1
|
Francos-Quijorna I, López-González N, Caro-Canton M, Sánchez-Fernández A, Hernández-Mir G, López-Vales R. Lack of effects of Resolvin D1 after spinal cord injury in mice. Exp Neurol 2025; 388:115226. [PMID: 40120661 DOI: 10.1016/j.expneurol.2025.115226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/09/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025]
Abstract
Inflammation is a fundamental component of the body's response to injury or infection and is responsible for restoring tissue homeostasis and starting the wound healing process. To avoid excessive tissue damage, it is important to efficiently resolve inflammation once it is no longer necessary. In recent years, the discovery of pro-resolving lipid mediators derived from polyunsaturated fatty acids, such as Resolvin D1 (RvD1), has shed light on the resolution of inflammation. However, the impact of RvD1 on Spinal Cord Injury (SCI) remains unexplored. In this study, we provide direct evidence that the administration of RvD1 for one week after SCI fails to enhance resolution of inflammation and does not improve functional and histological outcomes. Our transcriptomic analysis reveals that RvD1 does not modulate inflammatory response pathways in the injured spinal cord but leads to significant changes in the expression of genes related to ribosomal function and extracellular matrix pathways. Unlike SCI, RvD1 treatment ameliorated neurological deficits in experimental autoimmune encephalomyelitis. Our findings represent the first report demonstrating that RvD1 treatment does not exert therapeutic actions in the context of SCI and suggest that this pro-resolving agonist may exert therapeutic actions in certain but not in all conditions involving an inflammatory component.
Collapse
Affiliation(s)
- Isaac Francos-Quijorna
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Institut de Neurociències, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Bellaterra, 08193, Catalonia, Spain
| | - Néstor López-González
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Institut de Neurociències, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Bellaterra, 08193, Catalonia, Spain
| | - Marc Caro-Canton
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Institut de Neurociències, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Bellaterra, 08193, Catalonia, Spain
| | - Alba Sánchez-Fernández
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Institut de Neurociències, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Bellaterra, 08193, Catalonia, Spain
| | - Gerard Hernández-Mir
- Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine, Queen Mary University of London, London E1 2AT, UK
| | - Rubèn López-Vales
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Institut de Neurociències, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Bellaterra, 08193, Catalonia, Spain.
| |
Collapse
|
2
|
Xu R, Molenaar AJ, Chen Z, Yuan Y. Mode and Mechanism of Action of Omega-3 and Omega-6 Unsaturated Fatty Acids in Chronic Diseases. Nutrients 2025; 17:1540. [PMID: 40362847 PMCID: PMC12073370 DOI: 10.3390/nu17091540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/26/2025] [Accepted: 04/27/2025] [Indexed: 05/15/2025] Open
Abstract
Unsaturated fatty acids, particularly omega-3 and omega-6 polyunsaturated fatty acids, have garnered increasing scientific interest due to their therapeutic potential in chronic disease management. Dietary sources such as milk provide essential unsaturated fatty acids, including linoleic acid and α-linolenic acid. Current evidence indicates that these compounds and their derivatives regulate critical physiological processes, such as neurodevelopment, visual function, immune modulation, and cardiovascular homeostasis. Their multifunctional roles encompass the structural maintenance of biological membranes, cardioprotective effects, anti-inflammatory and anti-tumor activities, and metabolic regulation. However, despite established associations between unsaturated fatty acids and chronic diseases, the mechanistic contributions of omega-3 and omega-6 polyunsaturated fatty acids to complex neuropsychiatric disorders remain poorly characterized. Furthermore, the controversial role of omega-6 polyunsaturated fatty acids in chronic disease pathogenesis necessitates urgent clarification. This review systematically examines the structural properties, molecular mechanisms, and therapeutic applications of omega-3 and omega-6 polyunsaturated fatty acids in cardiovascular diseases, diabetes, cancer, dermatological conditions, neurodegenerative disorders, and depression. By integrating recent advances in dietary science, this work aims to address knowledge gaps in their neuropsychiatric implications and refine evidence-based strategies for chronic disease intervention through optimized nutritional approaches.
Collapse
Affiliation(s)
- Runcen Xu
- Medical College, Yangzhou University, Yangzhou 225009, China;
| | - Adrian J. Molenaar
- Rumen Microbiology and Animal Nutrition and Physiology, Grasslands Research Centre, AgResearch, Fitzherbert, Palmerston North 4410, New Zealand;
| | - Zhi Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yuan Yuan
- School of Nursing and School of Public Health, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
3
|
Jiang F, Tu J, Luo W, Jia Y, Luo Q, Ye J. Identification of circulating metabolites associated with chronic rhinosinusitis using Mendelian randomization analysis. Braz J Otorhinolaryngol 2025; 91:101626. [PMID: 40286593 PMCID: PMC12056403 DOI: 10.1016/j.bjorl.2025.101626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 02/17/2025] [Accepted: 03/10/2025] [Indexed: 04/29/2025] Open
Abstract
OBJECTIVE This study aims to employ Mendelian Randomization (MR) analysis to investigate causal relationships between serum metabolites and CRS, identifying key pathogenic and protective factors and analyzing their mechanisms of action. METHODS Utilizing data from the Genome-Wide Association Studies (GWAS) database, employing two-sample MR analysis to investigate the potential causal relationship between 233 circulating metabolites with the occurrence of CRS. Inverse Variance Weighted (IVW) model, MR-Egger method, Weighted Median, and Weighted model were employed. Sensitivity analyses were conducted with Bonferroni correction. This research aims to elucidate the impact of metabolites on the development and progression of CRS, providing valuable insights into the underlying mechanisms. RESULTS Following MR analysis, two metabolites were significantly associated with CRS: Tyrosine (OR = 1.223; 95% CI 1.115-1.341; p = 1.96E-05) and Creatinine (OR = 1.208; 95% CI 1.103-1.322; p = 4.11E-05). These two key risk factors may be further studied for their pathogenesis and could be targeted for modulation in the treatment of CRS. However, there are several protective factors also worth exploring, among which the correlation is more significant: Ratio of conjugated linoleic acid to total fatty acids (OR = 0.809; 95% CI 0.708‒0.923; p = 1.73E-03), Albumin (OR = 0.787; 95% CI 0.670‒0.926; p = 3.76E-03),Conjugated linoleic acid (OR = 0.664; 95% CI 0.491‒0.898; p = 7.85E-03), Diacylglycerol (OR = 0.804; 95% CI 0.654‒0.989; p = 3.87E-02), Apolipoprotein A-I (OR = 0.915; 95% CI 0.845‒0.991; p = 2.89E-02). CONCLUSION In our MR study, we discovered 28 circulating metabolites linked to CRS. Importantly, tyrosine and creatinine were identified as the most significant contributors to the pathogenesis of CRS, highlighting their potential as therapeutic targets. Additionally, several protective factors may offer new avenues for preventive strategies and therapeutic interventions. These findings underscore the clinical relevance of targeting these metabolites to modulate CRS progression and improve patient outcomes. LEVEL OF EVIDENCE Level 2*.1.
Collapse
Affiliation(s)
- Fan Jiang
- Nanchang University, Jiangxi Medical College, The First Affiliated Hospital, Department of Otorhinolaryngology, Head and Neck Surgery, Nanchang, Jiangxi Province, China
| | - Junhao Tu
- Nanchang University, Jiangxi Medical College, The First Affiliated Hospital, Department of Otorhinolaryngology, Head and Neck Surgery, Nanchang, Jiangxi Province, China
| | - Wenqi Luo
- Nanchang University, Jiangxi Medical College, The First Affiliated Hospital, Department of Otorhinolaryngology, Head and Neck Surgery, Nanchang, Jiangxi Province, China
| | - Yizhen Jia
- Nanchang University, Jiangxi Medical College, The First Affiliated Hospital, Department of Otorhinolaryngology, Head and Neck Surgery, Nanchang, Jiangxi Province, China
| | - Qing Luo
- Nanchang University, Jiangxi Medical College, The First Affiliated Hospital, Department of Otorhinolaryngology, Head and Neck Surgery, Nanchang, Jiangxi Province, China; Nanchang University, Jiangxi Medical College, The First Affiliated Hospital, Department of Allergy, Nanchang, Jiangxi Province, China
| | - Jing Ye
- Nanchang University, Jiangxi Medical College, The First Affiliated Hospital, Department of Otorhinolaryngology, Head and Neck Surgery, Nanchang, Jiangxi Province, China; Jiangxi Medicine Academy of Nutrition and Health Management, Nanchang, Jiangxi Province, China; Nanchang University, Jiangxi Medical College, The First Affiliated Hospital, Department of Allergy, Nanchang, Jiangxi Province, China; Nanchang University, Jiangxi Medical College, The First Affiliated Hospital, Institute of Otorhinolaryngology, Nanchang, Jiangxi Province, China.
| |
Collapse
|
4
|
Tian S, Guo T, Qian F, Qiu Z, Lu Q, Li R, Zhu K, Li L, Yu H, Li R, Ou Y, Pan A, Liu G. Fish Oil, Plasma n-3 PUFAs, and Risk of Macro- and Microvascular Complications Among Individuals With Type 2 Diabetes. J Clin Endocrinol Metab 2025; 110:e1687-e1696. [PMID: 38994586 DOI: 10.1210/clinem/dgae482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/29/2024] [Accepted: 07/10/2024] [Indexed: 07/13/2024]
Abstract
OBJECTIVE To evaluate associations of fish oil supplementation and plasma omega 3 polyunsaturated fatty acids (n-3 PUFAs) with risks of macrovascular and microvascular complications among people with type 2 diabetes and to further explore the potential mediating role of metabolism-related biomarkers. RESEARCH DESIGN AND METHODS This study included 20 338 participants with type 2 diabetes from the UK Biobank. Diabetic complications were identified through hospital inpatient records. RESULTS During 13.2 years of follow-up, 5396 people developed macrovascular complications, and 4868 people developed microvascular complications. After multivariable adjustment, hazard ratios (HRs) and 95% confidence intervals (CIs) for patients with fish oil were 0.90 (0.85, 0.97) for composite macrovascular complications, 0.91 (0.84, 0.98) for coronary heart disease (CHD), 0.72 (0.61, 0.83) for peripheral artery disease and 0.89 (0.83, 0.95) for composite microvascular complications, 0.87 (0.79, 0.95) for diabetic kidney disease, and 0.88 (0.80, 0.97) for diabetic retinopathy. In addition, higher n-3 PUFA levels, especially docosahexaenoic acid (DHA), were associated with lower risks of macrovascular and microvascular complications. Comparing extreme quartiles of plasma DHA, the HRs (95% CIs) were 0.68 (0.57, 0.81) for composite macrovascular complications, 0.63 (0.51, 0.77) for CHD, and 0.59 (0.38, 0.91) for diabetic neuropathy. Moreover, biomarkers including lipid profile and inflammatory markers collectively explained 54.4% and 63.1% of associations of plasma DHA with risks of composite macrovascular complications and CHD. CONCLUSION Habitual use of fish oil supplementation and higher plasma n-3 PUFA levels, especially DHA, were associated with lower risks of macrovascular and microvascular complications among individuals with type 2 diabetes, and the favorable associations were partially mediated through improving biomarkers of lipid profile and inflammation.
Collapse
Affiliation(s)
- Shufan Tian
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Lab of Environment and Health, and State Key Laboratory of Environment Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tianyu Guo
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Lab of Environment and Health, and State Key Laboratory of Environment Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Frank Qian
- Section of Cardiovascular Medicine, Boston Medical Center and Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Zixin Qiu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Lab of Environment and Health, and State Key Laboratory of Environment Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qi Lu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Lab of Environment and Health, and State Key Laboratory of Environment Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Rui Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Lab of Environment and Health, and State Key Laboratory of Environment Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kai Zhu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Lab of Environment and Health, and State Key Laboratory of Environment Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lin Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Lab of Environment and Health, and State Key Laboratory of Environment Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hancheng Yu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Lab of Environment and Health, and State Key Laboratory of Environment Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ruyi Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Lab of Environment and Health, and State Key Laboratory of Environment Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yunjing Ou
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Lab of Environment and Health, and State Key Laboratory of Environment Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - An Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Gang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Lab of Environment and Health, and State Key Laboratory of Environment Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
5
|
Rispoli RM, Popolo A, De Fabrizio V, d’Emmanuele di Villa Bianca R, Autore G, Dalli J, Marzocco S. Targeting Inflammatory Imbalance in Chronic Kidney Disease: Focus on Anti-Inflammatory and Resolution Mediators. Int J Mol Sci 2025; 26:3072. [PMID: 40243751 PMCID: PMC11989065 DOI: 10.3390/ijms26073072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/20/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
Chronic kidney disease (CKD) is a condition caused by the gradual decline of renal function that approximatively affects 10-12% of the world population, thus representing a public health priority. In CKD patients, chronic and systemic low-grade inflammation is observed, and it significantly contributes to disease development and progression, especially for patients with advanced disease. It also results in CKD-associated complications and increased mortality. The low-grade inflammation is due to different factors, such as the decline of glomerular filtration rate, increased immune system activation, reactive oxygen species release, and intestinal homeostasis. Therefore, the possibility to control chronic low-grade inflammation in CKD deserves great attention. In this review, we will examine the current possible pharmacological approaches to counteract the inflammatory state in CKD, focusing our attention both on the pro-inflammatory factors and the pro-resolving mediators involved in CKD inflammatory state.
Collapse
Affiliation(s)
- Rosaria Margherita Rispoli
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (R.M.R.); (A.P.); (V.D.F.); (G.A.)
- PhD Program in Drug Discovery and Development, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Ada Popolo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (R.M.R.); (A.P.); (V.D.F.); (G.A.)
| | - Vincenzo De Fabrizio
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (R.M.R.); (A.P.); (V.D.F.); (G.A.)
- PhD Program in Drug Discovery and Development, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | | | - Giuseppina Autore
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (R.M.R.); (A.P.); (V.D.F.); (G.A.)
| | - Jesmond Dalli
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London E1 4NS, UK;
- Centre of Inflammation and Therapeutic Innovation, Queen Mary University of London, London E1 4NS, UK
| | - Stefania Marzocco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (R.M.R.); (A.P.); (V.D.F.); (G.A.)
| |
Collapse
|
6
|
Watanabe K, Yamano M, Miyamoto J, Ohue-Kitano R, Masujima Y, Sasahara D, Mouri Y, Kono N, Inuki S, Osakada F, Nagaoka K, Aoki J, Sugiura Y, Ohno H, Kondoh E, Kimura I. Maternal progesterone and adipose mPRε in pregnancy regulate the embryonic nutritional state. Cell Rep 2025; 44:115433. [PMID: 40085645 DOI: 10.1016/j.celrep.2025.115433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/21/2025] [Accepted: 02/24/2025] [Indexed: 03/16/2025] Open
Abstract
Sex steroid hormones such as progesterone play a pivotal role in reproductive functions and maintaining pregnancy; however, the impact of progesterone on the interaction between mother and embryo is unclear. Here, we demonstrate that the relationship between maternal progesterone and membrane progesterone receptor epsilon (mPRε) in adipose tissue regulates embryonic nutritional environment and growth after birth in mice. The activation of adipose mPRε by increased progesterone during pregnancy enhances maternal insulin resistance via prostaglandin production, efficiently providing glucose to embryos. Correspondingly, the offspring of mPRε-deficient mothers exhibited metabolic dysfunction, whereas mPRε-deficient mothers with high-fat diet-induced obesity exhibited improved insulin sensitivity. These findings establish the importance of progesterone as a nutritional regulator between mother and embryo. Additionally, mPRε may represent a modulator for treating pregnant glycemic control disorders such as gestational diabetes mellitus, as well as metabolic syndrome in offspring.
Collapse
Affiliation(s)
- Keita Watanabe
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mayu Yamano
- Department of Molecular Endocrinology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Junki Miyamoto
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Ryuji Ohue-Kitano
- Department of Biological & Environmental Chemistry, Kindai University, 11-6 Kayanomori, Iizuka City, Fukuoka 820-8555, Japan
| | - Yuki Masujima
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Daiki Sasahara
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; Noster Inc., Kamiueno, Muko-shi, Kyoto 617-0006, Japan
| | - Yuki Mouri
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Nozomu Kono
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shunsuke Inuki
- Department of Bioorganic Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Fumitaka Osakada
- Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan; Laboratory of Neural Information Processing, Institute for Advanced Research, Nagoya University, Nagoya 464-8601, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Kentaro Nagaoka
- AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo 100-0004, Japan; Laboratory of Veterinary Physiology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Junken Aoki
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Department of Moonshot Research and Development Program, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0076, Japan
| | - Yuki Sugiura
- Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroaki Ohno
- Department of Bioorganic Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Eiji Kondoh
- Laboratory of Neural Information Processing, Institute for Advanced Research, Nagoya University, Nagoya 464-8601, Japan; Department of Obstetrics and Gynecology, Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-Ku, Kumamoto City, Kumamoto 860-8556, Japan
| | - Ikuo Kimura
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; Department of Molecular Endocrinology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo 100-0004, Japan; Department of Moonshot Research and Development Program, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0076, Japan.
| |
Collapse
|
7
|
He Q, Bennett AN, Zhang C, Zhang JY, Tong S, Chan KHK. Nutritional interventions for preventing cognitive decline in patients with mild cognitive impairment and Alzheimer's disease: A comprehensive network meta-analysis and Mendelian Randomization study. Clin Nutr ESPEN 2025; 67:555-566. [PMID: 40147763 DOI: 10.1016/j.clnesp.2025.03.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND As the population ages rapidly, cognitive impairment, especially in conditions like Alzheimer's disease (AD) and mild cognitive impairment (MCI), has become a crucial public health issue. Nutritional interventions have garnered attention as a promising non-pharmacological strategy for maintaining cognitive function and decelerating its decline. OBJECTIVE This study aimed to evaluate the effectiveness of various nutritional interventions in preventing cognitive impairment and elucidate intricate biological pathways linking nutritional interventions to cognitive function through a comprehensive approach involving systematic review, network meta-analysis (NMA), and Mendelian randomization (MR) analysis. METHODS We utilized pair-wise comparisons and NMA to evaluate the efficacy of different nutritional interventions on cognitive function in patients with decreased cognitive abilities. A systematic search in three biomedical databases was performed for double-blinded, randomized controlled trials (RCTs) or head-to-head comparisons up to December 31, 2024. The NMA has been registered at the International Prospective Register of Systematic Reviews (PROSPERO; CRD42022331173). Moreover, to clarify the biological mechanisms linking nutritional interventions to cognitive impairment, we conducted two-sample MR analyses to assess the potential causal relationships between 9 genetically predicted nutrient levels derived from extensive genome-wide association studies (GWASs) and 12 biomarkers linked to brain aging. RESULTS This study encompassed 52 trials with 8452 participants, 9 GWASs examining genetically predicted nutrient levels with a total of 603,996 participants, and 12 GWASs investigating brain aging biomarkers with a total of 2,405,530 participants. The NMA demonstrated that the multi-ingredient intervention outperformed other interventions significantly (standardized mean difference [SMD] = 2.03; 95 % credible interval [95 % CrI] = 0.97-3.09, P = 0.0002). In the MR analysis, the findings indicated that the multi-ingredient intervention was linked to reduced C-reactive protein (CRP) levels (odds ratios [OR] = 0.96, 95 % confidence interval [95 % CI] = 0.93-0.99, P = 0.014), suggesting that the multi-ingredient intervention may mitigate cognitive impairment by reducing inflammation. CONCLUSIONS Our NMA amalgamated evidence underscoring multi-ingredient interventions as the most efficacious strategy for attenuating cognitive decline in individuals with MCI and AD. Furthermore, the MR analysis unveiled the mechanisms underpinning the protective effects of multi-ingredient interventions, potentially offering benefits even in the early stages of neurodegeneration by mitigating oxidative stress and inflammation.
Collapse
Affiliation(s)
- Qian He
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Adam N Bennett
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Chuyun Zhang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Jia Yue Zhang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Shuyao Tong
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Kei Hang Katie Chan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong Special Administrative Region of China; Department of Electrical Engineering, City University of Hong Kong, Hong Kong Special Administrative Region of China; Department of Epidemiology, Centre for Global Cardiometabolic Health, Brown University, RI, USA.
| |
Collapse
|
8
|
Nguyen DC, Stephan JK, Brainard RE, Brittian KR, Luque LG, Wells CK, Taylor MS, Martinez-Ondaro Y, Gouwens KR, Little DT, Boyd N, Singhal RA, Hellmann J, Wysoczynski M, Hill BG. TGFβ-activated kinase 1 signaling controls acquisition of the inflammatory fibroblast phenotype and regulates cardiac remodeling after myocardial infarction. RESEARCH SQUARE 2025:rs.3.rs-6122755. [PMID: 40162230 PMCID: PMC11952645 DOI: 10.21203/rs.3.rs-6122755/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Organ health and function depend on communication between cell types to coordinate tissue growth and repair. Recent studies have indicated that fibroblasts are critical to this process; however, their role in regulating inflammatory responses to injury have remained ambiguous. Here, we demonstrate that transforming growth factor β-activated kinase 1 (TAK1) is a gatekeeper of the inflammatory cardiac fibroblast phenotype. We find that TAK1 propagates IL-1β and TNF-α signaling in cardiac fibroblasts and coordinates the synthesis and secretion of chemokines as well as inflammatory and pro-resolving lipid mediators. Deletion of TAK1 in fibroblasts decreased immune cell recruitment after MI, which was associated with improved cardiac structural and functional remodeling in male mice. Nevertheless, we found the effects of TAK1 deletion to be sexually dimorphic in nature, providing support to the idea that the protected phenotype of the female sex may be based in disparate immune and inflammatory responses. Moreover, TAK1 signaling controlled the acquisition of novel markers of the inflammatory fibroblast phenotype, having a biological basis in redox stress, chemokine and lipid mediator biosynthesis, metalloproteinase activity, and damage-associated molecular pattern recognition. Collectively, these results further resolve the nature and function of inflammatory cardiac fibroblasts in cardiac responses to injury and identify TAK1 signaling in fibroblasts as a potential target for therapy.
Collapse
Affiliation(s)
- Daniel C. Nguyen
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, Louisville, KY
- Department of Physiology, University of Louisville, Louisville, KY
| | - Jonah K. Stephan
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, Louisville, KY
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY
| | | | - Kenneth R. Brittian
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, Louisville, KY
| | - Lianay Gutierrez Luque
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, Louisville, KY
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY
| | - Collin K. Wells
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, Louisville, KY
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY
| | - Madison S. Taylor
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, Louisville, KY
| | - Yania Martinez-Ondaro
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, Louisville, KY
| | - Kara R. Gouwens
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, Louisville, KY
- Department of Physiology, University of Louisville, Louisville, KY
| | - Danielle T. Little
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, Louisville, KY
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY
| | - Nolan Boyd
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, Louisville, KY
| | - Richa A. Singhal
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, Louisville, KY
| | - Jason Hellmann
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, Louisville, KY
| | - Marcin Wysoczynski
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, Louisville, KY
| | - Bradford G. Hill
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, School of Medicine, University of Louisville, Louisville, KY
| |
Collapse
|
9
|
Giacconi R, Pirazzini C, Bacalini MG, Garagnani P, Capri M, Franceschi C, Fortunato C, Pazmay GVB, Bürkle A, Villanueva MM, Cardelli M, Piacenza F, Cecati M, Cianfruglia L, Dollé MET, Jansen E, Grune T, Gonos ES, Weinberger B, Sikora E, Zampieri M, Caiafa P, Ciccarone F, Reale A, Debacq-Chainiaux F, Stuetz W, Hurme M, Slagboom PE, Bernhardt J, Olivieri F, Malavolta M. Association of Cytomegalovirus Serostatus with ELOVL2 Methylation: Implications for Lipid Metabolism, Inflammation, DNA Damage, and Repair Capacity in the MARK-AGE Study Population. Mech Ageing Dev 2025:112043. [PMID: 40024396 DOI: 10.1016/j.mad.2025.112043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/19/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
Cytomegalovirus (CMV) infection has been linked to accelerated biological aging, potentially increasing the risk of cardiovascular disease. DNA methylation of the gene Elongation Of Very Long Chain Fatty Acids-Like 2 (ELOVL2) is a molecular biomarker for aging, and its gene product is involved in polyunsaturated fatty acid synthesis, which impacts immune and inflammatory responses. This study, conducted in the MARK-AGE population, aimed to investigate the relationship between CMV infection and ELOVL2 methylation in adults aged 35-75, as well as the influence of CMV IgG levels on lipid metabolism, inflammation, DNA damage, and DNA repair. Our data revealed a higher prevalence of ischemic heart disease, atrial fibrillation, hypertension, and diabetes in CMV-positive individuals. CMV IgG levels were positively associated with ELOVL2 methylation at specific CpG sites and with increased expression of DNA methyltransferase-1 (DNMT1). CMV IgG was linked to lipid imbalances, such as increased BMI, VLDL-cholesterol, triglycerides, and HDL1-cholesterol. Additionally, ELOVL2 methylation was associated with systemic inflammation markers, lipid parameters and altered T-cell subsets. A negative correlation was observed between CMV IgG levels and both baseline DNA integrity and repair capacity. These results suggest that CMV infection might promote cardiovascular disease through ELOVL2 hypermethylation, lipid dysregulation, inflammation, and DNA damage.
Collapse
Affiliation(s)
- Robertina Giacconi
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, Ancona, Italy.
| | - Chiara Pirazzini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Maria Giulia Bacalini
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Paolo Garagnani
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Miriam Capri
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy; Interdepartmental Center - Alma Mater Research Institute on Global Challenges and Climate Change - University of Bologna, Bologna, Italy
| | - Claudio Franceschi
- Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod, Russia, 603022
| | - Carlo Fortunato
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, Ancona, Italy
| | | | - Alexander Bürkle
- Molecular Toxicology Group, Department of Biology, Box 628, University of Konstanz, 78457 Konstanz, Germany
| | - María Moreno Villanueva
- Molecular Toxicology Group, Department of Biology, Box 628, University of Konstanz, 78457 Konstanz, Germany; Human Performance Research Centre, Department of Sport Science, Box 30, University of Konstanz, 78457 Konstanz, Germany
| | - Maurizio Cardelli
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, Ancona, Italy
| | - Francesco Piacenza
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, Ancona, Italy
| | - Monia Cecati
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, Ancona, Italy
| | - Laura Cianfruglia
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, Ancona, Italy
| | - Martijn E T Dollé
- Centre for Health Protection, National Institute for Public Health and the Environment, PO Box 1, 3720 BA Bilthoven, the Netherlands
| | - Eugène Jansen
- Centre for Health Protection, National Institute for Public Health and the Environment, PO Box 1, 3720 BA Bilthoven, the Netherlands
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; University of Potsdam, Institute of Nutritional Science, Nuthetal, Germany
| | - Efstathios S Gonos
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, Athens, Greece
| | - Birgit Weinberger
- Institute for Biomedical Aging Research, Universität Innsbruck, Innsbruck, Austria
| | - Ewa Sikora
- Laboratory of the Molecular Bases of Ageing, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur street, 02-093 Warsaw, Poland
| | - Michele Zampieri
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Paola Caiafa
- Department of Cellular Biotechnologies and Haematology, Sapienza University of Rome, Rome, Italy
| | - Fabio Ciccarone
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy; Biochemistry of aging section, IRCCS San Raffaele Roma, Rome, Italy
| | - Anna Reale
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Wolfgang Stuetz
- Institute of Nutritional Sciences, Dept of Food Biofunctionality, University of Hohenheim, 70593, Stuttgart, Germany
| | - Mikko Hurme
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - P Eline Slagboom
- Department of Molecular Epidemiology, Leiden University Medical Centre, Leiden, the Netherlands
| | | | - Fabiola Olivieri
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, Ancona, Italy; Department of Clinical and Molecular Sciences, Disclimo, Università Politecnica delle Marche, Ancona, Italy
| | - Marco Malavolta
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, Ancona, Italy
| |
Collapse
|
10
|
Nađ T, Kolobarić N, Mihaljević Z, Drenjančević I, Šušnjara P, Stupin A, Kardum D, Kralik Z, Kralik G, Košević M, Jukić I. Effect of n-3 Polyunsaturated Fatty Acids Enriched Chicken Meat Consumption in Relation to Oxidative Stress Marker Levels in Young Healthy Individuals: A Randomized Double-Blind Study. Antioxidants (Basel) 2025; 14:204. [PMID: 40002390 PMCID: PMC11852193 DOI: 10.3390/antiox14020204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 01/31/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Oxidative stress and inflammation are considered important risk contributors for various diseases. Over the last few decades, increasing attention has been focused on the role of n-3 polyunsaturated fatty acids (n-3 PUFAs) in human health and disease. We aimed to evaluate the effect of n-3 PUFA-enriched chicken meat consumption (~1500 mg of n-3 PUFAs intake per day) for three weeks on oxidative status and antioxidative capacity in young healthy individuals. This was a randomized, double-blinded, controlled trial, in which thirty-nine young healthy people were randomly allocated to eating 500 g/day of regular chicken meat (Control group) or n-3 PUFA-enriched chicken meat (n-3 PUFAs group) over 3 weeks. Subjects' biochemical parameters, including serum lipids level, liver enzymes, serum activities of antioxidant enzymes (glutathione peroxidase (GPx), superoxide dismutase (SOD)), serum oxidative stress markers (thiobarbituric acid reactive substances (TBARS) and ferric-reducing ability (FRAP)), as well as intracellular production of reactive oxygen species (ROS) in peripheral blood mononuclear cells, were assessed before and after completing the three-week dietary protocol. N-3-enriched chicken meat consumption significantly reduced high-sensitivity C reactive protein (hsCRP) serum level and increased the level of the antioxidant defense marker, FRAP. Furthermore, GPx and SOD enzyme activities significantly increased in the n-3 PUFAs group compared to baseline, which was accompanied by significantly decreased ROS production. In healthy young individuals, the 3-week dietary intake of n-3 PUFA-enriched chicken meat significantly increased the serum total antioxidant and anti-inflammatory potential, indicating that n-3 PUFAs may be protective in resting health condition without inflammatory processes.
Collapse
Affiliation(s)
- Tihana Nađ
- Clinic of Pediatrics, University Hospital Centre Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia;
- Department of Pediatrics, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia;
| | - Nikolina Kolobarić
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia; (N.K.); (Z.M.); (I.D.); (A.S.)
- Scientific Centre of Excellence for Personalized Health Care, University of Osijek, Trg Sv. Trojstva 3, HR-31000 Osijek, Croatia; (Z.K.); (G.K.); (M.K.)
| | - Zrinka Mihaljević
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia; (N.K.); (Z.M.); (I.D.); (A.S.)
- Scientific Centre of Excellence for Personalized Health Care, University of Osijek, Trg Sv. Trojstva 3, HR-31000 Osijek, Croatia; (Z.K.); (G.K.); (M.K.)
| | - Ines Drenjančević
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia; (N.K.); (Z.M.); (I.D.); (A.S.)
- Scientific Centre of Excellence for Personalized Health Care, University of Osijek, Trg Sv. Trojstva 3, HR-31000 Osijek, Croatia; (Z.K.); (G.K.); (M.K.)
| | - Petar Šušnjara
- Faculty of Kinesiology, Josip Juraj Strossmayer University of Osijek, Drinska 16a, HR-31000 Osijek, Croatia;
| | - Ana Stupin
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia; (N.K.); (Z.M.); (I.D.); (A.S.)
- Scientific Centre of Excellence for Personalized Health Care, University of Osijek, Trg Sv. Trojstva 3, HR-31000 Osijek, Croatia; (Z.K.); (G.K.); (M.K.)
| | - Darjan Kardum
- Department of Pediatrics, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia;
- Department of Neonatology, Zadar General Hospital, B. Peričića 5, HR-23000 Zadar, Croatia
| | - Zlata Kralik
- Scientific Centre of Excellence for Personalized Health Care, University of Osijek, Trg Sv. Trojstva 3, HR-31000 Osijek, Croatia; (Z.K.); (G.K.); (M.K.)
- Department of Animal Production and Biotechnology, Faculty of Agrobiotechnical Sciences, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia
| | - Gordana Kralik
- Scientific Centre of Excellence for Personalized Health Care, University of Osijek, Trg Sv. Trojstva 3, HR-31000 Osijek, Croatia; (Z.K.); (G.K.); (M.K.)
- Department of Animal Production and Biotechnology, Faculty of Agrobiotechnical Sciences, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia
| | - Manuela Košević
- Scientific Centre of Excellence for Personalized Health Care, University of Osijek, Trg Sv. Trojstva 3, HR-31000 Osijek, Croatia; (Z.K.); (G.K.); (M.K.)
- Department of Animal Production and Biotechnology, Faculty of Agrobiotechnical Sciences, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia
| | - Ivana Jukić
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia; (N.K.); (Z.M.); (I.D.); (A.S.)
- Scientific Centre of Excellence for Personalized Health Care, University of Osijek, Trg Sv. Trojstva 3, HR-31000 Osijek, Croatia; (Z.K.); (G.K.); (M.K.)
| |
Collapse
|
11
|
Yamamoto Y, Narumi K, Yamagishi N, Yonejima Y, Iseki K, Kobayashi M, Kanai Y. HYA ameliorated postprandial hyperglycemia in type 1 diabetes model rats with bolus insulin treatment. Acta Diabetol 2025:10.1007/s00592-025-02459-6. [PMID: 39899133 DOI: 10.1007/s00592-025-02459-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 01/24/2025] [Indexed: 02/04/2025]
Abstract
AIMS The oral administration of linoleic acid immediately before glucose tolerance test (OGTT) ameliorated postprandial hyperglycemia via GPR120 pathway in normal and type 1 diabetes (T1DM) rats. Linoleic acid could promote inflammatory mediators, but 10-hydroxy-cis-12-octadecenoic acid (HYA) converted from linoleic acid by Lactobacillus plantarum has higher GPR120 agonistic activity without promoting inflammatory mediators. This study examined whether the oral-administration of HYA immediately before OGTT also ameliorated the postprandial hyperglycemia in normal rats and T1DM rats injected with bolus insulin. METHODS Normal and T1DM male Sprague-Dawley rats received HYA immediately before OGTT. Other T1DM rats were given HYA and Humulin R immediately before OGTT. We measured the concentration of glucose, insulin, glucagon-like peptide 1 (GLP-1) and cholecystokinin in blood before and after OGTT. We also measured the amount of glucose in the gastric tract after OGTT, and the amount of uptake of methyl-α-D-glucopyranoside in CACO-2 cells. RESULTS Postprandial hyperglycemia was ameliorated by HYA in normal rats, and the postprandial blood glucose levels were slowly elevated by HYA in the T1DM model rats. HYA partially inhibited the uptake of methyl-α-D-glucopyranoside in CACO-2 cells. HYA slowed gastric motility and increased the plasma GLP-1 and cholecystokinin levels in normal rats. HYA also ameliorated the postprandial hyperglycemia in T1DM rats given bolus insulin. CONCLUSION Oral administration of HYA immediately before OGTT ameliorated postprandial hyperglycemia through inhibition of glucose absorption and slowing of gastric motility in normal rats. Furthermore, this beneficial effect of HYA was also revealed in T1DM rats injected with bolus insulin.
Collapse
Affiliation(s)
- Yuta Yamamoto
- Department of Anatomy and Cell Biology, Graduate School of Medical and Pharmaceutical Sciences, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan.
| | - Katsuya Narumi
- Laboratory of Clinical Pharmaceutics and Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Naoko Yamagishi
- Department of Anatomy and Cell Biology, Graduate School of Medical and Pharmaceutical Sciences, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | | | - Ken Iseki
- Laboratory of Clinical Pharmaceutics and Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Masaki Kobayashi
- Laboratory of Clinical Pharmaceutics and Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yoshimitsu Kanai
- Department of Anatomy and Cell Biology, Graduate School of Medical and Pharmaceutical Sciences, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| |
Collapse
|
12
|
Shateri S, Khatami SH, Haghbin Toutounchi A, Rajaei S, Mahdavi M, Mahmoodi Baram S, Shahidi GA, Habibi AH, Aghamollaii V, Ghlichnia B, Safakish L, Doagoo A, Salmani F, Tafakhori A, Keramatinia A, Shahmohammadi MR, Karima S. Plasma cytokines profile in patients with Alzheimer's and Parkinson's Disease: a comparative study in terms of inflammation. Int J Neurosci 2025; 135:158-167. [PMID: 38064237 DOI: 10.1080/00207454.2023.2292951] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/05/2023] [Accepted: 12/02/2023] [Indexed: 02/04/2025]
Abstract
BACKGROUND Neurodegenerative disorders such as Alzheimer's and Parkinson's disease inflict economic and health burdens on societies. Alzheimer's disease (AD), the most prevalent form of dementia, is accompanied by progressive degradation of memory, decision-making, and judgment. Parkinson's disease (PD) is characterized by resting tremor, rigidity, bradykinesia, and loss of balance. Extensive research has pinpointed inflammation as a cause of the onset and progression of both diseases. However, it has not been confirmed which one is more formidable in terms of inflammation. METHODS To assess the extent of inflammation that is implicated in AD and PD and answer the question of which one is more inflammatory, serum levels of inflammatory biomarkers, including cytokines, chemokines, and prostaglandin E2 (PEG2), were measured in AD and PD patients as well as a healthy group. RESULTS Our results showed a significant increase in IL-1α, IL-1β, IL-4, IL-6, IL-10, IL-12p70, IP-10, MCP-1, PEG2, and TNF-α in AD and PD patients compared with the control. Interestingly, IFN-γ did not manifest any significant difference in AD or PD patients compared with the control. CONCLUSION As a hallmark of our results, it could be inferred that inflammation, as the underlying etiological cause, plays a more crucial role in PD compared with AD. Based on our results, it is proposed that anti-inflammatory remedies would be putatively more effective in PD rather than AD.
Collapse
Affiliation(s)
- Somayeh Shateri
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Alireza Haghbin Toutounchi
- Department of General Surgery, Imam Hosein Medical and Educational Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shima Rajaei
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
- Clinical Study Department, Behbalin Inc, Tehran, Iran
| | - Meisam Mahdavi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Somayeh Mahmoodi Baram
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
- Clinical Study Department, Behbalin Inc, Tehran, Iran
| | - Gholam-Ali Shahidi
- Neurology Department, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Amir Hossein Habibi
- Neurology Department, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Vajiheh Aghamollaii
- Neurology Department, Roozbeh Hospital, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Babak Ghlichnia
- Department of Neurology, School of Medicine, Iranian Center of Neurological Research, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Lily Safakish
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Alireza Doagoo
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Farzaneh Salmani
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Abbas Tafakhori
- Department of Neurology, School of Medicine, Iranian Center of Neurological Research, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Aliasghar Keramatinia
- Department of Community Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Shahmohammadi
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Saeed Karima
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| |
Collapse
|
13
|
Zhang QY, Zhang HY, Feng SG, Yao MD, Ding JJ, Li XM, Ye R, Liu Q, Yao J, Yan B. Macrophage metabolic reprogramming ameliorates diabetes-induced microvascular dysfunction. Redox Biol 2025; 79:103449. [PMID: 39647239 PMCID: PMC11667058 DOI: 10.1016/j.redox.2024.103449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/16/2024] [Accepted: 11/28/2024] [Indexed: 12/10/2024] Open
Abstract
Macrophages play an important role in the development of vascular diseases, with their homeostasis closely linked to metabolic reprogramming. This study aims to explore the role of circular RNA-mediated epigenetic remodeling in maintaining macrophage homeostasis during diabetes-induced microvascular dysfunction. We identified a circular RNA, circRNA-sperm antigen with calponin homology and coiled-coil domains 1 (cSPECC1), which is significantly up-regulated in diabetic retinas and in macrophages under diabetic stress. cSPECC1 knockdown in macrophages attenuates M1 macrophage polarization and disrupts macrophage-endothelial crosstalk in vitro. cSPECC1 knockdown in macrophages mitigates diabetes-induced retinal inflammation and ameliorates retinal vascular dysfunction. Mechanistically, cSPECC1 regulates GPX2 expression by recruiting eIF4A3, enhancing GPX2 mRNA stability and altering arachidonic acid metabolism. The metabolic intermediate 12-HETE has emerged as a key mediator, regulating both macrophage homeostasis and the crosstalk between macrophages and endothelial cells. Exogenous 12-HETE supplementation interrupts the anti-angiogenic effects of cSPECC1 knockdown. Collectively, circSPECC1 emerges as a novel regulator of macrophage-mediated vascular integrity and inflammation. Targeting the metabolic reprogramming of macrophages presents a promising therapeutic strategy for mitigating diabetes-induced vascular dysfunction.
Collapse
Affiliation(s)
- Qiu-Yang Zhang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, 210000, China; The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, 210000, China
| | - Hui-Ying Zhang
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, 210000, China
| | - Si-Guo Feng
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, 210000, China
| | - Mu-Di Yao
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Jing-Juan Ding
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, 210000, China
| | - Xiu-Miao Li
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, 210000, China
| | - Rong Ye
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, 210000, China
| | - Qing Liu
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, 210000, China
| | - Jin Yao
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, 210000, China; The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, 210000, China.
| | - Biao Yan
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200030, China.
| |
Collapse
|
14
|
Sánchez-García S, Jaén RI, Lozano-Rodríguez R, Avendaño-Ortiz J, Pascual‐Iglesias A, Hurtado-Navarro L, López-Collazo E, Boscá L, Prieto P. Lipoxin A 4 levels correlate with severity in a Spanish COVID-19 cohort: potential use of endogenous pro-resolving mediators as biomarkers. Front Immunol 2025; 15:1509188. [PMID: 39916956 PMCID: PMC11798798 DOI: 10.3389/fimmu.2024.1509188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/27/2024] [Indexed: 02/09/2025] Open
Abstract
Background SARS-CoV-2, the causative virus of the COVID-19 global pandemic, leads to a wide variety of responses among patients. Some of them present a very severe phenotype, while others only experience mild symptoms or are even asymptomatic. This differential prognosis is tightly related to the inflammatory status of the patient. Although WHO declared the end of the emergency, the pandemic caused a great socio-sanitary impact in all countries. Thus, the possible outbreak of new biological diseases in the future makes it necessary to deepen the knowledge of this uncontrolled immune response and look for reliable biomarkers to help us predict its potential health impact. Specialized pro-resolving lipid mediators (SPMs) as lipoxins are endogenous mediators synthesized from arachidonic acid in the resolution stage of any inflammatory process. These lipids have pro-resolving actions in several pathological models, including reducing NF-κB-mediated inflammation, and inducing the antioxidant response through the Nrf-2 pathway. Thus, although a potential relationship has already been suggested between low levels of SPMs and COVID-19 severity, their true role as a predictive biomarker is still unknown. Methods and results In this study, we have analyzed by ELISA the serum levels of lipoxin A4 (LXA4) in a representative Spanish cohort. We found reduced levels in deceased patients when compared to mild or severe patients, concomitant with a decrease in the LXA4 biosynthetic pathway and an increase in its degradation pathway. Furthermore, we have studied the correlation between the levels of this SPM and several pathology indicators, finding a significant correlation between increased LXA4 levels and a better prognosis of the patients. Conclusion We propose to measure systemic LXA4 as a new promising biomarker to predict the survival in patients affected by SARS-CoV-2 and presumably to other viruses that can affect humanity in the future.
Collapse
Affiliation(s)
- Sergio Sánchez-García
- Departamento de enfermedades metabólicas e inmunitarias, Instituto de Investigaciones Biomédicas “Sols-Morreale”, Madrid, Spain
| | - Rafael I. Jaén
- Departamento de enfermedades metabólicas e inmunitarias, Instituto de Investigaciones Biomédicas “Sols-Morreale”, Madrid, Spain
| | - Roberto Lozano-Rodríguez
- Innate Immune Response Group, Instituto de Investigación del Hospital Universitario La Paz (IdiPaz), Madrid, Spain
| | - José Avendaño-Ortiz
- Microbiology Department, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Alejandro Pascual‐Iglesias
- Innate Immune Response Group, Instituto de Investigación del Hospital Universitario La Paz (IdiPaz), Madrid, Spain
| | - Laura Hurtado-Navarro
- Innate Immune Response Group, Instituto de Investigación del Hospital Universitario La Paz (IdiPaz), Madrid, Spain
| | - Eduardo López-Collazo
- Innate Immune Response Group, Instituto de Investigación del Hospital Universitario La Paz (IdiPaz), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Lisardo Boscá
- Departamento de enfermedades metabólicas e inmunitarias, Instituto de Investigaciones Biomédicas “Sols-Morreale”, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Patricia Prieto
- Departamento de enfermedades metabólicas e inmunitarias, Instituto de Investigaciones Biomédicas “Sols-Morreale”, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
15
|
Guyon L, Tessier S, Croyal M, Gourdel M, Lafont M, Segeron F, Chabaud L, Gautier H, Weiss P, Gaudin A. Influence of physico-chemical properties of two lipoxin emulsion-loaded hydrogels on pre-polarized macrophages: a comparative analysis. Drug Deliv Transl Res 2025; 15:231-241. [PMID: 38565761 DOI: 10.1007/s13346-024-01588-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2024] [Indexed: 04/04/2024]
Abstract
Inflammation, a crucial defense mechanism, must be rigorously regulated to prevent the onset of chronic inflammation and subsequent tissue damage. Specialized pro resolving mediators (SPMs) such as lipoxin A4 (LXA4) have demonstrated their ability to facilitate the resolution of inflammation by orchestrating a transition of M1 pro-inflammatory macrophages towards an anti-inflammatory M2 phenotype. However, the hydrophobic and chemically labile nature of LXA4 necessitates the development of a delivery system capable of preserving its integrity for clinical applications. In this study, two types of emulsion were formulated using different homogenization processes:mechanical overhead stirrer (MEB for blank Emulsion and MELX for LXA4 loaded-Emulsion) or Luer-lock syringes (SEB for blank Emulsion and SELX for LXA4 loaded-Emulsion)). Following characterization, including size and droplet morphology assessment by microscopy, the encapsulation efficiency (EE) was determined using liquid chromatography-tandem mass spectrometry (LC-MS/MS). To exert control over LXA4 release, these emulsions were embedded within silanized hyaluronic acid hydrogels. A comprehensive evaluation, encompassing gel time, swelling, and degradation profiles under acidic, basic, and neutral conditions, preceded the assessment of LXA4 cumulative release using LC-MS/MS. Physicochemical results indicate that H-MELX (Mechanical overhead stirrer LXA4 Emulsion loaded-Hydrogel) exhibits superior efficiency over H-SELX (Luer-lock syringes LXA4 Emulsion loaded-Hydrogel). While both formulations stimulated pro-inflammatory cytokine secretion and promoted a pro-inflammatory macrophage phenotype, LXA4 emulsion-loaded hydrogels displayed a diminished pro-inflammatory activity compared to blank emulsion-loaded hydrogels. These findings highlight the biological efficacy of LXA4 within both systems, with H-SELX outperforming H-MELX in terms of efficiency. To the best of our knowledge, this is the first successful demonstration of the biological efficacy of LXA4 emulsion-loaded hydrogel systems on macrophage polarization. These versatile H-MELX and H-SELX formulations can be customized to enhance their biological activity making them promising tools to promote the resolution of inflammation in diverse clinical applications.
Collapse
Affiliation(s)
- Léna Guyon
- Nantes Université, Oniris CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, Nantes, France
| | - Solène Tessier
- Nantes Université, Oniris CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, Nantes, France
| | - Mikaël Croyal
- Nantes Université, CNRS, INSERM, l'institut du thorax, Nantes, France
- Nantes Université, CHU Nantes, Inserm CNRS, SFR Santé, Inserm UMS 016, Nantes, France
- CRNH-Ouest Mass Spectrometry Core Facility, Nantes, France
| | - Mathilde Gourdel
- Nantes Université, CNRS, INSERM, l'institut du thorax, Nantes, France
- CRNH-Ouest Mass Spectrometry Core Facility, Nantes, France
| | - Marianne Lafont
- Nantes Université, Oniris CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, Nantes, France
| | - Florian Segeron
- Nantes Université, Oniris CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, Nantes, France
| | - Lionel Chabaud
- Nantes Université, Oniris CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, Nantes, France
- Nantes Université, UFR Sciences Biologiques et Pharmaceutiques, F-44035, Nantes, France
| | - Hélène Gautier
- Nantes Université, Oniris CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, Nantes, France
- Nantes Université, UFR Sciences Biologiques et Pharmaceutiques, F-44035, Nantes, France
| | - Pierre Weiss
- Nantes Université, Oniris CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, Nantes, France
| | - Alexis Gaudin
- Nantes Université, Oniris CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, F-44000, Nantes, France.
- Department of Endodontics, University of Nantes, 1 place Alexis Ricordeau, 44093 Nantes Cedex 01, Nantes, France.
| |
Collapse
|
16
|
Ye Y, Yang Q, Wei J, Shen C, Wang H, Zhuang R, Cao Y, Ding Y, Xu H, Xiang S, Mei H, Li Z, Ren X, Zhang C, Xiao J, Zheng S, Li T, Zeng R, Liu H, Lin H, Shang-Guan W, Li M, Jin S, Wang Q. RvD1 improves resident alveolar macrophage self-renewal via the ALX/MAPK14/S100A8/A9 pathway in acute respiratory distress syndrome. J Adv Res 2025; 67:289-299. [PMID: 38237770 PMCID: PMC11725153 DOI: 10.1016/j.jare.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/23/2023] [Accepted: 01/12/2024] [Indexed: 02/24/2024] Open
Abstract
INTRODUCTION Acute respiratory distress syndrome (ARDS) is a pulmonary inflammatory process primarily caused by sepsis. The resolution of inflammation is an active process involving the endogenous biosynthesis of specialized pro-resolving mediators, including resolvin D1 (RvD1). Resident alveolar macrophages (RAMs) maintain pulmonary homeostasis and play a key role in the resolution phase. However, the role of RAMs in promoting the resolution of inflammation by RvD1 is unclear. OBJECTIVES Here, we investigated the mechanisms of RvD1 on regulating RAMs to promote the resolution of ARDS. METHODS Mice were administered lipopolysaccharide and/or Escherichia coli via aerosol inhalation to establish a self-limited ARDS model. Then, RvD1 was administered at the peak inflammatory response. RAMs self-renewal was measured by flow cytometry, RAM phagocytosis was measured by two-photon fluorescence imaging. In addition, plasma was collected from intensive care unit patients on days 0-2, 3-5, and 6-9 to measure RvD1 and S100A8/A9 levels using triple quadrupole/linear ion trap mass spectrometry. RESULTS RAMs were found to play a pivotal role in resolving inflammation during ARDS, and RvD1 enhanced RAM proliferation and phagocytosis, which was abrogated by a lipoxin A4 receptor (ALX, RvD1 receptor) inhibitor. Both primary RAMs transfected with rS100A8/A9 and/or S100A8/A9 siRNA and S100A9-/- mice (also deficient in S100A8 function) showed higher turnover and phagocytic function, indicating that RvD1 exerted its effects on RAMs by inhibiting S100A8/A9 production in the resolution phase. RvD1 reduced S100A8/A9 and its upstream MAPK14 levels in vivo and in vitro. Finally, in the patients, RvD1 levels were lower, but S100A8/A9 levels were higher. CONCLUSIONS We propose that RvD1 improved RAM self-renewal and phagocytosis via the ALX/MAPK14/S100A8/A9 signaling pathway. Plasma RvD1 and S100A8/A9 levels were negatively correlated, and associated with the outcome of sepsis-induced ARDS.
Collapse
Affiliation(s)
- Yang Ye
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China; Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, People's Republic of China
| | - Qian Yang
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China; Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, People's Republic of China
| | - Jinling Wei
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China; Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, People's Republic of China
| | - Chenxi Shen
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China; Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, People's Republic of China
| | - Haixing Wang
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China; Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, People's Republic of China
| | - Rong Zhuang
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China; Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, People's Republic of China
| | - Yuan Cao
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China; Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, People's Republic of China
| | - Yajun Ding
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China; Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, People's Republic of China
| | - Haoran Xu
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China; Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, People's Republic of China
| | - Shuyang Xiang
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China; Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, People's Republic of China
| | - Hongxia Mei
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China; Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, People's Republic of China
| | - Zhongwang Li
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China; Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, People's Republic of China
| | - Xiya Ren
- Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Chen Zhang
- Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Ji Xiao
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China; Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, People's Republic of China
| | - Shengxing Zheng
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China; Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, People's Republic of China
| | - Ting Li
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China; Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, People's Republic of China
| | - Ruifeng Zeng
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China; Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, People's Republic of China
| | - Huacheng Liu
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China; Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, People's Republic of China
| | - Han Lin
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China; Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, People's Republic of China
| | - Wangning Shang-Guan
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China; Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, People's Republic of China
| | - Ming Li
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China
| | - Shengwei Jin
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China; Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, People's Republic of China.
| | - Qian Wang
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, People's Republic of China; Key Laboratory of Anesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, People's Republic of China.
| |
Collapse
|
17
|
Lamon-Fava S. Associations between omega-3 fatty acid-derived lipid mediators and markers of inflammation in older subjects with low-grade chronic inflammation. Prostaglandins Other Lipid Mediat 2025; 176:106948. [PMID: 39756792 PMCID: PMC11835203 DOI: 10.1016/j.prostaglandins.2025.106948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/02/2025] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Cardiovascular disease (CVD), the leading cause of death in the United States and globally, is a chronic inflammatory disease likely caused by an impaired ability to resolve inflammation. Pre-clinical studies have provided strong evidence of the activating role of specialized pro-resolving lipid mediators (SPMs) derived from the omega-3 fatty acids eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA) on the resolution of inflammation. However, there is a dearth of information on the role of SPMs on inflammation in humans. Therefore, the aim of this study was to assess whether plasma concentrations of omega-3 fatty acids and their derived SPMs are associated with inflammatory markers in subjects with low-grade chronic inflammation (C-reactive protein >2 µg/mL). The plasma phospholipid content of omega-3 fatty acids, a marker of dietary intake, plasma concentrations of SPMs, and serum concentrations of inflammatory markers were measured in 21 older men and postmenopausal women (age 53-73 y) at the end of a four-week placebo phase (3 g/day high oleic acid sunflower oil). The phospholipid DHA content was inversely related to interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein-1 (MCP-1) and IL-10 concentrations. Moreover, MCP-1 was inversely associated with the DHA-derived 14-HDHA and 4-HDHA, and IL-10 was inversely associated with EPA-derived 18-HEPE, 12-HEPE and 5-HEPE, DPA-derived Rv5DPA, and DHA-derived 4-HDHA. These findings support the anti-inflammatory effect of dietary omega-3 fatty and suggest that lipid mediators derived from EPA, DPA, and DHA participate in the regulation of inflammation in subjects with chronic inflammation.
Collapse
Affiliation(s)
- Stefania Lamon-Fava
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging and Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, United States.
| |
Collapse
|
18
|
Li M, He M, Sun M, Li Y, Li M, Jiang X, Wang Y, Wang H. Oxylipins as therapeutic indicators of herbal medicines in cardiovascular diseases: a review. Front Pharmacol 2024; 15:1454348. [PMID: 39749208 PMCID: PMC11693728 DOI: 10.3389/fphar.2024.1454348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/03/2024] [Indexed: 01/04/2025] Open
Abstract
Globally, cardiovascular diseases (CVDs) remain the leading cause of death, and their prevention and treatment continue to face major challenges. Oxylipins, as novel circulating markers of cardiovascular disease, are crucial mediators linking cardiovascular risk factors such as inflammation and platelet activation, and they play an important role in unraveling cardiovascular pathogenesis and therapeutic mechanisms. Chinese herbal medicine plays an important role in the adjuvant treatment of cardiovascular diseases, which has predominantly focused on the key pathways of classic lipids, inflammation, and oxidative stress to elucidate the therapeutic mechanisms of cardiovascular diseases. However,The regulatory effect of traditional Chinese medicine on oxylipins in cardiovascular diseases remains largely unknown. With the increasing number of recent reports on the regulation of oxylipins by Chinese herbal medicine in cardiovascular diseases, it is necessary to comprehensively elucidate the regulatory role of Chinese herbal medicine in cardiovascular diseases from the perspective of oxylipins. This approach not only benefits further research on the therapeutic targets of Chinese herbal medicine, but also brings new perspectives to the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Mengqi Li
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Min He
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Mengmeng Sun
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yongping Li
- Changchun Sino-Russian Science and Technology Park Co., Ltd., Changchun, Jilin, China
| | - Mengyuan Li
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xiaobo Jiang
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yanxin Wang
- Department of Cardiovascular Rehabilitation, The Third Clinical Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Hongfeng Wang
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
19
|
Das S, Khan R, Banerjee S, Ray S, Ray S. Alterations in Circadian Rhythms, Sleep, and Physical Activity in COVID-19: Mechanisms, Interventions, and Lessons for the Future. Mol Neurobiol 2024; 61:10115-10137. [PMID: 38702566 DOI: 10.1007/s12035-024-04178-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/04/2024] [Indexed: 05/06/2024]
Abstract
Although the world is acquitting from the throes of COVID-19 and returning to the regularity of life, its effects on physical and mental health are prominently evident in the post-pandemic era. The pandemic subjected us to inadequate sleep and physical activities, stress, irregular eating patterns, and work hours beyond the regular rest-activity cycle. Thus, perturbing the synchrony of the regular circadian clock functions led to chronic psychiatric and neurological disorders and poor immunological response in several COVID-19 survivors. Understanding the links between the host immune system and viral replication machinery from a clock-infection biology perspective promises novel avenues of intervention. Behavioral improvements in our daily lifestyle can reduce the severity and expedite the convalescent stage of COVID-19 by maintaining consistent eating, sleep, and physical activity schedules. Including dietary supplements and nutraceuticals with prophylactic value aids in combating COVID-19, as their deficiency can lead to a higher risk of infection, vulnerability, and severity of COVID-19. Thus, besides developing therapeutic measures, perpetual healthy practices could also contribute to combating the upcoming pandemics. This review highlights the impact of the COVID-19 pandemic on biological rhythms, sleep-wake cycles, physical activities, and eating patterns and how those disruptions possibly contribute to the response, severity, and outcome of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Sandip Das
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502284, Telangana, India
| | - Rajni Khan
- National Institute of Pharmaceutical Education and Research (NIPER) - Hajipur, Vaishali, Hajipur, 844102, Bihar, India
| | - Srishti Banerjee
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502284, Telangana, India
| | - Shashikant Ray
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, 845401, India.
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Sandipan Ray
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502284, Telangana, India.
| |
Collapse
|
20
|
Yu Y, Wang L, Qiao Y, Ye Y, Zhong Y, Song X, Yao K, Yu Y. Pain perception, aqueous humour cytokines, and miosis response following first and second eye femtosecond laser-assisted cataract surgery: A randomised, prospective, intraindividual study. Clin Exp Ophthalmol 2024; 52:934-944. [PMID: 39135375 DOI: 10.1111/ceo.14426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/11/2024] [Accepted: 07/14/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND To compare pain perception, pupil behaviours, and cytokine levels during first-eye and second-eye femtosecond laser-assisted cataract surgery (FLACS) and determine which is better regarding a short or long interval for bilateral FLACS. METHODS Notably, 96 eyes of 48 patients with bilateral cataracts underwent the first surgeries in the left or right eye, according to a random sequence. They were further randomised into 2- and 6-week subgroups based on surgery intervals. Pupil size was measured from captured images, and pain perception was assessed using a visual analog scale (VAS). Aqueous humour prostaglandin E2 (PGE2), monocyte chemoattractant protein-1 (MCP-1), interleukin (IL)-6, and IL-8 levels were also quantitatively analysed. All patients were followed for 1 week to evaluate changes in endothelial cell density (ECD), central corneal thickness (CCT), and macular central subfield thickness (CST). RESULTS Ocular pain was significantly higher in patients who underwent second-eye FLACS. First tear break-up time was negatively correlated with VAS score. MCP-1 levels were significantly higher in patients who underwent second-eye FLACS, and VAS scores were positively correlated with MCP-1 levels across all patients. There were no differences between sequential FLACS in miosis, PGE2, IL-6, IL-8 levels and changes in postoperative ECD, CCT, and CST. Patients who underwent second-eye FLACS after 6 weeks showed more CCT, CST, and MCP-1 changes than baseline. CONCLUSION Second-eye FLACS causes more pain and upregulated MCP-1. There was no difference between sequential FLACS in PGE2 levels, miosis, and postoperative inflammation. Furthermore, first-eye FLACS triggered a sympathetic irritation, particularly after a 6-week interval.
Collapse
Affiliation(s)
- Yinhui Yu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, China
| | - Lixia Wang
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, China
| | - Yue Qiao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, China
| | - Yang Ye
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, China
| | - Yueyang Zhong
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, China
| | - Xiaohui Song
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, China
| | - Ke Yao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, China
| | - Yibo Yu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, China
| |
Collapse
|
21
|
Liu Q, Ma T, Zhang Z, Nan J, Liu G, Yang Y, Hu Y, Xie J. Fused extracellular vesicles from M 2 macrophages and human umbilical cord mesenchymal stem cells for the targeted regulation of macrophage pyroptosis in periprosthetic osteolysis. J Extracell Vesicles 2024; 13:e70028. [PMID: 39711510 DOI: 10.1002/jev2.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 11/01/2024] [Accepted: 11/07/2024] [Indexed: 12/24/2024] Open
Abstract
The development of strategies for the prevention and treatment of aseptic loosening of prostheses stands as a critical area of global research interest. The pyroptosis of local macrophages triggered by wear particles plays a pivotal role in the onset of periprosthetic osteolysis and subsequent loosening. Extracellular vesicles, carrying the surface components and regulatory molecules of their parent cells, embody the cellular characteristics and biological functions of these progenitors. In a pioneering approach to precisely inhibit the pyroptosis of local macrophages induced by wear particles, we have engineered fused extracellular vesicles (fEV) from M2 macrophages and human umbilical cord mesenchymal stem cells. These fEV boast the distinctive capability for targeted transport and immune evasion, collectively enhancing the anti-pyroptosis effect of the therapeutic extracellular vesicles. Our research demonstrates the targeted, significant preventive and therapeutic potential of fEVs against periprosthetic osteolysis prompted by wear particles, highlighting its crucial clinical significance and application prospects. These findings suggest that extracellular vesicle fusion technology heralds a novel paradigm in the design and development of targeted extracellular vesicle-based drug delivery systems.
Collapse
Affiliation(s)
- Qimeng Liu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tianliang Ma
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Zheyu Zhang
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiangyu Nan
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guanzhi Liu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yute Yang
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yihe Hu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Xie
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
22
|
Li W, Xia Y, Yang J, Sanyal AJ, Shah VH, Chalasani NP, Yu Q. Disrupted balance between pro-inflammatory lipid mediators and anti-inflammatory specialized pro-resolving mediators is linked to hyperinflammation in patients with alcoholic hepatitis. Front Immunol 2024; 15:1377236. [PMID: 39640267 PMCID: PMC11617321 DOI: 10.3389/fimmu.2024.1377236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Background Alcoholic hepatitis (AH) is characterized by intense systemic and liver inflammation, posing significant risks of health complications and mortality. While inflammation is a crucial defense mechanism against injury and infection, its timely resolution is essential to prevent tissue damage and restore tissue homeostasis. The resolution of inflammation is primarily governed by specialized pro-resolving mediators (SPMs), lipid metabolites derived from w-6 and w-3 poly-unsaturated fatty acids (PUFAs). Currently, the balance between pro-inflammatory lipid mediators (PLMs) and SPMs in the w-6 and w-3 PUFA metabolic pathways and the impact of alcohol abstinence on profiles of PLMs and SPMs in AH patients are not well studied. Methods In this study, we used LC-MS/MS and ELISA to quantify levels of lipid mediators (LMs) and their precursors in the plasma samples from 58 AH patients, 29 heavy drinkers without overt liver diseases (HDCs), and 35 healthy controls (HCs). Subsequently, we assessed correlations of altered LMs with clinical parameters and inflammatory mediators. Furthermore, we conducted a longitudinal study to analyze the effects of alcohol abstinence on LMs over 6- and 12-month follow-ups. Results AH patients exhibited significantly higher plasma levels of w-6 PLMs (PGD2 and LTB4) and SPM RvE1 compared to HDCs or HCs. Conversely, the SPM LXA4 was significantly downregulated in AH patients. Some of these altered LMs were found to correlate with AH disease severity and various inflammatory cytokines. Particularly, the LTB4/LXA4 ratio was substantially elevated in AH patients relative to HDCs and HCs. This altered ratio displayed a positive correlation with the MELD score. Importantly, the majority of dysregulated LMs, particularly PLMs, were normalized following alcohol abstinence.
Collapse
Affiliation(s)
- Wei Li
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Ying Xia
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jing Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Arun J. Sanyal
- Division of Gastroenterology and Hepatology, Department of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Vijay H. Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Naga P. Chalasani
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Qigui Yu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
23
|
Livshits G, Kalinkovich A. Resolution of Chronic Inflammation, Restoration of Epigenetic Disturbances and Correction of Dysbiosis as an Adjunctive Approach to the Treatment of Atopic Dermatitis. Cells 2024; 13:1899. [PMID: 39594647 PMCID: PMC11593003 DOI: 10.3390/cells13221899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/07/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease with multifactorial and unclear pathogenesis. Its development is characterized by two key elements: epigenetic dysregulation of molecular pathways involved in AD pathogenesis and disrupted skin and gut microbiota (dysbiosis) that jointly trigger and maintain chronic inflammation, a core AD characteristic. Current data suggest that failed inflammation resolution is the main pathogenic mechanism underlying AD development. Inflammation resolution is provided by specialized pro-resolving mediators (SPMs) derived from dietary polyunsaturated fatty acids acting through cognate receptors. SPM levels are reduced in AD patients. Administration of SPMs or their stable, small-molecule mimetics and receptor agonists, as well as supplementation with probiotics/prebiotics, demonstrate beneficial effects in AD animal models. Epidrugs, compounds capable of restoring disrupted epigenetic mechanisms associated with the disease, improve impaired skin barrier function in AD models. Based on these findings, we propose a novel, multilevel AD treatment strategy aimed at resolving chronic inflammation by application of SPM mimetics and receptor agonists, probiotics/prebiotics, and epi-drugs. This approach can be used in conjunction with current AD therapy, resulting in AD alleviation.
Collapse
Affiliation(s)
- Gregory Livshits
- Department of Morphological Sciences, Adelson School of Medicine, Ariel University, Ariel 4077625, Israel
- Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, Tel-Aviv University, Tel Aviv 6927846, Israel;
| | - Alexander Kalinkovich
- Department of Anatomy and Anthropology, Faculty of Medical and Health Sciences, Tel-Aviv University, Tel Aviv 6927846, Israel;
| |
Collapse
|
24
|
Le PM, Mattapallil MJ, Caspi RR, Stepp MA, Menko AS. Immunoregulatory Properties of Immune Cells that Associate with the Lens Capsule Surface during Acute and Resolution Phases of Experimental Autoimmune Uveitis. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:2194-2211. [PMID: 39159867 PMCID: PMC11627221 DOI: 10.1016/j.ajpath.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/07/2024] [Accepted: 07/31/2024] [Indexed: 08/21/2024]
Abstract
Inflammation in the eye is tightly regulated to prevent vision impairment and irreversible blindness. Emerging evidence shows that immune cells are specifically recruited to the lens capsule in response to autoimmune uveitis, yet the potential that they have a role in regulating this inflammatory disease remained unexplored. Here, an immunolocalization approach combined with high-resolution confocal microscopy was used to investigate whether the immune cells that become stably associated with the lens capsule in the eyes of C57BL/6J mice with experimental autoimmune uveitis (EAU) have an immunoregulatory phenotype. These studies revealed that during the acute phase of uveitis, at day 18 after disease induction, the immune cells specifically recruited to the lens capsule, such as regulatory T cells [forkhead box P3 (FoxP3)+CD4+] and M2 macrophages (CD68+ arginase 1+IL-10+), included those with putative anti-inflammatory, proresolution roles. The frequency of these lens capsule-associated immunomodulatory phenotypes increased at day 35 after induction, during the resolution phase of EAU inflammation. At this later stage of resolution, most of the macrophages expressed CD206, a mannose receptor responsible for removing inflammatory molecules, in addition to arginase 1 and IL-10. These results suggest a previously unknown role for the lens as a site for recruitment of immune cells whose role is to suppress inflammation, promote resolution, and maintain remission of EAU.
Collapse
Affiliation(s)
- Phuong M Le
- Department of Pathology and Genomic Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Mary J Mattapallil
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Rachel R Caspi
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Mary Ann Stepp
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia; Department of Ophthalmology, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - A Sue Menko
- Department of Pathology and Genomic Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania; Department of Ophthalmology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
25
|
Alnouri MW, Roquid KA, Bonnavion R, Cho H, Heering J, Kwon J, Jäger Y, Wang S, Günther S, Wettschureck N, Geisslinger G, Gurke R, Müller CE, Proschak E, Offermanns S. SPMs exert anti-inflammatory and pro-resolving effects through positive allosteric modulation of the prostaglandin EP4 receptor. Proc Natl Acad Sci U S A 2024; 121:e2407130121. [PMID: 39365815 PMCID: PMC11474063 DOI: 10.1073/pnas.2407130121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/20/2024] [Indexed: 10/06/2024] Open
Abstract
Inflammation is a protective response to pathogens and injury. To be effective it needs to be resolved by endogenous mechanisms in order to avoid prolonged and excessive inflammation, which can become chronic. Specialized pro-resolving mediators (SPMs) are a group of lipids derived from omega-3 fatty acids, which can induce the resolution of inflammation. How SPMs exert their anti-inflammatory and pro-resolving effects is, however, not clear. Here, we show that SPMs such as protectins, maresins, and D-series resolvins function as biased positive allosteric modulators (PAM) of the prostaglandin E2 (PGE2) receptor EP4 through an intracellular binding site. They increase PGE2-induced Gs-mediated formation of cAMP and thereby promote anti-inflammatory signaling of EP4. In addition, SPMs endow the endogenous EP4 receptor on macrophages with the ability to couple to Gi-type G-proteins, which converts the EP4 receptor on macrophages from an anti-phagocytotic receptor to one increasing phagocytosis, a central mechanism of the pro-resolving activity of synthetic SPMs. In the absence of the EP4 receptor, SPMs lose their anti-inflammatory and pro-resolving activity in vitro and in vivo. Our findings reveal an unusual mechanism of allosteric receptor modulation by lipids and provide a mechanism by which synthetic SPMs exert pro-resolving and anti-inflammatory effects, which may facilitate approaches to treat inflammation.
Collapse
Affiliation(s)
- Mohamad Wessam Alnouri
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim61231, Germany
| | - Kenneth Anthony Roquid
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim61231, Germany
| | - Rémy Bonnavion
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim61231, Germany
| | - Haaglim Cho
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim61231, Germany
| | - Jan Heering
- Fraunhofer Institute for Translational Medicine and Pharmacology and Fraunhofer Cluster of Excellence for Immune Mediated Diseases, Frankfurt am Main60596, Germany
| | - Jeonghyeon Kwon
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim61231, Germany
| | - Yannick Jäger
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim61231, Germany
| | - ShengPeng Wang
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi’an710061, China
| | - Stefan Günther
- Max Planck Institute for Heart and Lung Research, Deep Sequencing Platform, Bad Nauheim61231, Germany
| | - Nina Wettschureck
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim61231, Germany
- Center for Molecular Medicine, Goethe University Frankfurt, Frankfurt60590, Germany
- Excellence Cluster Cardiopulmonary Institute (CPI), Bad Nauheim Bad61231, Germany
- German Center for Cardiovascular Research (DZHK), Rhine-Main site, Bad Nauheim61231, Germany
| | - Gerd Geisslinger
- Fraunhofer Institute for Translational Medicine and Pharmacology and Fraunhofer Cluster of Excellence for Immune Mediated Diseases, Frankfurt am Main60596, Germany
- Institute of Clinical Pharmacology, Goethe University, Frankfurt am Main60590, Germany
| | - Robert Gurke
- Fraunhofer Institute for Translational Medicine and Pharmacology and Fraunhofer Cluster of Excellence for Immune Mediated Diseases, Frankfurt am Main60596, Germany
- Institute of Clinical Pharmacology, Goethe University, Frankfurt am Main60590, Germany
| | - Christa E. Müller
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn53121, Germany
- PharmaCenter Bonn, University of Bonn, Bonn53121, Germany
| | - Ewgenij Proschak
- Fraunhofer Institute for Translational Medicine and Pharmacology and Fraunhofer Cluster of Excellence for Immune Mediated Diseases, Frankfurt am Main60596, Germany
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt60438, Germany
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim61231, Germany
- Center for Molecular Medicine, Goethe University Frankfurt, Frankfurt60590, Germany
- Excellence Cluster Cardiopulmonary Institute (CPI), Bad Nauheim Bad61231, Germany
- German Center for Cardiovascular Research (DZHK), Rhine-Main site, Bad Nauheim61231, Germany
| |
Collapse
|
26
|
Engert LC, Ledderose C, Biniamin C, Birriel P, Buraks O, Chatterton B, Dang R, Daniel S, Eske A, Reed T, Tang A, Bertisch SM, Mullington JM, Junger WG, Haack M. Effects of low-dose acetylsalicylic acid on the inflammatory response to experimental sleep restriction in healthy humans. Brain Behav Immun 2024; 121:142-154. [PMID: 39043348 PMCID: PMC11389483 DOI: 10.1016/j.bbi.2024.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/01/2024] [Accepted: 07/20/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Sleep deficiencies, such as manifested in short sleep duration or insomnia symptoms, are known to increase the risk for multiple disease conditions involving immunopathology. Inflammation is hypothesized to be a mechanism through which deficient sleep acts as a risk factor for these conditions. Thus, one potential way to mitigate negative health consequences associated with deficient sleep is to target inflammation. Few interventional sleep studies investigated whether improving sleep affects inflammatory processes, but results suggest that complementary approaches may be necessary to target inflammation associated with sleep deficiencies. We investigated whether targeting inflammation through low-dose acetylsalicylic acid (ASA, i.e., aspirin) is able to blunt the inflammatory response to experimental sleep restriction. METHODS 46 healthy participants (19F/27M, age range 19-63 years) were studied in a double-blind randomized placebo-controlled crossover trial with three protocols each consisting of a 14-day at-home monitoring phase followed by an 11-day (10-night) in-laboratory stay (sleep restriction/ASA, sleep restriction/placebo, control sleep/placebo). In the sleep restriction/ASA condition, participants took low-dose ASA (81 mg/day) daily in the evening (22:00) during the at-home phase and the subsequent in-laboratory stay. In the sleep restriction/placebo and control sleep/placebo conditions, participants took placebo daily. Each in-laboratory stay started with 2 nights with a sleep opportunity of 8 h/night (23:00-07:00) for adaptation and baseline measurements. Under the two sleep restriction conditions, participants were exposed to 5 nights of sleep restricted to a sleep opportunity of 4 h/night (03:00-07:00) followed by 3 nights of recovery sleep with a sleep opportunity of 8 h/night. Under the control sleep condition, participants had a sleep opportunity of 8 h/night throughout the in-laboratory stay. During each in-laboratory stay, participants had 3 days of intensive monitoring (at baseline, 5th day of sleep restriction/control sleep, and 2nd day of recovery sleep). Variables, including pro-inflammatory immune cell function, C-reactive protein (CRP), and actigraphy-estimated measures of sleep, were analyzed using generalized linear mixed models. RESULTS Low-dose ASA administration reduced the interleukin (IL)-6 expression in LPS-stimulated monocytes (p<0.05 for condition*day) and reduced serum CRP levels (p<0.01 for condition) after 5 nights of sleep restriction compared to placebo administration in the sleep restriction condition. Low-dose ASA also reduced the amount of cyclooxygenase (COX)-1/COX-2 double positive cells among LPS-stimulated monocytes after 2 nights of recovery sleep following 5 nights of sleep restriction compared to placebo (p<0.05 for condition). Low-dose ASA further decreased wake after sleep onset (WASO) and increased sleep efficiency (SE) during the first 2 nights of recovery sleep (p<0.001 for condition and condition*day). Baseline comparisons revealed no differences between conditions for all of the investigated variables (p>0.05 for condition). CONCLUSION This study shows that inflammatory responses to sleep restriction can be reduced by preemptive administration of low-dose ASA. This finding may open new therapeutic approaches to prevent or control inflammation and its consequences in those experiencing sleep deficiencies. TRIAL REGISTRATION ClinicalTrials.gov NCT03377543.
Collapse
Affiliation(s)
- Larissa C Engert
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Carola Ledderose
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Department of Surgery, University of California San Diego, San Diego, CA, USA
| | - Careen Biniamin
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Paola Birriel
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Olivia Buraks
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Bryan Chatterton
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Rammy Dang
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Surya Daniel
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Annika Eske
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Taylor Reed
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Ava Tang
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Suzanne M Bertisch
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA; Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Janet M Mullington
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Wolfgang G Junger
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Department of Surgery, University of California San Diego, San Diego, CA, USA
| | - Monika Haack
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
27
|
Lu Y, Su S, Chu CC, Kobayashi Y, Masoud AR, Peng H, Lien N, He M, Vuong C, Tran R, Hong S. Amino Acid-Based Protein-Mimic Hydrogel Incorporating Pro-Regenerative Lipid Mediator and Microvascular Fragments Promotes the Healing of Deep Burn Wounds. Int J Mol Sci 2024; 25:10378. [PMID: 39408708 PMCID: PMC11476471 DOI: 10.3390/ijms251910378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Pro-regenerative lipid mediator 1 (PreM1) is a specialized pro-resolving lipid mediator that promotes wound healing and regenerative functions of mesenchymal stem cells (MSCs), endothelial cells, and macrophages. The healing of third-degree (3°) burns and regenerative functions of MSCs are enhanced by ACgel1, an arginine-and-chitosan-based protein-mimic hybrid hydrogel. Adipose-tissue derived microvascular fragments (MVFs) are native vascularization units and a rich source of MSCs, endothelial cells, and perivascular cells for tissue regeneration. Here we describe an innovative PreM1-MVFs-ACgel1 construct that incorporated PreM1 and MVFs into ACgel1 via optimal design and fabrication. This construct delivered PreM1 to 3°-burn wounds at least up to 7 days-post-burn (dpb), and scaffolded and delivered MVFs. PreM1-MVFs-ACgel1 promoted the healing of 3°-burns in mice, including vascularization and collagen formation. The re-epithelization and closure of 3° burn wounds were promoted by ACgel1, MVFs, PreM1, MVFs-ACgel1, PreM1-ACgel1, or PreM1-MVFs-ACgel1 at certain time-point(s), while PreM1-MVFs-ACgel1 was most effective with 97% closure and 4.69% relative epithelial gap at 13 dpb compared to saline control. The PreM1-ACgel1 and MVFs-ACgel1 also promoted blood vessel regeneration of 3°-burns although PreM1-MVFs-ACgel1 is significantly more effective. These PreM1- and/or MVF-functionalized ACgel1 have nonexistent or minimal graft-donor requirements and are promising adjuvant therapeutic candidates for treating deep burns.
Collapse
Affiliation(s)
- Yan Lu
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health, 2020 Gravier St., New Orleans, LA 70112, USA; (Y.L.); (A.-R.M.); (N.L.); (C.V.); (R.T.)
| | - Shanchun Su
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health, 2020 Gravier St., New Orleans, LA 70112, USA; (Y.L.); (A.-R.M.); (N.L.); (C.V.); (R.T.)
| | - Chih-Chang Chu
- Department of Fiber Science and Apparel Design, Cornell University, Ithaca, NY 14853, USA
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Yuichi Kobayashi
- Department of Bioengineering, Tokyo Institute of Technology, Box B-52, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8501, Japan
- Organization for the Strategic Coordination of Research and Intellectual Properties, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki 214-8571, Japan
| | - Abdul-Razak Masoud
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health, 2020 Gravier St., New Orleans, LA 70112, USA; (Y.L.); (A.-R.M.); (N.L.); (C.V.); (R.T.)
| | - Hongying Peng
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45221, USA
| | - Nathan Lien
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health, 2020 Gravier St., New Orleans, LA 70112, USA; (Y.L.); (A.-R.M.); (N.L.); (C.V.); (R.T.)
| | - Mingyu He
- Department of Fiber Science and Apparel Design, Cornell University, Ithaca, NY 14853, USA
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Christopher Vuong
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health, 2020 Gravier St., New Orleans, LA 70112, USA; (Y.L.); (A.-R.M.); (N.L.); (C.V.); (R.T.)
| | - Ryan Tran
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health, 2020 Gravier St., New Orleans, LA 70112, USA; (Y.L.); (A.-R.M.); (N.L.); (C.V.); (R.T.)
| | - Song Hong
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health, 2020 Gravier St., New Orleans, LA 70112, USA; (Y.L.); (A.-R.M.); (N.L.); (C.V.); (R.T.)
- Department of Ophthalmology, Louisiana State University Health, New Orleans, LA 70112, USA
| |
Collapse
|
28
|
Pollenus E, Possemiers H, Knoops S, Prenen F, Vandermosten L, Pham TT, Buysrogge L, Matthys P, Van den Steen PE. NK cells contribute to the resolution of experimental malaria-associated acute respiratory distress syndrome after antimalarial treatment. Front Immunol 2024; 15:1433904. [PMID: 39355242 PMCID: PMC11442241 DOI: 10.3389/fimmu.2024.1433904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/27/2024] [Indexed: 10/03/2024] Open
Abstract
In both humans and mice, natural killer (NK) cells are important lymphocytes of the innate immune system. They are often considered pro-inflammatory effector cells but may also have a regulatory or pro-resolving function by switching their cytokine profile towards the production of anti-inflammatory cytokines, including interleukin-10 (IL-10) and transforming growth factor-β, and by killing pro-inflammatory immune cells. Here, the role of NK cells in the resolution of malaria lung pathology was studied. Malaria complications, such as malaria-associated acute respiratory distress syndrome (MA-ARDS), are often lethal despite the rapid and efficient killing of Plasmodium parasites with antimalarial drugs. Hence, studying the resolution and healing mechanisms involved in the recovery from these complications could be useful to develop adjunctive treatments. Treatment of Plasmodium berghei NK65-infected C57BL/6 mice with a combination of artesunate and chloroquine starting at the appearance of symptoms was used as a model to study the resolution of MA-ARDS. The role of NK cells was studied using anti-NK1.1 depletion antibodies and NK cell-deficient mice. Using both methods, NK cells were found to be dispensable in the development of MA-ARDS, as shown previously. In contrast, NK cells were crucial in the initiation of resolution upon antimalarial treatment, as survival was significantly decreased in the absence of NK cells. Considerably increased IL-10 expression by NK cells suggested an anti-inflammatory and pro-resolving phenotype. Despite the increase in Il10 expression in the NK cells, inhibition of the IL-10/IL-10R axis using anti-IL10R antibodies had no effect on the resolution for MA-ARDS, suggesting that the pro-resolving effect of NK cells cannot solely be attributed to their IL-10 production. In conclusion, NK cells contribute to the resolution of experimental MA-ARDS.
Collapse
Affiliation(s)
- Emilie Pollenus
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Hendrik Possemiers
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Sofie Knoops
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Fran Prenen
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Leen Vandermosten
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Thao-Thy Pham
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
- Clinical Immunology Unit, Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Laura Buysrogge
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Patrick Matthys
- Laboratory of Immunobiology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Philippe E. Van den Steen
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
29
|
Turner TC, Pittman FS, Zhang H, Hymel LA, Zheng T, Behara M, Anderson SE, Harrer JA, Link KA, Ahammed MA, Maner-Smith K, Liu X, Yin X, Lim HS, Spite M, Qiu P, García AJ, Mortensen LJ, Jang YC, Willett NJ, Botchwey EA. Improving Functional Muscle Regeneration in Volumetric Muscle Loss Injuries by Shifting the Balance of Inflammatory and Pro-Resolving Lipid Mediators. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.06.611741. [PMID: 39314313 PMCID: PMC11418947 DOI: 10.1101/2024.09.06.611741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Severe tissue loss resulting from extremity trauma, such as volumetric muscle loss (VML), poses significant clinical challenges for both general and military populations. VML disrupts the endogenous tissue repair mechanisms, resulting in acute and unresolved chronic inflammation and immune cell presence, impaired muscle healing, scar tissue formation, persistent pain, and permanent functional deficits. The aberrant healing response is preceded by acute inflammation and immune cell infiltration which does not resolve. We analyzed the biosynthesis of inflammatory and specialized pro-resolving lipid mediators (SPMs) after VML injury in two different models; muscle with critical-sized defects had a decreased capacity to biosynthesize SPMs, leading to dysregulated and persistent inflammation. We developed a modular poly(ethylene glycol)-maleimide hydrogel platform to locally release a stable isomer of Resolvin D1 (AT-RvD1) and promote endogenous pathways of inflammation resolution in the two muscle models. The local delivery of AT-RvD1 enhanced muscle regeneration, improved muscle function, and reduced pain sensitivity after VML by promoting molecular and cellular resolution of inflammation. These findings provide new insights into the pathogenesis of VML and establish a pro-resolving hydrogel therapeutic as a promising strategy for promoting functional muscle regeneration after traumatic injury.
Collapse
|
30
|
Berlana D, Albertos R, Barquin R, Pau-Parra A, Díez-Poch M, López-Martínez R, Cea C, Cantenys-Molina S, Ferrer-Costa R. Impact of Omega-3 Fatty Acid Supplementation in Parenteral Nutrition on Inflammatory Markers and Clinical Outcomes in Critically Ill COVID-19 Patients: A Randomized Controlled Trial. Nutrients 2024; 16:3046. [PMID: 39339646 PMCID: PMC11434828 DOI: 10.3390/nu16183046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
The heightened inflammatory response observed in COVID-19 patients suggests that omega-3 fatty acids (O3FA) may confer anti-inflammatory benefits. This randomized, double-blind, single-center clinical trial aimed to evaluate the effect of O3FA supplementation in parenteral nutrition (PN) on inflammatory markers in COVID-19 patients admitted to the intensive care unit (ICU). A total of 69 patients were randomized into three groups: one received standard lipid emulsion, and two received O3FA (Omegaven®) at doses of 0.1 g/kg/day and 0.2 g/kg/day, respectively, in addition to Smoflipid®. The primary outcomes measured were serum levels of C-reactive protein (CRP) and interleukin-6 (IL-6) on days 1, 5, and 10 of PN initiation. Secondary outcomes included additional inflammatory markers (TNF-α, IFN-γ, IL-1Ra, CXCL10), hepatic function, triglyceride levels, and clinical outcomes such as mortality and length of ICU and hospital stay. Results indicated a significant reduction in CRP, IL-6, and CXCL10 levels in the group receiving 0.1 g/kg/day O3FA compared to the control. Additionally, the higher O3FA dose was associated with a shorter ICU and hospital stay. These findings suggest that O3FA supplementation in PN may reduce inflammation and improve clinical outcomes in critically ill COVID-19 patients.
Collapse
Affiliation(s)
- David Berlana
- Pharmacy Department, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Pharmacology, Toxicology and Therapeutic Chemistry Department, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Raquel Albertos
- Intensive Care Unit, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Raquel Barquin
- Biochemistry Department, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Alba Pau-Parra
- Pharmacy Department, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Monica Díez-Poch
- Intensive Care Unit, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Rocío López-Martínez
- Immunology Department, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Cristina Cea
- Biochemistry Department, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Sergi Cantenys-Molina
- Immunology Department, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Roser Ferrer-Costa
- Intensive Care Unit, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Biochemical Chemistry, Drug Delivery & Therapy (BC-DDT) Research Group, Vall d’Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain
| |
Collapse
|
31
|
Dinakis E, O'Donnell JA, Marques FZ. The gut-immune axis during hypertension and cardiovascular diseases. Acta Physiol (Oxf) 2024; 240:e14193. [PMID: 38899764 DOI: 10.1111/apha.14193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/04/2024] [Accepted: 06/06/2024] [Indexed: 06/21/2024]
Abstract
The gut-immune axis is a relatively novel phenomenon that provides mechanistic links between the gut microbiome and the immune system. A growing body of evidence supports it is key in how the gut microbiome contributes to several diseases, including hypertension and cardiovascular diseases (CVDs). Evidence over the past decade supports a causal link of the gut microbiome in hypertension and its complications, including myocardial infarction, atherosclerosis, heart failure, and stroke. Perturbations in gut homeostasis such as dysbiosis (i.e., alterations in gut microbial composition) may trigger immune responses that lead to chronic low-grade inflammation and, ultimately, the development and progression of these conditions. This is unsurprising, as the gut harbors one of the largest numbers of immune cells in the body, yet is a phenomenon not entirely understood in the context of cardiometabolic disorders. In this review, we discuss the role of the gut microbiome, the immune system, and inflammation in the context of hypertension and CVD, and consolidate current evidence of this complex interplay, whilst highlighting gaps in the literature. We focus on diet as one of the major modulators of the gut microbiota, and explain key microbial-derived metabolites (e.g., short-chain fatty acids, trimethylamine N-oxide) as potential mediators of the communication between the gut and peripheral organs such as the heart, arteries, kidneys, and the brain via the immune system. Finally, we explore the dual role of both the gut microbiome and the immune system, and how they work together to not only contribute, but also mitigate hypertension and CVD.
Collapse
Affiliation(s)
- Evany Dinakis
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Joanne A O'Donnell
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Francine Z Marques
- Hypertension Research Laboratory, School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Victorian Heart Institute, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
32
|
Daneshfar N, Falahi S, Gorgin Karaji A, Rezaiemanesh A, Mortazavi SHR, Akbari B, Eivazi A, Salari F. Association of Single Nucleotide Polymorphisms (SNPs) of Chemoattractant Receptor23 (ChemR23) Gene with Susceptibility to Allergic Rhinitis. Biochem Genet 2024; 62:2587-2605. [PMID: 37993706 DOI: 10.1007/s10528-023-10561-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/23/2023] [Indexed: 11/24/2023]
Abstract
The chemoattractant Receptor23 (ChemR23) plays an essential role in triggering and resolving acute inflammation. This study aimed to evaluate the association between four potentially functional SNPs of the chemR23 gene (rs4373981 G > C, rs73201532 C > T, rs35121177 G > A, and rs4964676 G > A) with susceptibility to Allergic rhinitis (AR). 130 patients with allergic rhinitis and 130 healthy individuals were genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Our findings showed that genotypes and alleles frequencies were not significantly different between patient and control groups (p > 0.05). Furthermore, haplotype analysis (rs4373981, rs73201532, and rs4964676, respectively) revealed a protective effect of CTG, GTA, and GTG haplotypes against AR (p = 0.009, p = 0.0001, p = 0.001, respectively), and CCG, GCA, and GCG haplotypes of ChemR23 polymorphisms were associated with increased risk of AR (p = 0.03, p = 0.02, p = 0.0002, respectively). These findings suggested a possible role for ChemR23 in the pathogenesis of AR.
Collapse
Affiliation(s)
- Niloofar Daneshfar
- School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sara Falahi
- School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Gorgin Karaji
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, PO-Box: 6714869914, Kermanshah, Iran
| | - Alireza Rezaiemanesh
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, PO-Box: 6714869914, Kermanshah, Iran
| | - Seyed Hamid Reza Mortazavi
- Department of Pediatrics, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Bahman Akbari
- Department of Biotechnology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Atefeh Eivazi
- School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farhad Salari
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, PO-Box: 6714869914, Kermanshah, Iran.
| |
Collapse
|
33
|
Ferreira AV, Domínguez-Andrés J, Merlo Pich LM, Joosten LAB, Netea MG. Metabolic Regulation in the Induction of Trained Immunity. Semin Immunopathol 2024; 46:7. [PMID: 39060761 PMCID: PMC11282170 DOI: 10.1007/s00281-024-01015-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/02/2024] [Indexed: 07/28/2024]
Abstract
The innate immune system exhibits features of memory, termed trained immunity, which promote faster and more robust responsiveness to heterologous challenges. Innate immune memory is sustained through epigenetic modifications, affecting gene accessibility, and promoting a tailored gene transcription for an enhanced immune response. Alterations in the epigenetic landscape are intertwined with metabolic rewiring. Here, we review the metabolic pathways that underscore the induction and maintenance of trained immunity, including glycolysis, oxidative phosphorylation, the tricarboxylic acid cycle, and amino acid and lipid metabolism. The intricate interplay of these pathways is pivotal for establishing innate immune memory in distinct cellular compartments. We explore in particular the case of resident lung alveolar macrophages. We propose that leveraging the memory of the innate immune system may present therapeutic potential. Specifically, targeting the metabolic programs of innate immune cells is an emerging strategy for clinical interventions, either to boost immune responses in immunosuppressed conditions or to mitigate maladaptive activation in hyperinflammatory diseases.
Collapse
Affiliation(s)
- Anaisa V Ferreira
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Center, 6500HB, Nijmegen, The Netherlands.
| | - Jorge Domínguez-Andrés
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Center, 6500HB, Nijmegen, The Netherlands
| | - Laura M Merlo Pich
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Center, 6500HB, Nijmegen, The Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Center, 6500HB, Nijmegen, The Netherlands
- Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca-Napoca, Romania
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Center, 6500HB, Nijmegen, The Netherlands
- Department for Immunology and Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, 53115, Bonn, Germany
| |
Collapse
|
34
|
Singhaarachchi PH, Antal P, Calon F, Culmsee C, Delpech JC, Feldotto M, Geertsema J, Hoeksema EE, Korosi A, Layé S, McQualter J, de Rooij SR, Rummel C, Slayo M, Sominsky L, Spencer SJ. Aging, sex, metabolic and life experience factors: Contributions to neuro-inflammaging in Alzheimer's disease research. Neurosci Biobehav Rev 2024; 162:105724. [PMID: 38762130 DOI: 10.1016/j.neubiorev.2024.105724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/24/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Alzheimer's disease (AD) is prevalent around the world, yet our understanding of the disease is still very limited. Recent work suggests that the cornerstone of AD may include the inflammation that accompanies it. Failure of a normal pro-inflammatory immune response to resolve may lead to persistent central inflammation that contributes to unsuccessful clearance of amyloid-beta plaques as they form, neuronal death, and ultimately cognitive decline. Individual metabolic, and dietary (lipid) profiles can differentially regulate this inflammatory process with aging, obesity, poor diet, early life stress and other inflammatory factors contributing to a greater risk of developing AD. Here, we integrate evidence for the interface between these factors, and how they contribute to a pro-inflammatory brain milieu. In particular, we discuss the importance of appropriate polyunsaturated fatty acids (PUFA) in the diet for the metabolism of specialised pro-resolving mediators (SPMs); raising the possibility for dietary strategies to improve AD outlook.
Collapse
Affiliation(s)
| | - Peter Antal
- Department of Measurement and Information Systems, Budapest University of Technology and Economics, 1111, Hungary
| | - Frédéric Calon
- Faculty of Pharmacy, Centre de Recherche du CHU de Québec-Laval University, Quebec G1V0A6, Canada; International Associated Laboratory OptiNutriBrain-NutriNeuro, Bordeaux F-33000, France; INAF, Quebec G1V0A6, Canada
| | - Carsten Culmsee
- Institute of Pharmacology and Clinical Pharmacy, Philipps University of Marburg, Marburg D-35032, Germany; Center for Mind, Brain and Behavior-CMBB, Giessen, D-35392, Marburg D-35032, Germany
| | - Jean-Christophe Delpech
- International Associated Laboratory OptiNutriBrain-NutriNeuro, Bordeaux F-33000, France; Université de Bordeaux, INRAE, Bordeaux INP, NutriNeurO, UMR 1286, Bordeaux F-33000, France; INAF, Quebec G1V0A6, Canada
| | - Martin Feldotto
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen D-35392, Germany
| | - Jorine Geertsema
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1018, the Netherlands
| | - Emmy E Hoeksema
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1018, the Netherlands
| | - Aniko Korosi
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1018, the Netherlands
| | - Sophie Layé
- International Associated Laboratory OptiNutriBrain-NutriNeuro, Bordeaux F-33000, France; Université de Bordeaux, INRAE, Bordeaux INP, NutriNeurO, UMR 1286, Bordeaux F-33000, France; INAF, Quebec G1V0A6, Canada
| | - Jonathan McQualter
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, Victoria 3083, Australia
| | - Susanne R de Rooij
- Department of Epidemiology and Data Science, Amsterdam University Medical Centers, University of Amsterdam, 1018, the Netherlands
| | - Christoph Rummel
- Center for Mind, Brain and Behavior-CMBB, Giessen, D-35392, Marburg D-35032, Germany; Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen D-35392, Germany
| | - Mary Slayo
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, Victoria 3083, Australia; Center for Mind, Brain and Behavior-CMBB, Giessen, D-35392, Marburg D-35032, Germany; Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen D-35392, Germany
| | - Luba Sominsky
- Barwon Health, Geelong, Victoria 3220, Australia; IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria 3217, Australia
| | - Sarah J Spencer
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, Victoria 3083, Australia.
| |
Collapse
|
35
|
Cooper PO, Kleb SS, Noonepalle SK, Amuso VM, Varshney R, Rudolph MC, Dhaliwal TK, Nguyen DV, Mazumder MF, Babirye NS, Gupta R, Nguyen BN, Shook BA. G-protein-coupled receptor 84 regulates acute inflammation in normal and diabetic skin wounds. Cell Rep 2024; 43:114288. [PMID: 38814782 PMCID: PMC11247419 DOI: 10.1016/j.celrep.2024.114288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 03/18/2024] [Accepted: 05/13/2024] [Indexed: 06/01/2024] Open
Abstract
Lipids have emerged as potent regulators of immune cell function. In the skin, adipocyte lipolysis increases the local pool of free fatty acids and is essential for coordinating early macrophage inflammation following injury. Here, we investigate G-protein-coupled receptor 84 (GPR84), a medium-chain fatty acid (MCFA) receptor, for its potential to propagate pro-inflammatory signaling after skin injury. GPR84 signaling was identified as a key component of regulating myeloid cell numbers and subsequent tissue repair through in vivo administration of a pharmacological antagonist and the MCFA decanoic acid. We found that impaired injury-induced dermal adipocyte lipolysis is a hallmark of diabetes, and lipidomic analysis demonstrated that MCFAs are significantly reduced in diabetic murine wounds. Furthermore, local administration of decanoic acid rescued myeloid cell numbers and tissue repair during diabetic wound healing. Thus, GPR84 is a readily targetable lipid signaling pathway for manipulating injury-induced tissue inflammation with beneficial effects on acute diabetic healing.
Collapse
Affiliation(s)
- Paula O Cooper
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - Sarah S Kleb
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - Satish K Noonepalle
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - Veronica M Amuso
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - Rohan Varshney
- Department of Biochemistry and Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Michael C Rudolph
- Department of Biochemistry and Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Tanvir K Dhaliwal
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - Darlene V Nguyen
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - Miguel F Mazumder
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - Najuma S Babirye
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - Ruchi Gupta
- Department of Surgery, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - Bao-Ngoc Nguyen
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA; Department of Surgery, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - Brett A Shook
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA; Department of Dermatology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA.
| |
Collapse
|
36
|
Hu Y, Li W, Cheng X, Yang H, She ZG, Cai J, Li H, Zhang XJ. Emerging Roles and Therapeutic Applications of Arachidonic Acid Pathways in Cardiometabolic Diseases. Circ Res 2024; 135:222-260. [PMID: 38900855 DOI: 10.1161/circresaha.124.324383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Cardiometabolic disease has become a major health burden worldwide, with sharply increasing prevalence but highly limited therapeutic interventions. Emerging evidence has revealed that arachidonic acid derivatives and pathway factors link metabolic disorders to cardiovascular risks and intimately participate in the progression and severity of cardiometabolic diseases. In this review, we systemically summarized and updated the biological functions of arachidonic acid pathways in cardiometabolic diseases, mainly focusing on heart failure, hypertension, atherosclerosis, nonalcoholic fatty liver disease, obesity, and diabetes. We further discussed the cellular and molecular mechanisms of arachidonic acid pathway-mediated regulation of cardiometabolic diseases and highlighted the emerging clinical advances to improve these pathological conditions by targeting arachidonic acid metabolites and pathway factors.
Collapse
Affiliation(s)
- Yufeng Hu
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Key Laboratory of Cardiovascular Disease Prevention and Control, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y.)
| | - Wei Li
- Department of Cardiology, Renmin Hospital of Wuhan University, China (W.L., Z.-G.S., H.L.)
| | - Xu Cheng
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Key Laboratory of Cardiovascular Disease Prevention and Control, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y.)
| | - Hailong Yang
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Key Laboratory of Cardiovascular Disease Prevention and Control, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y.)
| | - Zhi-Gang She
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Department of Cardiology, Renmin Hospital of Wuhan University, China (W.L., Z.-G.S., H.L.)
| | - Jingjing Cai
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China (J.C.)
| | - Hongliang Li
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Department of Cardiology, Renmin Hospital of Wuhan University, China (W.L., Z.-G.S., H.L.)
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China (H.L.)
| | - Xiao-Jing Zhang
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- School of Basic Medical Sciences, Wuhan University, China (X.-J.Z.)
| |
Collapse
|
37
|
Chinnathambi S, Desale SE. The crosstalk between extracellular matrix proteins and Tau. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 141:447-466. [PMID: 38960482 DOI: 10.1016/bs.apcsb.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Alzheimer's disease is progressive neurodegenerative disease characterize by the presence of extracellular accumulation of amyloid-β plaques and intracellular deposits of neurofibrillary tangles of Tau. Apart from axonal depositions pathological aggregated Tau protein is known to secrete into extracellular spaces and propagate through seeding mechanism. Microglia, the immune cells of the brain display modest ability to internalize the extracellular Tau and degrade it through endolysosomal pathway. However, the excessive burden of pathoproteins weakens the phagocytic ability of microglia. Extracellular supplementation of omega-3 fatty acids (n-3) may regulate the phagocytosis of microglia as they mediate the anti-inflammatory polarization of microglia through membrane lipid compositions changes. The internalization of extracellular Tau in the microglia is regulated by cortical membrane-associated actin remodeling driven by interplay of actin-binding proteins. On the other hand, Tau display capability bind and interact with various actin-binding protein owing to the presence of proline-rich domain in the structure and regulate their activation. In this study, we hypothesize that internalization of Tau in the presence of omega-3 fatty acids would propagate the Tau-mediated activation of actin-binding proteins as well as extracellular matrix and in turn modulate cortical actin remodeling for phagocytosis.
Collapse
Affiliation(s)
- Subashchandrabose Chinnathambi
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Institute of National Importance, Bangalore, Karnataka, India
| | - Smita Eknath Desale
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Institute of National Importance, Bangalore, Karnataka, India
| |
Collapse
|
38
|
Baruah P, Mahony C, Marshall JL, Smith CG, Monksfield P, Irving RI, Dumitriu IE, Buckley CD, Croft AP. Single-cell RNA sequencing analysis of vestibular schwannoma reveals functionally distinct macrophage subsets. Br J Cancer 2024; 130:1659-1669. [PMID: 38480935 DOI: 10.1038/s41416-024-02646-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Vestibular schwannomas (VSs) remain a challenge due to their anatomical location and propensity to growth. Macrophages are present in VS but their roles in VS pathogenesis remains unknown. OBJECTIVES The objective was to assess phenotypic and functional profile of macrophages in VS with single-cell RNA sequencing (scRNAseq). METHODS scRNAseq was carried out in three VS samples to examine characteristics of macrophages in the tumour. RT-qPCR was carried out on 10 VS samples for CD14, CD68 and CD163 and a panel of macrophage-associated molecules. RESULTS scRNAseq revealed macrophages to be a major constituent of VS microenvironment with three distinct subclusters based on gene expression. The subclusters were also defined by expression of CD163, CD68 and IL-1β. AREG and PLAUR were expressed in the CD68+CD163+IL-1β+ subcluster, PLCG2 and NCKAP5 were expressed in CD68+CD163+IL-1β- subcluster and AUTS2 and SPP1 were expressed in the CD68+CD163-IL-1β+ subcluster. RT-qPCR showed expression of several macrophage markers in VS of which CD14, ALOX15, Interleukin-1β, INHBA and Colony Stimulating Factor-1R were found to have a high correlation with tumour volume. CONCLUSIONS Macrophages form an important component of VS stroma. scRNAseq reveals three distinct subsets of macrophages in the VS tissue which may have differing roles in the pathogenesis of VS.
Collapse
Affiliation(s)
- Paramita Baruah
- Department of ENT, University Hospitals of Birmingham NHS Trust, Birmingham, UK.
- Department of ENT, University Hospitals of Leicester NHS Trust, Leicester, UK.
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.
| | - Christopher Mahony
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Jennifer L Marshall
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Charlotte G Smith
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Peter Monksfield
- Department of ENT, University Hospitals of Birmingham NHS Trust, Birmingham, UK
| | - Richard I Irving
- Department of ENT, University Hospitals of Birmingham NHS Trust, Birmingham, UK
| | - Ingrid E Dumitriu
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | | | - Adam P Croft
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| |
Collapse
|
39
|
Zhang W, Bhandari S, Ding Y, Luo J, Feng B, Jiang Y, Chen T, Wei J, Pan X, Weng H, Ding Z, Chen J, Chen X, Gong Y, Li H, Jin S, Hao Y. Polyunsaturated fatty acid-derived lipid mediator Resolvin D1 alleviates sepsis-induced disseminated intravascular coagulation via Caspase-1/Gasdermin D pyroptotic pathway. Clin Nutr 2024; 43:1372-1383. [PMID: 38678822 DOI: 10.1016/j.clnu.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND & AIMS Sepsis-induced disseminated intravascular coagulation (DIC) is characterised by abnormal blood clotting resulting from severe infection, contributing to organ dysfunction in sepsis. Resolvin D1 (RvD1) is an endogenous lipid mediator, synthesised from the omega-3 polyunsaturated fatty acid (PUFA) docosahexaenoic acid (DHA) through enzymatic processes involving 15-LOX and 5-LOX. RvD1 is recognised for its protective properties against various inflammatory conditions. This study aims to investigate its potential to modulate coagulation dysfunction in sepsis and to evaluate coagulation disorders in septic patients. METHODS Sepsis models were established by intraperitoneal injection LPS (20 mg/kg) or cecal ligation and puncture (CLP) followed by injection of RvD1 (10 μg/kg) or saline. The impact of RvD1 on coagulation dysfunction was assessed by clotting time and coagulation indicators such as TAT, D-dimer, PAI-1, and fibrinogen. The activity of the coagulation system in vivo was observed by evaluating dynamic microcirculation, platelets and thrombin in mice using intravital microscopy. The effect of RvD1 on pyroptosis was investigated by measuring NOD-like receptor protein 3 (NLRP3), Caspase-1, Caspase-11, and Gasdermin D (GSDMD) levels via western blot. Caspase-1 knockout mice, GSDMD knockout mice and bone marrow-derived macrophages (BMDMs) were used to elucidate the underlying mechanisms. Lastly, the concentration of RvD1 in plasma from septic patients was quantified to explore its relationship with coagulation and pyroptosis. RESULTS RvD1 significantly attenuated coagulation dysfunction in septic mice induced by LPS and CLP, and inhibited Caspase-1/GSDMD-dependent pyroptosis in septic mice and bone marrow-derived macrophages. In septic patients, the plasma concentrations of RvD1 was negatively correlated with both coagulation-related indicators and markers of GSDMD activation. CONCLUSION The results suggest that RvD1 can improve coagulation dysfunction in sepsis by regulating the Caspase-1/GSDMD pyroptotic pathway. Additionally, the concentration of RvD1 in septic patient plasma is related to prognosis and DIC development. RvD1 could be a potential biomarker and a promising therapeutic alternative in sepsis-induced DIC.
Collapse
Affiliation(s)
- Wenyan Zhang
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou 325027, China
| | - Suwas Bhandari
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou 325027, China
| | - Yajun Ding
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou 325027, China
| | - Jun Luo
- Department of Pharmacy, Taizhou Women and Children's Hospital of Wenzhou Medical University, Taizhou 317599, China
| | - Bo Feng
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou 325027, China
| | - Yating Jiang
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou 325027, China
| | - Ting Chen
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou 325027, China
| | - Jinling Wei
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou 325027, China
| | - Xiaodong Pan
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou 325027, China; Department of Emergency Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Haixu Weng
- Department of Critical Care Medicine, The Third Affiliated Hospital of Wenzhou Medical University, Ruian 325207, China
| | - Zhangna Ding
- Department of Critical Care Medicine, The Third Affiliated Hospital of Wenzhou Medical University, Ruian 325207, China
| | - Jie Chen
- Department of Emergency, Third Affiliated Hospital, Wenzhou Medical University, Ruian 325207, China
| | - Xi Chen
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou 325027, China
| | - Yuqiang Gong
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| | - Hui Li
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou 325027, China.
| | - Shengwei Jin
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou 325027, China.
| | - Yu Hao
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
40
|
Zhao M, Xian W, Liu W, Chen D, Wang S, Cao J. Maresin1 alleviates neuroinflammation by inhibiting caspase-3/ GSDME-mediated pyroptosis in mice cerebral ischemia-reperfusion model. J Stroke Cerebrovasc Dis 2024; 33:107789. [PMID: 38782167 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
OBJECTIVE To explore the mechanism of Maresin1 in reducing cerebral ischemia-reperfusion injury. MATERIALS AND METHODS Male C57BL/6 mice were randomly divided (n = 5 in each group), and focal middle cerebral artery occlusion (MCAO) model was used to simulate cerebral ischemia/reperfusion injury. TTC and the Longa score were used to detect the degree of neurological deficits. Western blot was used to detect the expression levels of GSDME, GSDME-N, caspase-3 and cleaved caspase-3 in cerebral ischemic penumbra tissue, and immunofluorescence was used to detect the expression levels of GSDME-N. The mRNA expression levels of GSDME and pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α) were detected by RT-PCR. RESULTS Compared with sham group, GSDME mRNA levels in MCAO group were significantly increased at 12 h and 24 h after reperfusion, and GSDME and GSDME-N significantly increased at 6-48 h after reperfusion. Compared with sham group, the percentage of infarct size, the Longa score, the mRNA expression levels of IL-1β, IL-6 and TNF-α, and GSDME, GSDME-N, caspase-3 and cleaved caspase-3 in MCAO group was significantly increased. Then, the percentage of infarct size and the Longa score significantly decreased after MaR1 administration, the mRNA expression levels of IL-1β and IL-6 downregulated, and GSDME, GSDME-N, caspase-3 and cleaved caspase-3 were also reduced. After administration of Z-DEVD-FMK(ZDF), the expression of caspase-3, cleaved caspase-3 and GSDME-N was decreased, which in MCAO+MaR1+ZDF group was not statistically significant compared with MCAO+ ZDF group. CONCLUSION Maresin1 alleviates cerebral ischemia/reperfusion injury by inhibiting pyroptosis mediated by caspase-3/GSDME pathway and alleviating neuroinflammation.
Collapse
Affiliation(s)
- Maoji Zhao
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing 400016, PR China
| | - Wenjing Xian
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing 400016, PR China
| | - Wenyi Liu
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing 400016, PR China
| | - Daiyu Chen
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing 400016, PR China
| | - Siqi Wang
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing 400016, PR China
| | - Jun Cao
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing 400016, PR China.
| |
Collapse
|
41
|
Mamun AA, Shao C, Geng P, Wang S, Xiao J. Recent advances in molecular mechanisms of skin wound healing and its treatments. Front Immunol 2024; 15:1395479. [PMID: 38835782 PMCID: PMC11148235 DOI: 10.3389/fimmu.2024.1395479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/03/2024] [Indexed: 06/06/2024] Open
Abstract
The skin, being a multifaceted organ, performs a pivotal function in the complicated wound-healing procedure, which encompasses the triggering of several cellular entities and signaling cascades. Aberrations in the typical healing process of wounds may result in atypical scar development and the establishment of a persistent condition, rendering patients more vulnerable to infections. Chronic burns and wounds have a detrimental effect on the overall quality of life of patients, resulting in higher levels of physical discomfort and socio-economic complexities. The occurrence and frequency of prolonged wounds are on the rise as a result of aging people, hence contributing to escalated expenditures within the healthcare system. The clinical evaluation and treatment of chronic wounds continue to pose challenges despite the advancement of different therapeutic approaches. This is mainly owing to the prolonged treatment duration and intricate processes involved in wound healing. Many conventional methods, such as the administration of growth factors, the use of wound dressings, and the application of skin grafts, are used to ease the process of wound healing across diverse wound types. Nevertheless, these therapeutic approaches may only be practical for some wounds, highlighting the need to advance alternative treatment modalities. Novel wound care technologies, such as nanotherapeutics, stem cell treatment, and 3D bioprinting, aim to improve therapeutic efficacy, prioritize skin regeneration, and minimize adverse effects. This review provides an updated overview of recent advancements in chronic wound healing and therapeutic management using innovative approaches.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
| | - Chuxiao Shao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
| | - Peiwu Geng
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
| | - Shuanghu Wang
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
| | - Jian Xiao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
42
|
Han Y, Hu J, Pan J, Song X, Zhou Y, Zhang J, Yang Y, Shi X, Sun M, Yang J. LPS exposure alleviates multiple tissues damage by facilitating macrophage efferocytosis. Int Immunopharmacol 2024; 135:112283. [PMID: 38772299 DOI: 10.1016/j.intimp.2024.112283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/05/2024] [Accepted: 05/14/2024] [Indexed: 05/23/2024]
Abstract
Toll-like receptors (TLRs) play a crucial role in mediating immune responses by recognizing pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs), as well as facilitating apoptotic cell (ACs) clearance (efferocytosis), thus contributing significantly to maintaining homeostasis and promoting tissue resolution. In this study, we investigate the impact of TLR agonists on macrophage efferocytosis. Our findings demonstrate that pretreatment with the TLR agonist lipopolysaccharide (LPS) significantly enhances macrophage phagocytic ability, thereby promoting efferocytosis both in vitro and in vivo. Moreover, LPS pretreatment confers tissue protection against damage by augmenting macrophage efferocytic capacity in murine models. Further examination reveals that LPS modulates efferocytosis by upregulating the expression of Tim4.These results underscore the pivotal role of TLR agonists in regulating the efferocytosis process and suggest potential therapeutic avenues for addressing inflammatory diseases. Overall, our study highlights the intricate interplay between LPS pretreatment and efferocytosis in maintaining tissue homeostasis and resolving inflammation.
Collapse
Affiliation(s)
- Yuwen Han
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Jiangsu Key Lab of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Keling Road No. 88, Suzhou 215163, China
| | - Jiukun Hu
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Jiangsu Key Lab of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Keling Road No. 88, Suzhou 215163, China
| | - Jinlin Pan
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Jiangsu Key Lab of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Keling Road No. 88, Suzhou 215163, China
| | - Xueyan Song
- Jiangsu Key Lab of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Keling Road No. 88, Suzhou 215163, China
| | - Yuanshuai Zhou
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Jiangsu Key Lab of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Keling Road No. 88, Suzhou 215163, China
| | - Jun Zhang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Jiangsu Key Lab of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Keling Road No. 88, Suzhou 215163, China
| | - Yue Yang
- Jiangsu Key Lab of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Keling Road No. 88, Suzhou 215163, China; Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Xiaohua Shi
- Department of Gastroenterology, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 1 Lijiang Road, Suzhou 215153, China
| | - Minxuan Sun
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Jiangsu Key Lab of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Keling Road No. 88, Suzhou 215163, China.
| | - Jiao Yang
- Institute of Clinical Medicine Research, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Lijiang Road No. 1, Suzhou 215153, China.
| |
Collapse
|
43
|
Abstract
The recent emergence of nanomedicine has revolutionized the therapeutic landscape and necessitated the creation of more sophisticated drug delivery systems. Polymeric nanoparticles sit at the forefront of numerous promising drug delivery designs, due to their unmatched control over physiochemical properties such as size, shape, architecture, charge, and surface functionality. Furthermore, polymeric nanoparticles have the ability to navigate various biological barriers to precisely target specific sites within the body, encapsulate a diverse range of therapeutic cargo and efficiently release this cargo in response to internal and external stimuli. However, despite these remarkable advantages, the presence of polymeric nanoparticles in wider clinical application is minimal. This review will provide a comprehensive understanding of polymeric nanoparticles as drug delivery vehicles. The biological barriers affecting drug delivery will be outlined first, followed by a comprehensive description of the various nanoparticle designs and preparation methods, beginning with the polymers on which they are based. The review will meticulously explore the current performance of polymeric nanoparticles against a myriad of diseases including cancer, viral and bacterial infections, before finally evaluating the advantages and crucial challenges that will determine their wider clinical potential in the decades to come.
Collapse
Affiliation(s)
- Maximilian
A. Beach
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Umeka Nayanathara
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yanting Gao
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Changhe Zhang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yijun Xiong
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yufu Wang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Georgina K. Such
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
44
|
Speirs ZC, Loynes CA, Mathiessen H, Elks PM, Renshaw SA, Jørgensen LVG. What can we learn about fish neutrophil and macrophage response to immune challenge from studies in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109490. [PMID: 38471626 DOI: 10.1016/j.fsi.2024.109490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/06/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024]
Abstract
Fish rely, to a high degree, on the innate immune system to protect them against the constant exposure to potential pathogenic invasion from the surrounding water during homeostasis and injury. Zebrafish larvae have emerged as an outstanding model organism for immunity. The cellular component of zebrafish innate immunity is similar to the mammalian innate immune system and has a high degree of sophistication due to the needs of living in an aquatic environment from early embryonic stages of life. Innate immune cells (leukocytes), including neutrophils and macrophages, have major roles in protecting zebrafish against pathogens, as well as being essential for proper wound healing and regeneration. Zebrafish larvae are visually transparent, with unprecedented in vivo microscopy opportunities that, in combination with transgenic immune reporter lines, have permitted visualisation of the functions of these cells when zebrafish are exposed to bacterial, viral and parasitic infections, as well as during injury and healing. Recent findings indicate that leukocytes are even more complex than previously anticipated and are essential for inflammation, infection control, and subsequent wound healing and regeneration.
Collapse
Affiliation(s)
- Zoë C Speirs
- The Bateson Centre, School of Medicine and Population Health, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Catherine A Loynes
- The Bateson Centre, School of Medicine and Population Health, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Heidi Mathiessen
- Laboratory of Experimental Fish Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C., Denmark
| | - Philip M Elks
- The Bateson Centre, School of Medicine and Population Health, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Stephen A Renshaw
- The Bateson Centre, School of Medicine and Population Health, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Louise von Gersdorff Jørgensen
- Laboratory of Experimental Fish Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C., Denmark.
| |
Collapse
|
45
|
Ohno R, Mainka M, Kirchhoff R, Hartung NM, Schebb NH. Sterol Derivatives Specifically Increase Anti-Inflammatory Oxylipin Formation in M2-like Macrophages by LXR-Mediated Induction of 15-LOX. Molecules 2024; 29:1745. [PMID: 38675565 PMCID: PMC11052137 DOI: 10.3390/molecules29081745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/29/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
The understanding of the role of LXR in the regulation of macrophages during inflammation is emerging. Here, we show that LXR agonist T09 specifically increases 15-LOX abundance in primary human M2 macrophages. In time- and dose-dependent incubations with T09, an increase of 3-fold for ALOX15 and up to 15-fold for 15-LOX-derived oxylipins was observed. In addition, LXR activation has no or moderate effects on the abundance of macrophage marker proteins such as TLR2, TLR4, PPARγ, and IL-1RII, as well as surface markers (CD14, CD86, and CD163). Stimulation of M2-like macrophages with FXR and RXR agonists leads to moderate ALOX15 induction, probably due to side activity on LXR. Finally, desmosterol, 24(S),25-Ep cholesterol and 22(R)-OH cholesterol were identified as potent endogenous LXR ligands leading to an ALOX15 induction. LXR-mediated ALOX15 regulation is a new link between the two lipid mediator classes sterols, and oxylipins, possibly being an important tool in inflammatory regulation through anti-inflammatory oxylipins.
Collapse
Affiliation(s)
| | | | | | | | - Nils Helge Schebb
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany
| |
Collapse
|
46
|
So J, Yao JH, Magadmi R, Matthan NR, Lamon-Fava S. Sex differences in lipid mediators derived from omega-3 fatty acids in older individuals with low-grade chronic inflammation. Prostaglandins Leukot Essent Fatty Acids 2024; 203:102655. [PMID: 39488904 PMCID: PMC11624983 DOI: 10.1016/j.plefa.2024.102655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/16/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
The rate of cardiovascular disease (CVD) death is higher in men than women before age 50 y, but the gap between sexes significantly narrows after menopause. Lipid mediators derived from EPA, DHA and AA play a role in inflammation and CVD. The aim of our study was to assess whether plasma concentrations of these lipid mediators differ between postmenopausal women and men. Twelve postmenopausal women and 9 men with low-grade chronic inflammation completed a randomized, double-blind, crossover study consisting of a 4-week lead-in placebo phase (3 g/d high-oleic acid sunflower oil) followed by randomization to either 3 g/d DHA or 3 g/d EPA for 10 weeks and crossover for additional 10 weeks, separated by a washout phase. Plasma phospholipid content of EPA, DHA and AA and plasma concentrations of their derived lipid mediators were measured at the end of the placebo lead-in phase (baseline) and the DHA and EPA supplementation phases. There were no sex differences in plasma phospholipid EPA, DHA and AA at baseline and after DHA and EPA supplementation. However, plasma concentrations of lipid mediators derived from EPA, DHA and AA via 15-lipoxygenase were lower in postmenopausal women than men, especially after supplementation. Sex differences in EPA- and DHA-derived lipid mediators with anti-inflammatory and pro-resolving actions may partly explain the faster rise in CVD in postmenopausal women than age-matched men.
Collapse
Affiliation(s)
- Jisun So
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Jonathan H Yao
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Rozana Magadmi
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Nirupa R Matthan
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Stefania Lamon-Fava
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Gerald J. and Dorothy R. Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA.
| |
Collapse
|
47
|
Povo-Retana A, Sánchez-García S, Alvarez-Lucena C, Landauro-Vera R, Prieto P, Delgado C, Martín-Sanz P, Boscá L. Crosstalk between P2Y receptors and cyclooxygenase activity in inflammation and tissue repair. Purinergic Signal 2024; 20:145-155. [PMID: 37052777 PMCID: PMC10997571 DOI: 10.1007/s11302-023-09938-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/29/2023] [Indexed: 04/14/2023] Open
Abstract
The role of extracellular nucleotides as modulators of inflammation and cell stress is well established. One of the main actions of these molecules is mediated by the activation of purinergic receptors (P2) of the plasma membrane. P2 receptors can be classified according to two different structural families: P2X ionotropic ion channel receptors, and P2Y metabotropic G protein-coupled receptors. During inflammation, damaged cells release nucleotides and purinergic signaling occurs along the temporal pattern of the synthesis of pro-inflammatory and pro-resolving mediators by myeloid and lymphoid cells. In macrophages under pro-inflammatory conditions, the expression and activity of cyclooxygenase 2 significantly increases and enhances the circulating levels of prostaglandin E2 (PGE2), which exerts its effects both through specific plasma membrane receptors (EP1-EP4) and by activation of intracellular targets. Here we review the mechanisms involved in the crosstalk between PGE2 and P2Y receptors on macrophages, which is dependent on several isoforms of protein kinase C and protein kinase D1. Due to this crosstalk, a P2Y-dependent increase in calcium is blunted by PGE2 whereas, under these conditions, macrophages exhibit reduced migratory capacity along with enhanced phagocytosis, which contributes to the modulation of the inflammatory response and tissue repair.
Collapse
Affiliation(s)
- Adrián Povo-Retana
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain.
| | - Sergio Sánchez-García
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain
| | - Carlota Alvarez-Lucena
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain
| | - Rodrigo Landauro-Vera
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain
| | - Patricia Prieto
- Departamento de Farmacología, Farmacognosia y Botánica. Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, 28040, Madrid, Spain
| | - Carmen Delgado
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Melchor Fernández Almagro 6, 28029, Madrid, Spain
| | - Paloma Martín-Sanz
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Melchor Fernández Almagro 6, 28029, Madrid, Spain
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Arturo Duperier 4, 28029, Madrid, Spain.
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Melchor Fernández Almagro 6, 28029, Madrid, Spain.
| |
Collapse
|
48
|
Kang Y, Kim D, Lee S, Kim H, Kim T, Cho JA, Lee T, Choi EY. Innate Immune Training Initiates Efferocytosis to Protect against Lung Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308978. [PMID: 38279580 PMCID: PMC11005705 DOI: 10.1002/advs.202308978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Indexed: 01/28/2024]
Abstract
Innate immune training involves myelopoiesis, dynamic gene modulation, and functional reprogramming of myeloid cells in response to secondary heterologous challenges. The present study evaluates whether systemic innate immune training can protect tissues from local injury. Systemic pretreatment of mice with β-glucan, a trained immunity agonist, reduces the mortality rate of mice with bleomycin-induced lung injury and fibrosis, as well as decreasing collagen deposition in the lungs. β-Glucan pretreatment induces neutrophil accumulation in the lungs and enhances efferocytosis. Training of mice with β-glucan results in histone modification in both alveolar macrophages (AMs) and neighboring lung epithelial cells. Training also increases the production of RvD1 and soluble mediators by AMs and efferocytes. Efferocytosis increases trained immunity in AMs by stimulating RvD1 release, thus inducing SIRT1 expression in neighboring lung epithelial cells. Elevated epithelial SIRT1 expression is associated with decreased epithelial cell apoptosis after lung injury, attenuating tissue damage. Further, neutrophil depletion dampens the effects of β-glucan on macrophage accumulation, epigenetic modification in lung macrophages, epithelial SIRT1 expression, and injury-mediated fibrosis in the lung. These findings provide mechanistic insights into innate immune training and clues to the potential ability of centrally trained immunity to protect peripheral organs against injury-mediated disorders.
Collapse
Affiliation(s)
- Yoon‐Young Kang
- Department of Biomedical SciencesUniversity of Ulsan College of MedicineASAN Medical CenterSeoul05505Republic of Korea
- Department of MicrobiologyUniversity of Ulsan College of MedicineASAN Medical CenterSeoul05505Republic of Korea
| | - Dong‐Young Kim
- Department of Biomedical SciencesUniversity of Ulsan College of MedicineASAN Medical CenterSeoul05505Republic of Korea
- Present address:
Institute for Clinical Chemistry and Laboratory MedicineFaculty of MedicineTechnische Universität Dresden01307DresdenGermany
| | - Sang‐Yong Lee
- Department of Biomedical SciencesUniversity of Ulsan College of MedicineASAN Medical CenterSeoul05505Republic of Korea
- Department of MicrobiologyUniversity of Ulsan College of MedicineASAN Medical CenterSeoul05505Republic of Korea
| | - Hee‐Joong Kim
- Department of Biomedical SciencesUniversity of Ulsan College of MedicineASAN Medical CenterSeoul05505Republic of Korea
- Department of MicrobiologyUniversity of Ulsan College of MedicineASAN Medical CenterSeoul05505Republic of Korea
| | - Taehawn Kim
- Department of Biomedical SciencesUniversity of Ulsan College of MedicineASAN Medical CenterSeoul05505Republic of Korea
| | - Jeong A. Cho
- Department of Biomedical SciencesUniversity of Ulsan College of MedicineASAN Medical CenterSeoul05505Republic of Korea
| | - Taewon Lee
- Division of Applied Mathematical SciencesCollege of Science and TechnologyKorea UniversitySejong30019Republic of Korea
| | - Eun Young Choi
- Department of Biomedical SciencesUniversity of Ulsan College of MedicineASAN Medical CenterSeoul05505Republic of Korea
- Department of MicrobiologyUniversity of Ulsan College of MedicineASAN Medical CenterSeoul05505Republic of Korea
| |
Collapse
|
49
|
Bekauri T, Fischer S, Honn KV, Maddipati KR, Love T, Little C, Wood RW, Bonham AD, Linder MA, Yule DI, Emanuelle C, Falsetta ML. Inflammation, lipid dysregulation, and transient receptor potential cation channel subfamily V member 4 signaling perpetuate chronic vulvar pain. Pain 2024; 165:820-837. [PMID: 37889581 PMCID: PMC10949218 DOI: 10.1097/j.pain.0000000000003088] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/19/2023] [Accepted: 08/23/2023] [Indexed: 10/29/2023]
Abstract
ABSTRACT Localized provoked vulvodynia is characterized by chronic vulvar pain that disrupts every aspect of the patient's life. Pain is localized to the vulvar vestibule, a specialized ring of tissue immediately surrounding the vaginal opening involved in immune defense. In this article, we show inflammation is the critical first step necessary for the generation of pain signals in the vulva. Inflammatory stimuli alone or combined with the transient receptor potential cation channel subfamily V member 4 (TRPV4) agonist 4α-phorbol 12,13-didecanoate stimulate calcium flux into vulvar fibroblast cells. Activity is blocked by the TRPV4 antagonist HC067047, denoting specificity to TRPV4. Using lipidomics, we found pro-resolving lipids in the vulvar vestibule were dysregulated, characterized by a reduction in pro-resolving mediators and heightened production of inflammatory mediators. We demonstrate specialized pro-resolving mediators represent a potential new therapy for vulvar pain, acting on 2 key parts of the disease mechanism by limiting inflammation and acutely inhibiting TRPV4 signaling.
Collapse
Affiliation(s)
- Tamari Bekauri
- OB/GYN Research Division, University of Rochester, Rochester, NY, United States
| | - Sarah Fischer
- OB/GYN Research Division, University of Rochester, Rochester, NY, United States
| | - Kenneth V. Honn
- Pathology Department, Wayne State University, Detroit, MI, United States
- Lipidomics Core Facility and Bioactive Lipids Research Program, Wayne State University, Detroit, MI, United States
| | - Krishna Rao Maddipati
- Pathology Department, Wayne State University, Detroit, MI, United States
- Lipidomics Core Facility and Bioactive Lipids Research Program, Wayne State University, Detroit, MI, United States
| | - Tanzy Love
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, United States
| | - Chantelle Little
- OB/GYN Research Division, University of Rochester, Rochester, NY, United States
| | - Ronald W. Wood
- OB/GYN Research Division, University of Rochester, Rochester, NY, United States
| | - Adrienne D. Bonham
- OB/GYN Department, Oregon Health Sciences University, Portland, OR, United States
| | - Mitchell A. Linder
- OB/GYN Research Division, University of Rochester, Rochester, NY, United States
| | - David I. Yule
- Pharmacology and Physiology Department, University of Rochester, Rochester, NY, United States
| | - Chrysilla Emanuelle
- Pharmacology and Physiology Department, University of Rochester, Rochester, NY, United States
| | - Megan L. Falsetta
- OB/GYN Research Division, University of Rochester, Rochester, NY, United States
- Pharmacology and Physiology Department, University of Rochester, Rochester, NY, United States
| |
Collapse
|
50
|
Cheung SM, Chan KS, Zhou W, Husain E, Gagliardi T, Masannat Y, He J. Spatial heterogeneity of peri-tumoural lipid composition in postmenopausal patients with oestrogen receptor positive breast cancer. Sci Rep 2024; 14:4699. [PMID: 38409583 PMCID: PMC10897464 DOI: 10.1038/s41598-024-55458-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 02/23/2024] [Indexed: 02/28/2024] Open
Abstract
Deregulation of lipid composition in adipose tissue adjacent to breast tumour is observed in ex vivo and animal models. Novel non-invasive magnetic resonance imaging (MRI) allows rapid lipid mapping of the human whole breast. We set out to elucidate the spatial heterogeneity of peri-tumoural lipid composition in postmenopausal patients with oestrogen receptor positive (ER +) breast cancer. Thirteen participants (mean age, 62 ± [SD] 6 years) with ER + breast cancer and 13 age-matched postmenopausal healthy controls were scanned on MRI. The number of double bonds in triglycerides was computed from MRI images to derive lipid composition maps of monounsaturated, polyunsaturated, and saturated fatty acids (MUFA, PUFA, SFA). The spatial heterogeneity measures (mean, median, skewness, entropy and kurtosis) of lipid composition in the peri-tumoural region and the whole breast of participants and in the whole breast of controls were computed. The Ki-67 proliferative activity marker and CD163 antibody on tumour-associated macrophages were assessed histologically. Mann Whitney U or Wilcoxon tests and Spearman's coefficients were used to assess group differences and correlations, respectively. For comparison against the whole breast in participants, peri-tumoural MUFA had a lower mean (median (IQR), 0.40 (0.02), p < .001), lower median (0.42 (0.02), p < .001), a negative skewness with lower magnitude (- 1.65 (0.77), p = .001), higher entropy (4.35 (0.64), p = .007) and lower kurtosis (5.13 (3.99), p = .001). Peri-tumoural PUFA had a lower mean (p < .001), lower median (p < .001), a positive skewness with higher magnitude (p = .005) and lower entropy (p = .002). Peri-tumoural SFA had a higher mean (p < .001), higher median (p < .001), a positive skewness with lower magnitude (p < .001) and lower entropy (p = .012). For comparison against the whole breast in controls, peri-tumoural MUFA had a negative skewness with lower magnitude (p = .01) and lower kurtosis (p = .009), however there was no difference in PUFA or SFA. CD163 moderately correlated with peri-tumoural MUFA skewness (rs = - .64), PUFA entropy (rs = .63) and SFA skewness (rs = .59). There was a lower MUFA and PUFA while a higher SFA, and a higher heterogeneity of MUFA while a lower heterogeneity of PUFA and SFA, in the peri-tumoural region in comparison with the whole breast tissue. The degree of lipid deregulation was associated with inflammation as indicated by CD163 antibody on macrophages, serving as potential marker for early diagnosis and response to therapy.
Collapse
Affiliation(s)
- Sai Man Cheung
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK.
| | - Kwok-Shing Chan
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Wenshu Zhou
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Ehab Husain
- Department of Pathology, Aberdeen Royal Infirmary, Aberdeen, UK
| | - Tanja Gagliardi
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
- Department of Radiology, Royal Marsden Hospital, London, UK
| | - Yazan Masannat
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
- Broomfield Breast Unit, Broomfield Hospital, Mid and South Essex NHS Trust, Chelmsford, UK
- London Breast Institute, Princess Grace Hospital, London, UK
| | - Jiabao He
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK.
- Faculty of Medical Sciences, Newcastle Magnetic Resonance Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|