1
|
Bouzeineddine NZ, Philippi A, Gee K, Basta S. Granulocyte macrophage colony stimulating factor in virus-host interactions and its implication for immunotherapy. Cytokine Growth Factor Rev 2025; 81:54-63. [PMID: 39755463 DOI: 10.1016/j.cytogfr.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 01/06/2025]
Abstract
Viruses have evolved to strategically exploit cellular signaling pathways to evade host immune defenses. GM-CSF signaling plays a pivotal role in regulating inflammation, activating myeloid cells, and enhancing the immune response to infections. Due to its central role in the immune system, viruses may target this pathway to further establish infection. This review focuses on key studies elucidating virus interactions with GM-CSF signaling proteins and summarizes findings on the impact of viral infections on GM-CSF production. Additionally, therapeutic strategies centered around GM-CSF are investigated, such as the potential benefits of administering GM-CSF versus inhibiting GM-CSF signaling to mitigate viral-induced aberrant inflammation. Understanding these virus-host interactions provides valuable insights that help further our understanding to develop future therapeutic approaches in modulating the immune response during viral infections.
Collapse
Affiliation(s)
- Nasry Zane Bouzeineddine
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Alecco Philippi
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Katrina Gee
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| | - Sam Basta
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
2
|
Hall CK, Barr OM, Delamare A, Burkholder A, Tsai A, Tian Y, Felix E Ellett, Li BM, Tanzi RE, Jorfi M. Profiling migration of human monocytes in response to chemotactic and barotactic guidance cues. CELL REPORTS METHODS 2024; 4:100846. [PMID: 39241776 PMCID: PMC11440068 DOI: 10.1016/j.crmeth.2024.100846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/10/2024] [Accepted: 08/09/2024] [Indexed: 09/09/2024]
Abstract
Monocytes are critical to innate immunity, participating in chemotaxis during tissue injury, infection, and inflammatory conditions. However, the migration dynamics of human monocytes under different guidance cues are not well characterized. Here, we developed a microfluidic device to profile the migration characteristics of human monocytes under chemotactic and barotactic guidance cues while also assessing the effects of age and cytokine stimulation. Human monocytes preferentially migrated toward the CCL2 gradient through confined microchannels, regardless of donor age and migration pathway. Stimulation with interferon (IFN)-γ, but not granulocyte-macrophage colony-stimulating factor (GM-CSF), disrupted monocyte navigation through complex paths and decreased monocyte CCL2 chemotaxis, velocity, and CCR2 expression. Additionally, monocytes exhibited a bias toward low-hydraulic-resistance pathways in asymmetric environments, which remained consistent across donor ages, cytokine stimulation, and chemoattractants. This microfluidic system provides insights into the unique migratory behaviors of human monocytes and is a valuable tool for studying peripheral immune cell migration in health and disease.
Collapse
Affiliation(s)
- Clare K Hall
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Olivia M Barr
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Antoine Delamare
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Alex Burkholder
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Alice Tsai
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Yuyao Tian
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Felix E Ellett
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Brent M Li
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Mehdi Jorfi
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA; Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Lo YF, Wang SY, Wu YH, Ho MW, Yeh CF, Wu TY, Peng JJ, Lin YN, Ding JY, Shih HP, Lo CC, Chan YP, Rau CS, Kuo CY, Tu KH, Lei WT, Chen YC, Ku CL. The Pathogenic Role of Anti-Granulocyte-Macrophage Colony-Stimulating Factor Autoantibodies in the Nocardiosis with the Central Nervous System Involvement. J Clin Immunol 2024; 44:176. [PMID: 39133333 DOI: 10.1007/s10875-024-01775-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 07/26/2024] [Indexed: 08/13/2024]
Abstract
PURPOSE Anti-granulocyte-macrophage colony-stimulating factor autoantibodies (anti-GM-CSF Abs) are implicated in the pathogenesis of Cryptococcus gattii (C. gattii) infection and pulmonary alveolar proteinosis (PAP). Their presence has also been noted in nocardiosis cases, particularly those with disseminated disease. This study delineates a case series characterizing clinical features and specificity of anti-GM-CSF Abs in nocardiosis patients. METHODS In this study, eight patients were recruited to determine the presence or absence of anti-GM-CSF Abs. In addition to the detailed description of the clinical course, we thoroughly investigated the autoantibodies regarding the characteristics, isotypes, subclasses, titers, and neutralizing capacities by utilizing the plasma samples from patients. RESULTS Of eight patients, five tested positive for anti-GM-CSF Abs, all with central nervous system (CNS) involvement; patients negative for these antibodies did not develop CNS nocardiosis. Distinct from previously documented cases, none of our patients with anti-GM-CSF Abs exhibited PAP symptoms. The titer and neutralizing activity of anti-GM-CSF Abs in our cohort did not significantly deviate from those found in C. gattii cryptococcosis and PAP patients. Uniquely, one individual (Patient 3) showed a minimal titer and neutralizing action of anti-GM-CSF Abs, with no relation to disease severity. Moreover, IgM autoantibodies were notably present in all CNS nocardiosis cases investigated. CONCLUSION The presence of anti-GM-CSF Abs suggests an intrinsic immunodeficiency predisposing individuals toward CNS nocardiosis. The presence of anti-GM-CSF Abs helps to elucidate vulnerability to CNS nocardiosis, even with low titer of autoantibodies. Consequently, systematic screening for anti-GM-CSF Abs should be considered a crucial diagnostic step for nocardiosis patients.
Collapse
Affiliation(s)
- Yu-Fang Lo
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan Dist, Taoyuan City, 33302, Taiwan
| | - Shang-Yu Wang
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan Dist, Taoyuan City, 33302, Taiwan
- Division of General Surgery, Department of Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yi-Hui Wu
- Division of Infectious Diseases, Department of Internal Medicine, PingTung Christian Hospital and Future clinic, PingTung, Taiwan
| | - Mao-Wang Ho
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chun-Fu Yeh
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan Dist, Taoyuan City, 33302, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou Medical Centre, Taoyuan, Taiwan
| | - Tsai-Yi Wu
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan Dist, Taoyuan City, 33302, Taiwan
| | - Jhan-Jie Peng
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan Dist, Taoyuan City, 33302, Taiwan
| | - You-Ning Lin
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan Dist, Taoyuan City, 33302, Taiwan
- Center for Molecular and Clinical and Immunology, Chang Gung University, Taoyuan, Taiwan
| | - Jing-Ya Ding
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan Dist, Taoyuan City, 33302, Taiwan
- Center for Molecular and Clinical and Immunology, Chang Gung University, Taoyuan, Taiwan
| | - Han-Po Shih
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan Dist, Taoyuan City, 33302, Taiwan
- Center for Molecular and Clinical and Immunology, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Chi Lo
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan Dist, Taoyuan City, 33302, Taiwan
- Center for Molecular and Clinical and Immunology, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Pei Chan
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan Dist, Taoyuan City, 33302, Taiwan
| | - Cheng-Shyuan Rau
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chen-Yen Kuo
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan Dist, Taoyuan City, 33302, Taiwan
- Division of Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Kun-Hua Tu
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan Dist, Taoyuan City, 33302, Taiwan
- Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Wei-Te Lei
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan Dist, Taoyuan City, 33302, Taiwan
- Section of Immunology, Rheumatology, and Allergy Department of Pediatrics, Hsinchu Mackay Memorial Hospital, Hsinchu City, Taiwan
- Section of Immunology, Rheumatology, and Allergy Department of Pediatrics, Hsinchu Municipal Mackay Children's Hospital, Hsinchu City, Taiwan
| | - Yi-Chun Chen
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, No. 123, Dapi Rd., Niaosong Dist, Kaohsiung City, 833401, Taiwan.
| | - Cheng-Lung Ku
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan Dist, Taoyuan City, 33302, Taiwan.
- Center for Molecular and Clinical and Immunology, Chang Gung University, Taoyuan, Taiwan.
- Division of Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
- Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|
4
|
Kerdiles T, Lejeune S, Portais A, Bourgeois G, Lefevre B, Charmillon A, Sixt T, Moretto F, Cornille C, Vidal M, Coustillères F, Martellosio JP, Quenet M, Belan M, Andry F, Jaffal K, Pinazo-Melia A, Rondeau P, Luque Paz D, Jouneau S, Borie R, Monnier D, Lebeaux D. Nocardia Infection in Patients With Anti-Granulocyte-Macrophage Colony-Stimulating Factor Autoantibodies: A Prospective Multicenter French Study. Open Forum Infect Dis 2024; 11:ofae269. [PMID: 38915339 PMCID: PMC11194753 DOI: 10.1093/ofid/ofae269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/05/2024] [Indexed: 06/26/2024] Open
Abstract
Background Nocardiosis, a bacterial opportunistic infection caused by Nocardia spp, has recently been reported in patients with anti-granulocyte-macrophage colony-stimulating factor (GM-CSF) autoantibodies, but insufficient data are available about disease presentation, outcomes, and occurrence of autoimmune pulmonary alveolar proteinosis (aPAP) in this population. Methods We performed a prospective, multicenter, nationwide study in France and included patients with a Nocardia infection who had anti-GM-CSF autoantibodies. We describe their clinical, microbiological, and radiological characteristics, and their outcome at 1 year of follow-up. Results Twenty patients (18 [90%] male) were included, with a median age of 69 (interquartile range, 44-75) years. The organs most frequently involved were the brain (14/20 [70%]) and the lung (12/20 [60%]). Half of the infections were disseminated (10/20 [50%]). Nocardia identification was predominantly made in abscess fluid (17/20 [85%]), among which 10 (59%) were brain abscesses. The 1-year all-cause mortality was 5% (1/20), and only 1 case of aPAP (1/20 [5%]) occurred during the follow-up period. Conclusions Nocardiosis with anti-GM-CSF autoantibodies is associated with a low mortality rate despite a high incidence of brain involvement. Although the occurrence of aPAP was infrequent during the 1-year follow-up period, long-term clinical data are needed to fully understand the potential relationship between nocardiosis, anti-GM-CSF autoantibodies, and aPAP.
Collapse
Affiliation(s)
- Thibault Kerdiles
- AP-HP, Département des Maladies Infectieuses et Tropicales, Hôpital Saint-Louis, Lariboisière, Paris, France
- Faculté de Médecine, Sorbonne Université, Paris, France
| | - Sophie Lejeune
- Service de maladies infectieuses et tropicales, CHU Grenoble Alpes, Grenoble, France
| | - Antoine Portais
- Service de maladies infectieuses et tropicales, CHU Grenoble Alpes, Grenoble, France
| | - Gaelle Bourgeois
- Service de Maladies Infectieuses, Centre Hospitalier Metropole Savoie, Chambéry, France
| | - Benjamin Lefevre
- Service des Maladies Infectieuses et Tropicales, CHRU-Nancy, Université de Lorraine, Nancy, France
- Université de Lorraine, Inserm, INSPIIRE, Nancy, France
| | - Alexandre Charmillon
- Service des Maladies Infectieuses et Tropicales, CHRU-Nancy, Université de Lorraine, Nancy, France
| | - Thibault Sixt
- Infectious Diseases Department, Dijon University Hospital, Dijon, France
| | - Florian Moretto
- Infectious Diseases Department, Dijon University Hospital, Dijon, France
| | - Cyril Cornille
- Service des maladies infectieuses et tropicales, Hôpital universitaire de Clermont-Ferrand, Clermont-Ferrand, France
| | - Magali Vidal
- Service des maladies infectieuses et tropicales, Hôpital universitaire de Clermont-Ferrand, Clermont-Ferrand, France
| | | | - Jean-Philippe Martellosio
- Service de médecine interne, maladies infectieuses et tropicales, CHU de Poitiers, Université de Poitiers, Poitiers, France
| | - Marion Quenet
- Service de Médecine Polyvalente, Centre Hospitalier Yves Le Foll, Saint-Brieuc, France
| | - Martin Belan
- Equipe Mobile d’Infectiologie, Hôpitaux Universitaires Paris Centre-Cochin Port Royal, Assistance publique Hôpitaux de Paris (AP-HP), Paris, France
| | - Fanny Andry
- Service de Maladies Infectieuses et Dermatologie, CHU de la Réunion, Saint Pierre, France
| | - Karim Jaffal
- Service des Maladies Infectieuses et Tropicales, Centre Hospitalier Universitaire Raymond Poincaré, Assistance publique Hôpitaux de Paris (AP-HP), Garches, France
| | | | - Paul Rondeau
- Service de Médecine interne, Hôpital Saint-Camille, Bry-sur-Marne, France
| | - David Luque Paz
- Infectious Diseases and Intensive Care Unit, Pontchaillou University Hospital, Rennes, France
- Bacterial Regulatory RNAs and Medicine, University of Rennes, UMR 1230, Inserm, Rennes, France
| | - Stephane Jouneau
- Department of Respiratory Medicine, CHU Rennes, Rennes, France
- Institut de recherche en santé, environnement et travail, Université Rennes, CHU Rennes, Inserm, EHESP, UMR_S 1085, Rennes, France
| | - Raphael Borie
- Service de Pneumologie A Hôpital Bichat, Assistance publique Hôpitaux de Paris (AP-HP), Université Paris Cité, Inserm, PHERE, Université Paris Cité, Paris, France
| | | | - David Lebeaux
- AP-HP, Département des Maladies Infectieuses et Tropicales, Hôpital Saint-Louis, Lariboisière, Paris, France
- Genetics of Biofilms Laboratory, Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Paris, France
| |
Collapse
|
5
|
Salvator H, Cheng A, Rosen LB, Williamson PR, Bennett JE, Kashyap A, Ding L, Kwon-Chung KJ, Namkoong H, Zerbe CS, Holland SM. Neutralizing GM-CSF autoantibodies in pulmonary alveolar proteinosis, cryptococcal meningitis and severe nocardiosis. Respir Res 2022; 23:280. [PMID: 36221098 PMCID: PMC9552154 DOI: 10.1186/s12931-022-02103-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/30/2022] [Indexed: 12/05/2022] Open
Abstract
Background Anti GM-CSF autoantibodies (aAb) have been related to acquired pulmonary alveolar proteinosis (PAP) and described in cases of severe infections such as cryptococcosis and nocardiosis in previously healthy subjects. Whether there are different anti-GM-CSF autoantibodies corresponding to these phenotypes is unclear. Therefore, we examined anti-GM-CSF autoantibodies to determine whether amount or neutralizing activity could distinguish between groups. Methods Plasma samples gathered in the National Institute of Health from patients with anti GM-CSF aAb and either PAP (n = 15), cryptococcal meningitis (n = 15), severe nocardiosis (n = 5) or overlapping phenotypes (n = 6) were compared. The relative amount of aAb was assessed using a particle-based approach, reported as a mouse monoclonal anti-human GM-CSF as standard curve and expressed in an arbitrary Mouse Monoclonal Antibody Unit (MMAU). The neutralizing activity of the plasma was assessed by inhibition of GM-CSF-induced intracellular phospho-STAT5 (pSTAT5) in monocytes. Results Anti-GM-CSF aAb relative amounts were higher in PAP patients compared to those with cryptococcosis (mean 495 ± 464 MMAU vs 197 ± 159 MMAU, p = 0.02); there was no difference with patients with nocardiosis (430 ± 493 MMAU) nor between the two types of infections. The dilution of plasma resulting in 50% inhibition of GM-CSF-induced pSTAT5 (approximate IC50) did not vary appreciably across groups of patients (1.6 ± 3.1%, 3.9 ± 6% and 1.8 ± 2.2% in PAP patients, cryptococcosis and nocardiosis patients, respectively). Nor was the concentration of GM-CSF necessary to induce 50% of maximal GM-CSF-induced pSTAT5 in the presence of 10 MMAU of anti-GM-CSF aAb (EC50). When studying longitudinal samples from patients with PAP or disseminated nocardiosis, the neutralizing effect of anti-GM-CSF aAb was relatively constant over time despite targeted treatments and variations in aAb levels. Conclusions Despite different clinical manifestations, anti-GM-CSF antibodies were similar across PAP, cryptococcosis and nocardiosis. Underlying host genetics and functional analyses may help further differentiate the biology of these conditions.
Collapse
Affiliation(s)
- Hélène Salvator
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.,Department of Respiratory Medicine, Hôpital Foch, Suresnes, France-UMR 0892 VIM Suresnes, INRAE Paris Saclay University, Jouy-en-Josas, France
| | - Aristine Cheng
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.,Division of Infectious Diseases, Department of Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Lindsey B Rosen
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Peter R Williamson
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John E Bennett
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Anuj Kashyap
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.,Department of Analytical Sciences, BioPharmaceuticals Development, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Li Ding
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kyung J Kwon-Chung
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ho Namkoong
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.,Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan
| | - Christa S Zerbe
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
6
|
Chen Z, Fan R, Liang J, Xiao Z, Dang J, Zhao J, Weng R, Zhu C, Zheng SG, Jiang Y. NFIL3 deficiency alleviates EAE through regulating different immune cell subsets. J Adv Res 2021; 39:225-235. [PMID: 35777910 PMCID: PMC9263648 DOI: 10.1016/j.jare.2021.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 10/19/2021] [Accepted: 10/27/2021] [Indexed: 12/17/2022] Open
Affiliation(s)
- Zhigang Chen
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, PR China; Department of Neurology, The Fifth Affiliated Hospital, Sun Yat-sen University, 52 Meihua East Road, Zhuhai, Guangdong 519000, PR China; Department of Clinical Immunology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, PR China
| | - Rong Fan
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, PR China; Department of General Intensive Care Unit of Lingnan Hospital, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, PR China
| | - Jie Liang
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, PR China
| | - Zexiu Xiao
- Department of Clinical Immunology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, PR China
| | - Junlong Dang
- Department of Clinical Immunology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, PR China
| | - Jun Zhao
- Department of Clinical Immunology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, PR China
| | - Ruihui Weng
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, PR China; Department of Neurology, The Third People's Hospital of Shenzhen, No. 29, Bulan Road, Longgang district, Shenzhen, Guangdong 518112, PR China
| | - Cansheng Zhu
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, PR China
| | - Song Guo Zheng
- Department of Clinical Immunology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, PR China.
| | - Ying Jiang
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong 510630, PR China.
| |
Collapse
|
7
|
Troyer EA, Kohn JN, Hong S. Are we facing a crashing wave of neuropsychiatric sequelae of COVID-19? Neuropsychiatric symptoms and potential immunologic mechanisms. Brain Behav Immun 2020; 87:34-39. [PMID: 32298803 PMCID: PMC7152874 DOI: 10.1016/j.bbi.2020.04.027] [Citation(s) in RCA: 601] [Impact Index Per Article: 120.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 02/08/2023] Open
Abstract
The coronavirus disease 19 (COVID-19) pandemic is a significant psychological stressor in addition to its tremendous impact on every facet of individuals' lives and organizations in virtually all social and economic sectors worldwide. Fear of illness and uncertainty about the future precipitate anxiety- and stress-related disorders, and several groups have rightfully called for the creation and dissemination of robust mental health screening and treatment programs for the general public and front-line healthcare workers. However, in addition to pandemic-associated psychological distress, the direct effects of the virus itself (several acute respiratory syndrome coronavirus; SARS-CoV-2), and the subsequent host immunologic response, on the human central nervous system (CNS) and related outcomes are unknown. We discuss currently available evidence of COVID-19 related neuropsychiatric sequelae while drawing parallels to past viral pandemic-related outcomes. Past pandemics have demonstrated that diverse types of neuropsychiatric symptoms, such as encephalopathy, mood changes, psychosis, neuromuscular dysfunction, or demyelinating processes, may accompany acute viral infection, or may follow infection by weeks, months, or longer in recovered patients. The potential mechanisms are also discussed, including viral and immunological underpinnings. Therefore, prospective neuropsychiatric monitoring of individuals exposed to SARS-CoV-2 at various points in the life course, as well as their neuroimmune status, are needed to fully understand the long-term impact of COVID-19, and to establish a framework for integrating psychoneuroimmunology into epidemiologic studies of pandemics.
Collapse
Affiliation(s)
- Emily A Troyer
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr. MC0804, La Jolla, CA 92093-0804, USA.
| | - Jordan N Kohn
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr. MC0804, La Jolla, CA 92093-0804, USA.
| | - Suzi Hong
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr. MC0804, La Jolla, CA 92093-0804, USA; Department of Family Medicine and Public Health, Department of Psychiatry, University of California San Diego, 9500 Gilman Dr. MC0804, La Jolla, CA 92093-0804, USA.
| |
Collapse
|
8
|
Interrogation of the Microenvironmental Landscape in Brain Tumors Reveals Disease-Specific Alterations of Immune Cells. Cell 2020; 181:1643-1660.e17. [PMID: 32470396 DOI: 10.1016/j.cell.2020.05.007] [Citation(s) in RCA: 635] [Impact Index Per Article: 127.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 04/01/2020] [Accepted: 05/01/2020] [Indexed: 12/14/2022]
Abstract
Brain malignancies encompass a range of primary and metastatic cancers, including low-grade and high-grade gliomas and brain metastases (BrMs) originating from diverse extracranial tumors. Our understanding of the brain tumor microenvironment (TME) remains limited, and it is unknown whether it is sculpted differentially by primary versus metastatic disease. We therefore comprehensively analyzed the brain TME landscape via flow cytometry, RNA sequencing, protein arrays, culture assays, and spatial tissue characterization. This revealed disease-specific enrichment of immune cells with pronounced differences in proportional abundance of tissue-resident microglia, infiltrating monocyte-derived macrophages, neutrophils, and T cells. These integrated analyses also uncovered multifaceted immune cell activation within brain malignancies entailing converging transcriptional trajectories while maintaining disease- and cell-type-specific programs. Given the interest in developing TME-targeted therapies for brain malignancies, this comprehensive resource of the immune landscape offers insights into possible strategies to overcome tumor-supporting TME properties and instead harness the TME to fight cancer.
Collapse
|
9
|
Lotfi N, Thome R, Rezaei N, Zhang GX, Rezaei A, Rostami A, Esmaeil N. Roles of GM-CSF in the Pathogenesis of Autoimmune Diseases: An Update. Front Immunol 2019; 10:1265. [PMID: 31275302 PMCID: PMC6593264 DOI: 10.3389/fimmu.2019.01265] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/17/2019] [Indexed: 12/15/2022] Open
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) was first described as a growth factor that induces the differentiation and proliferation of myeloid progenitors in the bone marrow. GM-CSF also has an important cytokine effect in chronic inflammatory diseases by stimulating the activation and migration of myeloid cells to inflammation sites, promoting survival of target cells and stimulating the renewal of effector granulocytes and macrophages. Because of these pro-cellular effects, an imbalance in GM-CSF production/signaling may lead to harmful inflammatory conditions. In this context, GM-CSF has a pathogenic role in autoimmune diseases that are dependent on cellular immune responses such as multiple sclerosis (MS) and rheumatoid arthritis (RA). Conversely, a protective role has also been described in other autoimmune diseases where humoral responses are detrimental such as myasthenia gravis (MG), Hashimoto's thyroiditis (HT), inflammatory bowel disease (IBD), and systemic lupus erythematosus (SLE). In this review, we aimed for a comprehensive analysis of literature data on the multiple roles of GM-CSF in autoimmue diseases and possible therapeutic strategies that target GM-CSF production.
Collapse
Affiliation(s)
- Noushin Lotfi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Rodolfo Thome
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Nahid Rezaei
- Department of Immunology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Guang-Xian Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Abbas Rezaei
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abdolmohamad Rostami
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Nafiseh Esmaeil
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
10
|
Aram J, Francis A, Tanasescu R, Constantinescu CS. Granulocyte-Macrophage Colony-Stimulating Factor as a Therapeutic Target in Multiple Sclerosis. Neurol Ther 2018; 8:45-57. [PMID: 30506485 PMCID: PMC6534644 DOI: 10.1007/s40120-018-0120-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Indexed: 12/18/2022] Open
Abstract
Multiple sclerosis is an inflammatory neurodegenerative disease of the central nervous system (CNS) and the most frequent cause of non-traumatic disability in adults in the Western world. Currently, several drugs have been approved for the treatment of multiple sclerosis. While the newer drugs are more effective, they have less favourable safety profiles. Thus, there is a need to identify new targets for effective and safe therapies, particularly in patients with progressive disease for whom no treatments are available. One such target is granulocyte-macrophage colony-stimulating factor (GM-CSF) or its receptor. In this article we review data on the potential role of GM-CSF and GM-CSF inhibition in MS. We discuss the expression and function of GM-CSF and its receptor in the CNS, as well as data from animal studies and clinical trials in MS.
Collapse
Affiliation(s)
- Jehan Aram
- Division of Clinical Neuroscience, Section of Clinical Neurology, University of Nottingham, Nottingham, UK
| | - Anna Francis
- Division of Clinical Neuroscience, Section of Clinical Neurology, University of Nottingham, Nottingham, UK.,Department of Neurology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Radu Tanasescu
- Division of Clinical Neuroscience, Section of Clinical Neurology, University of Nottingham, Nottingham, UK.,Department of Neurology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Cris S Constantinescu
- Division of Clinical Neuroscience, Section of Clinical Neurology, University of Nottingham, Nottingham, UK. .,Department of Neurology, Nottingham University Hospitals NHS Trust, Nottingham, UK.
| |
Collapse
|
11
|
Sonar SA, Shaikh S, Joshi N, Atre AN, Lal G. IFN-γ promotes transendothelial migration of CD4 + T cells across the blood-brain barrier. Immunol Cell Biol 2017; 95:843-853. [PMID: 28682305 DOI: 10.1038/icb.2017.56] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 06/27/2017] [Accepted: 06/28/2017] [Indexed: 02/08/2023]
Abstract
Transendothelial migration (TEM) of Th1 and Th17 cells across the blood-brain barrier (BBB) has a critical role in the development of experimental autoimmune encephalomyelitis (EAE). How cytokines produced by inflammatory Th1 and Th17 cells damage the endothelial BBB and promote transendothelial migration of immune cells into the central nervous system (CNS) during autoimmunity is not understood. We therefore investigated the effect of various cytokines on brain endothelial cells. Among the various cytokines tested, such as Th1 (IFN-γ, IL-1α, IL-1β, TNF-α, IL-12), Th2 (IL-3, IL-4, IL-6 and IL-13), Th17 (IL-17A, IL-17F, IL-21, IL-22, IL-23, GM-CSF) and Treg-specific cytokines (IL-10 and TGF-β), IFN-γ predominantly showed increased expression of ICAM-1, VCAM-1, MAdCAM-1, H2-Kb and I-Ab molecules on brain endothelial cells. Furthermore, IFN-γ induced transendothelial migration of CD4+ T cells from the apical (luminal side) to the basal side (abluminal side) of the endothelial monolayer to chemokine CCL21 in a STAT-1-dependent manner. IFN-γ also favored the transcellular route of TEM of CD4+ T cells. Multicolor immunofluorescence and confocal microscopic analysis showed that IFN-γ induced relocalization of ICAM-1, PECAM-1, ZO-1 and VE-cadherin in the endothelial cells, which affected the migration of CD4+ T cells. These findings reveal that the IFN-γ produced during inflammation could contribute towards disrupting the BBB and promoting TEM of CD4+ T cells. Our findings also indicate that strategies that interfere with the activation of CNS endothelial cells may help in controlling neuroinflammation and autoimmunity.
Collapse
|