1
|
Rausch L, Kallies A. Molecular Mechanisms Governing CD8 T Cell Differentiation and Checkpoint Inhibitor Response in Cancer. Annu Rev Immunol 2025; 43:515-543. [PMID: 40279308 DOI: 10.1146/annurev-immunol-082223-044122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
CD8 T cells play a critical role in antitumor immunity. However, over time, they often become dysfunctional or exhausted and ultimately fail to control tumor growth. To effectively harness CD8 T cells for cancer immunotherapy, a detailed understanding of the mechanisms that govern their differentiation and function is crucial. This review summarizes our current knowledge of the molecular pathways that regulate CD8 T cell heterogeneity and function in chronic infection and cancer and outlines how T cells respond to therapeutic checkpoint blockade. We explore how T cell-intrinsic and -extrinsic factors influence CD8 T cell differentiation, fate choices, and functional states and ultimately dictate their response to therapy. Identifying cells that orchestrate long-term antitumor immunity and understanding the mechanisms that govern their development and persistence are critical steps toward improving cancer immunotherapy.
Collapse
Affiliation(s)
- Lisa Rausch
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia;
| | - Axel Kallies
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia;
| |
Collapse
|
2
|
Sarkar S, Taira N, Hsieh TH, Chien HC, Hirota M, Koizumi SI, Sasaki D, Tamai M, Seto Y, Miyagi M, Ishikawa H. JunB is required for CD8+ T cell responses to acute infections. Int Immunol 2025; 37:203-220. [PMID: 39425978 PMCID: PMC11884676 DOI: 10.1093/intimm/dxae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024] Open
Abstract
Basic-leucine zipper transcription factor ATF-like (BATF) and interferon regulatory factor 4 (IRF4) are crucial transcription factors for the generation of cytotoxic effector and memory CD8+ T cells. JunB is required for expression of genes controlled by BATF and IRF4 in CD4+ T cell responses, but the role of JunB in CD8+ T cells remains unknown. Here, we demonstrate that JunB is essential for cytotoxic CD8+ T cell responses. JunB expression is transiently induced, depending on the T cell receptor signal strength. JunB deficiency severely impairs the clonal expansion of effector CD8+ T cells in response to acute infection with Listeria monocytogenes. Junb-deficient CD8+ T cells fail to control transcription and chromatin accessibility of a specific set of genes regulated by BATF and IRF4, resulting in impaired cell survival, glycolysis, and cytotoxic CD8+ T cell differentiation. Furthermore, JunB deficiency enhances the expression of co-inhibitory receptors, including programmed cell death 1 (PD-1) and T cell immunoglobulin mucin-3 (TIM3) upon activation of naive CD8+ T cells. These results indicate that JunB, in collaboration with BATF and IRF4, promotes multiple key events in the early stage of cytotoxic CD8+ T cell responses.
Collapse
Affiliation(s)
- Shukla Sarkar
- Immune Signal Unit, Okinawa Institute of Science and Technology, Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| | - Naoyuki Taira
- Immune Signal Unit, Okinawa Institute of Science and Technology, Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| | - Tsung-Han Hsieh
- Immune Signal Unit, Okinawa Institute of Science and Technology, Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| | - Hsiao-Chiao Chien
- Immune Signal Unit, Okinawa Institute of Science and Technology, Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| | - Masato Hirota
- Immune Signal Unit, Okinawa Institute of Science and Technology, Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| | - Shin-ichi Koizumi
- Immune Signal Unit, Okinawa Institute of Science and Technology, Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| | - Daiki Sasaki
- Immune Signal Unit, Okinawa Institute of Science and Technology, Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| | - Miho Tamai
- Immune Signal Unit, Okinawa Institute of Science and Technology, Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| | - Yu Seto
- Immune Signal Unit, Okinawa Institute of Science and Technology, Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| | - Mio Miyagi
- Immune Signal Unit, Okinawa Institute of Science and Technology, Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| | - Hiroki Ishikawa
- Immune Signal Unit, Okinawa Institute of Science and Technology, Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
3
|
Zhi-Xiong C. Single-cell RNA sequencing in ovarian cancer: Current progress and future prospects. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2025; 195:100-129. [PMID: 39778630 DOI: 10.1016/j.pbiomolbio.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 12/25/2024] [Accepted: 01/05/2025] [Indexed: 01/11/2025]
Abstract
Ovarian cancer is one of the most prevalent gynaecological malignancies. The rapid development of single-cell RNA sequencing (scRNA-seq) has allowed scientists to use this technique to study ovarian cancer development, heterogeneity, and tumour environment. Although multiple original research articles have reported the use of scRNA-seq in understanding ovarian cancer and how therapy resistance occurs, there is a lack of a comprehensive review that could summarize the findings from multiple studies. Therefore, this review aimed to fill this gap by comparing and summarizing the results from different studies that have used scRNA-seq in understanding ovarian cancer development, heterogeneity, tumour microenvironment, and treatment resistance. This review will begin with an overview of scRNA-seq workflow, followed by a discussion of various applications of scRNA-seq in studying ovarian cancer. Next, the limitations and future directions of scRNA-seq in ovarian cancer research will be presented.
Collapse
Affiliation(s)
- Chong Zhi-Xiong
- Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, 43500 Selangor, Malaysia; Victor Biotech, 81200 Johor Bahru, Johor, Malaysia.
| |
Collapse
|
4
|
Battram AM, Mañé-Pujol J, Moreno DF, Oliver-Caldés A, Carpio J, Cardus O, Rodríguez-Lobato LG, Urbano-Ispizua Á, Fernández de Larrea C. Genetic disruption of Blimp-1 drastically augments the antitumor efficacy of BCMA-targeting CAR T cells. Blood Adv 2025; 9:627-641. [PMID: 39642314 PMCID: PMC11847098 DOI: 10.1182/bloodadvances.2024013209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 10/15/2024] [Accepted: 11/11/2024] [Indexed: 12/08/2024] Open
Abstract
ABSTRACT Chimeric antigen receptor (CAR) T cells directed against B-cell maturation antigen (BCMA) are an effective treatment for multiple myeloma (MM), but short persistence and frequent relapses are challenges for this immunotherapy. This lack of durability has been attributed to the premature terminal differentiation of CAR T cells, which prevents the formation of long-lived memory cells that maintain antitumor responses. To improve long-term efficacy, we used CRISPR/CRISPR-associated protein 9-mediated gene editing to ablate the expression of the transcription factor Blimp-1. Blimp-1 knockout (KO) CAR T cells displayed a memory-like phenotype compared with control (Mock) CAR T cells, but had reduced effector function, with a striking loss of granzyme B. However, in a murine model of advanced MM, Blimp-1 KO CAR T cells effectively slowed or even prevented disease progression, significantly outperforming Mock CAR T cells in improving survival (P = .006). To understand this enhanced in vivo effectiveness, Blimp-1 KO CAR T cells were characterized after being repeatedly challenged with tumor cells in vitro. In this setting, Blimp-1 KO CAR T cells maintained a highly active state with high expression of memory markers, but, crucially, demonstrated enhanced effector function and increased energetic capacity. RNA-sequencing analysis of tumor-exposed Blimp-1 KO CAR T cells confirmed the presence of a memory-like transcriptomic signature and, additionally, revealed enhanced ribosome biogenesis and repressed CAR T-cell dysfunction as mechanisms that could contribute to improved antitumor activity. Put together, our findings show that dampening Blimp-1 expression altered the phenotype and function of anti-BCMA CAR T cells, leading to augmented therapeutic efficacy in MM.
Collapse
Affiliation(s)
- Anthony M. Battram
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Joan Mañé-Pujol
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Faculty of Medicine and Medical Sciences, University of Barcelona, Barcelona, Spain
| | - David F. Moreno
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Department of Hematology, Amyloidosis and Myeloma Unit, Hospital Clínic of Barcelona, Barcelona, Spain
| | - Aina Oliver-Caldés
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Department of Hematology, Amyloidosis and Myeloma Unit, Hospital Clínic of Barcelona, Barcelona, Spain
| | - Judit Carpio
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Oriol Cardus
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Faculty of Medicine and Medical Sciences, University of Barcelona, Barcelona, Spain
| | - Luis Gerardo Rodríguez-Lobato
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Department of Hematology, Amyloidosis and Myeloma Unit, Hospital Clínic of Barcelona, Barcelona, Spain
| | - Álvaro Urbano-Ispizua
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Department of Hematology, Amyloidosis and Myeloma Unit, Hospital Clínic of Barcelona, Barcelona, Spain
- Josep Carreras Leukaemia Research Institute, Barcelona, Spain
- Department of Hematology, University of Barcelona, Barcelona, Spain
| | - Carlos Fernández de Larrea
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Faculty of Medicine and Medical Sciences, University of Barcelona, Barcelona, Spain
- Department of Hematology, Amyloidosis and Myeloma Unit, Hospital Clínic of Barcelona, Barcelona, Spain
- Department of Hematology, University of Barcelona, Barcelona, Spain
| |
Collapse
|
5
|
Cheng R, Tang X, Zhao Q, Wang Y, Chen W, Wang G, Wang C, Mwangi J, Lu Q, Tadese DA, Zhao X, Ou C, Lai R. Transferrin Disassociates TCR from CD3 Signaling Apparatus to Promote Metastasis. RESEARCH (WASHINGTON, D.C.) 2025; 8:0578. [PMID: 39810853 PMCID: PMC11731779 DOI: 10.34133/research.0578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/14/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025]
Abstract
Immune recognition and activation by the peptide-laden major histocompatibility complex-T cell receptor (TCR)-CD3 complex is essential for anti-tumor immunity. Tumors may escape immune surveillance by dissembling the complex. Here, we report that transferrin, which is overexpressed in patients with liver metastasis, disassociates TCR from the CD3 signaling apparatus by targeting the constant domain (CD) of T cell receptor α (TCRα), consequently suppresses T cell activation, and inhibits anti-metastatic and anti-tumor immunity. In mouse models of melanoma and lymphoma, transferrin overexpression exacerbates liver metastasis, while its knockdown, antibody, designed peptides, and CD mutation interfering with transferrin-TCRα interaction inhibit metastasis. This work reveals a novel strategy of tumor evasion of immune surveillance by blocking the coupling between TCRs and the CD3 signaling apparatus to suppress TCR activation. Given the conservation of CD and transferrin up-regulation in metastatic tumors, the strategy might be a common metastatic mechanism. Targeting transferrin-TCRα holds promise for anti-metastatic treatment.
Collapse
Affiliation(s)
- Ruomei Cheng
- Key Laboratory of Genetic Evolution & Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Xiaopeng Tang
- Key Laboratory of Genetic Evolution & Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Qiyu Zhao
- Key Laboratory of Genetic Evolution & Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Yuming Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650108, China
| | - Wenlin Chen
- Third Department of Breast Surgery, Peking University Cancer Hospital Yunan, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650118, China
| | - Gan Wang
- Key Laboratory of Genetic Evolution & Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Chenxi Wang
- Third Department of Breast Surgery, Peking University Cancer Hospital Yunan, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan 650118, China
| | - James Mwangi
- Key Laboratory of Genetic Evolution & Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Qiumin Lu
- Key Laboratory of Genetic Evolution & Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Dawit Adisu Tadese
- Key Laboratory of Genetic Evolution & Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Xudong Zhao
- Division of Abdominal Tumor Multimodality Treatment and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Caiwen Ou
- Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Ren Lai
- Key Laboratory of Genetic Evolution & Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| |
Collapse
|
6
|
Fagerberg E, Attanasio J, Dien C, Singh J, Kessler EA, Abdullah L, Shen J, Hunt BG, Connolly KA, De Brouwer E, He J, Iyer NR, Buck J, Borr ER, Damo M, Foster GG, Giles JR, Huang YH, Tsang JS, Krishnaswamy S, Cui W, Joshi NS. KLF2 maintains lineage fidelity and suppresses CD8 T cell exhaustion during acute LCMV infection. Science 2025; 387:eadn2337. [PMID: 39946463 DOI: 10.1126/science.adn2337] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 07/06/2024] [Accepted: 11/26/2024] [Indexed: 04/23/2025]
Abstract
Naïve CD8 T cells have the potential to differentiate into a spectrum of functional states during an immune response. How these developmental decisions are made and what mechanisms exist to suppress differentiation toward alternative fates remains unclear. We employed in vivo CRISPR-Cas9-based perturbation sequencing to assess the role of ~40 transcription factors (TFs) and epigenetic modulators in T cell fate decisions. Unexpectedly, we found that knockout of the TF Klf2 resulted in aberrant differentiation to exhausted-like CD8 T cells during acute infection. KLF2 was required to suppress the exhaustion-promoting TF TOX and to enable the TF TBET to drive effector differentiation. KLF2 was also necessary to maintain a polyfunctional tumor-specific progenitor state. Thus, KLF2 provides effector CD8 T cell lineage fidelity and suppresses the exhaustion program.
Collapse
Affiliation(s)
- Eric Fagerberg
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - John Attanasio
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Christine Dien
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, USA
| | - Jaiveer Singh
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Emily A Kessler
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Leena Abdullah
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Jian Shen
- Department of Pathology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Brian G Hunt
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Kelli A Connolly
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Edward De Brouwer
- Department of Genetics and Computer Science, Yale University School of Medicine, New Haven, CT, USA
| | - Jiaming He
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Nivedita R Iyer
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Jessica Buck
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Emily R Borr
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Martina Damo
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Gena G Foster
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Josephine R Giles
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yina H Huang
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - John S Tsang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Yale Center for Systems and Engineering Immunology, Yale University School of Medicine, New Haven, CT, USA
- Chan Zuckerberg Biohub New York, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Smita Krishnaswamy
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
- Computational Biology and Bioinformatics Program, Yale University, New Haven, CT USA
- Applied Math Program, Yale University, New Haven, CT, USA
| | - Weiguo Cui
- Department of Pathology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Nikhil S Joshi
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
7
|
Jin H, Kim W, Yuan M, Li X, Yang H, Li M, Shi M, Turkez H, Uhlen M, Zhang C, Mardinoglu A. Identification of SPP1 + macrophages as an immune suppressor in hepatocellular carcinoma using single-cell and bulk transcriptomics. Front Immunol 2024; 15:1446453. [PMID: 39691723 PMCID: PMC11649653 DOI: 10.3389/fimmu.2024.1446453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 11/19/2024] [Indexed: 12/19/2024] Open
Abstract
Introduction Macrophages and T cells play crucial roles in liver physiology, but their functional diversity in hepatocellular carcinoma (HCC) remains largely unknown. Methods Two bulk RNA-sequencing (RNA-seq) cohorts for HCC were analyzed using gene co-expression network analysis. Key gene modules and networks were mapped to single-cell RNA-sequencing (scRNA-seq) data of HCC. Cell type fraction of bulk RNA-seq data was estimated by deconvolution approach using single-cell RNA-sequencing data as a reference. Survival analysis was carried out to estimate the prognosis of different immune cell types in bulk RNA-seq cohorts. Cell-cell interaction analysis was performed to identify potential links between immune cell types in HCC. Results In this study, we analyzed RNA-seq data from two large-scale HCC cohorts, revealing a major and consensus gene co-expression cluster with significant implications for immunosuppression. Notably, these genes exhibited higher enrichment in liver macrophages than T cells, as confirmed by scRNA-seq data from HCC patients. Integrative analysis of bulk and single-cell RNA-seq data pinpointed SPP1 + macrophages as an unfavorable cell type, while VCAN + macrophages, C1QA + macrophages, and CD8 + T cells were associated with a more favorable prognosis for HCC patients. Subsequent scRNA-seq investigations and in vitro experiments elucidated that SPP1, predominantly secreted by SPP1 + macrophages, inhibits CD8 + T cell proliferation. Finally, targeting SPP1 in tumor-associated macrophages through inhibition led to a shift towards a favorable phenotype. Discussion This study underpins the potential of SPP1 as a translational target in immunotherapy for HCC.
Collapse
Affiliation(s)
- Han Jin
- Central Laboratory, Tianjin Medical University General Hospital, Tianjin, China
- Science for Life Laboratory, KTH – Royal Institute of Technology, Stockholm, Sweden
| | - Woonghee Kim
- Science for Life Laboratory, KTH – Royal Institute of Technology, Stockholm, Sweden
| | - Meng Yuan
- Science for Life Laboratory, KTH – Royal Institute of Technology, Stockholm, Sweden
| | - Xiangyu Li
- Science for Life Laboratory, KTH – Royal Institute of Technology, Stockholm, Sweden
| | - Hong Yang
- Science for Life Laboratory, KTH – Royal Institute of Technology, Stockholm, Sweden
| | - Mengzhen Li
- Science for Life Laboratory, KTH – Royal Institute of Technology, Stockholm, Sweden
| | - Mengnan Shi
- Science for Life Laboratory, KTH – Royal Institute of Technology, Stockholm, Sweden
| | - Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum, Türkiye
| | - Mathias Uhlen
- Science for Life Laboratory, KTH – Royal Institute of Technology, Stockholm, Sweden
| | - Cheng Zhang
- Science for Life Laboratory, KTH – Royal Institute of Technology, Stockholm, Sweden
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH – Royal Institute of Technology, Stockholm, Sweden
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
8
|
Peralta RM, Xie B, Lontos K, Nieves-Rosado H, Spahr K, Joshi S, Ford BR, Quann K, Frisch AT, Dean V, Philbin M, Cillo AR, Gingras S, Poholek AC, Kane LP, Rivadeneira DB, Delgoffe GM. Dysfunction of exhausted T cells is enforced by MCT11-mediated lactate metabolism. Nat Immunol 2024; 25:2297-2307. [PMID: 39516648 PMCID: PMC11588660 DOI: 10.1038/s41590-024-01999-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 10/02/2024] [Indexed: 11/16/2024]
Abstract
CD8+ T cells are critical mediators of antitumor immunity but differentiate into a dysfunctional state, known as T cell exhaustion, after persistent T cell receptor stimulation in the tumor microenvironment (TME). Exhausted T (Tex) cells are characterized by upregulation of coinhibitory molecules and reduced polyfunctionality. T cells in the TME experience an immunosuppressive metabolic environment via reduced levels of nutrients and oxygen and a buildup of lactic acid. Here we show that terminally Tex cells uniquely upregulate Slc16a11, which encodes monocarboxylate transporter 11 (MCT11). Conditional deletion of MCT11 in T cells reduced lactic acid uptake by Tex cells and improved their effector function. Targeting MCT11 with an antibody reduced lactate uptake specifically in Tex cells, which, when used therapeutically in tumor-bearing mice, resulted in reduced tumor growth. These data support a model in which Tex cells upregulate MCT11, rendering them sensitive to lactic acid present at high levels in the TME.
Collapse
Affiliation(s)
- Ronal M Peralta
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Bingxian Xie
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Konstantinos Lontos
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hector Nieves-Rosado
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Kellie Spahr
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Supriya Joshi
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - B Rhodes Ford
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kevin Quann
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andrew T Frisch
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Victoria Dean
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Mary Philbin
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Anthony R Cillo
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sebastian Gingras
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amanda C Poholek
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lawrence P Kane
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Dayana B Rivadeneira
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Greg M Delgoffe
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
9
|
Dimitri AJ, Baxter AE, Chen GM, Hopkins CR, Rouin GT, Huang H, Kong W, Holliday CH, Wiebking V, Bartoszek R, Drury S, Dalton K, Koucky OM, Chen Z, Giles JR, Dils AT, Jung IY, O’Connor R, Collins S, Everett JK, Amses K, Sherrill-Mix S, Chandra A, Goldman N, Vahedi G, Jadlowsky JK, Young RM, Melenhorst JJ, Maude SL, Levine BL, Frey NV, Berger SL, Grupp SA, Porter DL, Herbst F, Porteus MH, Carty SA, Bushman FD, Weber EW, Wherry EJ, Jordan MS, Fraietta JA. TET2 regulates early and late transitions in exhausted CD8 + T cell differentiation and limits CAR T cell function. SCIENCE ADVANCES 2024; 10:eadp9371. [PMID: 39536093 PMCID: PMC11559603 DOI: 10.1126/sciadv.adp9371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024]
Abstract
CD8+ T cell exhaustion hampers control of cancer and chronic infections and limits chimeric antigen receptor (CAR) T cell efficacy. Targeting TET2 in CAR T cells provides therapeutic benefit; however, TET2's role in exhausted T cell (TEX) development is unclear. In chronic lymphocytic choriomeningitis virus (LCMV) infection, TET2 drove conversion from stem cell-like TEX progenitors toward terminally differentiated and effector (TEFF)-like TEX. TET2 also enforced a terminally differentiated state in the early bifurcation between TEFF and TEX, indicating broad roles for TET2 in acquisition of effector biology. To exploit the therapeutic potential of TET2, we developed clinically actionable TET2-targeted CAR T cells by disrupting TET2 via knock-in of a safety switch alongside CAR knock-in at the TRAC locus. TET2-targeted CAR T cells exhibited restrained terminal exhaustion in vitro and enhanced antitumor responses in vivo. Thus, TET2 regulates fate transitions in TEX differentiation and can be targeted with a safety mechanism in CAR T cells for improved tumor control.
Collapse
Affiliation(s)
- Alexander J. Dimitri
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amy E. Baxter
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department for Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gregory M. Chen
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Caitlin R. Hopkins
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Geoffrey T. Rouin
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Oncology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Hua Huang
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department for Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Weimin Kong
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher H. Holliday
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Volker Wiebking
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics,, Stanford University, Palo Alto, CA 94304, USA
| | - Robert Bartoszek
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sydney Drury
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katherine Dalton
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Owen M. Koucky
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zeyu Chen
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department for Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Josephine R. Giles
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department for Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexander T. Dils
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - In-Young Jung
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Roddy O’Connor
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sierra Collins
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John K. Everett
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kevin Amses
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Scott Sherrill-Mix
- Department of Microbiology, Genetics and Immunology, Michigan State University, East Lansing, MI 48824, USA
| | - Aditi Chandra
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Naomi Goldman
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Golnaz Vahedi
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julie K. Jadlowsky
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Regina M. Young
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jan Joseph Melenhorst
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44195, USA
| | - Shannon L. Maude
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Oncology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Bruce L. Levine
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Noelle V. Frey
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44195, USA
| | - Shelley L. Berger
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephan A. Grupp
- Division of Oncology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - David L. Porter
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Hematology and Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Friederike Herbst
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew H. Porteus
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics,, Stanford University, Palo Alto, CA 94304, USA
| | - Shannon A. Carty
- Division of Hematology-Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Frederic D. Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Evan W. Weber
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Oncology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - E. John Wherry
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department for Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Martha S. Jordan
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joseph A. Fraietta
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
10
|
Vredevoogd DW, Apriamashvili G, Levy PL, Sinha S, Huinen ZR, Visser NL, de Bruijn B, Boshuizen J, van Hal-van Veen SE, Ligtenberg MA, Bleijerveld OB, Lin CP, Díaz-Gómez J, Sánchez SD, Markovits E, Simon Nieto J, van Vliet A, Krijgsman O, Markel G, Besser MJ, Altelaar M, Ruppin E, Peeper DS. TMED inhibition suppresses cell surface PD-1 expression and overcomes T cell dysfunction. J Immunother Cancer 2024; 12:e010145. [PMID: 39510795 PMCID: PMC11552591 DOI: 10.1136/jitc-2024-010145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Blockade of the programmed cell death protein 1 (PD-1) immune checkpoint (ICB) is revolutionizing cancer therapy, but little is known about the mechanisms governing its expression on CD8 T cells. Because PD-1 is induced during activation of T cells, we set out to uncover regulators whose inhibition suppresses PD-1 abundance without adversely impacting on T cell activation. METHODS To identify PD-1 regulators in an unbiased fashion, we performed a whole-genome, fluorescence-activated cell sorting (FACS)-based CRISPR-Cas9 screen in primary murine CD8 T cells. A dual-readout design using the activation marker CD137 allowed us to uncouple genes involved in PD-1 regulation from those governing general T cell activation. RESULTS We found that the inactivation of one of several members of the TMED/EMP24/GP25L/p24 family of transport proteins, most prominently TMED10, reduced PD-1 cell surface abundance, thereby augmenting T cell activity. Another client protein was cytotoxic T lymphocyte-associated protein 4 (CTLA-4), which was also suppressed by TMED inactivation. Treatment with TMED inhibitor AGN192403 led to lysosomal degradation of the TMED-PD-1 complex and reduced PD-1 abundance in tumor-infiltrating CD8 T cells (TIL) in mice, thus reversing T cell dysfunction. Clinically corroborating these findings, single-cell RNA analyses revealed a positive correlation between TMED expression in CD8 TIL, and both a T cell dysfunction signature and lack of ICB response. Similarly, patients receiving a TIL product with high TMED expression had a shorter overall survival. CONCLUSION Our results uncover a novel mechanism of PD-1 regulation, and identify a pharmacologically tractable target whose inhibition suppresses PD-1 abundance and T cell dysfunction.
Collapse
Affiliation(s)
- David W Vredevoogd
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Georgi Apriamashvili
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Pierre L Levy
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Sanju Sinha
- Cancer Data Science Laboratory, National Cancer Institute Center for Cancer Research, Bethesda, Maryland, USA
| | - Zowi R Huinen
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Nils L Visser
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Beaunelle de Bruijn
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Julia Boshuizen
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Susan E van Hal-van Veen
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Maarten A Ligtenberg
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Onno B Bleijerveld
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Chun-Pu Lin
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Judit Díaz-Gómez
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Santiago Duro Sánchez
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Ettai Markovits
- Ella Lemelbaum Institute for Immuno-oncology, Sheba Medical Center, Tel Hashomer, Israel
- Department of Clinical Microbiology and Immunology, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Juan Simon Nieto
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Alex van Vliet
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Oscar Krijgsman
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Gal Markel
- Department of Clinical Microbiology and Immunology, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Davidoff Center and Samueli Integrative Cancer Pioneering Center, Rabin Medical Center, Petah Tikva, Israel
| | - Michal J Besser
- Department of Clinical Microbiology and Immunology, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Davidoff Center and Samueli Integrative Cancer Pioneering Center, Rabin Medical Center, Petah Tikva, Israel
- Felsenstein Medical Research Center, The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Maarten Altelaar
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Eytan Ruppin
- Cancer Data Science Laboratory, National Cancer Institute Center for Cancer Research, Bethesda, Maryland, USA
| | - Daniel S Peeper
- Department of Molecular oncology and immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Wu B, Koehler AN, Westcott PMK. New opportunities to overcome T cell dysfunction: the role of transcription factors and how to target them. Trends Biochem Sci 2024; 49:1014-1029. [PMID: 39277450 PMCID: PMC11991696 DOI: 10.1016/j.tibs.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/17/2024]
Abstract
Immune checkpoint blockade (ICB) therapies, which block inhibitory receptors on T cells, can be efficacious in reinvigorating dysfunctional T cell responses. However, most cancers do not respond to these therapies and even in those that respond, tumors can acquire resistance. New strategies are needed to rescue and recruit T cell responses across patient populations and disease states. In this review, we define mechanisms of T cell dysfunction, focusing on key transcription factor (TF) networks. We discuss the complex and sometimes contradictory roles of core TFs in both T cell function and dysfunction. Finally, we review strategies to target TFs using small molecule modulators, which represent a challenging but highly promising opportunity to tune the T cell response toward sustained immunity.
Collapse
Affiliation(s)
- Bocheng Wu
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Angela N Koehler
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | | |
Collapse
|
12
|
Ebihara T, Yamada T, Fuchimukai A, Takasuga S, Endo T, Yamada T, Tatematsu M. Dysfunction of type 1 and type 2 immune cells: a lesson from exhausted-like ILC2s and their activation-induced cell death. Int Immunol 2024; 36:585-594. [PMID: 38788198 PMCID: PMC11511622 DOI: 10.1093/intimm/dxae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/22/2024] [Indexed: 05/26/2024] Open
Abstract
The concept of immune cell exhaustion/dysfunction has developed mainly to understand impaired type 1 immune responses, especially by CD8 T-cells against tumors or virus-infected cells, and has been applied to other lymphocytes. Natural killer (NK) cells and CD4 T cells support the efficient activation of CD8 T cells but exhibit dysfunctional phenotypes in tumor microenvironments and in chronic viral infections. In contrast, the concept of type 2 immune cell exhaustion/dysfunction is poorly established. Group 2 innate lymphoid cells (ILC2s) and T-helper 2 (Th2) cells are the major lymphocyte subsets that initiate and expand type 2 immune responses for antiparasitic immunity or allergy. In mouse models of chronic parasitic worm infections, Th2 cells display impaired type 2 immune responses. Chronic airway allergy induces exhausted-like ILC2s that quickly fall into activation-induced cell death to suppress exaggerated inflammation. Thus, the modes of exhaustion/dysfunction are quite diverse and rely on the types of inflammation and the cells. In this review, we summarize current knowledge of lymphocyte exhaustion/dysfunction in the context of type 1 and type 2 immune responses and discuss ILC2-specific regulatory mechanisms during chronic allergy.
Collapse
Affiliation(s)
- Takashi Ebihara
- Department of Medical Biology, Akita University Graduate School of Medicine, Akita 010-8543, Japan
- Center for Integrated Control, Epidemiology and Molecular Pathophysiology of Infectious Diseases, Akita University, Akita 010-8543, Japan
| | - Toshiki Yamada
- Department of Otorhinolaryngology, Head and Neck Surgery, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Akane Fuchimukai
- Department of Medical Biology, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Shunsuke Takasuga
- Department of Medical Biology, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Tentaro Endo
- Department of Otorhinolaryngology, Head and Neck Surgery, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Takechiyo Yamada
- Department of Otorhinolaryngology, Head and Neck Surgery, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Megumi Tatematsu
- Department of Medical Biology, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| |
Collapse
|
13
|
Srinivasan S, Armitage J, Nilsson J, Waithman J. Transcriptional rewiring in CD8 + T cells: implications for CAR-T cell therapy against solid tumours. Front Immunol 2024; 15:1412731. [PMID: 39399500 PMCID: PMC11466849 DOI: 10.3389/fimmu.2024.1412731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024] Open
Abstract
T cells engineered to express chimeric-antigen receptors (CAR-T cells) can effectively control relapsed and refractory haematological malignancies in the clinic. However, the successes of CAR-T cell therapy have not been recapitulated in solid tumours due to a range of barriers such as immunosuppression, poor infiltration, and tumour heterogeneity. Numerous strategies are being developed to overcome these barriers, which include improving culture conditions and manufacturing protocols, implementing novel CAR designs, and novel approaches to engineering the T cell phenotype. In this review, we describe the various emerging strategies to improve CAR T cell therapy for solid tumours. We specifically focus on new strategies to modulate cell function and fate that have precipitated from the growing knowledge of transcriptional circuits driving T cell differentiation, with the ultimate goal of driving more productive anti-tumour T cell immunity. Evidence shows that enrichment of particular phenotypic subsets of T cells in the initial cell product correlates to improved therapeutic responses and clinical outcomes. Furthermore, T cell exhaustion and poor persistence are major factors limiting therapeutic efficacy. The latest preclinical work shows that targeting specific master regulators and transcription factors can overcome these key barriers, resulting in superior T cell therapeutic products. This can be achieved by targeting key transcriptional circuits promoting memory-like phenotypes or sustaining key effector functions within the hostile tumour microenvironment. Additional discussion points include emerging considerations for the field such as (i) targeting permutations of transcription factors, (ii) transient expression systems, (iii) tissue specificity, and (iv) expanding this strategy beyond CAR-T cell therapy and cancer.
Collapse
Affiliation(s)
- Shamini Srinivasan
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Jesse Armitage
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia
| | - Jonas Nilsson
- Melanoma Discovery Lab, Harry Perkins Institute of Medical Research, Centre of Medical Research, The University of Western Australia, Perth, WA, Australia
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Jason Waithman
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia
| |
Collapse
|
14
|
Stewart CM, Siegler EL, Sakemura RL, Cox MJ, Huynh T, Kimball B, Mai L, Can I, Manriquez Roman C, Yun K, Sirpilla O, Girsch JH, Ogbodo E, Mohammed Ismail W, Gaspar-Maia A, Budka J, Kim J, Scholler N, Mattie M, Filosto S, Kenderian SS. IL-4 drives exhaustion of CD8 + CART cells. Nat Commun 2024; 15:7921. [PMID: 39266501 PMCID: PMC11393358 DOI: 10.1038/s41467-024-51978-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/22/2024] [Indexed: 09/14/2024] Open
Abstract
Durable response to chimeric antigen receptor T (CART) cell therapy remains limited in part due to CART cell exhaustion. Here, we investigate the regulation of CART cell exhaustion with three independent approaches including: a genome-wide CRISPR knockout screen using an in vitro model for exhaustion, RNA and ATAC sequencing on baseline and exhausted CART cells, and RNA and ATAC sequencing on pre-infusion CART cell products from responders and non-responders in the ZUMA-1 clinical trial. Each of these approaches identify interleukin (IL)-4 as a regulator of CART cell dysfunction. Further, IL-4-treated CD8+ CART cells develop signs of exhaustion independently of the presence of CD4+ CART cells. Conversely, IL-4 pathway editing or the combination of CART cells with an IL-4 monoclonal antibody improves antitumor efficacy and reduces signs of CART cell exhaustion in mantle cell lymphoma xenograft mouse models. Therefore, we identify both a role for IL-4 in inducing CART exhaustion and translatable approaches to improve CART cell therapy.
Collapse
Affiliation(s)
- Carli M Stewart
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Elizabeth L Siegler
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - R Leo Sakemura
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | - Truc Huynh
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Brooke Kimball
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Long Mai
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Ismail Can
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | - Kun Yun
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Olivia Sirpilla
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - James H Girsch
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ekene Ogbodo
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Justin Budka
- Department of Oncology, Gilead Sciences Inc., Foster City, CA, USA
| | - Jenny Kim
- Department of Oncology, Gilead Sciences Inc., Foster City, CA, USA
| | | | - Mike Mattie
- Department of Oncology, Gilead Sciences Inc., Foster City, CA, USA
| | - Simone Filosto
- Department of Oncology, Gilead Sciences Inc., Foster City, CA, USA
| | - Saad S Kenderian
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA.
- Division of Hematology, Mayo Clinic, Rochester, MN, USA.
- Department of Immunology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
15
|
Sacristán C, Youngblood BA, Lu P, Bally APR, Xu JX, McGary K, Hewitt SL, Boss JM, Skok JA, Ahmed R, Dustin ML. Chronic viral infection alters PD-1 locus subnuclear localization in cytotoxic CD8 + T cells. Cell Rep 2024; 43:114547. [PMID: 39083377 PMCID: PMC11522508 DOI: 10.1016/j.celrep.2024.114547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/15/2024] [Accepted: 07/11/2024] [Indexed: 08/02/2024] Open
Abstract
During chronic infection, virus-specific CD8+ cytotoxic T lymphocytes (CTLs) progressively lose their ability to mount effective antiviral responses. This "exhaustion" is coupled to persistent upregulation of inhibitory receptor programmed death-1 (PD-1) (Pdcd1)-key in suppressing antiviral CTL responses. Here, we investigate allelic Pdcd1 subnuclear localization and transcription during acute and chronic lymphocytic choriomeningitis virus (LCMV) infection in mice. Pdcd1 alleles dissociate from transcriptionally repressive chromatin domains (lamin B) in virus-specific exhausted CTLs but not in naive or effector CTLs. Relative to naive CTLs, nuclear positioning and Pdcd1-lamina dissociation in exhausted CTLs reflect loss of Pdcd1 promoter methylation and greater PD-1 upregulation, although a direct correlation is not observed in effector cells, 8 days post-infection. Genetic deletion of B lymphocyte-induced maturation protein 1 (Blimp-1) enhances Pdcd1-lamina dissociation in effector CTLs, suggesting that Blimp-1 contributes to maintaining Pdcd1 localization to repressive lamina. Our results identify mechanisms governing Pdcd1 subnuclear localization and the broader role of chromatin dynamics in T cell exhaustion.
Collapse
Affiliation(s)
- Catarina Sacristán
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, USA
| | - Ben A Youngblood
- Emory Vaccine Center and the Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA; Immunology Department, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Peiyuan Lu
- Emory Vaccine Center and the Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Alexander P R Bally
- Emory Vaccine Center and the Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Jean Xiaojin Xu
- Emory Vaccine Center and the Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Katelyn McGary
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, USA
| | - Susannah L Hewitt
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Jeremy M Boss
- Emory Vaccine Center and the Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Jane A Skok
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Rafi Ahmed
- Emory Vaccine Center and the Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Michael L Dustin
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, USA; The Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK.
| |
Collapse
|
16
|
Cillo AR, Cardello C, Shan F, Karapetyan L, Kunning S, Sander C, Rush E, Karunamurthy A, Massa RC, Rohatgi A, Workman CJ, Kirkwood JM, Bruno TC, Vignali DAA. Blockade of LAG-3 and PD-1 leads to co-expression of cytotoxic and exhaustion gene modules in CD8 + T cells to promote antitumor immunity. Cell 2024; 187:4373-4388.e15. [PMID: 39121849 PMCID: PMC11346583 DOI: 10.1016/j.cell.2024.06.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/09/2024] [Accepted: 06/26/2024] [Indexed: 08/12/2024]
Abstract
Relatlimab (rela; anti-LAG-3) plus nivolumab (nivo; anti-PD-1) is safe and effective for treatment of advanced melanoma. We designed a trial (NCT03743766) where advanced melanoma patients received rela, nivo, or rela+nivo to interrogate the immunologic mechanisms of rela+nivo. Analysis of biospecimens from this ongoing trial demonstrated that rela+nivo led to enhanced capacity for CD8+ T cell receptor signaling and altered CD8+ T cell differentiation, leading to heightened cytotoxicity despite the retention of an exhaustion profile. Co-expression of cytotoxic and exhaustion signatures was driven by PRDM1, BATF, ETV7, and TOX. Effector function was upregulated in clonally expanded CD8+ T cells that emerged after rela+nivo. A rela+nivo intratumoral CD8+ T cell signature was associated with a favorable prognosis. This intratumoral rela+nivo signature was validated in peripheral blood as an elevated frequency of CD38+TIM3+CD8+ T cells. Overall, we demonstrated that cytotoxicity can be enhanced despite the retention of exhaustion signatures, which will inform future therapeutic strategies.
Collapse
Affiliation(s)
- Anthony R Cillo
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| | - Carly Cardello
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Feng Shan
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Integrative Systems Biology (ISB) Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lilit Karapetyan
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sheryl Kunning
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Cindy Sander
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Elizabeth Rush
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Ryan C Massa
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Anjali Rohatgi
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Creg J Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John M Kirkwood
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| | - Tullia C Bruno
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
17
|
Sagrero-Fabela N, Chávez-Mireles R, Salazar-Camarena DC, Palafox-Sánchez CA. Exploring the Role of PD-1 in the Autoimmune Response: Insights into Its Implication in Systemic Lupus Erythematosus. Int J Mol Sci 2024; 25:7726. [PMID: 39062968 PMCID: PMC11277507 DOI: 10.3390/ijms25147726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Despite advances in understanding systemic lupus erythematosus (SLE), many challenges remain in unraveling the precise mechanisms behind the disease's development and progression. Recent evidence has questioned the role of programmed cell death protein 1 (PD-1) in suppressing autoreactive CD4+ T cells during autoimmune responses. Research has investigated the potential impacts of PD-1 on various CD4+ T-cell subpopulations, including T follicular helper (Tfh) cells, circulating Tfh (cTfh) cells, and T peripheral helper (Tph) cells, all of which exhibit substantial PD-1 expression and are closely related to several autoimmune disorders, including SLE. This review highlights the complex role of PD-1 in autoimmunity and emphasizes the imperative for further research to elucidate its functions during autoreactive T-cell responses. Additionally, we address the potential of PD-1 and its ligands as possible therapeutic targets in SLE.
Collapse
Affiliation(s)
- Nefertari Sagrero-Fabela
- Doctorado en Ciencias Biomédicas (DCB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (N.S.-F.); (R.C.-M.)
- Grupo de Inmunología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - Ramón Chávez-Mireles
- Doctorado en Ciencias Biomédicas (DCB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (N.S.-F.); (R.C.-M.)
| | - Diana Celeste Salazar-Camarena
- Grupo de Inmunología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - Claudia Azucena Palafox-Sánchez
- Grupo de Inmunología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| |
Collapse
|
18
|
Van Der Byl W, Nüssing S, Peters TJ, Ahn A, Li H, Ledergor G, David E, Koh AS, Wagle MV, Deguit CDT, de Menezes MN, Travers A, Sampurno S, Ramsbottom KM, Li R, Kallies A, Beavis PA, Jungmann R, Bastings MMC, Belz GT, Goel S, Trapani JA, Crabtree GR, Chang HY, Amit I, Goodnow CC, Luciani F, Parish IA. The CD8 + T cell tolerance checkpoint triggers a distinct differentiation state defined by protein translation defects. Immunity 2024; 57:1324-1344.e8. [PMID: 38776918 PMCID: PMC11807353 DOI: 10.1016/j.immuni.2024.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 02/01/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
Peripheral CD8+ T cell tolerance is a checkpoint in both autoimmune disease and anti-cancer immunity. Despite its importance, the relationship between tolerance-induced states and other CD8+ T cell differentiation states remains unclear. Using flow cytometric phenotyping, single-cell RNA sequencing (scRNA-seq), and chromatin accessibility profiling, we demonstrated that in vivo peripheral tolerance to a self-antigen triggered a fundamentally distinct differentiation state separate from exhaustion, memory, and functional effector cells but analogous to cells defectively primed against tumors. Tolerant cells diverged early and progressively from effector cells, adopting a transcriptionally and epigenetically distinct state within 60 h of antigen encounter. Breaching tolerance required the synergistic actions of strong T cell receptor (TCR) signaling and inflammation, which cooperatively induced gene modules that enhanced protein translation. Weak TCR signaling during bystander infection failed to breach tolerance due to the uncoupling of effector gene expression from protein translation. Thus, tolerance engages a distinct differentiation trajectory enforced by protein translation defects.
Collapse
Affiliation(s)
- Willem Van Der Byl
- The Kirby Institute for Infection and Immunity, UNSW, Sydney, NSW, Australia; School of Medical Sciences, Faculty of Medicine, UNSW, Sydney, NSW, Australia
| | - Simone Nüssing
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Timothy J Peters
- Garvan Institute of Medical Research, Sydney, NSW, Australia; University of New South Wales Sydney, Sydney, NSW, Australia
| | - Antonio Ahn
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Hanjie Li
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Guy Ledergor
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Eyal David
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Andrew S Koh
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Mayura V Wagle
- Garvan Institute of Medical Research, Sydney, NSW, Australia; John Curtin School of Medical Research, ANU, Canberra, ACT, Australia
| | | | - Maria N de Menezes
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Avraham Travers
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Shienny Sampurno
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Kelly M Ramsbottom
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Rui Li
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
| | - Axel Kallies
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia; Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC, Australia
| | - Paul A Beavis
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Ralf Jungmann
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany; Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Maartje M C Bastings
- Institute of Materials, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Interfaculty Bioengineering Institute, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Gabrielle T Belz
- The Frazer Institute, The University of Queensland, Brisbane, QLD, Australia; Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Shom Goel
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Joseph A Trapani
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Gerald R Crabtree
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA; Departments of Pathology and Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
| | - Ido Amit
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Chris C Goodnow
- School of Medical Sciences, Faculty of Medicine, UNSW, Sydney, NSW, Australia; Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Fabio Luciani
- The Kirby Institute for Infection and Immunity, UNSW, Sydney, NSW, Australia; School of Medical Sciences, Faculty of Medicine, UNSW, Sydney, NSW, Australia.
| | - Ian A Parish
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia; John Curtin School of Medical Research, ANU, Canberra, ACT, Australia.
| |
Collapse
|
19
|
Fowler EA, Farias Amorim C, Mostacada K, Yan A, Amorim Sacramento L, Stanco RA, Hales ED, Varkey A, Zong W, Wu GD, de Oliveira CI, Collins PL, Novais FO. Neutrophil-mediated hypoxia drives pathogenic CD8+ T cell responses in cutaneous leishmaniasis. J Clin Invest 2024; 134:e177992. [PMID: 38833303 PMCID: PMC11245163 DOI: 10.1172/jci177992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/17/2024] [Indexed: 06/06/2024] Open
Abstract
Cutaneous leishmaniasis caused by Leishmania parasites exhibits a wide range of clinical manifestations. Although parasites influence disease severity, cytolytic CD8+ T cell responses mediate disease. Although these responses originate in the lymph node, we found that expression of the cytolytic effector molecule granzyme B was restricted to lesional CD8+ T cells in Leishmania-infected mice, suggesting that local cues within inflamed skin induced cytolytic function. Expression of Blimp-1 (Prdm1), a transcription factor necessary for cytolytic CD8+ T cell differentiation, was driven by hypoxia within the inflamed skin. Hypoxia was further enhanced by the recruitment of neutrophils that consumed oxygen to produce ROS and ultimately increased the hypoxic state and granzyme B expression in CD8+ T cells. Importantly, lesions from patients with cutaneous leishmaniasis exhibited hypoxia transcription signatures that correlated with the presence of neutrophils. Thus, targeting hypoxia-driven signals that support local differentiation of cytolytic CD8+ T cells may improve the prognosis for patients with cutaneous leishmaniasis, as well as for other inflammatory skin diseases in which cytolytic CD8+ T cells contribute to pathogenesis.
Collapse
Affiliation(s)
- Erin A. Fowler
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | | | - Klauss Mostacada
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Allison Yan
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | | | - Rae A. Stanco
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Emily D.S. Hales
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Aditi Varkey
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Wenjing Zong
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gary D. Wu
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Camila I. de Oliveira
- Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Brazil
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, Salvador, Brazil
| | - Patrick L. Collins
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Fernanda O. Novais
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
20
|
Chen ACY, Jaiswal S, Martinez D, Yerinde C, Ji K, Miranda V, Fung ME, Weiss SA, Zschummel M, Taguchi K, Garris CS, Mempel TR, Hacohen N, Sen DR. The aged tumor microenvironment limits T cell control of cancer. Nat Immunol 2024; 25:1033-1045. [PMID: 38745085 PMCID: PMC11500459 DOI: 10.1038/s41590-024-01828-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/27/2024] [Indexed: 05/16/2024]
Abstract
The etiology and effect of age-related immune dysfunction in cancer is not completely understood. Here we show that limited priming of CD8+ T cells in the aged tumor microenvironment (TME) outweighs cell-intrinsic defects in limiting tumor control. Increased tumor growth in aging is associated with reduced CD8+ T cell infiltration and function. Transfer of T cells from young mice does not restore tumor control in aged mice owing to rapid induction of T cell dysfunction. Cell-extrinsic signals in the aged TME drive a tumor-infiltrating age-associated dysfunctional (TTAD) cell state that is functionally, transcriptionally and epigenetically distinct from canonical T cell exhaustion. Altered natural killer cell-dendritic cell-CD8+ T cell cross-talk in aged tumors impairs T cell priming by conventional type 1 dendritic cells and promotes TTAD cell formation. Aged mice are thereby unable to benefit from therapeutic tumor vaccination. Critically, myeloid-targeted therapy to reinvigorate conventional type 1 dendritic cells can improve tumor control and restore CD8+ T cell immunity in aging.
Collapse
Affiliation(s)
- Alex C Y Chen
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Sneha Jaiswal
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Carnegie Mellon University, Pittsburgh, PA, USA
| | - Daniela Martinez
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Cansu Yerinde
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Keely Ji
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Velita Miranda
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Megan E Fung
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Sarah A Weiss
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Maria Zschummel
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Kazuhiro Taguchi
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Christopher S Garris
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Thorsten R Mempel
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Nir Hacohen
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Debattama R Sen
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
21
|
Lan X, Mi T, Alli S, Guy C, Djekidel MN, Liu X, Boi S, Chowdhury P, He M, Zehn D, Feng Y, Youngblood B. Antitumor progenitor exhausted CD8 + T cells are sustained by TCR engagement. Nat Immunol 2024; 25:1046-1058. [PMID: 38816618 DOI: 10.1038/s41590-024-01843-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 04/16/2024] [Indexed: 06/01/2024]
Abstract
The durability of an antitumor immune response is mediated in part by the persistence of progenitor exhausted CD8+ T cells (Tpex). Tpex serve as a resource for replenishing effector T cells and preserve their quantity through self-renewal. However, it is unknown how T cell receptor (TCR) engagement affects the self-renewal capacity of Tpex in settings of continued antigen exposure. Here we use a Lewis lung carcinoma model that elicits either optimal or attenuated TCR signaling in CD8+ T cells to show that formation of Tpex in tumor-draining lymph nodes and their intratumoral persistence is dependent on optimal TCR engagement. Notably, attenuated TCR stimulation accelerates the terminal differentiation of optimally primed Tpex. This TCR-reinforced Tpex development and self-renewal is coupled to proximal positioning to dendritic cells and epigenetic imprinting involving increased chromatin accessibility at Egr2 and Tcf1 target loci. Collectively, this study highlights the critical function of TCR engagement in sustaining Tpex during tumor progression.
Collapse
MESH Headings
- Animals
- CD8-Positive T-Lymphocytes/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Mice
- Carcinoma, Lewis Lung/immunology
- Carcinoma, Lewis Lung/pathology
- Carcinoma, Lewis Lung/metabolism
- Mice, Inbred C57BL
- Hepatocyte Nuclear Factor 1-alpha/metabolism
- Cell Differentiation/immunology
- Dendritic Cells/immunology
- Signal Transduction/immunology
- Mice, Knockout
- Lymphocyte Activation/immunology
- Cell Self Renewal
- Mice, Transgenic
- Early Growth Response Protein 2
Collapse
Affiliation(s)
- Xin Lan
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
- College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Tian Mi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shanta Alli
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Cliff Guy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Xueyan Liu
- Department of Mathematics, University of New Orleans, New Orleans, LA, USA
| | - Shannon Boi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Partha Chowdhury
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Minghong He
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Dietmar Zehn
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Yongqiang Feng
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ben Youngblood
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
22
|
Fang Z, Ding X, Huang H, Jiang H, Jiang J, Zheng X. Revolutionizing tumor immunotherapy: unleashing the power of progenitor exhausted T cells. Cancer Biol Med 2024; 21:j.issn.2095-3941.2024.0105. [PMID: 38825813 PMCID: PMC11208905 DOI: 10.20892/j.issn.2095-3941.2024.0105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 04/29/2024] [Indexed: 06/04/2024] Open
Abstract
In exploring persistent infections and malignancies, a distinctive subgroup of CD8+ T cells, progenitor exhausted CD8+ T (Tpex) cells, has been identified. These Tpex cells are notable for their remarkable self-renewal and rapid proliferation abilities. Recent strides in immunotherapy have demonstrated that Tpex cells expand and differentiate into responsive exhausted CD8+ T cells, thus underscoring their critical role in the immunotherapeutic retort. Clinical examinations have further clarified a robust positive correlation between the proportional abundance of Tpex cells and enhanced clinical prognosis. Tpex cells have found noteworthy applications in the formulation of inventive immunotherapeutic approaches against tumors. This review describes the functions of Tpex cells in the tumor milieu, particularly their potential utility in tumor immunotherapy. Precisely directing Tpex cells may be essential to achieving successful outcomes in immunotherapy against tumors.
Collapse
Affiliation(s)
- Zhang Fang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
- Institute for Cell Therapy of Soochow University, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Xinyi Ding
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
- Institute for Cell Therapy of Soochow University, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Hao Huang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
- Institute for Cell Therapy of Soochow University, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Hongwei Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
- Institute for Cell Therapy of Soochow University, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
- Institute for Cell Therapy of Soochow University, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Xiao Zheng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
- Institute for Cell Therapy of Soochow University, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| |
Collapse
|
23
|
Ziblat A, Horton BL, Higgs EF, Hatogai K, Martinez A, Shapiro JW, Kim DEC, Zha Y, Sweis RF, Gajewski TF. Batf3 + DCs and the 4-1BB/4-1BBL axis are required at the effector phase in the tumor microenvironment for PD-1/PD-L1 blockade efficacy. Cell Rep 2024; 43:114141. [PMID: 38656869 PMCID: PMC11229087 DOI: 10.1016/j.celrep.2024.114141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/29/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024] Open
Abstract
The cellular source of positive signals that reinvigorate T cells within the tumor microenvironment (TME) for the therapeutic efficacy of programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1) blockade has not been clearly defined. We now show that Batf3-lineage dendritic cells (DCs) are essential in this process. Flow cytometric analysis, gene-targeted mice, and blocking antibody studies revealed that 4-1BBL is a major positive co-stimulatory signal provided by these DCs within the TME that translates to CD8+ T cell functional reinvigoration and tumor regression. Immunofluorescence and spatial transcriptomics on human tumor samples revealed clustering of Batf3+ DCs and CD8+ T cells, which correlates with anti-PD-1 efficacy. In addition, proximity to Batf3+ DCs within the TME is associated with CD8+ T cell transcriptional states linked to anti-PD-1 response. Our results demonstrate that Batf3+ DCs within the TME are critical for PD-1/PD-L1 blockade efficacy and indicate a major role for the 4-1BB/4-1BB ligand (4-1BBL) axis during this process.
Collapse
Affiliation(s)
- Andrea Ziblat
- Department of Pathology, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Brendan L Horton
- Department of Pathology, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Emily F Higgs
- Department of Pathology, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Ken Hatogai
- Department of Pathology, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Anna Martinez
- Department of Pathology, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Jason W Shapiro
- Center for Research Informatics, University of Chicago, Chicago, IL 60637, USA
| | - Danny E C Kim
- Department of Pathology, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA
| | - YuanYuan Zha
- Human Immunological Monitoring Facility, University of Chicago, Chicago, IL 60637, USA
| | - Randy F Sweis
- Department of Medicine, University of Chicago, Chicago, IL 60612, USA
| | - Thomas F Gajewski
- Department of Pathology, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA; Department of Medicine, University of Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
24
|
Gao M, Shi J, Xiao X, Yao Y, Chen X, Wang B, Zhang J. PD-1 regulation in immune homeostasis and immunotherapy. Cancer Lett 2024; 588:216726. [PMID: 38401888 DOI: 10.1016/j.canlet.2024.216726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/31/2024] [Accepted: 02/10/2024] [Indexed: 02/26/2024]
Abstract
Harnessing the programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) axis is pivotal in autoimmunity and cancer immunotherapy. PD-1 receptors on immune cells engage with one of its ligands, PD-L1 or PD-L2, expressed on antigen-presenting cells or tumor cells, driving T-cell dysfunction and tumor immune escape. Thus, targeting PD-1/PD-L1 revitalizes cytotoxic T cells for cancer elimination. However, a majority of cancer patients don't respond to PD-1/PD-L1 blockade, and the underlying mechanisms remain partially understood. Recent studies have revealed that PD-1 expression levels or modifications impact the effectiveness of anti-PD-1/PD-L1 treatments. Therefore, understanding the molecular mechanisms governing PD-1 expression and modifications is crucial for innovating therapeutic strategies to enhance the efficacy of PD-1/PD-L1 inhibition. This article presents a comprehensive overview of advancements in PD-1 regulation and highlights their potential in modulating immune homeostasis and cancer immunotherapy, aiming to refine clinical outcomes.
Collapse
Affiliation(s)
- Minling Gao
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Jie Shi
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xiangling Xiao
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yingmeng Yao
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xu Chen
- Chongqing University Medical School, Chongqing, 400044, China
| | - Bin Wang
- Department of Gastroenterology & Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Jinfang Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
25
|
Xiang M, Li H, Zhan Y, Ma D, Gao Q, Fang Y. Functional CRISPR screens in T cells reveal new opportunities for cancer immunotherapies. Mol Cancer 2024; 23:73. [PMID: 38581063 PMCID: PMC10996278 DOI: 10.1186/s12943-024-01987-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/25/2024] [Indexed: 04/07/2024] Open
Abstract
T cells are fundamental components in tumour immunity and cancer immunotherapies, which have made immense strides and revolutionized cancer treatment paradigm. However, recent studies delineate the predicament of T cell dysregulation in tumour microenvironment and the compromised efficacy of cancer immunotherapies. CRISPR screens enable unbiased interrogation of gene function in T cells and have revealed functional determinators, genetic regulatory networks, and intercellular interactions in T cell life cycle, thereby providing opportunities to revamp cancer immunotherapies. In this review, we briefly described the central roles of T cells in successful cancer immunotherapies, comprehensively summarised the studies of CRISPR screens in T cells, elaborated resultant master genes that control T cell activation, proliferation, fate determination, effector function, and exhaustion, and highlighted genes (BATF, PRDM1, and TOX) and signalling cascades (JAK-STAT and NF-κB pathways) that extensively engage in multiple branches of T cell responses. In conclusion, this review bridged the gap between discovering element genes to a specific process of T cell activities and apprehending these genes in the global T cell life cycle, deepened the understanding of T cell biology in tumour immunity, and outlined CRISPR screens resources that might facilitate the development and implementation of cancer immunotherapies in the clinic.
Collapse
Affiliation(s)
- Minghua Xiang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huayi Li
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Zhan
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ding Ma
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinglei Gao
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yong Fang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
26
|
Pan X, Wang J, Zhang L, Li G, Huang B. Metabolic plasticity of T cell fate decision. Chin Med J (Engl) 2024; 137:762-775. [PMID: 38086394 PMCID: PMC10997312 DOI: 10.1097/cm9.0000000000002989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Indexed: 04/06/2024] Open
Abstract
ABSTRACT The efficacy of adaptive immune responses in cancer treatment relies heavily on the state of the T cells. Upon antigen exposure, T cells undergo metabolic reprogramming, leading to the development of functional effectors or memory populations. However, within the tumor microenvironment (TME), metabolic stress impairs CD8 + T cell anti-tumor immunity, resulting in exhausted differentiation. Recent studies suggested that targeting T cell metabolism could offer promising therapeutic opportunities to enhance T cell immunotherapy. In this review, we provide a comprehensive summary of the intrinsic and extrinsic factors necessary for metabolic reprogramming during the development of effector and memory T cells in response to acute and chronic inflammatory conditions. Furthermore, we delved into the different metabolic switches that occur during T cell exhaustion, exploring how prolonged metabolic stress within the TME triggers alterations in cellular metabolism and the epigenetic landscape that contribute to T cell exhaustion, ultimately leading to a persistently exhausted state. Understanding the intricate relationship between T cell metabolism and cancer immunotherapy can lead to the development of novel approaches to improve the efficacy of T cell-based treatments against cancer.
Collapse
Affiliation(s)
- Xiaoli Pan
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, Jiangsu 215123, China
- Key Laboratory of Synthetic Biology Regulatory Element, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, Jiangsu 215123, China
| | - Jiajia Wang
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, Jiangsu 215123, China
- Key Laboratory of Synthetic Biology Regulatory Element, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, Jiangsu 215123, China
| | - Lianjun Zhang
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, Jiangsu 215123, China
- Key Laboratory of Synthetic Biology Regulatory Element, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, Jiangsu 215123, China
| | - Guideng Li
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, Jiangsu 215123, China
- Key Laboratory of Synthetic Biology Regulatory Element, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, Jiangsu 215123, China
| | - Bo Huang
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing 100005, China
- Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei 430030, China
| |
Collapse
|
27
|
Pecha B, Martinez S, Milburn LJ, Rojas OL, Koch MA. Identification of Intestinal Lamina Propria Plasma Cells by Surface Transmembrane Activator and CAML Interactor Expression. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1022-1028. [PMID: 38294253 PMCID: PMC10932850 DOI: 10.4049/jimmunol.2300132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024]
Abstract
Plasma cells secrete an abundance of Abs and are a crucial component of our immune system. The intestinal lamina propria harbors the largest population of plasma cells, most of which produce IgA. These Abs can bind to beneficial gut bacteria to reinforce intestinal homeostasis and provide protection against enteric pathogens. Plasma cells downregulate many cell-surface proteins commonly used to identify B cells. In mice, expression of the surface marker CD138 has been widely used to identify plasma cells in lymph nodes, bone marrow, and spleen. Intestinal plasma cells require liberation via extensive tissue processing involving treatment with collagenase. We report that detection of CD138 surface expression is reduced following collagenase treatment. Using a mouse in which yellow fluorescent protein expression is controlled by the plasma cell requisite transcription factor Blimp-1, we show that surface detection of transmembrane activator and CAML interactor captures a significant proportion of Ab-secreting plasma cells in the intestinal lamina propria and gut-draining mesenteric lymph nodes. Additionally, we describe a flow cytometry panel based on the detection of surface markers to identify murine B cell subsets in the intestinal lamina propria and, as a proof of concept, combine it with a cutting-edge fate-tracking system to characterize the fate of germinal center B cells activated in early life. By identifying plasma cells and other key intestinal B subsets in a manner compatible with several downstream applications, including sorting and culturing and in vitro manipulations, this efficient and powerful approach can enhance studies of mucosal immunity.
Collapse
Affiliation(s)
- Bingjie Pecha
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA
- Medical Scientist Training Program, University of Washington, Seattle, WA
| | | | - Luke J Milburn
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Olga L Rojas
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Meghan A Koch
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Immunology, University of Washington, Seattle, WA
| |
Collapse
|
28
|
Davies D, Kamdar S, Woolf R, Zlatareva I, Iannitto ML, Morton C, Haque Y, Martin H, Biswas D, Ndagire S, Munonyara M, Gillett C, O'Neill O, Nussbaumer O, Hayday A, Wu Y. PD-1 defines a distinct, functional, tissue-adapted state in Vδ1 + T cells with implications for cancer immunotherapy. NATURE CANCER 2024; 5:420-432. [PMID: 38172341 PMCID: PMC10965442 DOI: 10.1038/s43018-023-00690-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 11/15/2023] [Indexed: 01/05/2024]
Abstract
Checkpoint inhibition (CPI), particularly that targeting the inhibitory coreceptor programmed cell death protein 1 (PD-1), has transformed oncology. Although CPI can derepress cancer (neo)antigen-specific αβ T cells that ordinarily show PD-1-dependent exhaustion, it can also be efficacious against cancers evading αβ T cell recognition. In such settings, γδ T cells have been implicated, but the functional relevance of PD-1 expression by these cells is unclear. Here we demonstrate that intratumoral TRDV1 transcripts (encoding the TCRδ chain of Vδ1+ γδ T cells) predict anti-PD-1 CPI response in patients with melanoma, particularly those harboring below average neoantigens. Moreover, using a protocol yielding substantial numbers of tissue-derived Vδ1+ cells, we show that PD-1+Vδ1+ cells display a transcriptomic program similar to, but distinct from, the canonical exhaustion program of colocated PD-1+CD8+ αβ T cells. In particular, PD-1+Vδ1+ cells retained effector responses to TCR signaling that were inhibitable by PD-1 engagement and derepressed by CPI.
Collapse
Affiliation(s)
- Daniel Davies
- Peter Gorer Department of Immunobiology, King's College London, London, UK
- Centre for Inflammation Biology and Cancer Immunology, King's College London, London, UK
| | - Shraddha Kamdar
- Peter Gorer Department of Immunobiology, King's College London, London, UK
- Centre for Inflammation Biology and Cancer Immunology, King's College London, London, UK
| | - Richard Woolf
- Peter Gorer Department of Immunobiology, King's College London, London, UK
- St. John's Institute of Dermatology, Guy's Hospital, London, UK
| | - Iva Zlatareva
- Peter Gorer Department of Immunobiology, King's College London, London, UK
| | | | - Cienne Morton
- Peter Gorer Department of Immunobiology, King's College London, London, UK
- Department of Medical Oncology, Guy's Hospital, London, UK
| | - Yasmin Haque
- Peter Gorer Department of Immunobiology, King's College London, London, UK
| | - Hannah Martin
- Immunosurveillance Laboratory, Francis Crick Institute, London, UK
| | - Dhruva Biswas
- Academic Foundation Programme, King's College Hospital, London, UK
| | - Susan Ndagire
- King's Health Partners Cancer Biobank, Guy's Hospital, London, UK
| | | | - Cheryl Gillett
- King's Health Partners Cancer Biobank, Guy's Hospital, London, UK
| | - Olga O'Neill
- Advanced Sequencing Facility, Francis Crick Institute, London, UK
| | - Oliver Nussbaumer
- Peter Gorer Department of Immunobiology, King's College London, London, UK
| | - Adrian Hayday
- Peter Gorer Department of Immunobiology, King's College London, London, UK.
- Centre for Inflammation Biology and Cancer Immunology, King's College London, London, UK.
- Immunosurveillance Laboratory, Francis Crick Institute, London, UK.
| | - Yin Wu
- Peter Gorer Department of Immunobiology, King's College London, London, UK.
- Centre for Inflammation Biology and Cancer Immunology, King's College London, London, UK.
- Department of Medical Oncology, Guy's Hospital, London, UK.
| |
Collapse
|
29
|
Roider T, Baertsch MA, Fitzgerald D, Vöhringer H, Brinkmann BJ, Czernilofsky F, Knoll M, Llaó-Cid L, Mathioudaki A, Faßbender B, Herbon M, Lautwein T, Bruch PM, Liebers N, Schürch CM, Passerini V, Seifert M, Brobeil A, Mechtersheimer G, Müller-Tidow C, Weigert O, Seiffert M, Nolan GP, Huber W, Dietrich S. Multimodal and spatially resolved profiling identifies distinct patterns of T cell infiltration in nodal B cell lymphoma entities. Nat Cell Biol 2024; 26:478-489. [PMID: 38379051 PMCID: PMC10940160 DOI: 10.1038/s41556-024-01358-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 01/15/2024] [Indexed: 02/22/2024]
Abstract
The redirection of T cells has emerged as an attractive therapeutic principle in B cell non-Hodgkin lymphoma (B-NHL). However, a detailed characterization of lymphoma-infiltrating T cells across B-NHL entities is missing. Here we present an in-depth T cell reference map of nodal B-NHL, based on cellular indexing of transcriptomes and epitopes, T cell receptor sequencing, flow cytometry and multiplexed immunofluorescence applied to 101 lymph nodes from patients with diffuse large B cell, mantle cell, follicular or marginal zone lymphoma, and from healthy controls. This multimodal resource revealed quantitative and spatial aberrations of the T cell microenvironment across and within B-NHL entities. Quantitative differences in PD1+ TCF7- cytotoxic T cells, T follicular helper cells or IKZF3+ regulatory T cells were linked to their clonal expansion. The abundance of PD1+ TCF7- cytotoxic T cells was associated with poor survival. Our study portrays lymphoma-infiltrating T cells with unprecedented comprehensiveness and provides a unique resource for the investigation of lymphoma biology and prognosis.
Collapse
Affiliation(s)
- Tobias Roider
- Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit, Heidelberg, Germany
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Marc A Baertsch
- Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Donnacha Fitzgerald
- Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit, Heidelberg, Germany
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Harald Vöhringer
- Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit, Heidelberg, Germany
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Berit J Brinkmann
- Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit, Heidelberg, Germany
- European Molecular Biology Laboratory, Heidelberg, Germany
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center, Heidelberg, Germany
| | - Felix Czernilofsky
- Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit, Heidelberg, Germany
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Mareike Knoll
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Laura Llaó-Cid
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany
- Molecular Pathology of Lymphoid Neoplasms, Fundació de Recerca Clinic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), Barcelona, Spain
| | | | - Bianca Faßbender
- Department of Hematology and Oncology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Maxime Herbon
- Department of Hematology and Oncology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Tobias Lautwein
- Genomics and Transcriptomics Laboratory, University of Düsseldorf, Düsseldorf, Germany
| | - Peter-Martin Bruch
- Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit, Heidelberg, Germany
- European Molecular Biology Laboratory, Heidelberg, Germany
- Department of Hematology and Oncology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Nora Liebers
- European Molecular Biology Laboratory, Heidelberg, Germany
- Department of Hematology and Oncology, University Hospital Düsseldorf, Düsseldorf, Germany
- National Center for Tumor Diseases, Heidelberg, Germany
- German Cancer Research Center, Heidelberg, Germany
| | - Christian M Schürch
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Verena Passerini
- Department of Medicine III, Laboratory for Experimental Leukemia and Lymphoma Research, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Marc Seifert
- Department of Hematology and Oncology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Alexander Brobeil
- Department of Pathology, University of Heidelberg, Heidelberg, Germany
| | | | - Carsten Müller-Tidow
- Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit, Heidelberg, Germany
| | - Oliver Weigert
- German Cancer Research Center, Heidelberg, Germany
- Department of Medicine III, Laboratory for Experimental Leukemia and Lymphoma Research, Ludwig-Maximilians-University Hospital, Munich, Germany
- German Cancer Consortium, Munich, Germany
| | - Martina Seiffert
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany
| | - Garry P Nolan
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Wolfgang Huber
- Molecular Medicine Partnership Unit, Heidelberg, Germany.
- European Molecular Biology Laboratory, Heidelberg, Germany.
| | - Sascha Dietrich
- Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany.
- Molecular Medicine Partnership Unit, Heidelberg, Germany.
- European Molecular Biology Laboratory, Heidelberg, Germany.
- Department of Hematology and Oncology, University Hospital Düsseldorf, Düsseldorf, Germany.
- Center for Integrated Oncology Aachen-Bonn-Cologne-Düsseldorf (CIO ABCD), Aachen Bonn Cologne Düsseldorf, Germany.
| |
Collapse
|
30
|
Pulliam T, Jani S, Jing L, Ryu H, Jojic A, Shasha C, Zhang J, Kulikauskas R, Church C, Garnett-Benson C, Gooley T, Chapuis A, Paulson K, Smith KN, Pardoll DM, Newell EW, Koelle DM, Topalian SL, Nghiem P. Circulating cancer-specific CD8 T cell frequency is associated with response to PD-1 blockade in Merkel cell carcinoma. Cell Rep Med 2024; 5:101412. [PMID: 38340723 PMCID: PMC10897614 DOI: 10.1016/j.xcrm.2024.101412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/01/2023] [Accepted: 01/12/2024] [Indexed: 02/12/2024]
Abstract
Understanding cancer immunobiology has been hampered by difficulty identifying cancer-specific T cells. Merkel cell polyomavirus (MCPyV) causes most Merkel cell carcinomas (MCCs). All patients with virus-driven MCC express MCPyV oncoproteins, facilitating identification of virus (cancer)-specific T cells. We studied MCPyV-specific T cells from 27 patients with MCC using MCPyV peptide-HLA-I multimers, 26-color flow cytometry, single-cell transcriptomics, and T cell receptor (TCR) sequencing. In a prospective clinical trial, higher circulating MCPyV-specific CD8 T cell frequency before anti-PD-1 treatment was strongly associated with 2-year recurrence-free survival (75% if detectable, 0% if undetectable, p = 0.0018; ClinicalTrial.gov: NCT02488759). Intratumorally, such T cells were typically present, but their frequency did not significantly associate with response. Circulating MCPyV-specific CD8 T cells had increased stem/memory and decreased exhaustion signatures relative to their intratumoral counterparts. These results suggest that cancer-specific CD8 T cells in the blood may play a role in anti-PD-1 responses. Thus, strategies that augment their number or mobilize them into tumors could improve outcomes.
Collapse
Affiliation(s)
- Thomas Pulliam
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Saumya Jani
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98109, USA
| | - Lichen Jing
- Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Heeju Ryu
- Vaccine and Infectious Disease Department, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Ana Jojic
- Vaccine and Infectious Disease Department, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Carolyn Shasha
- Vaccine and Infectious Disease Department, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Jiajia Zhang
- Department of Oncology, Johns Hopkins University, Baltimore, MD 21827, USA; The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Rima Kulikauskas
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Candice Church
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | | | - Ted Gooley
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Aude Chapuis
- Department of Medicine, University of Washington, Seattle, WA 98109, USA; Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Kelly Paulson
- Paul G. Allen Research Center, Providence-Swedish Cancer Institute, Seattle, WA 98104, USA; Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA
| | - Kellie N Smith
- Department of Oncology, Johns Hopkins University, Baltimore, MD 21827, USA; The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Drew M Pardoll
- Department of Oncology, Johns Hopkins University, Baltimore, MD 21827, USA; The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Evan W Newell
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98109, USA; Vaccine and Infectious Disease Department, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - David M Koelle
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98109, USA; Department of Medicine, University of Washington, Seattle, WA 98109, USA; Vaccine and Infectious Disease Department, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Global Health, University of Washington, Seattle, WA 98109, USA; Benaroya Research Institute, Seattle, WA 98101, USA
| | - Suzanne L Topalian
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD 21287, USA; Department of Surgery, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Paul Nghiem
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
31
|
McManus DT, Valanparambil RM, Medina CB, Hu Y, Scharer CD, Sobierajska E, Chang DY, Wieland A, Lee J, Nasti TH, Hashimoto M, Ross JL, Prokhnevska N, Cardenas MA, Gill AL, Clark EC, Abadie K, Kueh HY, Kaye J, Au-Yeung BB, Kissick HT, Ahmed R. Early generation of a precursor CD8 T cell that can adapt to acute or chronic viral infection. RESEARCH SQUARE 2024:rs.3.rs-3922168. [PMID: 38410458 PMCID: PMC10896375 DOI: 10.21203/rs.3.rs-3922168/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Virus specific PD-1+ TCF-1+ TOX+ stem-like CD8+ T cells are essential for maintaining T cell responses during chronic infection and are also critical for PD-1 directed immunotherapy. In this study we have used the mouse model of chronic LCMV infection to examine when these virus specific stem-like CD8+ T cells are generated during the course of chronic infection and what is the role of antigen in maintaining the stem-like program. We found that these stem-like CD8+ T cells are generated early (day 5) during chronic infection and that antigen is essential for maintaining their stem-like program. This early generation of stem-like CD8+ T cells suggested that the fate commitment to this cell population was agnostic to the eventual outcome of infection and the immune system prepares a priori for a potential chronic infection. Indeed, we found that an identical virus specific stem-cell like CD8+ T cell population was also generated during acute LCMV infection but these cells were lost once the virus was cleared. To determine the fate of these early PD-1+TCF-1+TOX+ stem-like CD8+ T cells that are generated during both acute and chronic LCMV infection we set up two reciprocal adoptive transfer experiments. In the first experiment we transferred day 5 stem-like CD8+ T cells from chronically infected into acutely infected mice and examined their differentiation after viral clearance. We found that these early stem-like CD8+ T cells downregulated canonical markers of the chronic stem-like CD8+ T cells and expressed markers (CD127 and CD62L) associated with central memory CD8+ T cells. In the second experiment, we transferred day 5 stem-like cells from acutely infected mice into chronically infected mice and found that these CD8+ T cells could function like resource cells after transfer into a chronic environment by generating effector CD8+ T cells in both lymphoid and non-lymphoid tissues while also maintaining the number of stem-like CD8+ T cells. These findings provide insight into the generation and maintenance of virus specific stem-like CD8+ T cells that play a critical role in chronic viral infection. In particular, our study highlights the early generation of stem-like CD8+ T cells and their ability to adapt to either an acute or chronic infection. These findings are of broad significance since these novel stem-like CD8+ T cells play an important role in not only viral infections but also in cancer and autoimmunity.
Collapse
Affiliation(s)
- Daniel T. McManus
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- These authors contributed equally
| | - Rajesh M. Valanparambil
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- These authors contributed equally
| | - Christopher B. Medina
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Yinghong Hu
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Christopher D. Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Ewelina Sobierajska
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - Daniel Y. Chang
- Department of Pathology, Mass General Brigham, Harvard Medical School, Boston, MA, USA
| | - Andreas Wieland
- Department of Otolaryngology, The Ohio State University College of Medicine, Columbus, OH
| | - Judong Lee
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Tahseen H. Nasti
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Masao Hashimoto
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - James L. Ross
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Nataliya Prokhnevska
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maria A. Cardenas
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - Amanda L. Gill
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Elisa C. Clark
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Kathleen Abadie
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Hao Yuan Kueh
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Jonathan Kaye
- Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Byron B. Au-Yeung
- Division of Immunology, Lowance Center for Human Immunology, Department of Medicine, Emory University, Atlanta, GA
| | - Haydn T. Kissick
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - Rafi Ahmed
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
| |
Collapse
|
32
|
Li F, Wang Y, Chen D, Du Y. Nanoparticle-Based Immunotherapy for Reversing T-Cell Exhaustion. Int J Mol Sci 2024; 25:1396. [PMID: 38338674 PMCID: PMC10855737 DOI: 10.3390/ijms25031396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
T-cell exhaustion refers to a state of T-cell dysfunction commonly observed in chronic infections and cancer. Immune checkpoint molecules blockading using PD-1 and TIM-3 antibodies have shown promising results in reversing exhaustion, but this approach has several limitations. The treatment of T-cell exhaustion is still facing great challenges, making it imperative to explore new therapeutic strategies. With the development of nanotechnology, nanoparticles have successfully been applied as drug carriers and delivery systems in the treatment of cancer and infectious diseases. Furthermore, nanoparticle-based immunotherapy has emerged as a crucial approach to reverse exhaustion. Here, we have compiled the latest advances in T-cell exhaustion, with a particular focus on the characteristics of exhaustion that can be targeted. Additionally, the emerging nanoparticle-based delivery systems were also reviewed. Moreover, we have discussed, in detail, nanoparticle-based immunotherapies that aim to reverse exhaustion, including targeting immune checkpoint blockades, remodeling the tumor microenvironment, and targeting the metabolism of exhausted T cells, etc. These data could aid in comprehending the immunopathogenesis of exhaustion and accomplishing the objective of preventing and treating chronic diseases or cancer.
Collapse
Affiliation(s)
- Fei Li
- Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China;
| | - Yahong Wang
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (Y.W.); (D.C.)
| | - Dandan Chen
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (Y.W.); (D.C.)
| | - Yunjie Du
- Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China;
| |
Collapse
|
33
|
Baysal MA, Chakraborty A, Tsimberidou AM. Enhancing the Efficacy of CAR-T Cell Therapy: A Comprehensive Exploration of Cellular Strategies and Molecular Dynamics. JOURNAL OF CANCER IMMUNOLOGY 2024; 6:20-28. [PMID: 39119270 PMCID: PMC11308461 DOI: 10.33696/cancerimmunol.6.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The emergence of chimeric antigen receptor T cell (CAR-T cell) therapy has revolutionized cancer treatment, particularly for hematologic malignancies. This commentary discusses developments in CAR-T cell therapy, focusing on the molecular mechanisms governing T cell fate and differentiation. Transcriptional and epigenetic factors play a pivotal role in determining the specificity, effectiveness, and durability of CAR-T cell therapy. Understanding these mechanisms is crucial to improve the efficacy and decrease the adverse events associated with CAR-T cell therapies, unlocking the full potential of these approaches. T cell differentiation in CAR-T cell product manufacturing plays an important role in clinical outcomes. A positive correlation exists between the clinical efficacy of CAR-T cell therapy and signatures of memory, whereas a negative correlation has been observed with signatures of effector function or exhaustion. The effectiveness of CAR-T cell products is likely influenced by T-cell frequency and by their ability to proliferate, which is closely linked to early T cell differentiation. The differentiation process involving distinct T memory cell subsets is initiated upon antigen elimination, indicating infection resolution. In chronic infections or cancer, T cells may undergo exhaustion, marked by continuous inhibitory receptor expression, decreased cytokine production, and diminished proliferative capacity. Other cell subsets, such as CD4+ T cells, innate-like T lymphocytes, NKT cells, and cord blood-derived hematopoietic stem cells, offer unique advantages in developing the next-generation CAR-T cell-based therapies. Future research should focus on optimizing T-cell-enhancing approaches and developing strategies to potentially cure patients with hematological diseases and solid tumors.
Collapse
Affiliation(s)
- Mehmet A. Baysal
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Abhijit Chakraborty
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Apostolia M. Tsimberidou
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
34
|
Zhou P, Shi H, Huang H, Sun X, Yuan S, Chapman NM, Connelly JP, Lim SA, Saravia J, Kc A, Pruett-Miller SM, Chi H. Single-cell CRISPR screens in vivo map T cell fate regulomes in cancer. Nature 2023; 624:154-163. [PMID: 37968405 PMCID: PMC10700132 DOI: 10.1038/s41586-023-06733-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 10/10/2023] [Indexed: 11/17/2023]
Abstract
CD8+ cytotoxic T cells (CTLs) orchestrate antitumour immunity and exhibit inherent heterogeneity1,2, with precursor exhausted T (Tpex) cells but not terminally exhausted T (Tex) cells capable of responding to existing immunotherapies3-7. The gene regulatory network that underlies CTL differentiation and whether Tex cell responses can be functionally reinvigorated are incompletely understood. Here we systematically mapped causal gene regulatory networks using single-cell CRISPR screens in vivo and discovered checkpoints for CTL differentiation. First, the exit from quiescence of Tpex cells initiated successive differentiation into intermediate Tex cells. This process is differentially regulated by IKAROS and ETS1, the deficiencies of which dampened and increased mTORC1-associated metabolic activities, respectively. IKAROS-deficient cells accumulated as a metabolically quiescent Tpex cell population with limited differentiation potential following immune checkpoint blockade (ICB). Conversely, targeting ETS1 improved antitumour immunity and ICB efficacy by boosting differentiation of Tpex to intermediate Tex cells and metabolic rewiring. Mechanistically, TCF-1 and BATF are the targets for IKAROS and ETS1, respectively. Second, the RBPJ-IRF1 axis promoted differentiation of intermediate Tex to terminal Tex cells. Accordingly, targeting RBPJ enhanced functional and epigenetic reprogramming of Tex cells towards the proliferative state and improved therapeutic effects and ICB efficacy. Collectively, our study reveals that promoting the exit from quiescence of Tpex cells and enriching the proliferative Tex cell state act as key modalities for antitumour effects and provides a systemic framework to integrate cell fate regulomes and reprogrammable functional determinants for cancer immunity.
Collapse
Affiliation(s)
- Peipei Zhou
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hao Shi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hongling Huang
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiang Sun
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sujing Yuan
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Nicole M Chapman
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jon P Connelly
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Seon Ah Lim
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jordy Saravia
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Anil Kc
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shondra M Pruett-Miller
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
35
|
Fowler EA, Amorim CF, Mostacada K, Yan A, Sacramento LA, Stanco RA, Hales EDS, Varkey A, Zong W, Wu GD, de Oliveira CI, Collins PL, Novais FO. Pathogenic CD8 T cell responses are driven by neutrophil-mediated hypoxia in cutaneous leishmaniasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.18.562926. [PMID: 37904953 PMCID: PMC10614852 DOI: 10.1101/2023.10.18.562926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Cutaneous leishmaniasis caused by Leishmania parasites exhibits a wide range of clinical manifestations. Although parasites influence disease severity, cytolytic CD8 T cell responses mediate disease. While these responses originate in the lymph node, we find that expression of the cytolytic effector molecule granzyme B is restricted to lesional CD8 T cells in Leishmania - infected mice, suggesting that local cues within inflamed skin induce cytolytic function. Expression of Blimp-1 ( Prdm1 ), a transcription factor necessary for cytolytic CD8 T cell differentiation, is driven by hypoxia within the inflamed skin. Hypoxia is further enhanced by the recruitment of neutrophils that consume oxygen to produce reactive oxygen species, ultimately increasing granzyme B expression in CD8 T cells. Importantly, lesions from cutaneous leishmaniasis patients exhibit hypoxia transcription signatures that correlate with the presence of neutrophils. Thus, targeting hypoxia-driven signals that support local differentiation of cytolytic CD8 T cells may improve the prognosis for patients with cutaneous leishmaniasis, as well as other inflammatory skin diseases where cytolytic CD8 T cells contribute to pathogenesis.
Collapse
|
36
|
Tang L, Huang ZP, Mei H, Hu Y. Insights gained from single-cell analysis of chimeric antigen receptor T-cell immunotherapy in cancer. Mil Med Res 2023; 10:52. [PMID: 37941075 PMCID: PMC10631149 DOI: 10.1186/s40779-023-00486-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 10/10/2023] [Indexed: 11/10/2023] Open
Abstract
Advances in chimeric antigen receptor (CAR)-T cell therapy have significantly improved clinical outcomes of patients with relapsed or refractory hematologic malignancies. However, progress is still hindered as clinical benefit is only available for a fraction of patients. A lack of understanding of CAR-T cell behaviors in vivo at the single-cell level impedes their more extensive application in clinical practice. Mounting evidence suggests that single-cell sequencing techniques can help perfect the receptor design, guide gene-based T cell modification, and optimize the CAR-T manufacturing conditions, and all of them are essential for long-term immunosurveillance and more favorable clinical outcomes. The information generated by employing these methods also potentially informs our understanding of the numerous complex factors that dictate therapeutic efficacy and toxicities. In this review, we discuss the reasons why CAR-T immunotherapy fails in clinical practice and what this field has learned since the milestone of single-cell sequencing technologies. We further outline recent advances in the application of single-cell analyses in CAR-T immunotherapy. Specifically, we provide an overview of single-cell studies focusing on target antigens, CAR-transgene integration, and preclinical research and clinical applications, and then discuss how it will affect the future of CAR-T cell therapy.
Collapse
Affiliation(s)
- Lu Tang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, 430022, China
| | - Zhong-Pei Huang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, 430022, China
| | - Heng Mei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China.
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, 430022, China.
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China.
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, 430022, China.
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
37
|
Abstract
T cells can acquire a broad spectrum of differentiation states following activation. At the extreme ends of this continuum are short-lived cells equipped with effector machinery and more quiescent, long-lived cells with heightened proliferative potential and stem cell-like developmental plasticity. The latter encompass stem-like exhausted T cells and memory T cells, both of which have recently emerged as key determinants of cancer immunity and response to immunotherapy. Here, we discuss key similarities and differences in the regulation and function of stem-like exhausted CD8+ T cells and memory CD8+ T cells, and consider their context-specific contributions to protective immunity in diverse outcomes of cancer, including tumour escape, long-term control and eradication. Finally, we emphasize how recent advances in the understanding of the molecular regulation of stem-like exhausted T cells and memory T cells are being explored for clinical benefit in cancer immunotherapies such as checkpoint inhibition, adoptive cell therapy and vaccination.
Collapse
Affiliation(s)
- Thomas Gebhardt
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia.
| | - Simone L Park
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ian A Parish
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia.
- John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia.
| |
Collapse
|
38
|
Bulliard Y, Andersson BS, Baysal MA, Damiano J, Tsimberidou AM. Reprogramming T cell differentiation and exhaustion in CAR-T cell therapy. J Hematol Oncol 2023; 16:108. [PMID: 37880715 PMCID: PMC10601191 DOI: 10.1186/s13045-023-01504-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023] Open
Abstract
T cell differentiation is a highly regulated, multi-step process necessary for the progressive establishment of effector functions, immunological memory, and long-term control of pathogens. In response to strong stimulation, as seen in severe or chronic infections or cancer, T cells acquire a state of hypo-responsiveness known as exhaustion, limiting their effector function. Recent advances in autologous chimeric antigen receptor (CAR)-T cell therapies have revolutionized the treatment of hematologic malignancies by taking advantage of the basic principles of T cell biology to engineer products that promote long-lasting T cell response. However, many patients' malignancies remain unresponsive to treatment or are prone to recur. Discoveries in T cell biology, including the identification of key regulators of differentiation and exhaustion, offer novel opportunities to have a durable impact on the fate of CAR-T cells after infusion. Such next-generation CAR-T cell therapies and their clinical implementation may result in the next leap forward in cancer treatment for selected patients. In this context, this review summarizes the foundational principles of T cell differentiation and exhaustion and describes how they can be utilized and targeted to further improve the design and efficacy of CAR-T cell therapies.
Collapse
Affiliation(s)
| | - Borje S Andersson
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Mehmet A Baysal
- Unit 455, Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Jason Damiano
- Appia Bio, 6160 Bristol Pkwy, Culver City, CA, 90230, USA
| | - Apostolia M Tsimberidou
- Unit 455, Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA.
| |
Collapse
|
39
|
Chamoto K, Yaguchi T, Tajima M, Honjo T. Insights from a 30-year journey: function, regulation and therapeutic modulation of PD1. Nat Rev Immunol 2023; 23:682-695. [PMID: 37185300 DOI: 10.1038/s41577-023-00867-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 05/17/2023]
Abstract
PD1 was originally discovered in 1992 as a molecule associated with activation-induced cell death in T cells. Over the past 30 years, it was found that PD1 has a critical role in avoiding overactivation-induced cell death and autoimmunity, whereas its inhibition unleashes anticancer immunity. Here, we outline the journey from the discovery of PD1 to its role as a breakthrough target in cancer immunotherapy. We describe its regulation and function and examine how a mechanistic understanding of PD1 signalling suggests a central function in setting the T cell activation threshold, thereby controlling T cell proliferation, differentiation, exhaustion and metabolic status. This threshold theory, in combination with new insights into T cell metabolism and a better understanding of immune cell modulation by the microbiota, can provide guidance for the development of efficient combination therapies. Moreover, we discuss the mechanisms underlying immune-related adverse events after PD1-targeted therapy and their possible treatment.
Collapse
Affiliation(s)
- Kenji Chamoto
- Division of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomonori Yaguchi
- Division of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masaki Tajima
- Division of Integrated High-Order Regulatory Systems, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tasuku Honjo
- Division of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
40
|
Dai X, Park JJ, Du Y, Na Z, Lam SZ, Chow RD, Renauer PA, Gu J, Xin S, Chu Z, Liao C, Clark P, Zhao H, Slavoff S, Chen S. Massively parallel knock-in engineering of human T cells. Nat Biotechnol 2023; 41:1239-1255. [PMID: 36702900 PMCID: PMC11260498 DOI: 10.1038/s41587-022-01639-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 12/12/2022] [Indexed: 01/27/2023]
Abstract
The efficiency of targeted knock-in for cell therapeutic applications is generally low, and the scale is limited. In this study, we developed CLASH, a system that enables high-efficiency, high-throughput knock-in engineering. In CLASH, Cas12a/Cpf1 mRNA combined with pooled adeno-associated viruses mediate simultaneous gene editing and precise transgene knock-in using massively parallel homology-directed repair, thereby producing a pool of stably integrated mutant variants each with targeted gene editing. We applied this technology in primary human T cells and performed time-coursed CLASH experiments in blood cancer and solid tumor models using CD3, CD8 and CD4 T cells, enabling pooled generation and unbiased selection of favorable CAR-T variants. Emerging from CLASH experiments, a unique CRISPR RNA (crRNA) generates an exon3 skip mutant of PRDM1 in CAR-Ts, which leads to increased proliferation, stem-like properties, central memory and longevity in these cells, resulting in higher efficacy in vivo across multiple cancer models, including a solid tumor model. The versatility of CLASH makes it broadly applicable to diverse cellular and therapeutic engineering applications.
Collapse
Affiliation(s)
- Xiaoyun Dai
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Jonathan J Park
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- M.D.-Ph.D. Program, Yale University, West Haven, CT, USA
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA
| | - Yaying Du
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenkun Na
- Department of Chemistry, Yale University, New Haven, CT, USA
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT, USA
| | - Stanley Z Lam
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Ryan D Chow
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- M.D.-Ph.D. Program, Yale University, West Haven, CT, USA
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA
| | - Paul A Renauer
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA
| | - Jianlei Gu
- Department of Biostatistics, Yale University School of Public Health, New Haven, CT, USA
| | - Shan Xin
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Zhiyuan Chu
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- Immunobiology Program, Yale University, New Haven, CT, USA
| | - Cun Liao
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Paul Clark
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Hongyu Zhao
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Department of Biostatistics, Yale University School of Public Health, New Haven, CT, USA
- Computational Biology and Bioinformatics Program, Yale University, New Haven, CT, USA
- Yale Center for Biomedical Data Science, Yale University School of Medicine, New Haven, CT, USA
| | - Sarah Slavoff
- Department of Chemistry, Yale University, New Haven, CT, USA
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Sidi Chen
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
- System Biology Institute, Yale University, West Haven, CT, USA.
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA.
- M.D.-Ph.D. Program, Yale University, West Haven, CT, USA.
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA.
- Immunobiology Program, Yale University, New Haven, CT, USA.
- Yale Center for Biomedical Data Science, Yale University School of Medicine, New Haven, CT, USA.
- Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT, USA.
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA.
- Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Liver Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
41
|
Lan X, Zebley CC, Youngblood B. Cellular and molecular waypoints along the path of T cell exhaustion. Sci Immunol 2023; 8:eadg3868. [PMID: 37656775 PMCID: PMC10618911 DOI: 10.1126/sciimmunol.adg3868] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 08/09/2023] [Indexed: 09/03/2023]
Abstract
Thirty years of foundational research investigating molecular and cellular mechanisms promoting T cell exhaustion are now enabling rational design of T cell-based therapies for the treatment of chronic infections and cancer. Once described as a static cell fate, it is now well appreciated that the developmental path toward exhaustion is composed of a heterogeneous pool of cells with varying degrees of effector potential that ultimately converge on a terminally differentiated state. Recent description of the developmental stages along the differentiation trajectory of T cell exhaustion has provided insight into past immunotherapeutic success and future opportunities. Here, we discuss the hallmarks of distinct developmental stages occurring along the path to T cell dysfunction and the impact of these discrete CD8+ T cell fates on cancer immunotherapy.
Collapse
Affiliation(s)
- Xin Lan
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Caitlin C. Zebley
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Ben Youngblood
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
42
|
Wu JE, Manne S, Ngiow SF, Baxter AE, Huang H, Freilich E, Clark ML, Lee JH, Chen Z, Khan O, Staupe RP, Huang YJ, Shi J, Giles JR, Wherry EJ. In vitro modeling of CD8 + T cell exhaustion enables CRISPR screening to reveal a role for BHLHE40. Sci Immunol 2023; 8:eade3369. [PMID: 37595022 PMCID: PMC11975459 DOI: 10.1126/sciimmunol.ade3369] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 07/07/2023] [Indexed: 08/20/2023]
Abstract
Identifying molecular mechanisms of exhausted CD8 T cells (Tex) is a key goal of improving immunotherapy of cancer and other diseases. However, high-throughput interrogation of in vivo Tex can be costly and inefficient. In vitro models of Tex are easily customizable and quickly generate high cellular yield, enabling CRISPR screening and other high-throughput assays. We established an in vitro model of chronic stimulation and benchmarked key phenotypic, functional, transcriptional, and epigenetic features against bona fide in vivo Tex. We leveraged this model of in vitro chronic stimulation in combination with CRISPR screening to identify transcriptional regulators of T cell exhaustion. This approach identified several transcription factors, including BHLHE40. In vitro and in vivo validation defined a role for BHLHE40 in regulating a key differentiation checkpoint between progenitor and intermediate Tex subsets. By developing and benchmarking an in vitro model of Tex, then applying high-throughput CRISPR screening, we demonstrate the utility of mechanistically annotated in vitro models of Tex.
Collapse
Affiliation(s)
- Jennifer E. Wu
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA
| | - Sasikanth Manne
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shin Foong Ngiow
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA
| | - Amy E. Baxter
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hua Huang
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth Freilich
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Megan L. Clark
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joanna H. Lee
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zeyu Chen
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Omar Khan
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ryan P. Staupe
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yinghui J. Huang
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Junwei Shi
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Josephine R. Giles
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA
| | - E. John Wherry
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
43
|
Zhang P, Zhang G, Wan X. Challenges and new technologies in adoptive cell therapy. J Hematol Oncol 2023; 16:97. [PMID: 37596653 PMCID: PMC10439661 DOI: 10.1186/s13045-023-01492-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/04/2023] [Indexed: 08/20/2023] Open
Abstract
Adoptive cell therapies (ACTs) have existed for decades. From the initial infusion of tumor-infiltrating lymphocytes to the subsequent specific enhanced T cell receptor (TCR)-T and chimeric antigen receptor (CAR)-T cell therapies, many novel strategies for cancer treatment have been developed. Owing to its promising outcomes, CAR-T cell therapy has revolutionized the field of ACTs, particularly for hematologic malignancies. Despite these advances, CAR-T cell therapy still has limitations in both autologous and allogeneic settings, including practicality and toxicity issues. To overcome these challenges, researchers have focused on the application of CAR engineering technology to other types of immune cell engineering. Consequently, several new cell therapies based on CAR technology have been developed, including CAR-NK, CAR-macrophage, CAR-γδT, and CAR-NKT. In this review, we describe the development, advantages, and possible challenges of the aforementioned ACTs and discuss current strategies aimed at maximizing the therapeutic potential of ACTs. We also provide an overview of the various gene transduction strategies employed in immunotherapy given their importance in immune cell engineering. Furthermore, we discuss the possibility that strategies capable of creating a positive feedback immune circuit, as healthy immune systems do, could address the flaw of a single type of ACT, and thus serve as key players in future cancer immunotherapy.
Collapse
Affiliation(s)
- Pengchao Zhang
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Nanshan District, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Guizhong Zhang
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Nanshan District, Shenzhen, 518055, People's Republic of China.
| | - Xiaochun Wan
- Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Nanshan District, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
44
|
Ildefonso GV, Finley SD. A data-driven Boolean model explains memory subsets and evolution in CD8+ T cell exhaustion. NPJ Syst Biol Appl 2023; 9:36. [PMID: 37524735 PMCID: PMC10390540 DOI: 10.1038/s41540-023-00297-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/04/2023] [Indexed: 08/02/2023] Open
Abstract
T cells play a key role in a variety of immune responses, including infection and cancer. Upon stimulation, naïve CD8+ T cells proliferate and differentiate into a variety of memory and effector cell types; however, failure to clear antigens causes prolonged stimulation of CD8+ T cells, ultimately leading to T cell exhaustion (TCE). The functional and phenotypic changes that occur during CD8+ T cell differentiation are well characterized, but the underlying gene expression state changes are not completely understood. Here, we utilize a previously published data-driven Boolean model of gene regulatory interactions shown to mediate TCE. Our network analysis and modeling reveal the final gene expression states that correspond to TCE, along with the sequence of gene expression patterns that give rise to those final states. With a model that predicts the changes in gene expression that lead to TCE, we could evaluate strategies to inhibit the exhausted state. Overall, we demonstrate that a common pathway model of CD8+ T cell gene regulatory interactions can provide insights into the transcriptional changes underlying the evolution of cell states in TCE.
Collapse
Affiliation(s)
- Geena V Ildefonso
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
| | - Stacey D Finley
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA.
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California, USA.
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California, USA.
| |
Collapse
|
45
|
Anderson ND, Birch J, Accogli T, Criado I, Khabirova E, Parks C, Wood Y, Young MD, Porter T, Richardson R, Albon SJ, Popova B, Lopes A, Wynn R, Hough R, Gohil SH, Pule M, Amrolia PJ, Behjati S, Ghorashian S. Transcriptional signatures associated with persisting CD19 CAR-T cells in children with leukemia. Nat Med 2023; 29:1700-1709. [PMID: 37407840 PMCID: PMC10353931 DOI: 10.1038/s41591-023-02415-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/23/2023] [Indexed: 07/07/2023]
Abstract
In the context of relapsed and refractory childhood pre-B cell acute lymphoblastic leukemia (R/R B-ALL), CD19-targeting chimeric antigen receptor (CAR)-T cells often induce durable remissions, which requires the persistence of CAR-T cells. In this study, we systematically analyzed CD19 CAR-T cells of 10 children with R/R B-ALL enrolled in the CARPALL trial via high-throughput single-cell gene expression and T cell receptor sequencing of infusion products and serial blood and bone marrow samples up to 5 years after infusion. We show that long-lived CAR-T cells developed a CD4/CD8 double-negative phenotype with an exhausted-like memory state and distinct transcriptional signature. This persistence signature was dominant among circulating CAR-T cells in all children with a long-lived treatment response for which sequencing data were sufficient (4/4, 100%). The signature was also present across T cell subsets and clonotypes, indicating that persisting CAR-T cells converge transcriptionally. This persistence signature was also detected in two adult patients with chronic lymphocytic leukemia with decade-long remissions who received a different CD19 CAR-T cell product. Examination of single T cell transcriptomes from a wide range of healthy and diseased tissues across children and adults indicated that the persistence signature may be specific to long-lived CAR-T cells. These findings raise the possibility that a universal transcriptional signature of clinically effective, persistent CD19 CAR-T cells exists.
Collapse
Affiliation(s)
| | - Jack Birch
- Developmental Biology and Cancer, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Theo Accogli
- Developmental Biology and Cancer, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Ignacio Criado
- Developmental Biology and Cancer, UCL Great Ormond Street Institute of Child Health, London, UK
| | | | | | | | | | | | - Rachel Richardson
- Developmental Biology and Cancer, UCL Great Ormond Street Institute of Child Health, London, UK
- Molecular and Cellular Immunology, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Sarah J Albon
- Developmental Biology and Cancer, UCL Great Ormond Street Institute of Child Health, London, UK
- Molecular and Cellular Immunology, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Bilyana Popova
- Cancer Research UK & UCL Cancer Trials Centre, London, UK
| | - Andre Lopes
- Cancer Research UK & UCL Cancer Trials Centre, London, UK
| | - Robert Wynn
- Department of Bone Marrow Transplantation, Royal Manchester Children's Hospital, Manchester, UK
| | - Rachael Hough
- Children and Young People's Cancer Service, University College London Hospitals NHS Foundation Trust, London, UK
| | - Satyen H Gohil
- Department of Haematology, University College London Hospitals NHS Foundation Trust, London, UK
- Department of Haematology, UCL Cancer Institute, London, UK
| | - Martin Pule
- Department of Haematology, UCL Cancer Institute, London, UK
| | - Persis J Amrolia
- Molecular and Cellular Immunology, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Bone Marrow Transplantation, Great Ormond Street Hospital for Children, London, UK
| | - Sam Behjati
- Wellcome Sanger Institute, Hinxton, UK.
- Department of Paediatrics, University of Cambridge, Cambridge, UK.
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| | - Sara Ghorashian
- Developmental Biology and Cancer, UCL Great Ormond Street Institute of Child Health, London, UK.
- Department of Haematology, Great Ormond Street Hospital for Children, London, UK.
| |
Collapse
|
46
|
Kharel A, Shen J, Brown R, Chen Y, Nguyen C, Alson D, Bluemn T, Fan J, Gai K, Zhang B, Kudek M, Zhu N, Cui W. Loss of PBAF promotes expansion and effector differentiation of CD8 + T cells during chronic viral infection and cancer. Cell Rep 2023; 42:112649. [PMID: 37330910 PMCID: PMC10592487 DOI: 10.1016/j.celrep.2023.112649] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/10/2023] [Accepted: 05/30/2023] [Indexed: 06/20/2023] Open
Abstract
During chronic viral infection and cancer, it has been established that a subset of progenitor CD8+ T cells continuously gives rise to terminally exhausted cells and cytotoxic effector cells. Although multiple transcriptional programs governing the bifurcated differentiation trajectories have been previously studied, little is known about the chromatin structure changes regulating CD8+ T cell-fate decision. In this study, we demonstrate that the chromatin remodeling complex PBAF restrains expansion and promotes exhaustion of CD8+ T cells during chronic viral infection and cancer. Mechanistically, transcriptomic and epigenomic analyses reveal the role of PBAF in maintaining chromatin accessibility of multiple genetic pathways and transcriptional programs to restrain proliferation and promote T cell exhaustion. Harnessing this knowledge, we demonstrate that perturbation of PBAF complex constrained exhaustion and promoted expansion of tumor-specific CD8+ T cells resulting in antitumor immunity in a preclinical melanoma model, implicating PBAF as an attractive target for cancer immunotherapeutic.
Collapse
Affiliation(s)
- Arjun Kharel
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jian Shen
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ryan Brown
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yao Chen
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Christine Nguyen
- Blood Research Institute, Versiti, Milwaukee, WI, USA; Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Donia Alson
- Blood Research Institute, Versiti, Milwaukee, WI, USA
| | - Theresa Bluemn
- Blood Research Institute, Versiti, Milwaukee, WI, USA; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jie Fan
- Department of Medicine/Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Kexin Gai
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Bin Zhang
- Department of Medicine/Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Microbiology-Immunology, Northwestern University, Chicago, IL, USA
| | - Matthew Kudek
- Blood Research Institute, Versiti, Milwaukee, WI, USA
| | - Nan Zhu
- Blood Research Institute, Versiti, Milwaukee, WI, USA; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Weiguo Cui
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Blood Research Institute, Versiti, Milwaukee, WI, USA; Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
47
|
Baxter AE, Huang H, Giles JR, Chen Z, Wu JE, Drury S, Dalton K, Park SL, Torres L, Simone BW, Klapholz M, Ngiow SF, Freilich E, Manne S, Alcalde V, Ekshyyan V, Berger SL, Shi J, Jordan MS, Wherry EJ. The SWI/SNF chromatin remodeling complexes BAF and PBAF differentially regulate epigenetic transitions in exhausted CD8 + T cells. Immunity 2023; 56:1320-1340.e10. [PMID: 37315535 DOI: 10.1016/j.immuni.2023.05.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 02/28/2023] [Accepted: 05/11/2023] [Indexed: 06/16/2023]
Abstract
CD8+ T cell exhaustion (Tex) limits disease control during chronic viral infections and cancer. Here, we investigated the epigenetic factors mediating major chromatin-remodeling events in Tex-cell development. A protein-domain-focused in vivo CRISPR screen identified distinct functions for two versions of the SWI/SNF chromatin-remodeling complex in Tex-cell differentiation. Depletion of the canonical SWI/SNF form, BAF, impaired initial CD8+ T cell responses in acute and chronic infection. In contrast, disruption of PBAF enhanced Tex-cell proliferation and survival. Mechanistically, PBAF regulated the epigenetic and transcriptional transition from TCF-1+ progenitor Tex cells to more differentiated TCF-1- Tex subsets. Whereas PBAF acted to preserve Tex progenitor biology, BAF was required to generate effector-like Tex cells, suggesting that the balance of these factors coordinates Tex-cell subset differentiation. Targeting PBAF improved tumor control both alone and in combination with anti-PD-L1 immunotherapy. Thus, PBAF may present a therapeutic target in cancer immunotherapy.
Collapse
Affiliation(s)
- Amy E Baxter
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Hua Huang
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Josephine R Giles
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Zeyu Chen
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jennifer E Wu
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Sydney Drury
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Katherine Dalton
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Simone L Park
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Leonel Torres
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Brandon W Simone
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Max Klapholz
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Shin Foong Ngiow
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Elizabeth Freilich
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Sasikanth Manne
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Victor Alcalde
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Viktoriya Ekshyyan
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Shelley L Berger
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Junwei Shi
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Martha S Jordan
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - E John Wherry
- Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
48
|
Chen C, Liu X, Chang CY, Wang HY, Wang RF. The Interplay between T Cells and Cancer: The Basis of Immunotherapy. Genes (Basel) 2023; 14:genes14051008. [PMID: 37239368 DOI: 10.3390/genes14051008] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Over the past decade, immunotherapy has emerged as one of the most promising approaches to cancer treatment. The use of immune checkpoint inhibitors has resulted in impressive and durable clinical responses in the treatment of various cancers. Additionally, immunotherapy utilizing chimeric antigen receptor (CAR)-engineered T cells has produced robust responses in blood cancers, and T cell receptor (TCR)-engineered T cells are showing promising results in the treatment of solid cancers. Despite these noteworthy advancements in cancer immunotherapy, numerous challenges remain. Some patient populations are unresponsive to immune checkpoint inhibitor therapy, and CAR T cell therapy has yet to show efficacy against solid cancers. In this review, we first discuss the significant role that T cells play in the body's defense against cancer. We then delve into the mechanisms behind the current challenges facing immunotherapy, starting with T cell exhaustion due to immune checkpoint upregulation and changes in the transcriptional and epigenetic landscapes of dysfunctional T cells. We then discuss cancer-cell-intrinsic characteristics, including molecular alterations in cancer cells and the immunosuppressive nature of the tumor microenvironment (TME), which collectively facilitate tumor cell proliferation, survival, metastasis, and immune evasion. Finally, we examine recent advancements in cancer immunotherapy, with a specific emphasis on T-cell-based treatments.
Collapse
Affiliation(s)
- Christina Chen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Xin Liu
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Che-Yu Chang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Helen Y Wang
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Rong-Fu Wang
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Pediatrics, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
49
|
Wu JE, Manne S, Ngiow SF, Baxter AE, Huang H, Freilich E, Clark ML, Lee JH, Chen Z, Khan O, Staupe RP, Huang YJ, Shi J, Giles JR, Wherry EJ. In Vitro Modeling of CD8 T Cell Exhaustion Enables CRISPR Screening to Reveal a Role for BHLHE40. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.17.537229. [PMID: 37131713 PMCID: PMC10153201 DOI: 10.1101/2023.04.17.537229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Identifying novel molecular mechanisms of exhausted CD8 T cells (T ex ) is a key goal of improving immunotherapy of cancer and other diseases. However, high-throughput interrogation of in vivo T ex can be costly and inefficient. In vitro models of T ex are easily customizable and quickly generate high cellular yield, offering an opportunity to perform CRISPR screening and other high-throughput assays. We established an in vitro model of chronic stimulation and benchmarked key phenotypic, functional, transcriptional, and epigenetic features against bona fide in vivo T ex . We leveraged this model of in vitro chronic stimulation in combination with pooled CRISPR screening to uncover transcriptional regulators of T cell exhaustion. This approach identified several transcription factors, including BHLHE40. In vitro and in vivo validation defined a role for BHLHE40 in regulating a key differentiation checkpoint between progenitor and intermediate subsets of T ex . By developing and benchmarking an in vitro model of T ex , we demonstrate the utility of mechanistically annotated in vitro models of T ex , in combination with high-throughput approaches, as a discovery pipeline to uncover novel T ex biology.
Collapse
Affiliation(s)
- Jennifer E. Wu
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania; Philadelphia, PA, USA
| | - Sasikanth Manne
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| | - Shin Foong Ngiow
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania; Philadelphia, PA, USA
| | - Amy E. Baxter
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| | - Hua Huang
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| | - Elizabeth Freilich
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| | - Megan L. Clark
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Joanna H. Lee
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| | - Zeyu Chen
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
- Present Address: Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School; Boston, MA, USA
| | - Omar Khan
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
- Present Address: Department of Laboratory Medicine, University of California, San Francisco; San Francisco, CA, USA
| | - Ryan P. Staupe
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
- Present Address: Infectious Diseases and Vaccines, MRL, Merck & Co., Inc, West Point, PA, USA
| | - Yinghui J. Huang
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| | - Junwei Shi
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| | - Josephine R. Giles
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania; Philadelphia, PA, USA
| | - E. John Wherry
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania; Philadelphia, PA, USA
| |
Collapse
|
50
|
Lamarche C, Ward-Hartstonge K, Mi T, Lin DTS, Huang Q, Brown A, Edwards K, Novakovsky GE, Qi CN, Kobor MS, Zebley CC, Weber EW, Mackall CL, Levings MK. Tonic-signaling chimeric antigen receptors drive human regulatory T cell exhaustion. Proc Natl Acad Sci U S A 2023; 120:e2219086120. [PMID: 36972454 PMCID: PMC10083618 DOI: 10.1073/pnas.2219086120] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/24/2023] [Indexed: 03/29/2023] Open
Abstract
Regulatory T cell (Treg) therapy is a promising approach to improve outcomes in transplantation and autoimmunity. In conventional T cell therapy, chronic stimulation can result in poor in vivo function, a phenomenon termed exhaustion. Whether or not Tregs are also susceptible to exhaustion, and if so, if this would limit their therapeutic effect, was unknown. To "benchmark" exhaustion in human Tregs, we used a method known to induce exhaustion in conventional T cells: expression of a tonic-signaling chimeric antigen receptor (TS-CAR). We found that TS-CAR-expressing Tregs rapidly acquired a phenotype that resembled exhaustion and had major changes in their transcriptome, metabolism, and epigenome. Similar to conventional T cells, TS-CAR Tregs upregulated expression of inhibitory receptors and transcription factors such as PD-1, TIM3, TOX and BLIMP1, and displayed a global increase in chromatin accessibility-enriched AP-1 family transcription factor binding sites. However, they also displayed Treg-specific changes such as high expression of 4-1BB, LAP, and GARP. DNA methylation analysis and comparison to a CD8+ T cell-based multipotency index showed that Tregs naturally exist in a relatively differentiated state, with further TS-CAR-induced changes. Functionally, TS-CAR Tregs remained stable and suppressive in vitro but were nonfunctional in vivo, as tested in a model of xenogeneic graft-versus-host disease. These data are the first comprehensive investigation of exhaustion in Tregs and reveal key similarities and differences with exhausted conventional T cells. The finding that human Tregs are susceptible to chronic stimulation-driven dysfunction has important implications for the design of CAR Treg adoptive immunotherapy strategies.
Collapse
Affiliation(s)
- Caroline Lamarche
- Department of Surgery, University of British Columbia, VancouverV6T 1Z4, BC, Canada
- BC Children’s Hospital Research Institute, VancouverV5Z 4H4, BC, Canada
- Department of Medicine, Hôpital Maisonneuve-Rosemont Research Center, Université de Montréal, MontrealH1T 2M4, QC, Canada
| | - Kirsten Ward-Hartstonge
- Department of Surgery, University of British Columbia, VancouverV6T 1Z4, BC, Canada
- BC Children’s Hospital Research Institute, VancouverV5Z 4H4, BC, Canada
- Department of Microbiology and Immunology, University of Otago, Dunedin9016, New Zealand
| | - Tian Mi
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN38105
| | - David T. S. Lin
- BC Children’s Hospital Research Institute, VancouverV5Z 4H4, BC, Canada
- Department of Medical Genetics, University of British Columbia, VancouverV6T 1Z4, BC, Canada
| | - Qing Huang
- Department of Surgery, University of British Columbia, VancouverV6T 1Z4, BC, Canada
- BC Children’s Hospital Research Institute, VancouverV5Z 4H4, BC, Canada
| | - Andrew Brown
- BC Children’s Hospital Research Institute, VancouverV5Z 4H4, BC, Canada
- School of Biomedical Engineering, University of British Columbia, VancouverV6T 1Z4, BC, Canada
| | - Karlie Edwards
- BC Children’s Hospital Research Institute, VancouverV5Z 4H4, BC, Canada
- Department of Medical Genetics, University of British Columbia, VancouverV6T 1Z4, BC, Canada
| | - Gherman E. Novakovsky
- BC Children’s Hospital Research Institute, VancouverV5Z 4H4, BC, Canada
- Department of Medical Genetics, University of British Columbia, VancouverV6T 1Z4, BC, Canada
| | - Christopher N. Qi
- Department of Surgery, University of British Columbia, VancouverV6T 1Z4, BC, Canada
- BC Children’s Hospital Research Institute, VancouverV5Z 4H4, BC, Canada
| | - Michael S. Kobor
- BC Children’s Hospital Research Institute, VancouverV5Z 4H4, BC, Canada
- Department of Medical Genetics, University of British Columbia, VancouverV6T 1Z4, BC, Canada
| | - Caitlin C. Zebley
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN38105
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN38105
| | - Evan W. Weber
- Division of Oncology, Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA19104
| | - Crystal L. Mackall
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA94305
- Department of Medicine, Stanford University School of Medicine, Stanford, CA94305
| | - Megan K Levings
- Department of Surgery, University of British Columbia, VancouverV6T 1Z4, BC, Canada
- BC Children’s Hospital Research Institute, VancouverV5Z 4H4, BC, Canada
- School of Biomedical Engineering, University of British Columbia, VancouverV6T 1Z4, BC, Canada
| |
Collapse
|