1
|
Lu J, Xue X, Wang H, Hao Y, Yang Q. Notch1 activation and inhibition in T-cell acute lymphoblastic leukemia subtypes. Exp Hematol 2025; 148:104771. [PMID: 40348327 DOI: 10.1016/j.exphem.2025.104771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 03/10/2025] [Accepted: 03/13/2025] [Indexed: 05/14/2025]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy caused by the accumulation of genomic lesions that affect the development of T cells. Notch1 signaling controls the expression of numerous T-lineage genes, thus playing essential parts in T-cell differentiation. T-ALL can be classified into two subtypes according to the immunophenotypic and genetic makeup: early T-cell precursor acute lymphoblastic leukemia (ETP-ALL) and non-ETP-ALL. The relationship between constitutive activation of Notch1 signaling and non-ETP-ALL has been thoroughly studied; however, how Notch1 signaling influences ETP-ALL remains unclear. Targeting Notch1 signaling is a promising treatment for T-ALL, and γ-secretase inhibitors (GSIs), which prevent Notch1 signaling from being activated, show a degree of antineoplastic activity in previous clinical development. But these agents just have satisfactory effects in non-ETP-ALL; further study should be carried out to investigate fitting targeting drugs.
Collapse
Affiliation(s)
- Jiawen Lu
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Xiuhua Xue
- National Experimental Teaching Demonstration Center for Life Science and Technology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Haitao Wang
- Department of Hematology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China; Translational Medicine Research Center, Medical Innovation Research Division and the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ying Hao
- Lanzhou Petrochemical General Hospital (The Fourth Affiliated Hospital of Gansu University of Chinese Medicine), Lanzhou, China.
| | - Qiong Yang
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China.
| |
Collapse
|
2
|
Lee MK, Park NH, Lee SY, Kim T. Context-Dependent and Locus-Specific Role of H3K36 Methylation in Transcriptional Regulation. J Mol Biol 2025; 437:168796. [PMID: 39299382 DOI: 10.1016/j.jmb.2024.168796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
H3K36 methylation is a critical histone modification involved in transcription regulation. It involves the mono (H3K36me1), di (H3K36me2), and/or tri-methylation (H3K36me3) of lysine 36 on histone H3 by methyltransferases. In yeast, Set2 catalyzes all three methylation states. By contrast, in higher eukaryotes, at least eight methyltransferases catalyze different methylation states, including SETD2 for H3K36me3 and the NSD family for H3K36me2 in vivo. Both Set2 and SETD2 interact with the phosphorylated CTD of RNA Pol II, which links H3K36 methylation to transcription. In yeast, H3K36me3 and H3K36me2 peak at the 3' ends of genes. In higher eukaryotes, this is also true for H3K36me3 but not for H3K36me2, which is enriched at the 5' ends of genes and intergenic regions, suggesting that H3K36me2 and H3K36me3 may play different regulatory roles. Whether H3K36me1 demonstrates preferential distribution remains unclear. H3K36me3 is essential for inhibiting transcription elongation. It also suppresses cryptic transcription by promoting histone deacetylation by the histone deacetylases Rpd3S (yeast) and variant NuRD (higher eukaryotes). H3K36me3 also facilitates DNA methylation by DNMT3B, thereby preventing spurious transcription initiation. H3K36me3 not only represses transcription since it promotes the activation of mRNA and cryptic promoters in response to environmental changes by targeting the histone acetyltransferase NuA3 in yeast. Further research is needed to elucidate the methylation state- and locus-specific functions of H3K36me1 and the mechanisms that regulate it.
Collapse
Affiliation(s)
- Min Kyung Lee
- Department of Life Sciences and Multitasking Macrophage Research Center, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Na Hyun Park
- Department of Life Sciences and Multitasking Macrophage Research Center, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Soo Young Lee
- Department of Life Sciences and Multitasking Macrophage Research Center, Ewha Womans University, Seoul 03760, Republic of Korea
| | - TaeSoo Kim
- Department of Life Sciences and Multitasking Macrophage Research Center, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
3
|
Affar M, Bottardi S, Quansah N, Lemarié M, Ramón AC, Affar EB, Milot E. IKAROS: from chromatin organization to transcriptional elongation control. Cell Death Differ 2025; 32:37-55. [PMID: 37620540 PMCID: PMC11742659 DOI: 10.1038/s41418-023-01212-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/26/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023] Open
Abstract
IKAROS is a master regulator of cell fate determination in lymphoid and other hematopoietic cells. This transcription factor orchestrates the association of epigenetic regulators with chromatin, ensuring the expression pattern of target genes in a developmental and lineage-specific manner. Disruption of IKAROS function has been associated with the development of acute lymphocytic leukemia, lymphoma, chronic myeloid leukemia and immune disorders. Paradoxically, while IKAROS has been shown to be a tumor suppressor, it has also been identified as a key therapeutic target in the treatment of various forms of hematological malignancies, including multiple myeloma. Indeed, targeted proteolysis of IKAROS is associated with decreased proliferation and increased death of malignant cells. Although the molecular mechanisms have not been elucidated, the expression levels of IKAROS are variable during hematopoiesis and could therefore be a key determinant in explaining how its absence can have seemingly opposite effects. Mechanistically, IKAROS collaborates with a variety of proteins and complexes controlling chromatin organization at gene regulatory regions, including the Nucleosome Remodeling and Deacetylase complex, and may facilitate transcriptional repression or activation of specific genes. Several transcriptional regulatory functions of IKAROS have been proposed. An emerging mechanism of action involves the ability of IKAROS to promote gene repression or activation through its interaction with the RNA polymerase II machinery, which influences pausing and productive transcription at specific genes. This control appears to be influenced by IKAROS expression levels and isoform production. In here, we summarize the current state of knowledge about the biological roles and mechanisms by which IKAROS regulates gene expression. We highlight the dynamic regulation of this factor by post-translational modifications. Finally, potential avenues to explain how IKAROS destruction may be favorable in the treatment of certain hematological malignancies are also explored.
Collapse
Affiliation(s)
- Malik Affar
- Faculty of Medicine, University of Montreal, Montréal, QC, Canada
- Maisonneuve-Rosemont Hospital Research Center, CIUSSS de l'Est-de-l'Île de Montréal, 5415 boulevard de l'Assomption, Montréal, QC, H1T 2M4, Canada
| | - Stefania Bottardi
- Maisonneuve-Rosemont Hospital Research Center, CIUSSS de l'Est-de-l'Île de Montréal, 5415 boulevard de l'Assomption, Montréal, QC, H1T 2M4, Canada
| | - Norreen Quansah
- Maisonneuve-Rosemont Hospital Research Center, CIUSSS de l'Est-de-l'Île de Montréal, 5415 boulevard de l'Assomption, Montréal, QC, H1T 2M4, Canada
| | - Maud Lemarié
- Faculty of Medicine, University of Montreal, Montréal, QC, Canada
- Maisonneuve-Rosemont Hospital Research Center, CIUSSS de l'Est-de-l'Île de Montréal, 5415 boulevard de l'Assomption, Montréal, QC, H1T 2M4, Canada
| | - Ailyn C Ramón
- Faculty of Medicine, University of Montreal, Montréal, QC, Canada
- Maisonneuve-Rosemont Hospital Research Center, CIUSSS de l'Est-de-l'Île de Montréal, 5415 boulevard de l'Assomption, Montréal, QC, H1T 2M4, Canada
| | - El Bachir Affar
- Faculty of Medicine, University of Montreal, Montréal, QC, Canada.
- Maisonneuve-Rosemont Hospital Research Center, CIUSSS de l'Est-de-l'Île de Montréal, 5415 boulevard de l'Assomption, Montréal, QC, H1T 2M4, Canada.
| | - Eric Milot
- Faculty of Medicine, University of Montreal, Montréal, QC, Canada.
- Maisonneuve-Rosemont Hospital Research Center, CIUSSS de l'Est-de-l'Île de Montréal, 5415 boulevard de l'Assomption, Montréal, QC, H1T 2M4, Canada.
| |
Collapse
|
4
|
Liu ZY, Lin LC, Liu ZY, Song K, Tu B, Sun H, Zhou Y, Mao S, Zhang Y, Li R, Yang JJ, Zhao JY, Tao H. N 6-Methyladenosine-mediated phase separation suppresses NOTCH1 expression and promotes mitochondrial fission in diabetic cardiac fibrosis. Cardiovasc Diabetol 2024; 23:347. [PMID: 39342271 PMCID: PMC11439301 DOI: 10.1186/s12933-024-02444-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) modification of messenger RNA (mRNA) is crucial for liquid-liquid phase separation in mammals. Increasing evidence indicates that liquid-liquid phase separation in proteins and RNAs affects diabetic cardiomyopathy. However, the molecular mechanism by which m6A-mediated phase separation regulates diabetic cardiac fibrosis remains elusive. METHODS Leptin receptor-deficient mice (db/db), cardiac fibroblast-specific Notch1 conditional knockout (POSTN-Cre × Notch1flox/flox) mice, and Cre mice were used to induce diabetic cardiac fibrosis. Adeno-associated virus 9 carrying cardiac fibroblast-specific periostin (Postn) promoter-driven small hairpin RNA targeting Alkbh5, Ythdf2, or Notch1, and the phase separation inhibitor 1,6-hexanediol were administered to investigate their roles in diabetic cardiac fibrosis. Histological and biochemical analyses were performed to determine how Alkbh5 and Ythdf2 regulate Notch1 expression in diabetic cardiac fibrosis. NOTCH1 was reconstituted in ALKBH5- and YTHDF2-deficient cardiac fibroblasts and mouse hearts to study its effects on mitochondrial fission and diabetic cardiac fibrosis. Heart tissue samples from patients with diabetic cardiomyopathy were used to validate our findings. RESULTS In mice with diabetic cardiac fibrosis, decreased Notch1 expression was accompanied by high m6A mRNA levels and mitochondrial fission. Fibroblast-specific deletion of Notch1 enhanced mitochondrial fission and cardiac fibroblast proliferation and induced diabetic cardiac fibrosis in mice. Notch1 downregulation was associated with Alkbh5-mediated m6A demethylation in the 3'UTR of Notch1 mRNA and elevated m6A mRNA levels. These elevated m6A levels in Notch1 mRNA markedly enhanced YTHDF2 phase separation, increased the recognition of m6A residues in Notch1 mRNA by YTHDF2, and induced Notch1 degradation. Conversely, epitranscriptomic downregulation rescues Notch1 expression, resulting in the opposite effects. Human heart tissues from patients with diabetic cardiomyopathy were used to validate the findings in mice with diabetic cardiac fibrosis. CONCLUSIONS We identified a novel epitranscriptomic mechanism by which m6A-mediated phase separation suppresses Notch1 expression, thereby promoting mitochondrial fission in diabetic cardiac fibrosis. Our findings provide new insights for the development of novel treatment approaches for patients with diabetic cardiac fibrosis.
Collapse
MESH Headings
- Animals
- Mitochondrial Dynamics
- Receptor, Notch1/metabolism
- Receptor, Notch1/genetics
- Humans
- Fibrosis
- Diabetic Cardiomyopathies/metabolism
- Diabetic Cardiomyopathies/genetics
- Diabetic Cardiomyopathies/pathology
- Diabetic Cardiomyopathies/etiology
- Adenosine/analogs & derivatives
- Adenosine/metabolism
- Mice, Knockout
- RNA-Binding Proteins/metabolism
- RNA-Binding Proteins/genetics
- Signal Transduction
- Male
- AlkB Homolog 5, RNA Demethylase/metabolism
- AlkB Homolog 5, RNA Demethylase/genetics
- Cells, Cultured
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Disease Models, Animal
- Mice, Inbred C57BL
- Fibroblasts/metabolism
- Fibroblasts/pathology
- Mice
- RNA Processing, Post-Transcriptional
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Phase Separation
- Cell Adhesion Molecules
- Receptors, Leptin
Collapse
Affiliation(s)
- Zhi-Yan Liu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, People's Republic of China
| | - Li-Chan Lin
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, People's Republic of China
| | - Zhen-Yu Liu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, People's Republic of China
| | - Kai Song
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, People's Republic of China
| | - Bin Tu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, People's Republic of China
| | - He Sun
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, People's Republic of China
| | - Yang Zhou
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, People's Republic of China
| | - Sui Mao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, People's Republic of China
| | - Ye Zhang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, People's Republic of China
| | - Rui Li
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, People's Republic of China.
| | - Jing-Jing Yang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, People's Republic of China.
| | - Jian-Yuan Zhao
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, People's Republic of China.
| | - Hui Tao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, People's Republic of China.
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, People's Republic of China.
| |
Collapse
|
5
|
Stricker E, Peckham-Gregory EC, Scheurer ME. HERVs and Cancer-A Comprehensive Review of the Relationship of Human Endogenous Retroviruses and Human Cancers. Biomedicines 2023; 11:936. [PMID: 36979914 PMCID: PMC10046157 DOI: 10.3390/biomedicines11030936] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/03/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Genomic instability and genetic mutations can lead to exhibition of several cancer hallmarks in affected cells such as sustained proliferative signaling, evasion of growth suppression, activated invasion, deregulation of cellular energetics, and avoidance of immune destruction. Similar biological changes have been observed to be a result of pathogenic viruses and, in some cases, have been linked to virus-induced cancers. Human endogenous retroviruses (HERVs), once external pathogens, now occupy more than 8% of the human genome, representing the merge of genomic and external factors. In this review, we outline all reported effects of HERVs on cancer development and discuss the HERV targets most suitable for cancer treatments as well as ongoing clinical trials for HERV-targeting drugs. We reviewed all currently available reports of the effects of HERVs on human cancers including solid tumors, lymphomas, and leukemias. Our review highlights the central roles of HERV genes, such as gag, env, pol, np9, and rec in immune regulation, checkpoint blockade, cell differentiation, cell fusion, proliferation, metastasis, and cell transformation. In addition, we summarize the involvement of HERV long terminal repeat (LTR) regions in transcriptional regulation, creation of fusion proteins, expression of long non-coding RNAs (lncRNAs), and promotion of genome instability through recombination.
Collapse
Affiliation(s)
- Erik Stricker
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77047, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77047, USA
| | | | - Michael E. Scheurer
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77047, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77047, USA
| |
Collapse
|
6
|
Notch gives early T cell progenitors time to grow up. Nat Immunol 2022; 23:1523-1524. [DOI: 10.1038/s41590-022-01323-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
7
|
Yamashita M, Taniuchi I. Fine-tuning Notch1 by the stage-specific enhancer. Nat Immunol 2022; 23:1509-1511. [DOI: 10.1038/s41590-022-01341-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Kashiwagi M, Figueroa DS, Ay F, Morgan BA, Georgopoulos K. A double-negative thymocyte-specific enhancer augments Notch1 signaling to direct early T cell progenitor expansion, lineage restriction and β-selection. Nat Immunol 2022; 23:1628-1643. [PMID: 36316479 PMCID: PMC10187983 DOI: 10.1038/s41590-022-01322-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 09/06/2022] [Indexed: 11/11/2022]
Abstract
T cell differentiation requires Notch1 signaling. In the present study, we show that an enhancer upstream of Notch1 active in double-negative (DN) mouse thymocytes is responsible for raising Notch1 signaling intrathymically. This enhancer is required to expand multipotent progenitors intrathymically while delaying early differentiation until lineage restrictions have been established. Early thymic progenitors lacking the enhancer show accelerated differentiation through the DN stages and increased frequency of B, innate lymphoid (IL) and natural killer (NK) cell differentiation. Transcription regulators for T cell lineage restriction and commitment are expressed normally, but IL and NK cell gene expression persists after T cell lineage commitment and T cell receptor β VDJ recombination, Cd3 expression and β-selection have been impaired. This Notch1 enhancer is inactive in double-positive (DP) thymocytes. Its aberrant reactivation at this stage in Ikaros mutants is required for leukemogenesis. Thus, the DN-specific Notch1 enhancer harnesses the regulatory architecture of DN and DP thymocytes to achieve carefully orchestrated changes in Notch1 signaling required for early lineage restrictions and normal T cell differentiation.
Collapse
|
9
|
Sundar R, Huang KK, Kumar V, Ramnarayanan K, Demircioglu D, Her Z, Ong X, Bin Adam Isa ZF, Xing M, Tan ALK, Tai DWM, Choo SP, Zhai W, Lim JQ, Das Thakur M, Molinero L, Cha E, Fasso M, Niger M, Pietrantonio F, Lee J, Jeyasekharan AD, Qamra A, Patnala R, Fabritius A, De Simone M, Yeong J, Ng CCY, Rha SY, Narita Y, Muro K, Guo YA, Skanderup AJ, So JBY, Yong WP, Chen Q, Göke J, Tan P. Epigenetic promoter alterations in GI tumour immune-editing and resistance to immune checkpoint inhibition. Gut 2022; 71:1277-1288. [PMID: 34433583 PMCID: PMC9185816 DOI: 10.1136/gutjnl-2021-324420] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 08/03/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Epigenomic alterations in cancer interact with the immune microenvironment to dictate tumour evolution and therapeutic response. We aimed to study the regulation of the tumour immune microenvironment through epigenetic alternate promoter use in gastric cancer and to expand our findings to other gastrointestinal tumours. DESIGN Alternate promoter burden (APB) was quantified using a novel bioinformatic algorithm (proActiv) to infer promoter activity from short-read RNA sequencing and samples categorised into APBhigh, APBint and APBlow. Single-cell RNA sequencing was performed to analyse the intratumour immune microenvironment. A humanised mouse cancer in vivo model was used to explore dynamic temporal interactions between tumour kinetics, alternate promoter usage and the human immune system. Multiple cohorts of gastrointestinal tumours treated with immunotherapy were assessed for correlation between APB and treatment outcomes. RESULTS APBhigh gastric cancer tumours expressed decreased levels of T-cell cytolytic activity and exhibited signatures of immune depletion. Single-cell RNAsequencing analysis confirmed distinct immunological populations and lower T-cell proportions in APBhigh tumours. Functional in vivo studies using 'humanised mice' harbouring an active human immune system revealed distinct temporal relationships between APB and tumour growth, with APBhigh tumours having almost no human T-cell infiltration. Analysis of immunotherapy-treated patients with GI cancer confirmed resistance of APBhigh tumours to immune checkpoint inhibition. APBhigh gastric cancer exhibited significantly poorer progression-free survival compared with APBlow (median 55 days vs 121 days, HR 0.40, 95% CI 0.18 to 0.93, p=0.032). CONCLUSION These findings demonstrate an association between alternate promoter use and the tumour microenvironment, leading to immune evasion and immunotherapy resistance.
Collapse
Affiliation(s)
- Raghav Sundar
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Hospital, Singapore .,Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore.,The N.1 Institute for Health, National University of Singapore, Singapore.,Singapore Gastric Cancer Consortium, Singapore
| | - Kie-Kyon Huang
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Vikrant Kumar
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | | | - Deniz Demircioglu
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Zhisheng Her
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Xuewen Ong
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Zul Fazreen Bin Adam Isa
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore,Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore,Diagnostic Development Hub (DxD), Agency for Science, Technology and Research, Singapore
| | - Manjie Xing
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore,Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore,Diagnostic Development Hub (DxD), Agency for Science, Technology and Research, Singapore
| | - Angie Lay-Keng Tan
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | | | - Su Pin Choo
- Division of Medical Oncology, National Cancer Centre, Singapore,Curie Oncology, Singapore
| | - Weiwei Zhai
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Jia Qi Lim
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Meghna Das Thakur
- Department of Development Sciences, Genentech, San Francisco, California, USA
| | - Luciana Molinero
- Department of Development Sciences, Genentech, San Francisco, California, USA
| | - Edward Cha
- Department of Development Sciences, Genentech, San Francisco, California, USA
| | - Marcella Fasso
- Department of Development Sciences, Genentech, San Francisco, California, USA
| | - Monica Niger
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Filippo Pietrantonio
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Jeeyun Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Anand D Jeyasekharan
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Hospital, Singapore,Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Aditi Qamra
- Statistical Programming and Analytics, Roche Canada, Mississauga, Ontario, Canada,University Health Network, Toronto, Ontario, Canada
| | | | | | | | - Joe Yeong
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore,Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Cedric Chuan Young Ng
- Laboratory of Cancer Epigenome, Department of Medical Sciences, National Cancer Centre, Singapore
| | - Sun Young Rha
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea,Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Yukiya Narita
- Department of Clinical Oncology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Kei Muro
- Department of Clinical Oncology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Yu Amanda Guo
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | | | - Jimmy Bok Yan So
- Singapore Gastric Cancer Consortium, Singapore,Department of Surgery, National University Hospital, Singapore,Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wei Peng Yong
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Hospital, Singapore,Singapore Gastric Cancer Consortium, Singapore
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jonathan Göke
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Patrick Tan
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore .,Singapore Gastric Cancer Consortium, Singapore.,Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore.,SingHealth/Duke-NUS Institute of Precision Medicine, National Heart Centre, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
10
|
TCFL5 deficiency impairs the pachytene to diplotene transition during spermatogenesis in the mouse. Sci Rep 2022; 12:10956. [PMID: 35768632 PMCID: PMC9242989 DOI: 10.1038/s41598-022-15167-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 06/20/2022] [Indexed: 11/27/2022] Open
Abstract
Spermatogenesis is a complex, multistep process during which spermatogonia give rise to spermatozoa. Transcription Factor Like 5 (TCFL5) is a transcription factor that has been described expressed during spermatogenesis. In order to decipher the role of TCFL5 during in vivo spermatogenesis, we generated two mouse models. Ubiquitous removal of TCFL5 generated by breeding TCFL5fl/fl with SOX2-Cre mice resulted in sterile males being unable to produce spermatozoa due to a dramatic alteration of the testis architecture presenting meiosis arrest and lack of spermatids. SYCP3, SYCP1 and H1T expression analysis showed that TCFL5 deficiency causes alterations during pachytene/diplotene transition resulting in a meiotic arrest in a diplotene-like stage. Even more, TCFL5 deficient pachytene showed alterations in the number of MLH1 foci and the condensation of the sexual body. In addition, tamoxifen-inducible TCFL5 knockout mice showed, besides meiosis phenotype, alterations in the spermatids elongation process resulting in aberrant spermatids. Furthermore, TCFL5 deficiency increased spermatogonia maintenance genes (Dalz, Sox2, and Dmrt1) but also increased meiosis genes (Syce1, Stag3, and Morc2a) suggesting that the synaptonemal complex forms well, but cannot separate and meiosis does not proceed. TCFL5 is able to bind to the promoter of Syce1, Stag3, Dmrt1, and Syce1 suggesting a direct control of their expression. In conclusion, TCFL5 plays an essential role in spermatogenesis progression being indispensable for meiosis resolution and spermatids maturation.
Collapse
|
11
|
Parriott G, Kee BL. E Protein Transcription Factors as Suppressors of T Lymphocyte Acute Lymphoblastic Leukemia. Front Immunol 2022; 13:885144. [PMID: 35514954 PMCID: PMC9065262 DOI: 10.3389/fimmu.2022.885144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
T Lymphocyte Acute Lymphoblastic Leukemia (ALL) is an aggressive disease arising from transformation of T lymphocytes during their development. The mutation spectrum of T-ALL has revealed critical regulators of the growth and differentiation of normal and leukemic T lymphocytes. Approximately, 60% of T-ALLs show aberrant expression of the hematopoietic stem cell-associated helix-loop-helix transcription factors TAL1 and LYL1. TAL1 and LYL1 function in multiprotein complexes that regulate gene expression in T-ALL but they also antagonize the function of the E protein homodimers that are critical regulators of T cell development. Mice lacking E2A, or ectopically expressing TAL1, LYL1, or other inhibitors of E protein function in T cell progenitors, also succumb to an aggressive T-ALL-like disease highlighting that E proteins promote T cell development and suppress leukemogenesis. In this review, we discuss the role of E2A in T cell development and how alterations in E protein function underlie leukemogenesis. We focus on the role of TAL1 and LYL1 and the genes that are dysregulated in E2a-/- T cell progenitors that contribute to human T-ALL. These studies reveal novel mechanisms of transformation and provide insights into potential therapeutic targets for intervention in this disease.
Collapse
Affiliation(s)
- Geoffrey Parriott
- Committee on Immunology, University of Chicago, Chicago, IL, United States
| | - Barbara L Kee
- Committee on Immunology, University of Chicago, Chicago, IL, United States.,Committee on Cancer Biology, University of Chicago, Chicago, IL, United States.,Department of Pathology, University of Chicago, Chicago, IL, United States
| |
Collapse
|
12
|
Carr T, McGregor S, Dias S, Verykokakis M, Le Beau MM, Xue HH, Sigvardsson M, Bartom ET, Kee BL. Oncogenic and Tumor Suppressor Functions for Lymphoid Enhancer Factor 1 in E2a-/- T Acute Lymphoblastic Leukemia. Front Immunol 2022; 13:845488. [PMID: 35371057 PMCID: PMC8971981 DOI: 10.3389/fimmu.2022.845488] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/23/2022] [Indexed: 11/15/2022] Open
Abstract
T lymphocyte acute lymphoblastic leukemia (T-ALL) is a heterogeneous disease affecting T cells at multiple stages of their development and is characterized by frequent genomic alterations. The transcription factor LEF1 is inactivated through mutation in a subset of T-ALL cases but elevated LEF1 expression and activating mutations have also been identified in this disease. Here we show, in a murine model of T-ALL arising due to E2a inactivation, that the developmental timing of Lef1 mutation impacts its ability to function as a cooperative tumor suppressor or oncogene. T cell transformation in the presence of LEF1 allows leukemic cells to become addicted to its presence. In contrast, deletion prior to transformation both accelerates leukemogenesis and results in leukemic cells with altered expression of genes controlling receptor-signaling pathways. Our data demonstrate that the developmental timing of Lef1 mutations impact its apparent oncogenic or tumor suppressive characteristics and demonstrate the utility of mouse models for understanding the cooperation and consequence of mutational order in leukemogenesis.
Collapse
Affiliation(s)
- Tiffany Carr
- Committee on Immunology, The University of Chicago, Chicago, IL, United States
| | - Stephanie McGregor
- Committee on Cancer Biology, The University of Chicago, Chicago, IL, United States
| | - Sheila Dias
- Department of Pathology, The University of Chicago, Chicago, Chicago, IL, United States
| | - Mihalis Verykokakis
- Department of Pathology, The University of Chicago, Chicago, Chicago, IL, United States
| | - Michelle M. Le Beau
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago, Chicago, IL, United States
| | - Hai-Hui Xue
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ, United States
| | | | - Elizabeth T. Bartom
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, United States
| | - Barbara L. Kee
- Committee on Immunology, The University of Chicago, Chicago, IL, United States
- Committee on Cancer Biology, The University of Chicago, Chicago, IL, United States
- Department of Pathology, The University of Chicago, Chicago, Chicago, IL, United States
- *Correspondence: Barbara L. Kee,
| |
Collapse
|
13
|
Joshi J, Patel H, Bhavnagari H, Tarapara B, Pandit A, Shah F. Eliminating Cancer Stem-Like Cells in Oral Cancer by Targeting Elementary Signaling Pathways. Crit Rev Oncog 2022; 27:65-82. [PMID: 37199303 DOI: 10.1615/critrevoncog.2022047207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Oral cancer is a heterogeneous, aggressive, and complex entity. Current major treatment options for the disease are surgery, chemo, and/or radiotherapy either alone or in combination with each other. Each treatment method has its own limitations such as a significant journey with deformities and a protracted rehabilitation process leading to loss of self-esteem, loss of tolerance, and therapeutic side effects. Conventional therapies are frequently experienced with regimen resistance and recurrence attributed to the cancer stem cells (CSCs). Given that CSCs exert their tumorigenesis by affecting several cellular and molecular targets and pathways an improved understanding of CSCs' actions is required. Hence, more research is recommended to fully understand the fundamental mechanisms driving CSC-mediated treatment resistance. Despite the difficulties and disagreements surrounding the removal of CSCs from solid tumors, a great amount of knowledge has been derived from the characterization of CSCs. Various efforts have been made to identify the CSCs using several cell surface markers. In the current review, we will discuss numerous cell surface markers such as CD44, ALDH1, EPCAM, CD24, CD133, CD271, CD90, and Cripto-1 for identifying and isolating CSCs from primary oral squamous cell carcinoma (OSCC). Further, a spectrum of embryonic signaling pathways has been thought to be the main culprit of CSCs' active state in cancers, resulting in conventional therapeutic resistance. Hence, we discuss the functional and molecular bases of several signaling pathways such as the Wnt/beta;-catenin, Notch, Hedgehog, and Hippo pathways and their associations with disease aggressiveness. Moreover, numerous inhibitors targeting the above mentioned signaling pathways have already been identified and some of them are already undergoing clinical trials. Hence, the present review encapsulates the characterization and effectiveness of the prospective potential targeted therapies for eradicating CSCs in oral cancers.
Collapse
Affiliation(s)
- Jigna Joshi
- Molecular Diagnostic and Research Lab-III, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India
| | - Hitarth Patel
- Molecular Diagnostic and Research Lab-III, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India
| | - Hunayna Bhavnagari
- Molecular Diagnostic and Research Lab-III, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India
| | - Bhoomi Tarapara
- Molecular Diagnostic and Research Lab-III, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India
| | - Apexa Pandit
- Molecular Diagnostic and Research Lab-III, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India
| | - Franky Shah
- Molecular Diagnostic and Research Lab-III, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India
| |
Collapse
|
14
|
Sun W, Song X, Dong M, Liu Z, Song Y, Wang L, Song L. DNA binding protein CgIkaros-like regulates the proliferation of agranulocytes and granulocytes in oyster (Crassostrea gigas). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 124:104201. [PMID: 34252475 DOI: 10.1016/j.dci.2021.104201] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/04/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
DNA-binding protein Ikaros is a major determinant of haematopoietic lineage, especially in the development, differentiation and proliferation of lymphocytes. In the present study, a Ikaros homologue (designed as CgIkaros-like) was identified and characterized as a vital determinant in the proliferation of haemocytes during haematopoiesis of Pacific oyster Crassostrea gigas. The complete coding sequence of CgIkaros-like was of 1329 bp encoding a predicted polypeptide of 442 amino acids with four ZnF regions, locating at the C-terminus and N-terminus respectively. The highest expression level of CgIkaros-like mRNA was found in gills, followed by haemocytes and gonad. The mRNA transcripts of CgIkaros-like could be detected in all the haemocytes with higher abundance in semi-granulocytes and agranulocytes. CgIkaros-like protein was localized in both of cytoplasm and nucleus with higher abundance in nucleus of oyster haemocytes. The mRNA and protein expression levels of agranulocyte marker CgCD9, granulocyte marker CgAATase, cell cycle related gene CgCDK2, Notch receptor CgNotch and Notch target gene CgHes1 all increased significantly (p < 0.05) after CgIkaros-like was interfered by siRNAs, which were about 27.33-, 2.63-, 24.34-, 4.45- and 6.08-fold of that in the siRNA-NC control group, respectively. While the transcripts of CgGATA3 and CgRunx did not change significantly after CgIkaros-like was interfered. These results demonstrated that CgIkaros-like functioned as a transcription factor combined with Notch pathway to mediate CgCDK2 and regulate the proliferation of oyster haemocytes.
Collapse
Affiliation(s)
- Wending Sun
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Xiaorui Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Miren Dong
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Zhuyun Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Ying Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519000, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
15
|
Galán-Martínez J, Stamatakis K, Sánchez-Gómez I, Vázquez-Cuesta S, Gironés N, Fresno M. Isoform-specific effects of transcription factor TCFL5 on the pluripotency-related genes SOX2 and KLF4 in colorectal cancer development. Mol Oncol 2021; 16:1876-1890. [PMID: 34623757 PMCID: PMC9067154 DOI: 10.1002/1878-0261.13085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/21/2021] [Accepted: 07/17/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is a very common life‐threatening malignancy. Transcription factor‐like 5 (TCFL5) has been suggested to be involved in CRC. Here, we describe the expression of four alternative transcripts of TCFL5 and their relevance in CRC. Complete deletion of all isoforms drastically decreased pro‐tumoural properties such as spheroids formation and in vivo tumour growth, although increased migration in CRC cell lines. Overexpression of the two main isoforms, TCFL5_E8 and CHA, had opposite effects: TCFL5_E8 reduced proliferation and spheroids formation, while CHA increased them. TCFL5_E8 reduced in vivo tumour formation, while CHA had no effect. In addition, TCFL5_E8 and CHA have different roles in the regulation of the pluripotency‐related genes SOX2 and KLF4. Both isoforms bind directly to their promoters; however, TCFL5_E8 induced SOX2 and reduced KLF4 mRNA levels, whereas CHA did the opposite. Together, our results show that TCFL5 plays an important role in the development of CRC, being however isoform‐specific. This work also points to the need to analyse separately TCFL5 isoforms in cancer, due to their different and opposite functions.
Collapse
Affiliation(s)
- Javier Galán-Martínez
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Spain.,Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Spain.,Instituto Sanitario de Investigación Princesa, Madrid, Spain
| | - Konstantinos Stamatakis
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Spain.,Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Spain
| | - Inés Sánchez-Gómez
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Spain.,Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Spain.,Instituto Sanitario de Investigación Princesa, Madrid, Spain
| | | | - Núria Gironés
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Spain.,Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Spain.,Instituto Sanitario de Investigación Princesa, Madrid, Spain
| | - Manuel Fresno
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Spain.,Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Spain.,Instituto Sanitario de Investigación Princesa, Madrid, Spain
| |
Collapse
|
16
|
Hounjet J, Vooijs M. The Role of Intracellular Trafficking of Notch Receptors in Ligand-Independent Notch Activation. Biomolecules 2021; 11:biom11091369. [PMID: 34572582 PMCID: PMC8466058 DOI: 10.3390/biom11091369] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/11/2022] Open
Abstract
Aberrant Notch signaling has been found in a broad range of human malignancies. Consequently, small molecule inhibitors and antibodies targeting Notch signaling in human cancers have been developed and tested; however, these have failed due to limited anti-tumor efficacy because of dose-limiting toxicities in normal tissues. Therefore, there is an unmet need to discover novel regulators of malignant Notch signaling, which do not affect Notch signaling in healthy tissues. This review provides a comprehensive overview of the current knowledge on the role of intracellular trafficking in ligand-independent Notch receptor activation, the possible mechanisms involved, and possible therapeutic opportunities for inhibitors of intracellular trafficking in Notch targeting.
Collapse
|
17
|
Lee BB, Woo H, Lee MK, Youn S, Lee S, Roe JS, Lee SY, Kim T. Core promoter activity contributes to chromatin-based regulation of internal cryptic promoters. Nucleic Acids Res 2021; 49:8097-8109. [PMID: 34320189 PMCID: PMC8373055 DOI: 10.1093/nar/gkab639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 07/01/2021] [Accepted: 07/16/2021] [Indexed: 12/11/2022] Open
Abstract
During RNA polymerase II (RNA Pol II) transcription, the chromatin structure undergoes dynamic changes, including opening and closing of the nucleosome to enhance transcription elongation and fidelity. These changes are mediated by transcription elongation factors, including Spt6, the FACT complex, and the Set2-Rpd3S HDAC pathway. These factors not only contribute to RNA Pol II elongation, reset the repressive chromatin structures after RNA Pol II has passed, thereby inhibiting aberrant transcription initiation from the internal cryptic promoters within gene bodies. Notably, the internal cryptic promoters of infrequently transcribed genes are sensitive to such chromatin-based regulation but those of hyperactive genes are not. To determine why, the weak core promoters of genes that generate cryptic transcripts in cells lacking transcription elongation factors (e.g. STE11) were replaced with those from more active genes. Interestingly, as core promoter activity increased, activation of internal cryptic promoter dropped. This associated with loss of active histone modifications at the internal cryptic promoter. Moreover, environmental changes and transcription elongation factor mutations that downregulated the core promoters of highly active genes concomitantly increased their cryptic transcription. We therefore propose that the chromatin-based regulation of internal cryptic promoters is mediated by core promoter strength as well as transcription elongation factors.
Collapse
Affiliation(s)
- Bo Bae Lee
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
| | - Hyeonju Woo
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
| | - Min Kyung Lee
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
| | - SeoJung Youn
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
| | - Sumin Lee
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
| | - Jae-Seok Roe
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Soo Young Lee
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
| | - TaeSoo Kim
- Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
18
|
Yamashita M, Morio T. Inborn errors of IKAROS and AIOLOS. Curr Opin Immunol 2021; 72:239-248. [PMID: 34265590 DOI: 10.1016/j.coi.2021.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/06/2021] [Accepted: 06/15/2021] [Indexed: 11/27/2022]
Abstract
IKAROS is a pioneer protein of the IKZF family of transcription factors that plays an essential role in lymphocyte development. Recently, inborn errors of IKAROS have been identified in patients with B cell deficiency and hypogammaglobulinemia, and these patients often present with recurrent sinopulmonary infection. Autoimmunity and hematologic malignancies are other characteristic complications seen in the patients with IKAROS deficiency. Missense mutation involving asparagine at the 159th position results in combined immunodeficiency, often presenting with Pneumocystis jirovecii pneumonia. Inborn errors of AIOLOS, HELIOS, and PEGASUS have also been reported in patients with B cell deficiency, Evans syndrome, and hereditary thrombocytopenia, respectively. Here, we briefly review the phenotype and genotype of IKZF mutations, especially IKAROS.
Collapse
Affiliation(s)
- Motoi Yamashita
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan.
| |
Collapse
|
19
|
Lee CL, Brock KD, Hasapis S, Zhang D, Sibley AB, Qin X, Gresham JS, Caraballo I, Luo L, Daniel AR, Hilton MJ, Owzar K, Kirsch DG. Whole-Exome Sequencing of Radiation-Induced Thymic Lymphoma in Mouse Models Identifies Notch1 Activation as a Driver of p53 Wild-Type Lymphoma. Cancer Res 2021; 81:3777-3790. [PMID: 34035082 DOI: 10.1158/0008-5472.can-20-2823] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 04/05/2021] [Accepted: 05/10/2021] [Indexed: 12/16/2022]
Abstract
Mouse models of radiation-induced thymic lymphoma are widely used to study the development of radiation-induced blood cancers and to gain insights into the biology of human T-cell lymphoblastic leukemia/lymphoma. Here we aimed to identify key oncogenic drivers for the development of radiation-induced thymic lymphoma by performing whole-exome sequencing using tumors and paired normal tissues from mice with and without irradiation. Thymic lymphomas from irradiated wild-type (WT), p53+/-, and KrasLA1 mice were not observed to harbor significantly higher numbers of nonsynonymous somatic mutations compared with thymic lymphomas from unirradiated p53-/- mice. However, distinct patterns of recurrent mutations arose in genes that control the Notch1 signaling pathway based on the mutational status of p53. Preferential activation of Notch1 signaling in p53 WT lymphomas was also observed at the RNA and protein level. Reporter mice for activation of Notch1 signaling revealed that total-body irradiation (TBI) enriched Notch1hi CD44+ thymocytes that could propagate in vivo after thymocyte transplantation. Mechanistically, genetic inhibition of Notch1 signaling in immature thymocytes prevented formation of radiation-induced thymic lymphoma in p53 WT mice. Taken together, these results demonstrate a critical role of activated Notch1 signaling in driving multistep carcinogenesis of thymic lymphoma following TBI in p53 WT mice. SIGNIFICANCE: These findings reveal the mutational landscape and key drivers in murine radiation-induced thymic lymphoma, a classic animal model that has been used to study radiation carcinogenesis for over 70 years.
Collapse
Affiliation(s)
- Chang-Lung Lee
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina.
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina
| | - Kennedy D Brock
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Stephanie Hasapis
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Dadong Zhang
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina
| | - Alexander B Sibley
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina
| | - Xiaodi Qin
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina
| | - Jeremy S Gresham
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina
| | - Isibel Caraballo
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Lixia Luo
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Andrea R Daniel
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Matthew J Hilton
- Department of Orthopedic Surgery, Duke University Medical Center, Durham, North Carolina
| | - Kouros Owzar
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina
| | - David G Kirsch
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina.
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
20
|
Wang Q, Peng H, Qi X, Wu M, Zhao X. Targeted therapies in gynecological cancers: a comprehensive review of clinical evidence. Signal Transduct Target Ther 2020; 5:137. [PMID: 32728057 PMCID: PMC7391668 DOI: 10.1038/s41392-020-0199-6] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/12/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022] Open
Abstract
Advanced and recurrent gynecological cancers are associated with poor prognosis and lack of effective treatment. The developments of the molecular mechanisms on cancer progression provide insight into novel targeted therapies, which are emerging as groundbreaking and promising cancer treatment strategies. In gynecologic malignancies, potential therapeutic targeted agents include antiangiogenic agents, poly (ADP-ribose) polymerase (PARP) inhibitors, tumor-intrinsic signaling pathway inhibitors, selective estrogen receptor downregulators, and immune checkpoint inhibitors. In this article, we provide a comprehensive review of the clinical evidence of targeted agents in gynecological cancers and discuss the future implication.
Collapse
Affiliation(s)
- Qiao Wang
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Hongling Peng
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Xiaorong Qi
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China.
| |
Collapse
|
21
|
Alomairi J, Molitor AM, Sadouni N, Hussain S, Torres M, Saadi W, Dao LTM, Charbonnier G, Santiago-Algarra D, Andrau JC, Puthier D, Sexton T, Spicuglia S. Integration of high-throughput reporter assays identify a critical enhancer of the Ikzf1 gene. PLoS One 2020; 15:e0233191. [PMID: 32453736 PMCID: PMC7250416 DOI: 10.1371/journal.pone.0233191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/29/2020] [Indexed: 01/08/2023] Open
Abstract
The Ikzf1 locus encodes the lymphoid specific transcription factor Ikaros, which plays an essential role in both T and B cell differentiation, while deregulation or mutation of IKZF1/Ikzf1 is involved in leukemia. Tissue-specific and cell identity genes are usually associated with clusters of enhancers, also called super-enhancers, which are believed to ensure proper regulation of gene expression throughout cell development and differentiation. Several potential regulatory regions have been identified in close proximity of Ikzf1, however, the full extent of the regulatory landscape of the Ikzf1 locus is not yet established. In this study, we combined epigenomics and transcription factor binding along with high-throughput enhancer assay and 4C-seq to prioritize an enhancer element located 120 kb upstream of the Ikzf1 gene. We found that deletion of the E120 enhancer resulted in a significant reduction of Ikzf1 mRNA. However, the epigenetic landscape and 3D topology of the locus were only slightly affected, highlighting the complexity of the regulatory landscape regulating the Ikzf1 locus.
Collapse
Affiliation(s)
- Jaafar Alomairi
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France
- Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| | - Anne M. Molitor
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France
- CNRS UMR7104, Illkirch, France
- INSERM U1258, Illkirch, France
- University of Strasbourg, Illkirch, France
| | - Nori Sadouni
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France
- Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| | - Saadat Hussain
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France
- Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| | - Magali Torres
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France
- Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| | - Wiam Saadi
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France
- Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| | - Lan T. M. Dao
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France
- Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| | - Guillaume Charbonnier
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France
- Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| | - David Santiago-Algarra
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France
- Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| | - Jean Christophe Andrau
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France
| | - Denis Puthier
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France
- Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| | - Tom Sexton
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France
- CNRS UMR7104, Illkirch, France
- INSERM U1258, Illkirch, France
- University of Strasbourg, Illkirch, France
| | - Salvatore Spicuglia
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France
- Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| |
Collapse
|
22
|
Clara JA, Monge C, Yang Y, Takebe N. Targeting signalling pathways and the immune microenvironment of cancer stem cells - a clinical update. Nat Rev Clin Oncol 2019; 17:204-232. [PMID: 31792354 DOI: 10.1038/s41571-019-0293-2] [Citation(s) in RCA: 487] [Impact Index Per Article: 81.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2019] [Indexed: 02/06/2023]
Abstract
Cancer stem cells (CSCs) have important roles in tumour development, relapse and metastasis; the intrinsic self-renewal characteristics and tumorigenic properties of these cells provide them with unique capabilities to resist diverse forms of anticancer therapy, seed recurrent tumours, and disseminate to and colonize distant tissues. The findings of several studies indicate that CSCs originate from non-malignant stem or progenitor cells. Accordingly, inhibition of developmental signalling pathways that are crucial for stem and progenitor cell homeostasis and function, such as the Notch, WNT, Hedgehog and Hippo signalling cascades, continues to be pursued across multiple cancer types as a strategy for targeting the CSCs hypothesized to drive cancer progression - with some success in certain malignancies. In addition, with the renaissance of anticancer immunotherapy, a better understanding of the interplay between CSCs and the tumour immune microenvironment might be the key to unlocking a new era of oncological treatments associated with a reduced propensity for the development of resistance and with enhanced antimetastatic activity, thus ultimately resulting in improved patient outcomes. Herein, we provide an update on the progress to date in the clinical development of therapeutics targeting the Notch, WNT, Hedgehog and Hippo pathways. We also discuss the interactions between CSCs and the immune system, including the potential immunological effects of agents targeting CSC-associated developmental signalling pathways, and provide an overview of the emerging approaches to CSC-targeted immunotherapy.
Collapse
Affiliation(s)
- Joseph A Clara
- National Heart Lung and Blood Institute, NIH, Bethesda, MD, USA
| | - Cecilia Monge
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Yingzi Yang
- Department of Developmental Biology, Harvard School of Dental Medicine, Dana-Farber/Harvard Cancer Center, Boston, MA, USA
| | - Naoko Takebe
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
23
|
Vujovic F, Hunter N, Farahani RM. Notch pathway: a bistable inducer of biological noise? Cell Commun Signal 2019; 17:133. [PMID: 31640734 PMCID: PMC6805690 DOI: 10.1186/s12964-019-0453-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/04/2019] [Indexed: 12/11/2022] Open
Abstract
Notch signalling pathway is central to development of metazoans. The pathway codes a binary fate switch. Upon activation, downstream signals contribute to resolution of fate dichotomies such as proliferation/differentiation or sub-lineage differentiation outcome. There is, however, an interesting paradox in the Notch signalling pathway. Despite remarkable predictability of fate outcomes instructed by the Notch pathway, the associated transcriptome is versatile and plastic. This inconsistency suggests the presence of an interface that compiles input from the plastic transcriptome of the Notch pathway but communicates only a binary output in biological decisions. Herein, we address the interface that determines fate outcomes. We provide an alternative hypothesis for the Notch pathway as a biological master switch that operates by induction of genetic noise and bistability in order to facilitate resolution of dichotomous fate outcomes in development.
Collapse
Affiliation(s)
- Filip Vujovic
- IDR/Westmead Institute for Medical Research, Sydney, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2145 Australia
| | - Neil Hunter
- IDR/Westmead Institute for Medical Research, Sydney, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2145 Australia
| | - Ramin M. Farahani
- IDR/Westmead Institute for Medical Research, Sydney, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2145 Australia
| |
Collapse
|
24
|
Khare SP, Shetty A, Biradar R, Patta I, Chen ZJ, Sathe AV, Reddy PC, Lahesmaa R, Galande S. NF-κB Signaling and IL-4 Signaling Regulate SATB1 Expression via Alternative Promoter Usage During Th2 Differentiation. Front Immunol 2019; 10:667. [PMID: 31001272 PMCID: PMC6454056 DOI: 10.3389/fimmu.2019.00667] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/11/2019] [Indexed: 12/18/2022] Open
Abstract
SATB1 is a genome organizer protein that is expressed in a lineage specific manner in CD4+ T-cells. SATB1 plays a crucial role in expression of multiple genes throughout the thymic development and peripheral differentiation of T cells. Although SATB1 function has been subjected to intense investigation, regulation of SATB1 gene expression remains poorly understood. Analysis of RNA-seq data revealed multiple transcription start sites at the upstream regulatory region of SATB1. We further demonstrated that SATB1 gene is expressed via alternative promoters during T-helper (Th) cell differentiation. The proximal promoter “P1” is used more by the naïve and activated CD4+ T-cells whereas the middle “P2” and the distal “P3” promoters are used at a significantly higher level by polarized T-helper cells. Cytokine and TCR signaling play crucial roles toward SATB1 alternative promoter usage. Under Th2 polarization conditions, transcription factor STAT6, which operates downstream of the cytokine signaling binds to the P2 and P3 promoters. Genetic perturbation by knockout and chemical inhibition of STAT6 activation resulted in the loss of P2 and P3 promoter activity. Moreover, chemical inhibition of activation of NF-κB, a transcription factor that operates downstream of the TCR signaling, also resulted in reduced P2 and P3 promoter usage. Furthermore, usage of the P1 promoter correlated with lower SATB1 protein expression whereas P2 and P3 promoter usage correlated with higher SATB1 protein expression. Thus, the promoter switch might play a crucial role in fine-tuning of SATB1 protein expression in a cell type specific manner.
Collapse
Affiliation(s)
- Satyajeet P Khare
- Center of Excellence in Epigenetics, Indian Institute of Science Education and Research, Pune, India.,Symbiosis School of Biological Sciences, Pune, India
| | - Ankitha Shetty
- Center of Excellence in Epigenetics, Indian Institute of Science Education and Research, Pune, India.,Turku Center for Biotechnology, University of Turku and Abo Akademi University, Turku, Finland
| | - Rahul Biradar
- Center of Excellence in Epigenetics, Indian Institute of Science Education and Research, Pune, India
| | - Indumathi Patta
- Center of Excellence in Epigenetics, Indian Institute of Science Education and Research, Pune, India
| | - Zhi Jane Chen
- Turku Center for Biotechnology, University of Turku and Abo Akademi University, Turku, Finland
| | - Ameya V Sathe
- Center of Excellence in Epigenetics, Indian Institute of Science Education and Research, Pune, India
| | - Puli Chandramouli Reddy
- Center of Excellence in Epigenetics, Indian Institute of Science Education and Research, Pune, India
| | - Riitta Lahesmaa
- Turku Center for Biotechnology, University of Turku and Abo Akademi University, Turku, Finland
| | - Sanjeev Galande
- Center of Excellence in Epigenetics, Indian Institute of Science Education and Research, Pune, India
| |
Collapse
|
25
|
Baron M. Combining genetic and biophysical approaches to probe the structure and function relationships of the notch receptor. Mol Membr Biol 2018; 34:33-49. [PMID: 30246579 DOI: 10.1080/09687688.2018.1503742] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Notch is a conserved cell signalling receptor regulating many aspects of development and tissue homeostasis. Notch is activated by ligand-induced proteolytic cleavages that release the Notch intracellular domain, which relocates to the nucleus to regulate gene transcription. Proteolytic activation first requires mechanical force to be applied to the Notch extracellular domain through an endocytic pulling mechanism transmitted through the ligand/receptor interface. This exposes the proteolytic cleavage site allowing the signal to be initiated following removal of the Notch extracellular domain. Ligands can also act, when expressed in the same cell, through non-productive cis-interactions to inhibit Notch activity. Furthermore, ligand selectivity and Notch activation are regulated by numerous post-translational modifications of the extracellular domain. Additional non-canonical trans and cis interactions with other regulatory proteins may modulate alternative mechanisms of Notch activation that depend on endocytic trafficking of the full-length receptor and proteolytic release of the intracellular domain from endo-lysosomal surface. Mutations of Notch, located in different regions of the protein, are associated with a spectrum of different loss and gain of function phenotypes and offer the possibility to dissect distinct regulatory interactions and mechanisms, particularly when combined with detailed structural analysis of Notch in complex with various regulatory partners.
Collapse
Affiliation(s)
- Martin Baron
- a School of Biological Sciences , University of Manchester , Manchester , UK
| |
Collapse
|
26
|
Li Y, Liu Y, Liu C, Liu F, Dou D, Zheng W, Liu W, Liu F. Role of a non-canonical splice variant of the Helios gene in the differentiation of acute lymphoblastic leukemic T cells. Oncol Lett 2018; 15:6957-6966. [PMID: 29725423 DOI: 10.3892/ol.2018.8214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 02/21/2018] [Indexed: 11/05/2022] Open
Abstract
T-cell acute lymphoblastic leukemia is a hematopoietic malignant disease, which arises from a genetic defect in the T-cell maturation signaling pathway. As a result, it is necessary to identify the molecules that impact T-cell development and control lymphoid-lineage malignancy. The present study utilized Jurkat T lymphoblastic cells as a well-established approach for the investigation into the function of the non-canonical alternative splice variant of Helios for the in vitro study of T-cell differentiation and leukemogenesis. In the present study, the Jurkat T-cell lines with stable overexpression of the wild-type (Helios-1) or the non-canonical short isoform (Helios-Δ326-1431), were established. RNA microarray, reverse transcription-quantitative polymerase chain reaction and flow cytometry were used to assess changes in the gene expression profiles and to monitor the cell surface markers during T-cell differentiation. Multiple genes associated with T-cell differentiation and leukemogenesis were identified as being either activated or suppressed. In addition, the results indicated that the stable overexpression of the Helios isoforms stimulated the differentiation pathway of the T-lineage lymphoblastic cells. Therefore, these results suggest that full-length Helios-1 has a tumor suppressor-like and immunomodulatory role, in contrast to the oncogenic function of the non-canonical short isoform Helios-Δ326-1431.
Collapse
Affiliation(s)
- Yinghui Li
- Department of Immunology, School of Medicine, Nankai University, Tianjin 300071, P.R. China
| | - Yanhua Liu
- Department of Immunology, School of Medicine, Nankai University, Tianjin 300071, P.R. China
| | - Can Liu
- Department of Immunology, School of Medicine, Nankai University, Tianjin 300071, P.R. China
| | - Fengyong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Daolei Dou
- Department of Experimental Facility, State Key Laboratory of Medical Chemical Biology, Tianjin 300071, P.R. China
| | - Wenjie Zheng
- Technical Center for Safety of Industrial Products, Tianjin Entry-Exit Inspection and Quarantine Bureau, Tianjin 300308, P.R. China
| | - Wei Liu
- Technical Center for Safety of Industrial Products, Tianjin Entry-Exit Inspection and Quarantine Bureau, Tianjin 300308, P.R. China
| | - Feifei Liu
- Department of Immunology, School of Medicine, Nankai University, Tianjin 300071, P.R. China
| |
Collapse
|
27
|
Heizmann B, Kastner P, Chan S. The Ikaros family in lymphocyte development. Curr Opin Immunol 2018; 51:14-23. [DOI: 10.1016/j.coi.2017.11.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/21/2017] [Accepted: 11/30/2017] [Indexed: 10/18/2022]
|
28
|
Iqbal W, Alkarim S, AlHejin A, Mukhtar H, Saini KS. Targeting signal transduction pathways of cancer stem cells for therapeutic opportunities of metastasis. Oncotarget 2018; 7:76337-76353. [PMID: 27486983 PMCID: PMC5342819 DOI: 10.18632/oncotarget.10942] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/13/2016] [Indexed: 12/11/2022] Open
Abstract
Tumor comprises of heterogeneous population of cells where not all the disseminated cancer cells have the prerogative and "in-build genetic cues" to form secondary tumors. Cells with stem like properties complemented by key signaling molecules clearly have shown to exhibit selective growth advantage to form tumors at distant metastatic sites. Thus, defining the role of cancer stem cells (CSC) in tumorigenesis and metastasis is emerging as a major thrust area for therapeutic intervention. Precise relationship and regulatory mechanisms operating in various signal transduction pathways during cancer dissemination, extravasation and angiogenesis still remain largely enigmatic. How the crosstalk amongst circulating tumor cells (CTC), epithelial mesenchymal transition (EMT) process and CSC is coordinated for initiating the metastasis at secondary tissues, and during cancer relapse could be of great therapeutic interest. The signal transduction mechanisms facilitating the dissemination, infiltration of CSC into blood stream, extravasations, progression of metastasis phenotype and angiogenesis, at distant organs, are the key pathologically important vulnerabilities being elucidated. Therefore, current new drug discovery focus has shifted towards finding "key driver genes" operating in parallel signaling pathways, during quiescence, survival and maintenance of stemness in CSC. Understanding these mechanisms could open new horizons for tackling the issue of cancer recurrence and metastasis-the cause of ~90% cancer associated mortality. To design futuristic & targeted therapies, we propose a multi-pronged strategy involving small molecules, RNA interference, vaccines, antibodies and other biotechnological modalities against CSC and the metastatic signal transduction cascade.
Collapse
Affiliation(s)
- Waqas Iqbal
- Embryonic and Cancer Stem Cell Research Group, Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Saleh Alkarim
- Embryonic and Cancer Stem Cell Research Group, Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed AlHejin
- Embryonic and Cancer Stem Cell Research Group, Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hasan Mukhtar
- Embryonic and Cancer Stem Cell Research Group, Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Dermatology, University of Wisconsin Medical Sciences Center, Madison, WI, USA
| | - Kulvinder S Saini
- Embryonic and Cancer Stem Cell Research Group, Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,School of Biotechnology, Eternal University, Baru Sahib, Himachal Pradesh, India
| |
Collapse
|
29
|
Abstract
In this review from Georgopoulos, the role of the IKAROS gene family in lymphocyte differentiation is discussed in light of recent studies on the lineage-specific transcriptional and epigenetic networks through which IKAROS proteins operate. Lymphocyte differentiation is set to produce myriad immune effector cells with the ability to respond to multitudinous foreign substances. The uniqueness of this developmental system lies in not only the great diversity of cellular functions that it can generate but also the ability of its differentiation intermediates and mature effector cells to expand upon demand, thereby providing lifelong immunity. Surprisingly, the goals of this developmental system are met by a relatively small group of DNA-binding transcription factors that work in concert to control the timing and magnitude of gene expression and fulfill the demands for cellular specialization, expansion, and maintenance. The cellular and molecular mechanisms through which these lineage-promoting transcription factors operate have been a focus of basic research in immunology. The mechanisms of development discerned in this effort are guiding clinical research on disorders with an immune cell base. Here, I focus on IKAROS, one of the earliest regulators of lymphoid lineage identity and a guardian of lymphocyte homeostasis.
Collapse
Affiliation(s)
- Katia Georgopoulos
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| |
Collapse
|
30
|
Deshmukh A, Binju M, Arfuso F, Newsholme P, Dharmarajan A. Role of epigenetic modulation in cancer stem cell fate. Int J Biochem Cell Biol 2017; 90:9-16. [DOI: 10.1016/j.biocel.2017.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 05/31/2017] [Accepted: 07/11/2017] [Indexed: 01/16/2023]
|
31
|
Lock FE, Babaian A, Zhang Y, Gagnier L, Kuah S, Weberling A, Karimi MM, Mager DL. A novel isoform of IL-33 revealed by screening for transposable element promoted genes in human colorectal cancer. PLoS One 2017; 12:e0180659. [PMID: 28715472 PMCID: PMC5513427 DOI: 10.1371/journal.pone.0180659] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/19/2017] [Indexed: 02/06/2023] Open
Abstract
Remnants of ancient transposable elements (TEs) are abundant in mammalian genomes. These sequences contain multiple regulatory motifs and hence are capable of influencing expression of host genes. TEs are known to be released from epigenetic repression and can become transcriptionally active in cancer. Such activation could also lead to lineage-inappropriate activation of oncogenes, as previously described in lymphomas. However, there are few reports of this mechanism occurring in non-blood cancers. Here, we re-analyzed whole transcriptome data from a large cohort of patients with colon cancer, compared to matched normal colon control samples, to detect genes or transcripts ectopically expressed through activation of TE promoters. Among many such transcripts, we identified six where the affected gene has described role in cancer and where the TE-driven gene mRNA is expressed in primary colon cancer, but not normal matched tissue, and confirmed expression in colon cancer-derived cell lines. We further characterized a TE-gene chimeric transcript involving the Interleukin 33 (IL-33) gene (termed LTR-IL-33), that is ectopically expressed in a subset of colon cancer samples through the use of an endogenous retroviral long terminal repeat (LTR) promoter of the MSTD family. The LTR-IL-33 chimeric transcript encodes a novel shorter isoform of the protein, which is missing the initial N-terminus (including many conserved residues) of Native IL-33. In vitro studies showed that LTR-IL-33 expression is required for optimal CRC cell line growth as 3D colonospheres. Taken together, these data demonstrate the significance of TEs as regulators of aberrant gene expression in colon cancer.
Collapse
Affiliation(s)
- Frances E. Lock
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Artem Babaian
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Ying Zhang
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Liane Gagnier
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Sabrina Kuah
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Antonia Weberling
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Mohammad M. Karimi
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Département de Génomique Fonctionnelle et Cancer, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC)/Université de Strasbourg/CNRS/INSERM, France
| | - Dixie L. Mager
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
32
|
Kim J, Lu C, Srinivasan S, Awe S, Brehm A, Fuller MT. Blocking promiscuous activation at cryptic promoters directs cell type-specific gene expression. Science 2017; 356:717-721. [PMID: 28522526 PMCID: PMC5572561 DOI: 10.1126/science.aal3096] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 04/13/2017] [Indexed: 12/18/2022]
Abstract
To selectively express cell type-specific transcripts during development, it is critical to maintain genes required for other lineages in a silent state. Here, we show in the Drosophila male germline stem cell lineage that a spermatocyte-specific zinc finger protein, Kumgang (Kmg), working with the chromatin remodeler dMi-2 prevents transcription of genes normally expressed only in somatic lineages. By blocking transcription from normally cryptic promoters, Kmg restricts activation by Aly, a component of the testis-meiotic arrest complex, to transcripts for male germ cell differentiation. Our results suggest that as new regions of the genome become open for transcription during terminal differentiation, blocking the action of a promiscuous activator on cryptic promoters is a critical mechanism for specifying precise gene activation.
Collapse
Affiliation(s)
- Jongmin Kim
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305-5329, USA
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305-5329, USA
| | - Chenggang Lu
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305-5329, USA
| | - Shrividhya Srinivasan
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305-5329, USA
| | - Stephan Awe
- Institut für Molekularbiologie und Tumorforschung, Philipps-Universität Marburg, Marburg, Germany
| | - Alexander Brehm
- Institut für Molekularbiologie und Tumorforschung, Philipps-Universität Marburg, Marburg, Germany
| | - Margaret T Fuller
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305-5329, USA.
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305-5329, USA
| |
Collapse
|
33
|
Common nonmutational NOTCH1 activation in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 2017; 114:E2911-E2919. [PMID: 28314854 DOI: 10.1073/pnas.1702564114] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Activating mutations of NOTCH1 (a well-known oncogene in T-cell acute lymphoblastic leukemia) are present in ∼4-13% of chronic lymphocytic leukemia (CLL) cases, where they are associated with disease progression and chemorefractoriness. However, the specific role of NOTCH1 in leukemogenesis remains to be established. Here, we report that the active intracellular portion of NOTCH1 (ICN1) is detectable in ∼50% of peripheral blood CLL cases lacking gene mutations. We identify a "NOTCH1 gene-expression signature" in CLL cells, and show that this signature is significantly enriched in primary CLL cases expressing ICN1, independent of NOTCH1 mutation. NOTCH1 target genes include key regulators of B-cell proliferation, survival, and signal transduction. In particular, we show that NOTCH1 transactivates MYC via binding to B-cell-specific regulatory elements, thus implicating this oncogene in CLL development. These results significantly extend the role of NOTCH1 in CLL pathogenesis, and have direct implications for specific therapeutic targeting.
Collapse
|
34
|
Babaian A, Mager DL. Endogenous retroviral promoter exaptation in human cancer. Mob DNA 2016; 7:24. [PMID: 27980689 PMCID: PMC5134097 DOI: 10.1186/s13100-016-0080-x] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/11/2016] [Indexed: 12/13/2022] Open
Abstract
Cancer arises from a series of genetic and epigenetic changes, which result in abnormal expression or mutational activation of oncogenes, as well as suppression/inactivation of tumor suppressor genes. Aberrant expression of coding genes or long non-coding RNAs (lncRNAs) with oncogenic properties can be caused by translocations, gene amplifications, point mutations or other less characterized mechanisms. One such mechanism is the inappropriate usage of normally dormant, tissue-restricted or cryptic enhancers or promoters that serve to drive oncogenic gene expression. Dispersed across the human genome, endogenous retroviruses (ERVs) provide an enormous reservoir of autonomous gene regulatory modules, some of which have been co-opted by the host during evolution to play important roles in normal regulation of genes and gene networks. This review focuses on the “dark side” of such ERV regulatory capacity. Specifically, we discuss a growing number of examples of normally dormant or epigenetically repressed ERVs that have been harnessed to drive oncogenes in human cancer, a process we term onco-exaptation, and we propose potential mechanisms that may underlie this phenomenon.
Collapse
Affiliation(s)
- Artem Babaian
- Terry Fox Laboratory, British Columbia Cancer Agency, 675 West 10th Avenue, Vancouver, BC V5Z1L3 Canada ; Department of Medical Genetics, University of British Columbia, Vancouver, BC Canada
| | - Dixie L Mager
- Terry Fox Laboratory, British Columbia Cancer Agency, 675 West 10th Avenue, Vancouver, BC V5Z1L3 Canada ; Department of Medical Genetics, University of British Columbia, Vancouver, BC Canada
| |
Collapse
|
35
|
Modulation of mRNA and lncRNA expression dynamics by the Set2-Rpd3S pathway. Nat Commun 2016; 7:13534. [PMID: 27892458 PMCID: PMC5133700 DOI: 10.1038/ncomms13534] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 10/07/2016] [Indexed: 11/10/2022] Open
Abstract
H3K36 methylation by Set2 targets Rpd3S histone deacetylase to transcribed regions of mRNA genes, repressing internal cryptic promoters and slowing elongation. Here we explore the function of this pathway by analysing transcription in yeast undergoing a series of carbon source shifts. Approximately 80 mRNA genes show increased induction upon SET2 deletion. A majority of these promoters have overlapping lncRNA transcription that targets H3K36me3 and deacetylation by Rpd3S to the mRNA promoter. We previously reported a similar mechanism for H3K4me2-mediated repression via recruitment of the Set3C histone deacetylase. Here we show that the distance between an mRNA and overlapping lncRNA promoter determines whether Set2–Rpd3S or Set3C represses. This analysis also reveals many previously unreported cryptic ncRNAs induced by specific carbon sources, showing that cryptic promoters can be environmentally regulated. Therefore, in addition to repression of cryptic transcription and modulation of elongation, H3K36 methylation maintains optimal expression dynamics of many mRNAs and ncRNAs. H3K36 methylation by Set2 targets Rpd3S histone deacetylase to transcribed mRNA genes, repressing internal cryptic promoters and modulating elongation. Here, the authors provide evidence that the Set2-Rpd3S pathway also regulates dynamic expression of mRNAs and lncRNAs.
Collapse
|
36
|
Zhao S, Liu W, Li Y, Liu P, Li S, Dou D, Wang Y, Yang R, Xiang R, Liu F. Alternative Splice Variants Modulates Dominant-Negative Function of Helios in T-Cell Leukemia. PLoS One 2016; 11:e0163328. [PMID: 27681508 PMCID: PMC5040427 DOI: 10.1371/journal.pone.0163328] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 09/06/2016] [Indexed: 12/21/2022] Open
Abstract
The molecular defects which lead to multistep incidences of human T-cell leukemia have yet to be identified. The DNA-binding protein Helios (known as IKZF2), a member of the Ikaros family of Krüppel-like zinc-finger proteins, functions pivotally in T-cell differentiation and activation. In this study, we identify three novel short Helios splice variants which are T-cell leukemic specific, and demonstrate their dominant-negative function. We then test the cellular localization of distinct Helios isoforms, as well as their capability to form heterodimer with Ikaros, and the association with complexes comprising histone deacetylase (HDAC). In addition, the ectopic expression of T-cell leukemic Helios isoforms interferes with T-cell proliferation and apoptosis. The gene expression profiling and pathway analysis indicated the enrichment of signaling pathways essential for gene expression, translation, cell cycle checkpoint, and response to DNA damage stimulus. These data indicate the molecular function of Helios to be involved in the leukemogenesis and phenotype of T-cell leukemia, and also reveal Helios deregulation as a novel marker for T-cell leukemia.
Collapse
Affiliation(s)
- Shaorong Zhao
- Department of Immunology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Wei Liu
- Tianjin Entry-Exit Inspection and Quarantine Bureau, Tianjin 300308, China
| | - Yinghui Li
- Department of Immunology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Pengjiang Liu
- Department of Hematology, First-Central Hospital, Tianjin 300060, China
| | - Shufang Li
- Department of Immunology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Daolei Dou
- State Key Laboratory of Medical Chemical Biology, Tianjin 300070, China
| | - Yue Wang
- Department of Immunology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Rongcun Yang
- Department of Immunology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Rong Xiang
- Department of Immunology, School of Medicine, Nankai University, Tianjin 300071, China
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Tianjin 300071, China
- * E-mail: (FL); (RX)
| | - Feifei Liu
- Department of Immunology, School of Medicine, Nankai University, Tianjin 300071, China
- * E-mail: (FL); (RX)
| |
Collapse
|
37
|
Carofino BL, Ayanga B, Tracey LJ, Brooke-Bisschop T, Justice MJ. PRDM14 promotes RAG-dependent Notch1 driver mutations in mouse T-ALL. Biol Open 2016; 5:645-53. [PMID: 27106930 PMCID: PMC4874358 DOI: 10.1242/bio.017699] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
PRDM14 is an epigenetic regulator known for maintaining embryonic stem cell identity and resetting potency in primordial germ cells. However, hematopoietic expression of Prdm14 at supraphysiological levels results in fully penetrant and rapid-onset T-cell acute lymphoblastic leukemia (T-ALL) in the mouse. Here, we show that PRDM14-induced T-ALLs are driven by NOTCH1, a frequently mutated driver of human T-ALL. Notch1 is activated in this murine model via RAG-dependent promoter deletions and subsequent production of truncated, ligand-independent protein from downstream regions of the Notch1 locus. These T-ALLs also have focal changes in H3K4me3 deposition at the Notch1 locus and global increases in both H3K4me1 and H3K4me3. Using a PRDM14-FLAG mouse model, we show that PRDM14 binds within an intron of Notch1 prior to leukemia development. Our data support the idea that PRDM14 binding promotes a chromatin state that allows access of the RAG recombinase complex to cryptic RAG signal sequences embedded at the Notch1 locus. Indeed, breeding into a RAG recombination-deficient background abrogates T-ALL development and prevents Notch1 deletions, while allowing for transient hematopoietic stem cell (HSC)-like pre-leukemia cell expansion. Together, our data suggest that PRDM14 expands a progenitor cell population while promoting a permissive epigenetic state for the creation of driver mutations (here, in Notch1), enabling cancer development through the misappropriation of endogenous cellular DNA recombination machinery. Summary: PRDM14 promotes an epigenetic state that facilitates RAG-dependent Notch1 driver mutations, coupling progenitor cell expansion with genomic instability to produce T-ALL with shorter latency than other NOTCH1-driven mouse models.
Collapse
Affiliation(s)
- Brandi L Carofino
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, 77030 USA Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030 USA
| | - Bernard Ayanga
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030 USA
| | - Lauren J Tracey
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8 Canada Genetics and Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, M5G 0A4 Canada
| | - Travis Brooke-Bisschop
- Genetics and Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, M5G 0A4 Canada
| | - Monica J Justice
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, 77030 USA Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030 USA Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8 Canada Genetics and Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, Ontario, M5G 0A4 Canada
| |
Collapse
|
38
|
Abstract
Recent investigations have provided an increasingly complete picture of the genetic landscape of chronic lymphocytic leukaemia (CLL). These analyses revealed that the CLL genome displays a high degree of heterogeneity between patients and within the same patient. In addition, they highlighted molecular mechanisms and functionally relevant biological programmes that may be important for the pathogenesis and therapeutic targeting of this disease. This Review focuses on recent insights into the understanding of CLL biology, with emphasis on the role of genetic lesions in the initiation and clinical progression of CLL. We also consider the translation of these findings into the development of risk-adapted and targeted therapeutic approaches.
Collapse
Affiliation(s)
- Giulia Fabbri
- Institute for Cancer Genetics, Columbia University, New York, New York 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York 10032, USA
| | - Riccardo Dalla-Favera
- Institute for Cancer Genetics, Columbia University, New York, New York 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York 10032, USA
- Department of Pathology and Cell Biology and New York, New York 10032, USA
- Departments of Genetics and Development and Microbiology and Immunology, Columbia University, New York, New York 10032, USA
| |
Collapse
|
39
|
Yasuma K, Yasunaga JI, Takemoto K, Sugata K, Mitobe Y, Takenouchi N, Nakagawa M, Suzuki Y, Matsuoka M. HTLV-1 bZIP Factor Impairs Anti-viral Immunity by Inducing Co-inhibitory Molecule, T Cell Immunoglobulin and ITIM Domain (TIGIT). PLoS Pathog 2016; 12:e1005372. [PMID: 26735971 PMCID: PMC4703212 DOI: 10.1371/journal.ppat.1005372] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 12/08/2015] [Indexed: 12/14/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) infects CD4+ T cells and induces proliferation of infected cells in vivo, which leads to the onset of adult T-cell leukemia (ATL) in some infected individuals. The HTLV-1 bZIP factor (HBZ) gene, which is encoded in the minus strand of HTLV-1, plays critical roles in pathogenesis. In this study, RNA-seq and ChIP-seq analyses using HBZ transduced T cells revealed that HBZ upregulates the expression and promoter acetylation levels of a co-inhibitory molecule, T cell immunoglobulin and ITIM domain (TIGIT), in addition to those of regulatory T cells related genes, Foxp3 and Ccr4. TIGIT was expressed on CD4+ T cells from HBZ-transgenic (HBZ-Tg) mice, and on ATL cells and HTLV-1 infected CD4+ T cells of HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) in vivo. Expression of Blimp1 and IL-10 was upregulated in TIGIT+CD4+ cells of HBZ-Tg mice compared with TIGIT-CD4+ T cells, suggesting the correlation between TIGIT expression and IL-10 production. When CD4+ T cells from HBZ-Tg mice were stimulated with TIGIT’s ligand, CD155, their production of the inhibitory cytokine IL-10 was enhanced. Furthermore, dendritic cells from HBZ-Tg mice produced high levels of IL-10 after stimulation. These data suggest that HBZ alters immune system to suppressive state via TIGIT and IL-10. Importantly, TIGIT suppressed T-cell responses to another HTLV-1 virus protein, Tax, in vitro. Blocking of TIGIT and PD-1 slightly increased anti-Tax T-cell activity in some HAM/TSP patients. These results suggest that HBZ-induced TIGIT on HTLV-1 infected cells impairs T-cell responses to viral antigens. This study shows that HBZ-induced TIGIT plays a pivotal role in attenuating host immune responses and shaping a microenvironment favorable to HTLV-1. HTLV-1 is a T-cell-tropic, latently infectious virus that causes a T-cell malignancy, ATL, and inflammatory diseases. The mechanisms by which HTLV-1 evades the immune response and establishes chronic infection are not yet understood. Recent studies have demonstrated that TIGIT, a co-inhibitory molecule, is expressed on tumor infiltrating T cells and T cells during viral infection, which suppresses the anti-tumor and anti-viral immune responses. Furthermore, blockade of co-inhibitory molecules of TIGIT and programmed cell death-1 (PD-1) disrupts immune checkpoints and enhances anti-tumor activity. We found that TIGIT is upregulated by HBZ, and TIGIT impairs anti-virus immune responses through an immunosuppressive cytokine, IL-10. These findings show that HTLV-1 utilizes a co-inhibitory molecule on infected cells to evade the host immune responses. We also found that blocking of TIGIT and PD-1 on peripheral blood mononuclear cells in HTLV-1 infected patients enhances immune responses to virus. These findings suggest a mechanism by which HTLV-1 shapes a microenvironment favorable to its persistence using induced TIGIT. TIGIT is a potential therapeutic target for ATL and HTLV-1 infected patients.
Collapse
Affiliation(s)
- Keiko Yasuma
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Jun-ichirou Yasunaga
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto, Japan
- * E-mail: (JY); (MM)
| | - Keiko Takemoto
- Laboratory of Biological Protection, Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Kenji Sugata
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Yuichi Mitobe
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Norihiro Takenouchi
- Department of Microbiology, Kansai Medical University, Hirakata, Osaka, Japan
| | - Masanori Nakagawa
- North Medical Center, Kyoto Prefectural University of Medicine, Yosano-cho, Kyoto, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Masao Matsuoka
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto, Japan
- * E-mail: (JY); (MM)
| |
Collapse
|
40
|
Takebe N, Miele L, Harris PJ, Jeong W, Bando H, Kahn M, Yang SX, Ivy SP. Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: clinical update. Nat Rev Clin Oncol 2015; 12:445-64. [PMID: 25850553 PMCID: PMC4520755 DOI: 10.1038/nrclinonc.2015.61] [Citation(s) in RCA: 984] [Impact Index Per Article: 98.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During the past decade, cancer stem cells (CSCs) have been increasingly identified in many malignancies. Although the origin and plasticity of these cells remain controversial, tumour heterogeneity and the presence of small populations of cells with stem-like characteristics is established in most malignancies. CSCs display many features of embryonic or tissue stem cells, and typically demonstrate persistent activation of one or more highly conserved signal transduction pathways involved in development and tissue homeostasis, including the Notch, Hedgehog (HH), and Wnt pathways. CSCs generally have slow growth rates and are resistant to chemotherapy and/or radiotherapy. Thus, new treatment strategies targeting these pathways to control stem-cell replication, survival and differentiation are under development. Herein, we provide an update on the latest advances in the clinical development of such approaches, and discuss strategies for overcoming CSC-associated primary or acquired resistance to cancer treatment. Given the crosstalk between the different embryonic developmental signalling pathways, as well as other pathways, designing clinical trials that target CSCs with rational combinations of agents to inhibit possible compensatory escape mechanisms could be of particular importance. We also share our views on the future directions for targeting CSCs to advance the clinical development of these classes of agents.
Collapse
Affiliation(s)
- Naoko Takebe
- Investigational Drug Branch, Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institute of Health, 9609 Medical Center Drive MSC9739, Bethesda, MD 20852, USA (N.T., P.J.H., S.P.I.). Stanley Scott Cancer Center, Louisiana State University Health Sciences Center and Louisiana Cancer Research Consortium, USA (L.M.). Cancer Therapy and Research Center, University of Texas, USA (W.J.). Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Japan (H.B.). Norris Comprehensive Cancer Research Center, University of Southern California, USA (M.K.). National Clinical Target Validation Laboratory, Division of Cancer Treatment and Diagnosis, National Cancer Institute, USA (S.X.Y.)
| | - Lucio Miele
- Investigational Drug Branch, Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institute of Health, 9609 Medical Center Drive MSC9739, Bethesda, MD 20852, USA (N.T., P.J.H., S.P.I.). Stanley Scott Cancer Center, Louisiana State University Health Sciences Center and Louisiana Cancer Research Consortium, USA (L.M.). Cancer Therapy and Research Center, University of Texas, USA (W.J.). Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Japan (H.B.). Norris Comprehensive Cancer Research Center, University of Southern California, USA (M.K.). National Clinical Target Validation Laboratory, Division of Cancer Treatment and Diagnosis, National Cancer Institute, USA (S.X.Y.)
| | - Pamela Jo Harris
- Investigational Drug Branch, Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institute of Health, 9609 Medical Center Drive MSC9739, Bethesda, MD 20852, USA (N.T., P.J.H., S.P.I.). Stanley Scott Cancer Center, Louisiana State University Health Sciences Center and Louisiana Cancer Research Consortium, USA (L.M.). Cancer Therapy and Research Center, University of Texas, USA (W.J.). Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Japan (H.B.). Norris Comprehensive Cancer Research Center, University of Southern California, USA (M.K.). National Clinical Target Validation Laboratory, Division of Cancer Treatment and Diagnosis, National Cancer Institute, USA (S.X.Y.)
| | - Woondong Jeong
- Investigational Drug Branch, Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institute of Health, 9609 Medical Center Drive MSC9739, Bethesda, MD 20852, USA (N.T., P.J.H., S.P.I.). Stanley Scott Cancer Center, Louisiana State University Health Sciences Center and Louisiana Cancer Research Consortium, USA (L.M.). Cancer Therapy and Research Center, University of Texas, USA (W.J.). Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Japan (H.B.). Norris Comprehensive Cancer Research Center, University of Southern California, USA (M.K.). National Clinical Target Validation Laboratory, Division of Cancer Treatment and Diagnosis, National Cancer Institute, USA (S.X.Y.)
| | - Hideaki Bando
- Investigational Drug Branch, Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institute of Health, 9609 Medical Center Drive MSC9739, Bethesda, MD 20852, USA (N.T., P.J.H., S.P.I.). Stanley Scott Cancer Center, Louisiana State University Health Sciences Center and Louisiana Cancer Research Consortium, USA (L.M.). Cancer Therapy and Research Center, University of Texas, USA (W.J.). Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Japan (H.B.). Norris Comprehensive Cancer Research Center, University of Southern California, USA (M.K.). National Clinical Target Validation Laboratory, Division of Cancer Treatment and Diagnosis, National Cancer Institute, USA (S.X.Y.)
| | - Michael Kahn
- Investigational Drug Branch, Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institute of Health, 9609 Medical Center Drive MSC9739, Bethesda, MD 20852, USA (N.T., P.J.H., S.P.I.). Stanley Scott Cancer Center, Louisiana State University Health Sciences Center and Louisiana Cancer Research Consortium, USA (L.M.). Cancer Therapy and Research Center, University of Texas, USA (W.J.). Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Japan (H.B.). Norris Comprehensive Cancer Research Center, University of Southern California, USA (M.K.). National Clinical Target Validation Laboratory, Division of Cancer Treatment and Diagnosis, National Cancer Institute, USA (S.X.Y.)
| | - Sherry X. Yang
- Investigational Drug Branch, Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institute of Health, 9609 Medical Center Drive MSC9739, Bethesda, MD 20852, USA (N.T., P.J.H., S.P.I.). Stanley Scott Cancer Center, Louisiana State University Health Sciences Center and Louisiana Cancer Research Consortium, USA (L.M.). Cancer Therapy and Research Center, University of Texas, USA (W.J.). Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Japan (H.B.). Norris Comprehensive Cancer Research Center, University of Southern California, USA (M.K.). National Clinical Target Validation Laboratory, Division of Cancer Treatment and Diagnosis, National Cancer Institute, USA (S.X.Y.)
| | - S. Percy Ivy
- Investigational Drug Branch, Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institute of Health, 9609 Medical Center Drive MSC9739, Bethesda, MD 20852, USA (N.T., P.J.H., S.P.I.). Stanley Scott Cancer Center, Louisiana State University Health Sciences Center and Louisiana Cancer Research Consortium, USA (L.M.). Cancer Therapy and Research Center, University of Texas, USA (W.J.). Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Japan (H.B.). Norris Comprehensive Cancer Research Center, University of Southern California, USA (M.K.). National Clinical Target Validation Laboratory, Division of Cancer Treatment and Diagnosis, National Cancer Institute, USA (S.X.Y.)
| |
Collapse
|
41
|
Perotti EA, Georgopoulos K, Yoshida T. An Ikaros Promoter Element with Dual Epigenetic and Transcriptional Activities. PLoS One 2015; 10:e0131568. [PMID: 26135129 PMCID: PMC4489883 DOI: 10.1371/journal.pone.0131568] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 06/03/2015] [Indexed: 12/13/2022] Open
Abstract
Ikaros DNA binding factor plays critical roles in lymphocyte development. Changes in Ikaros expression levels during lymphopoiesis are controlled by redundant but also unique regulatory elements of its locus that are critical for this developmental process. We have recently shown that Ikaros binds its own locus in thymocytes in vivo. Here, we evaluated the role of an Ikaros binding site within its major lympho-myeloid promoter. We identified an Ikaros/Ets binding site within a promoter sub-region that was highly conserved in mouse and human. Deletion of this binding site increased the percentage of the reporter-expressing mouse lines, indicating that its loss provided a more permissive chromatin environment. However, once transcription was established, the lack of this site decreased transcriptional activity. These findings implicate a dual role for Ikaros/Ets1 binding on Ikzf1 expression that is exerted at least through its promoter.
Collapse
Affiliation(s)
- Elizabeth A. Perotti
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, United States of America
| | - Katia Georgopoulos
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, United States of America
| | - Toshimi Yoshida
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, United States of America
| |
Collapse
|
42
|
Tang LL, Zhang LY, Lao LJ, Hu QY, Gu WZ, Fu LC, Du LZ. Epigenetics of Notch1 regulation in pulmonary microvascular rarefaction following extrauterine growth restriction. Respir Res 2015; 16:66. [PMID: 26040933 PMCID: PMC4486133 DOI: 10.1186/s12931-015-0226-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 05/27/2015] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Extrauterine growth restriction (EUGR) plays an important role in the developmental origin of adult cardiovascular diseases. In an EUGR rat model, we reported an elevated pulmonary arterial pressure in adults and genome-wide epigenetic modifications in pulmonary vascular endothelial cells (PVECs). However, the underlying mechanism of the early nutritional insult that results in pulmonary vascular consequences later in life remains unclear. METHODS A rat model was used to investigate the physiological and structural effect of EUGR on early pulmonary vasculature by evaluating right ventricular systolic pressure and pulmonary vascular density in male rats. Epigenetic modifications of the Notch1 gene in PVECs were evaluated. RESULTS EUGR decreased pulmonary vascular density with no significant impact on right ventricular systolic pressure at 3 weeks. Decreased transcription of Notch1 was observed both at 3 and 9 weeks, in association with decreased downstream target gene, Hes-1. Chromatin immunoprecipitation and bisulfite sequencing were performed to analyze the epigenetic modifications of the Notch1 gene promoter in PVECs. EUGR caused a significantly increased H3K27me3 in the proximal Notch1 gene promoter, and increased methylation of single CpG sites in the distal Notch1 gene promoter, both at 3 and 9 weeks. CONCLUSIONS We conclude that EUGR results in decreased pulmonary vascular growth in association with decreased Notch1 in PVECs. This may be mediated by increased CpG methylation and H3K27me3 in the Notch1 gene promoter region.
Collapse
Affiliation(s)
- Li-Li Tang
- Department of Neonatology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310051, People's Republic of China.
| | - Li-Yan Zhang
- Department of Neonatology, The Children's Hospital of Fuzhou, Fujian Medical University, Fuzhou, 350004, People's Republic of China.
| | - Lin-Jiang Lao
- Department of Neonatology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310051, People's Republic of China.
| | - Qiong-Yao Hu
- Department of Neonatology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310051, People's Republic of China.
| | - Wei-Zhong Gu
- Department of Pathology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310051, People's Republic of China.
| | - Lin-Chen Fu
- Department of Neonatology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310051, People's Republic of China.
| | - Li-Zhong Du
- Department of Neonatology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310051, People's Republic of China.
| |
Collapse
|
43
|
Bottardi S, Mavoungou L, Milot E. IKAROS: a multifunctional regulator of the polymerase II transcription cycle. Trends Genet 2015; 31:500-8. [PMID: 26049627 DOI: 10.1016/j.tig.2015.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/06/2015] [Accepted: 05/07/2015] [Indexed: 11/16/2022]
Abstract
Transcription factors are important determinants of lineage specification during hematopoiesis. They favor recruitment of cofactors involved in epigenetic regulation, thereby defining patterns of gene expression in a development- and lineage-specific manner. Additionally, transcription factors can facilitate transcription preinitiation complex (PIC) formation and assembly on chromatin. Interestingly, a few lineage-specific transcription factors, including IKAROS, also regulate transcription elongation. IKAROS is a tumor suppressor frequently inactivated in leukemia and associated with a poor prognosis. It forms a complex with the nucleosome remodeling and deacetylase (NuRD) complex and the positive transcription elongation factor b (P-TEFb), which is required for productive transcription elongation. It has also been reported that IKAROS interacts with factors involved in transcription termination. Here we review these and other recent findings that establish IKAROS as the first transcription factor found to act as a multifunctional regulator of the transcription cycle in hematopoietic cells.
Collapse
Affiliation(s)
- Stefania Bottardi
- Maisonneuve-Rosemont Hospital Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC H1T 3W5, Canada; Department of Medicine, University of Montreal, 5415 boulevard l'Assomption, Montreal, QC H1T 2M4, Canada
| | - Lionel Mavoungou
- Maisonneuve-Rosemont Hospital Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC H1T 3W5, Canada; Department of Medicine, University of Montreal, 5415 boulevard l'Assomption, Montreal, QC H1T 2M4, Canada
| | - Eric Milot
- Maisonneuve-Rosemont Hospital Research Center, Maisonneuve-Rosemont Hospital, Montreal, QC H1T 3W5, Canada; Department of Medicine, University of Montreal, 5415 boulevard l'Assomption, Montreal, QC H1T 2M4, Canada.
| |
Collapse
|
44
|
Witkowski MT, Cimmino L, Hu Y, Trimarchi T, Tagoh H, McKenzie MD, Best SA, Tuohey L, Willson TA, Nutt SL, Busslinger M, Aifantis I, Smyth GK, Dickins RA. Activated Notch counteracts Ikaros tumor suppression in mouse and human T-cell acute lymphoblastic leukemia. Leukemia 2015; 29:1301-11. [PMID: 25655195 PMCID: PMC4845663 DOI: 10.1038/leu.2015.27] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 01/28/2015] [Accepted: 01/30/2015] [Indexed: 12/13/2022]
Abstract
Activating NOTCH1 mutations occur in ~60% of human T-cell acute lymphoblastic leukemias (T-ALLs), and mutations disrupting the transcription factor IKZF1 (IKAROS) occur in ~5% of cases. To investigate the regulatory interplay between these driver genes, we have used a novel transgenic RNA interference mouse model to produce primary T-ALLs driven by reversible Ikaros knockdown. Restoring endogenous Ikaros expression in established T-ALL in vivo acutely represses Notch1 and its oncogenic target genes including Myc, and in multiple primary leukemias causes disease regression. In contrast, leukemias expressing high levels of endogenous or engineered forms of activated intracellular Notch1 (ICN1) resembling those found in human T-ALL rapidly relapse following Ikaros restoration, indicating that ICN1 functionally antagonizes Ikaros in established disease. Furthermore, we find that IKAROS mRNA expression is significantly reduced in a cohort of primary human T-ALL patient samples with activating NOTCH1/FBXW7 mutations, but is upregulated upon acute inhibition of aberrant NOTCH signaling across a panel of human T-ALL cell lines. These results demonstrate for the first time that aberrant NOTCH activity compromises IKAROS function in mouse and human T-ALL, and provide a potential explanation for the relative infrequency of IKAROS gene mutations in human T-ALL.
Collapse
Affiliation(s)
- MT Witkowski
- Molecular Medicine Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - L Cimmino
- Molecular Medicine Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- Department of Pathology, NYU School of Medicine, New York, NY, USA
| | - Y Hu
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - T Trimarchi
- Department of Pathology, NYU School of Medicine, New York, NY, USA
| | - H Tagoh
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
| | - MD McKenzie
- Molecular Medicine Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - SA Best
- Molecular Medicine Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - L Tuohey
- Molecular Medicine Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - TA Willson
- Molecular Medicine Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - SL Nutt
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- Molecular Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - M Busslinger
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
| | - I Aifantis
- Department of Pathology, NYU School of Medicine, New York, NY, USA
| | - GK Smyth
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Mathematics and Statistics, University of Melbourne, Parkville, VIC, Australia
| | - RA Dickins
- Molecular Medicine Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
45
|
Krishnamoorthy V, Carr T, de Pooter RF, Emanuelle AO, Akinola EO, Gounari F, Kee BL. Repression of Ccr9 transcription in mouse T lymphocyte progenitors by the Notch signaling pathway. THE JOURNAL OF IMMUNOLOGY 2015; 194:3191-200. [PMID: 25710912 DOI: 10.4049/jimmunol.1402443] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The chemokine receptor CCR9 controls the immigration of multipotent hematopoietic progenitor cells into the thymus to sustain T cell development. Postimmigration, thymocytes downregulate CCR9 and migrate toward the subcapsular zone where they recombine their TCR β-chain and γ-chain gene loci. CCR9 is subsequently upregulated and participates in the localization of thymocytes during their selection for self-tolerant receptor specificities. Although the dynamic regulation of CCR9 is essential for early T cell development, the mechanisms controlling CCR9 expression have not been determined. In this article, we show that key regulators of T cell development, Notch1 and the E protein transcription factors E2A and HEB, coordinately control the expression of Ccr9. E2A and HEB bind at two putative enhancers upstream of Ccr9 and positively regulate CCR9 expression at multiple stages of T cell development. In contrast, the canonical Notch signaling pathway prevents the recruitment of p300 to the putative Ccr9 enhancers, resulting in decreased acetylation of histone H3 and a failure to recruit RNA polymerase II to the Ccr9 promoter. Although Notch signaling modestly modulates the binding of E proteins to one of the two Ccr9 enhancers, we found that Notch signaling represses Ccr9 in T cell lymphoma lines in which Ccr9 transcription is independent of E protein function. Our data support the hypothesis that activation of Notch1 has a dominant-negative effect on Ccr9 transcription and that Notch1 and E proteins control the dynamic expression of Ccr9 during T cell development.
Collapse
Affiliation(s)
- Veena Krishnamoorthy
- Committee on Molecular Pathogenesis and Molecular Medicine, The University of Chicago, Chicago, IL 60637
| | - Tiffany Carr
- Committee on Immunology, The University of Chicago, Chicago, IL 60637
| | - Renee F de Pooter
- Committee on Immunology, The University of Chicago, Chicago, IL 60637
| | | | | | - Fotini Gounari
- Committee on Immunology, The University of Chicago, Chicago, IL 60637; Section of Rheumatology, Department of Medicine, The University of Chicago, Chicago, IL 60637; and
| | - Barbara L Kee
- Committee on Molecular Pathogenesis and Molecular Medicine, The University of Chicago, Chicago, IL 60637; Committee on Immunology, The University of Chicago, Chicago, IL 60637; Department of Pathology, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
46
|
Doi K, Imai T, Kressler C, Yagita H, Agata Y, Vooijs M, Hamazaki Y, Inoue J, Minato N. Crucial role of the Rap G protein signal in Notch activation and leukemogenicity of T-cell acute lymphoblastic leukemia. Sci Rep 2015; 5:7978. [PMID: 25613394 PMCID: PMC4303867 DOI: 10.1038/srep07978] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 12/23/2014] [Indexed: 01/08/2023] Open
Abstract
The Rap G protein signal regulates Notch activation in early thymic progenitor cells, and deregulated Rap activation (Rap(high)) results in the development of Notch-dependent T-cell acute lymphoblastic leukemia (T-ALL). We demonstrate that the Rap signal is required for the proliferation and leukemogenesis of established Notch-dependent T-ALL cell lines. Attenuation of the Rap signal by the expression of a dominant-negative Rap1A17 or Rap1GAP, Sipa1, in a T-ALL cell line resulted in the reduced Notch processing at site 2 due to impaired maturation of Adam10. Inhibition of the Rap1 prenylation with a geranylgeranyl transferase inhibitor abrogated its membrane-anchoring to Golgi-network and caused reduced proprotein convertase activity required for Adam10 maturation. Exogenous expression of a mature form of Adam10 overcame the Sipa1-induced inhibition of T-ALL cell proliferation. T-ALL cell lines expressed Notch ligands in a Notch-signal dependent manner, which contributed to the cell-autonomous Notch activation. Although the initial thymic blast cells barely expressed Notch ligands during the T-ALL development from Rap(high) hematopoietic progenitors in vivo, the ligands were clearly expressed in the T-ALL cells invading extrathymic vital organs. These results reveal a crucial role of the Rap signal in the Notch-dependent T-ALL development and the progression.
Collapse
Affiliation(s)
- Keiko Doi
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Takahiko Imai
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Christopher Kressler
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Yasutoshi Agata
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Marc Vooijs
- Maastricht Radiation Oncology and School for Oncology and Developmental Biology, University of Maastricht, Maastricht, The Netherlands
| | - Yoko Hamazaki
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Joe Inoue
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Nagahiro Minato
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
47
|
Loss of IP3R-dependent Ca2+ signalling in thymocytes leads to aberrant development and acute lymphoblastic leukemia. Nat Commun 2014; 5:4814. [PMID: 25215520 DOI: 10.1038/ncomms5814] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 07/25/2014] [Indexed: 01/28/2023] Open
Abstract
Calcium ions (Ca(2+)) function as universal second messengers in eukaryotic cells, including immune cells. Ca(2+) is crucial for peripheral T-lymphocyte activation and effector functions, and influences thymocyte selection and motility in the developing thymus. However, the role of Ca(2+) signalling in early T-lymphocyte development is not well understood. Here we show that the inositol triphosphate receptors (IP3Rs) Ca(2+) ion channels are required for proliferation, survival and developmental progression of T-lymphocyte precursors. Our studies indicate that signalling via IP3Rs represses Sox13, an antagonist of the developmentally important transcription factor Tcf-1. In the absence of IP3R-mediated Ca(2+) signalling, repression of key Notch transcriptional targets--including Hes1--fail to occur in post β-selection thymocytes, and mice develop aggressive T-cell malignancies that resemble human T-cell acute lymphoblastic leukemia (T-ALL). These data indicate that IP3R-mediated Ca(2+) signalling reinforces Tcf-1 activity to both ensure normal development and prevent thymocyte neoplasia.
Collapse
|
48
|
Yoshida T, Georgopoulos K. Ikaros fingers on lymphocyte differentiation. Int J Hematol 2014; 100:220-9. [PMID: 25085254 DOI: 10.1007/s12185-014-1644-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 07/15/2014] [Accepted: 07/15/2014] [Indexed: 11/29/2022]
Abstract
The Ikaros family of DNA-binding proteins are critical regulators of lymphocyte differentiation. In multipotent, hematopoietic progenitors, Ikaros supports transcriptional priming of genes promoting lymphocyte differentiation. Ikaros targets the Nucleosome Remodeling Deacetylase (NuRD) complex to lymphoid lineage genes, thereby increasing chromatin accessibility and transcriptional priming. After lymphoid lineage specification, Ikaros expression is raised to levels characteristic of intermediate B cell and T cell precursors, which is necessary to support maturation and prevent leukemogenesis. Loss of Ikaros in T cell precursors allows the NuRD complex to repress lymphocyte genes and extends its targeting to genes that support growth and proliferation, causing their activation and triggering a cascade of events that leads to leukemogenesis. Loss of Ikaros in B cell precursors blocks differentiation and perpetuates stromal adhesion by enhancing integrin signaling. The combination of integrin and cytokine signaling in Ikaros-deficient pre-B cells promotes their survival and self-renewal. The stages of lymphocyte differentiation that are highly dependent on Ikaros are underscored by changes in Ikaros transcription, supported by a complex network of stage-specific regulatory networks that converge upon the Ikzf1 locus. It is increasingly apparent that understanding the regulatory networks that operate upstream and downstream of Ikaros is critical not only for our understanding of normal lymphopoiesis, but also in placing the right finger on the mechanisms that support hematopoietic malignancies in mouse and human.
Collapse
Affiliation(s)
- Toshimi Yoshida
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Bldg.149-3, 13th st, Charlestown, MA, 02129, USA,
| | | |
Collapse
|
49
|
Wu ZQ, Rowe RG, Lim KC, Lin Y, Willis A, Tang Y, Li XY, Nor JE, Maillard I, Weiss SJ. A Snail1/Notch1 signalling axis controls embryonic vascular development. Nat Commun 2014; 5:3998. [PMID: 24894949 PMCID: PMC4052376 DOI: 10.1038/ncomms4998] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 04/29/2014] [Indexed: 12/24/2022] Open
Abstract
Notch1-Delta-like 4 (Dll4) signaling controls vascular development by regulating endothelial cell (EC) targets that modulate vessel wall remodeling and arterial-venous specification. The molecular effectors that modulate Notch signaling during vascular development remain largely undefined. Here we demonstrate that the transcriptional repressor, Snail1, acts as a VEGF-induced regulator of Notch1 signaling and Dll4 expression. EC-specific Snail1 loss-of-function conditional knockout mice die in utero with defects in vessel wall remodeling in association with losses in mural cell investment and disruptions in arterial-venous specification. Snail1 loss-of-function conditional knockout embryos further display up-regulated Notch1 signaling and Dll4 expression that is partially reversed by inhibiting Ɣ-secretase activity in vivo with Dll4 identified as a direct target of Snail1-mediated transcriptional repression. These results document a Snail1-Dll4/Notch1 axis that controls embryonic vascular development.
Collapse
Affiliation(s)
- Zhao-Qiu Wu
- 1] Division of Molecular Medicine and Genetics, Department of Internal Medicine, Ann Arbor, Michigan 48109, USA [2] Life Sciences Institute, Ann Arbor, Michigan 48109, USA
| | - R Grant Rowe
- 1] Division of Molecular Medicine and Genetics, Department of Internal Medicine, Ann Arbor, Michigan 48109, USA [2] Life Sciences Institute, Ann Arbor, Michigan 48109, USA [3]
| | - Kim-Chew Lim
- Department of Cell and Developmental Biology, Ann Arbor, Michigan 48109, USA
| | - Yongshun Lin
- 1] Division of Molecular Medicine and Genetics, Department of Internal Medicine, Ann Arbor, Michigan 48109, USA [2] Life Sciences Institute, Ann Arbor, Michigan 48109, USA [3]
| | - Amanda Willis
- Life Sciences Institute, Ann Arbor, Michigan 48109, USA
| | - Yi Tang
- 1] Division of Molecular Medicine and Genetics, Department of Internal Medicine, Ann Arbor, Michigan 48109, USA [2] Life Sciences Institute, Ann Arbor, Michigan 48109, USA
| | - Xiao-Yan Li
- 1] Division of Molecular Medicine and Genetics, Department of Internal Medicine, Ann Arbor, Michigan 48109, USA [2] Life Sciences Institute, Ann Arbor, Michigan 48109, USA
| | - Jacques E Nor
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Ivan Maillard
- 1] Life Sciences Institute, Ann Arbor, Michigan 48109, USA [2] Department of Cell and Developmental Biology, Ann Arbor, Michigan 48109, USA [3] Division of Hematology-Oncology, Department of Medicine, Ann Arbor, Michigan 48109, USA
| | - Stephen J Weiss
- 1] Division of Molecular Medicine and Genetics, Department of Internal Medicine, Ann Arbor, Michigan 48109, USA [2] Life Sciences Institute, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
50
|
Martins VC, Busch K, Juraeva D, Blum C, Ludwig C, Rasche V, Lasitschka F, Mastitsky SE, Brors B, Hielscher T, Fehling HJ, Rodewald HR. Cell competition is a tumour suppressor mechanism in the thymus. Nature 2014; 509:465-70. [PMID: 24828041 DOI: 10.1038/nature13317] [Citation(s) in RCA: 182] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 04/10/2014] [Indexed: 02/06/2023]
Abstract
Cell competition is an emerging principle underlying selection for cellular fitness during development and disease. Competition may be relevant for cancer, but an experimental link between defects in competition and tumorigenesis is elusive. In the thymus, T lymphocytes develop from precursors that are constantly replaced by bone-marrow-derived progenitors. Here we show that in mice this turnover is regulated by natural cell competition between 'young' bone-marrow-derived and 'old' thymus-resident progenitors that, although genetically identical, execute differential gene expression programs. Disruption of cell competition leads to progenitor self-renewal, upregulation of Hmga1, transformation, and T-cell acute lymphoblastic leukaemia (T-ALL) resembling the human disease in pathology, genomic lesions, leukaemia-associated transcripts, and activating mutations in Notch1. Hence, cell competition is a tumour suppressor mechanism in the thymus. Failure to select fit progenitors through cell competition may explain leukaemia in X-linked severe combined immune deficiency patients who showed thymus-autonomous T-cell development after therapy with gene-corrected autologous progenitors.
Collapse
Affiliation(s)
- Vera C Martins
- 1] Division of Cellular Immunology, German Cancer Research Center, D-69120 Heidelberg, Germany [2] Institute of Immunology, University of Ulm, D-89081 Ulm, Germany
| | - Katrin Busch
- Division of Cellular Immunology, German Cancer Research Center, D-69120 Heidelberg, Germany
| | - Dilafruz Juraeva
- Division of Theoretical Bioinformatics, German Cancer Research Center, D-69120 Heidelberg, Germany
| | - Carmen Blum
- Institute of Immunology, University of Ulm, D-89081 Ulm, Germany
| | - Carolin Ludwig
- Institute of Immunology, University of Ulm, D-89081 Ulm, Germany
| | - Volker Rasche
- Core Facility Small Animal MRI, University of Ulm, D-89081 Ulm, Germany
| | - Felix Lasitschka
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany
| | - Sergey E Mastitsky
- Division of Theoretical Bioinformatics, German Cancer Research Center, D-69120 Heidelberg, Germany
| | - Benedikt Brors
- Division of Theoretical Bioinformatics, German Cancer Research Center, D-69120 Heidelberg, Germany
| | - Thomas Hielscher
- Division of Biostatistics, German Cancer Research Center, D-69120 Heidelberg, Germany
| | | | - Hans-Reimer Rodewald
- Division of Cellular Immunology, German Cancer Research Center, D-69120 Heidelberg, Germany
| |
Collapse
|