytosis of antibody-opsonized microbes by human neutrophils. Here we have investigated the role of FcγRIIIb during antibody-dependent cellular cytotoxicity (ADCC) by neutrophils toward solid cancer cells coated with either trastuzumab (anti-HER2) or cetuximab (anti-EGFR). Inhibiting FcγRIIIb using CD16-F(ab')2 blocking antibodies resulted in substantially enhanced ADCC. ADCC was completely dependent on FcγRIIa (CD32a) and the enhanced ADCC seen after FcγRIIIb blockade therefore suggested that FcγRIIIb was competing with FcγRIIa for IgG on the opsonized target cells. Interestingly, the function of neutrophil FcγRIIIb as a decoy receptor was further supported by using neutrophils from individuals with different gene copy numbers of FCGR3B causing different levels of surface FcγRIIIb expression. Individuals with one copy of FCGR3B showed higher levels of ADCC compared to those with two or more copies. Finally, we show that therapeutic antibodies intended to improve FcγRIIIa (CD16a)-dependent natural killer (NK) cell ADCC due to the lack of fucosylation on the N-linked glycan at position N297 of the IgG1 heavy chain Fc-region, show decreased ADCC as compared to regularly fucosylated antibodies. Together, these data confirm FcγRIIIb as a negative regulator of neutrophil ADCC toward tumor cells and a potential target for enhancing tumor cell destruction by neutrophils.
Collapse
Affiliation(s)
- Louise W Treffers
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Michel van Houdt
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Christine W Bruggeman
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Marieke H Heineke
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Xi Wen Zhao
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Joris van der Heijden
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Sietse Q Nagelkerke
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Paul J J H Verkuijlen
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Judy Geissler
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | | | - Thomas Valerius
- Division of Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, Kiel University, Kiel, Germany
| | - Matthias Peipp
- Division of Stem Cell Transplantation and Immunotherapy, Department of Internal Medicine II, Kiel University, Kiel, Germany
| | - Katka Franke
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Robin van Bruggen
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Taco W Kuijpers
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Marjolein van Egmond
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Gestur Vidarsson
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Hanke L Matlung
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Timo K van den Berg
- Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
44
|
Powell RLR, Fox A, Itri V, Zolla-Pazner S. Primary Human Neutrophils Exhibit a Unique HIV-Directed Antibody-Dependent Phagocytosis Profile. J Innate Immun 2018; 11:181-190. [PMID: 30557875 DOI: 10.1159/000494371] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 09/29/2018] [Indexed: 12/11/2022] Open
Abstract
The only clinical HIV vaccine trial to demonstrate efficacy, RV144, correlated protection with the antibodies (Abs) mediating function via the "constant" immunoglobulin region, the crystallizable fragment (Fc). These data have supported a focus on the induction of Abs by vaccines that trigger antiviral activities by relevant leukocytes via Fc receptors (FcRs). Neutrophils are phagocytes that comprise > 50% of leukocytes and display unique FcRs. We sought to compare the Ab-dependent cellular phagocytosis (ADCP) activity of human neutrophils to the commonly assayed THP-1 cell line. HIV-specific Abs were employed to elicit ADCP of beads coated with HIV envelope protein. Overall, trends were noted among neutrophil donors and the ADCP profile was different from that of THP-1 cells. mAb ELISA titers correlated with ADCP by THP-1 cells but not neutrophils. Monoclonal (m)Abs were also tested with primary monocytes. Donor-to-donor variation was high, and hindered the analysis of this dataset, but it was, in itself, an important finding. This study illustrates the concept that the assessment of FcR-mediated Ab activity with a frequently used cell line such as THP-1 is not necessarily indicative of relevant Ab functionality in vivo, and this calls for in-depth study of the properties of the HIV antibodies best-suited to eliciting antiviral activities by primary cells.
Collapse
Affiliation(s)
- Rebecca L R Powell
- Department of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA,
| | - Alisa Fox
- Department of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Vincenza Itri
- Department of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Susan Zolla-Pazner
- Department of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
45
|
Cis interaction between sialylated FcγRIIA and the αI-domain of Mac-1 limits antibody-mediated neutrophil recruitment. Nat Commun 2018; 9:5058. [PMID: 30498196 PMCID: PMC6265255 DOI: 10.1038/s41467-018-07506-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 11/07/2018] [Indexed: 12/14/2022] Open
Abstract
Vascular-deposited IgG immune complexes promote neutrophil recruitment, but how this process is regulated is still unclear. Here we show that the CD18 integrin Mac-1, in its bent state, interacts with the IgG receptor FcγRIIA in cis to reduce the affinity of FcγRIIA for IgG and inhibit FcγRIIA-mediated neutrophil recruitment under flow. The Mac-1 rs1143679 lupus-risk variant reverses Mac-1 inhibition of FcγRIIA, as does a Mac-1 ligand and a mutation in Mac-1’s ligand binding αI-domain. Sialylated complex glycans on FcγRIIA interact with the αI-domain via divalent cations, and this interaction is required for FcγRIIA inhibition by Mac-1. Human neutrophils deficient in CD18 integrins exhibit augmented FcγRIIA-dependent recruitment to IgG-coated endothelium. In mice, CD18 integrins on neutrophils dampen IgG-mediated neutrophil accumulation in the kidney. In summary, cis interaction between sialylated FcγRIIA and the αI-domain of Mac-1 alters the threshold for IgG-mediated neutrophil recruitment. A disruption of this interaction may increase neutrophil influx in autoimmune diseases. Deposited immune complexes (IC) promote neutrophil recruitment, but the fine tuning of this process is still unclear. Here the authors show that the cis interaction of the IC receptor, FcγRIIA and CD18 integrin, Mac-1, on the neutrophil surface modulates neutrophil adhesion, with FcγRIIA sialylation specifically implicated in this interaction.
Collapse
|
46
|
Dwivedi N, Radic M. Burning controversies in NETs and autoimmunity: The mysteries of cell death and autoimmune disease. Autoimmunity 2018; 51:267-280. [PMID: 30417698 DOI: 10.1080/08916934.2018.1523395] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The causes and mechanisms of autoimmune disease pose continuing challenges to the scientific community. Recent clues implicate a peculiar feature of neutrophils, their ability to release nuclear chromatin in the form of neutrophil extracellular traps (NETs), in the induction or progression of autoimmune disease. Efforts to define the beneficial versus detrimental effects of NET release have, as yet, only partially revealed mechanisms that guide this process. Evidence suggests that the process of NET release is highly regulated, but the details of regulation remain controversial and obscure. Without a better understanding of the factors that initiate and control NET formation, the judicious modification of neutrophil behaviour for medically useful purposes appears remote. We highlight gaps and inconsistencies in published work, which make NETs and their role in health and disease a puzzle that deserves more focused attention.
Collapse
Affiliation(s)
- Nishant Dwivedi
- a TIP Immunology , EMD Serono Research and Development Institute, Inc , Billerica , MA , USA
| | - Marko Radic
- b Department of Microbiology, Immunology and Biochemistry , University of Tennessee Health Science Center , Memphis , TN , USA
| |
Collapse
|
47
|
Engineered hexavalent Fc proteins with enhanced Fc-gamma receptor avidity provide insights into immune-complex interactions. Commun Biol 2018; 1:146. [PMID: 30272022 PMCID: PMC6138732 DOI: 10.1038/s42003-018-0149-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 08/22/2018] [Indexed: 12/14/2022] Open
Abstract
Autoantibody-mediated diseases are currently treated with intravenous immunoglobulin, which is thought to act in part via blockade of Fc gamma receptors, thereby inhibiting autoantibody effector functions and subsequent pathology. We aimed to develop recombinant molecules with enhanced Fc receptor avidity and thus increased potency over intravenous immunoglobulin. Here we describe the molecular engineering of human Fc hexamers and explore their therapeutic and safety profiles. We show Fc hexamers were more potent than IVIG in phagocytosis blockade and disease models. However, in human whole-blood safety assays incubation with IgG1 isotype Fc hexamers resulted in cytokine release, platelet and complement activation, whereas the IgG4 version did not. We used a statistically designed mutagenesis approach to identify the key Fc residues involved in these processes. Cytokine release was found to be dependent on neutrophil FcγRIIIb interactions with L234 and A327 in the Fc. Therefore, Fc hexamers provide unique insights into Fc receptor biology. Tania Rowley et al. present multivalent Fc molecules with enhanced avidity for Fc gamma receptors in order to improve the treatment of autoantibody-mediated human diseases. They found several key amino acids involved in Fc receptor binding interactions.
Collapse
|
48
|
Flores-Mendoza G, Sansón SP, Rodríguez-Castro S, Crispín JC, Rosetti F. Mechanisms of Tissue Injury in Lupus Nephritis. Trends Mol Med 2018. [PMID: 29526595 DOI: 10.1016/j.molmed.2018.02.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Disease heterogeneity remains a major challenge for the understanding of systemic lupus erythematosus (SLE). Recent work has revealed the important role of nonimmune factors in the development of end-organ damage involvement, shifting the current paradigm that views SLE as a disease inflicted by a disturbed immune system on passive target organs. Here, we discuss the pathogenesis of lupus nephritis in a comprehensive manner, by incorporating the role that target organs play by withstanding and modulating the local inflammatory response. Moreover, we consider the effects that genetic variants exert on immune and nonimmune cells in order to shape the phenotype of the disease in each affected individual.
Collapse
Affiliation(s)
- Giovanna Flores-Mendoza
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; Doctorado en Ciencias Biológicas, Facultad de Medicina, UNAM, Mexico City, Mexico
| | - Stephanie P Sansón
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; Plan de Estudios Combinados en Medicina (PECEM), Facultad de Medicina, UNAM, Mexico City, Mexico
| | - Santiago Rodríguez-Castro
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; Plan de Estudios Combinados en Medicina (PECEM), Facultad de Medicina, UNAM, Mexico City, Mexico
| | - José C Crispín
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico.
| | - Florencia Rosetti
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico.
| |
Collapse
|
49
|
Herter JM, Margraf A, Volmering S, Correia BE, Bradshaw JM, Bisconte A, Hill RJ, Langrish CL, Lowell CA, Zarbock A. PRN473, an inhibitor of Bruton's tyrosine kinase, inhibits neutrophil recruitment via inhibition of macrophage antigen-1 signalling. Br J Pharmacol 2017; 175:429-439. [PMID: 29130484 DOI: 10.1111/bph.14090] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 11/01/2017] [Accepted: 11/06/2017] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE Following inflammatory stimuli, neutrophils are recruited to sites of inflammation and exert effector functions that often have deleterious effects on tissue integrity, which can lead to organ failure. Bruton's tyrosine kinase (Btk) is expressed in neutrophils and constitutes a promising pharmacological target for neutrophil-mediated tissue damage. Here, we evaluate a selective reversible inhibitor of Btk, PRN473, for its ability to dampen neutrophil influx via inhibition of adhesion receptor signalling pathways. EXPERIMENTAL APPROACH In vitro assays were used to assess fMLP receptor 1 (Fpr-1)-mediated binding of ligands to the adhesion receptors macrophage antigen-1 (Mac-1) and lymphocyte function antigen-1. Intravital microscopy of the murine cremaster was used to evaluate post-adhesion strengthening and endoluminal crawling. Finally, neutrophil influx was visualized in a clinically relevant model of sterile liver injury in vivo. Btk knockout animals were used as points of reference for Btk functions. KEY RESULTS Pharmacological inhibition of Btk by PRN473 reduced fMLP-induced phosphorylation of Btk and Mac-1 activation. Biochemical experiments demonstrated the specificity of the inhibitor. PRN473 (20 mg·kg-1 ) significantly reduced intravascular crawling and neutrophil recruitment into inflamed tissue in a model of sterile liver injury, down to levels seen in Btk-deficient animals. A higher dose did not provide additional reduction of intravascular crawling and neutrophil recruitment. CONCLUSIONS AND IMPLICATIONS PRN473, a highly selective inhibitor of Btk, potently attenuates sterile liver injury by inhibiting the activation of the β2 -integrin Mac-1 and subsequently neutrophil recruitment into inflamed tissue.
Collapse
Affiliation(s)
- Jan M Herter
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Andreas Margraf
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Stephanie Volmering
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Benedito Eduardo Correia
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | | | | | | | | | - Clifford A Lowell
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Alexander Zarbock
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| |
Collapse
|
50
|
Ellison MA, Gearheart CM, Porter CC, Ambruso DR. IFN-γ alters the expression of diverse immunity related genes in a cell culture model designed to represent maturing neutrophils. PLoS One 2017; 12:e0185956. [PMID: 28982143 PMCID: PMC5628906 DOI: 10.1371/journal.pone.0185956] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 09/24/2017] [Indexed: 12/20/2022] Open
Abstract
The cytokine interferon-γ (IFN-γ) is approved as a drug to treat chronic granulomatous disease (CGD) and osteopetrosis and is also used in hyperimmunoglobulin E syndromes. Patients with CGD have defects in proteins of the NOX2 NADPH oxidase system. This leads to reduced production of microbicidal ROS by PMNs and recurrent life threatening infections. The goal of this study was to better understand how IFN-γ might support phagocyte function in these diseases, and to obtain information that might expand potential uses for IFN-γ. Neutrophils mature in the bone marrow and then enter the blood where they quickly undergo apoptotic cell death with a half-life of only 5–10 hours. Therefore we reasoned that IFN-γ might exert its effects on neutrophils via prolonged exposure to cells undergoing maturation in the marrow rather than by its brief exposure to short-lived circulating cells. To explore this possibility we made use of PLB-985 cells, a myeloblast-like myeloid cell line that can be differentiated into a mature, neutrophil-like state by treatment with various agents including DMSO. In initial studies we investigated transcription and protein expression in PLB-985 cells undergoing maturation in the presence or absence of IFN-γ. We observed IFN-γ induced differences in expression of genes known to be involved in classical aspects of neutrophil function (transmigration, chemotaxis, phagocytosis, killing and pattern recognition) as well as genes involved in apoptosis and other mechanisms that regulating neutrophil number. We also observed differences for genes involved in the major histocompatibility complex I (MHCI) and MHCII systems whose involvement in neutrophil function is controversial and not well defined. Finally, we observed significant changes in expression of genes encoding guanylate binding proteins (Gbps) that are known to have roles in immunity but which have not as yet been linked to neutrophil function. We propose that changes in the expression within these classes of genes could help explain the immune supportive effects of IFN-γ. Next we explored if the effect of IFN-γ on expression of these genes is dependent on whether the cells are undergoing maturation; to do this we compared the effects of IFN-γ on cells cultured with and without DMSO. For a subset of genes the expression level changes caused by IFN-γ were much greater in maturing cells than non-maturing cells. These findings indicate that developmental changes associated with cell maturation can modulate the effects of IFN-γ but that this is gene specific. Since the effects of IFN-γ depend on whether cells are maturing, the gene expression changes observed in this study must be due to more than just prolonged application of IFN-γ and are instead the result of interplay between cell maturation and changes caused by the chemokine. This supports our hypothesis that the effects of IFN-γ on developing neutrophils in the bone marrow may be very different from its effects on mature cells in the blood. Collectively the findings in this study enhance our understanding of the effects of IFN-γ on maturing myeloid cells and indicate possible mechanisms by which this cytokine could support immune function.
Collapse
Affiliation(s)
- Michael A. Ellison
- Department of Pediatrics, University of Colorado Denver, The Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Christy M. Gearheart
- Department of Pediatrics, University of Colorado Denver, The Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Christopher C. Porter
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Daniel R. Ambruso
- Department of Pediatrics, University of Colorado Denver, The Anschutz Medical Campus, Aurora, Colorado, United States of America
- Department of Pathology, University of Colorado Denver, The Anschutz Medical Campus, Aurora, Colorado, United States of America
- The Center for Cancer and Blood Disorders, Transfusion Services, Children's Hospital Colorado, Aurora, Colorado, United States of America
- Hematology/Oncology and Bone Marrow Transplantation Laboratories, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|