1
|
Haniffa M, Maartens A, Winheim E, Jardine L. Decoding the human prenatal immune system with single-cell multi-omics. Nat Rev Immunol 2025; 25:285-297. [PMID: 39482372 DOI: 10.1038/s41577-024-01099-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2024] [Indexed: 11/03/2024]
Abstract
The human immune system is made up of a huge variety of cell types each with unique functions. Local networks of resident immune cells are poised to sense and protect against pathogen entry, whereas more widespread innate and adaptive immune networks provide first rapid, then long-lasting and targeted responses. However, how we develop such a diverse and complex system remains unknown. Studying human development directly has been challenging in the past, but recent advances in single-cell and spatial genomics, together with the co-ordinated efforts of the Human Cell Atlas and other initiatives, have led to new studies that map the development of the human immune system in unprecedented detail. In this Review, we consider the timings, transitions, cell types and tissue microenvironments that are crucial for building the human immune system. We also compare and contrast the human system with model species and in vitro systems, and discuss how an understanding of prenatal immune system development will improve our knowledge of human disease.
Collapse
Affiliation(s)
- Muzlifah Haniffa
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
- National Institute for Health Research (NIHR) Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
- Department of Dermatology, Newcastle upon Tyne Hospitals Foundation Trust, Newcastle upon Tyne, UK.
| | - Aidan Maartens
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Elena Winheim
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Laura Jardine
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
- Northern Centre for Cancer Care, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| |
Collapse
|
2
|
Camiolo G, Mullen CG, Ottersbach K. Mechanistic insights into the developmental origin of pediatric hematologic disorders. Exp Hematol 2024; 136:104583. [PMID: 39059457 DOI: 10.1016/j.exphem.2024.104583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
Embryonic and fetal hematopoietic stem and progenitor cells differ in some key properties from cells that are part of the adult hematopoietic system. These include higher proliferation and self-renewal capacity, different globin gene usage, and differing lineage biases. Although these evolved to cover specific requirements of embryonic development, they can have serious consequences for the pathogenesis of hematologic malignancies that initiate prebirth in fetal blood cells and may result in a particularly aggressive disease that does not respond well to treatments that have been designed for adult leukemias. This indicates that these infant/pediatric leukemias should be considered developmental diseases, where a thorough understanding of their unique biology is essential for designing more effective therapies. In this review, we will highlight some of these unique fetal properties and detail the underlying molecular drivers of these phenotypes. We specifically focus on those that are pertinent to disease pathogenesis and that may therefore reveal disease vulnerabilities. We have also included an extensive description of the origins, phenotypes, and key molecular drivers of the main infant and pediatric leukemias that have a known prenatal origin. Importantly, successes in recent years in generating faithful models of these malignancies in which cellular origins, key drivers, and potential vulnerabilities can be investigated have resulted in uncovering potential, new therapeutic avenues.
Collapse
Affiliation(s)
- Giuseppina Camiolo
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom
| | - Christopher G Mullen
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom
| | - Katrin Ottersbach
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
3
|
Alhaj Hussen K, Louis V, Canque B. A new model of human lymphopoiesis across development and aging. Trends Immunol 2024; 45:495-510. [PMID: 38908962 DOI: 10.1016/j.it.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/25/2024] [Accepted: 05/26/2024] [Indexed: 06/24/2024]
Abstract
Over the past decade our research has implemented a multimodal approach to human lymphopoiesis, combining clonal-scale mapping of lymphoid developmental architecture with the monitoring of dynamic changes in the pattern of lymphocyte generation across ontogeny. We propose that lymphopoiesis stems from founder populations of CD127/interleukin (IL)7R- or CD127/IL7R+ early lymphoid progenitors (ELPs) polarized respectively toward the T-natural killer (NK)/innate lymphoid cell (ILC) or B lineages, arising from newly characterized CD117lo multi-lymphoid progenitors (MLPs). Recent data on the lifelong lymphocyte dynamics of healthy donors suggest that, after birth, lymphopoiesis may become increasingly oriented toward the production of B lymphocytes. Stemming from this, we posit that there are three major developmental transitions, the first occurring during the neonatal period, the next at puberty, and the last during aging.
Collapse
Affiliation(s)
- Kutaiba Alhaj Hussen
- Service de Biochimie, Université de Paris Saclay, Hôpital Paul Brousse, AP-HP, Paris, France
| | - Valentine Louis
- INSERM 1151, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut Necker Enfants Malades (INEM), Paris, France
| | - Bruno Canque
- INSERM 1151, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut Necker Enfants Malades (INEM), Paris, France.
| |
Collapse
|
4
|
Roders N, Nakid-Cordero C, Raineri F, Fayon M, Abecassis A, Choisy C, Nelson E, Maillard C, Garrick D, Talbot A, Fermand JP, Arnulf B, Bories JC. Dual Chimeric Antigen Receptor T Cells Targeting CD38 and SLAMF7 with Independent Signaling Demonstrate Preclinical Efficacy and Safety in Multiple Myeloma. Cancer Immunol Res 2024; 12:478-490. [PMID: 38289260 DOI: 10.1158/2326-6066.cir-23-0839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/29/2023] [Accepted: 01/26/2024] [Indexed: 04/04/2024]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy for multiple myeloma targeting B-cell maturation antigen (BCMA) induces high overall response rates. However, relapse still occurs and novel strategies for targeting multiple myeloma cells using CAR T-cell therapy are needed. SLAMF7 (also known as CS1) and CD38 on tumor plasma cells represent potential alternative targets for CAR T-cell therapy in multiple myeloma, but their expression on activated T cells and other hematopoietic cells raises concerns about the efficacy and safety of such treatments. Here, we used CRISPR/Cas9 deletion of the CD38 gene in T cells and developed DCAR, a double CAR system targeting CD38 and CS1 through activation and costimulation receptors, respectively. Inactivation of CD38 enhanced the anti-multiple myeloma activity of DCAR T in vitro. Edited DCAR T cells showed strong in vitro and in vivo responses specifically against target cells expressing both CD38 and CS1. Furthermore, we provide evidence that, unlike anti-CD38 CAR T-cell therapy, which elicited a rapid immune reaction against hematopoietic cells in a humanized mouse model, DCAR T cells showed no signs of toxicity. Thus, DCAR T cells could provide a safe and efficient alternative to anti-BCMA CAR T-cell therapy to treat patients with multiple myeloma.
Collapse
Affiliation(s)
- Nathalie Roders
- INSERM, Human Immunology, Pathophysiology, Immunotherapy (HIPI), Institut de Recherche Saint-Louis, Université de Paris-Cité, Paris, France
| | - Cecilia Nakid-Cordero
- INSERM, Human Immunology, Pathophysiology, Immunotherapy (HIPI), Institut de Recherche Saint-Louis, Université de Paris-Cité, Paris, France
| | - Fabio Raineri
- INSERM, Human Immunology, Pathophysiology, Immunotherapy (HIPI), Institut de Recherche Saint-Louis, Université de Paris-Cité, Paris, France
| | - Maxime Fayon
- INSERM, Human Immunology, Pathophysiology, Immunotherapy (HIPI), Institut de Recherche Saint-Louis, Université de Paris-Cité, Paris, France
| | - Audrey Abecassis
- INSERM, Human Immunology, Pathophysiology, Immunotherapy (HIPI), Institut de Recherche Saint-Louis, Université de Paris-Cité, Paris, France
| | - Caroline Choisy
- INSERM, Human Immunology, Pathophysiology, Immunotherapy (HIPI), Institut de Recherche Saint-Louis, Université de Paris-Cité, Paris, France
| | - Elisabeth Nelson
- INSERM, Human Immunology, Pathophysiology, Immunotherapy (HIPI), Institut de Recherche Saint-Louis, Université de Paris-Cité, Paris, France
| | | | - David Garrick
- INSERM, Human Immunology, Pathophysiology, Immunotherapy (HIPI), Institut de Recherche Saint-Louis, Université de Paris-Cité, Paris, France
| | - Alexis Talbot
- INSERM, Human Immunology, Pathophysiology, Immunotherapy (HIPI), Institut de Recherche Saint-Louis, Université de Paris-Cité, Paris, France
- Immuno-Hematology, Saint-Louis Hospital, Paris, France
| | - Jean-Paul Fermand
- INSERM, Human Immunology, Pathophysiology, Immunotherapy (HIPI), Institut de Recherche Saint-Louis, Université de Paris-Cité, Paris, France
- Immuno-Hematology, Saint-Louis Hospital, Paris, France
| | - Bertrand Arnulf
- INSERM, Human Immunology, Pathophysiology, Immunotherapy (HIPI), Institut de Recherche Saint-Louis, Université de Paris-Cité, Paris, France
- Immuno-Hematology, Saint-Louis Hospital, Paris, France
| | - Jean-Christophe Bories
- INSERM, Human Immunology, Pathophysiology, Immunotherapy (HIPI), Institut de Recherche Saint-Louis, Université de Paris-Cité, Paris, France
| |
Collapse
|
5
|
Alhaj Hussen K, Chabaane E, Nelson E, Lekiashvili S, Diop S, Keita S, Evrard B, Lardenois A, Delord M, Verhoeyen E, Cornils K, Kasraian Z, Macintyre EA, Cumano A, Garrick D, Goodhardt M, Andrieu GP, Asnafi V, Chalmel F, Canque B. Multimodal cartography of human lymphopoiesis reveals B and T/NK/ILC lineages are subjected to differential regulation. iScience 2023; 26:107890. [PMID: 37766969 PMCID: PMC10520540 DOI: 10.1016/j.isci.2023.107890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/24/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The developmental cartography of human lymphopoiesis remains incompletely understood. Here, we establish a multimodal map demonstrating that lymphoid specification follows independent direct or stepwise hierarchic routes converging toward the emergence of newly characterized CD117lo multi-lymphoid progenitors (MLPs) that undergo a proliferation arrest before entering the CD127- (NK/ILC/T) or CD127+ (B) lymphoid pathways. While the differentiation of CD127- early lymphoid progenitors is mainly driven by Flt3 signaling, emergence of their CD127+ counterparts is regulated cell-intrinsically and depends exclusively on the divisional history of their upstream precursors, including hematopoietic stem cells. Further, transcriptional mapping of differentiation trajectories reveals that whereas myeloid granulomonocytic lineages follow continuous differentiation pathways, lymphoid trajectories are intrinsically discontinuous and characterized by sequential waves of cell proliferation allowing pre-commitment amplification of lymphoid progenitor pools. Besides identifying new lymphoid specification pathways and regulatory checkpoints, our results demonstrate that NK/ILC/T and B lineages are under fundamentally distinct modes of regulation. (149 words).
Collapse
Affiliation(s)
- Kutaiba Alhaj Hussen
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France
- Service de Biochimie, Université de Paris Saclay, Hôpital Paul Brousse, AP-HP, Villejuif, Paris, France
| | - Emna Chabaane
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France
| | - Elisabeth Nelson
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France
| | - Shalva Lekiashvili
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France
| | - Samuel Diop
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France
| | - Seydou Keita
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France
| | - Bertrand Evrard
- University Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Aurélie Lardenois
- University Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Marc Delord
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France
| | - Els Verhoeyen
- CIRI, International Center for Infectiology Research, Université de Lyon, INSERM U1111, Lyon, France
- Centre Mediterranéen de Médecine Moléculaire (C3M), INSERM U1065, Nice, France
| | - Kerstin Cornils
- Division of Pediatric Stem Cell Transplantation and Immunology, Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf and Research Institute Children’s Cancer Center, Hamburg, Germany
| | - Zeinab Kasraian
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France
- Institut Necker Enfants-Malades, INSERM U1151, Hôpital Necker Enfants-Malades, Laboratoire d'Onco-Hématologie, Assistance Publique-Hôpitaux de Paris (AP-HP), Université de Paris, Paris, France
| | - Elizabeth A. Macintyre
- Institut Necker Enfants-Malades, INSERM U1151, Hôpital Necker Enfants-Malades, Laboratoire d'Onco-Hématologie, Assistance Publique-Hôpitaux de Paris (AP-HP), Université de Paris, Paris, France
| | - Ana Cumano
- Unit of Lymphopoiesis, Immunology Department, Institut Pasteur, Paris, France
| | - David Garrick
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France
| | - Michele Goodhardt
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France
| | - Guillaume P. Andrieu
- Institut Necker Enfants-Malades, INSERM U1151, Hôpital Necker Enfants-Malades, Laboratoire d'Onco-Hématologie, Assistance Publique-Hôpitaux de Paris (AP-HP), Université de Paris, Paris, France
| | - Vahid Asnafi
- Institut Necker Enfants-Malades, INSERM U1151, Hôpital Necker Enfants-Malades, Laboratoire d'Onco-Hématologie, Assistance Publique-Hôpitaux de Paris (AP-HP), Université de Paris, Paris, France
| | - Frederic Chalmel
- University Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Bruno Canque
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France
| |
Collapse
|
6
|
Liang KL, Laurenti E, Taghon T. Circulating IRF8-expressing CD123 +CD127 + lymphoid progenitors: key players in human hematopoiesis. Trends Immunol 2023; 44:678-692. [PMID: 37591714 PMCID: PMC7614993 DOI: 10.1016/j.it.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 08/19/2023]
Abstract
Lymphopoiesis is the process in which B and T cells, and innate lymphoid cells (ILCs) develop from hematopoietic progenitors that exhibit early lymphoid priming. The branching points where lymphoid-primed human progenitors are further specified to B/T/ILC differentiation trajectories remain unclear. Here, we discuss the emerging role of interferon regulatory factor (IRF)8 as a key factor to bridge human lymphoid and dendritic cell (DC) differentiation, and the current evidence for the existence of circulating and tissue-resident CD123+CD127+ lymphoid progenitors. We propose a model whereby DC/B/T/ILC lineage programs in circulating CD123+CD127+ lymphoid progenitors are expressed in balance. Upon tissue seeding, the tissue microenvironment tilts this molecular balance towards a specific lineage, thereby determining in vivo lineage fates. Finally, we discuss the translational implication of these lymphoid precursors.
Collapse
Affiliation(s)
- Kai Ling Liang
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium
| | - Elisa Laurenti
- Department of Haematology, University of Cambridge, Cambridge, UK; Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
| | - Tom Taghon
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium.
| |
Collapse
|
7
|
Keita S, Diop S, Lekiashvili S, Chabaane E, Nelson E, Strullu M, Arfeuille C, Guimiot F, Domet T, Duchez S, Evrard B, Darde T, Larghero J, Verhoeyen E, Cumano A, Macintyre EA, Kasraian Z, Jouen F, Goodhardt M, Garrick D, Chalmel F, Alhaj Hussen K, Canque B. Distinct subsets of multi-lymphoid progenitors support ontogeny-related changes in human lymphopoiesis. Cell Rep 2023; 42:112618. [PMID: 37294633 DOI: 10.1016/j.celrep.2023.112618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/13/2023] [Accepted: 05/22/2023] [Indexed: 06/11/2023] Open
Abstract
Changes in lymphocyte production patterns occurring across human ontogeny remain poorly defined. In this study, we demonstrate that human lymphopoiesis is supported by three waves of embryonic, fetal, and postnatal multi-lymphoid progenitors (MLPs) differing in CD7 and CD10 expression and their output of CD127-/+ early lymphoid progenitors (ELPs). In addition, our results reveal that, like the fetal-to-adult switch in erythropoiesis, transition to postnatal life coincides with a shift from multilineage to B lineage-biased lymphopoiesis and an increase in production of CD127+ ELPs, which persists until puberty. A further developmental transition is observed in elderly individuals whereby B cell differentiation bypasses the CD127+ compartment and branches directly from CD10+ MLPs. Functional analyses indicate that these changes are determined at the level of hematopoietic stem cells. These findings provide insights for understanding identity and function of human MLPs and the establishment and maintenance of adaptative immunity.
Collapse
Affiliation(s)
- Seydou Keita
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France
| | - Samuel Diop
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France; Laboratoire Cognitions Humaine et Artificielle (CHArt) EA 4004 FED 4246, École Pratique des Hautes Études/PSL Research University, Paris, France
| | - Shalva Lekiashvili
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France
| | - Emna Chabaane
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France
| | - Elisabeth Nelson
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France
| | - Marion Strullu
- Service d'Hémato-Immunologie Pédiatrique, Inserm U1131, Université de Paris, Hôpital Robert-Debré, AP-HP, Paris, France
| | - Chloé Arfeuille
- Service d'Hémato-Immunologie Pédiatrique, Inserm U1131, Université de Paris, Hôpital Robert-Debré, AP-HP, Paris, France
| | - Fabien Guimiot
- INSERM UMR 1141, Service de Biologie du Développement, Université de Paris, Hôpital Robert-Debré, AP-HP, Paris, France
| | - Thomas Domet
- AP-HP, Hôpital Saint-Louis, Unité de Thérapie Cellulaire, CIC de Biothérapies, Université de Paris, INSERM U976, Paris, France
| | - Sophie Duchez
- Plateforme d'Imagerie et de Tri Cellulaire, Institut de Recherche Saint Louis, Paris, France
| | - Bertrand Evrard
- INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, University Rennes, Rennes, France
| | | | - Jerome Larghero
- AP-HP, Hôpital Saint-Louis, Unité de Thérapie Cellulaire, CIC de Biothérapies, Université de Paris, INSERM U976, Paris, France
| | - Els Verhoeyen
- CIRI, International Center for Infectiology Research, Université de Lyon, INSERM U1111, Lyon, France; Centre Mediterranéen de Médecine Moléculaire (C3M), INSERM U1065, Nice, France
| | - Ana Cumano
- Unit of Lymphopoiesis, Immunology Department, Institut Pasteur, Paris, France
| | - Elizabeth A Macintyre
- Institut Necker Enfants-Malades, Team 2, INSERM Unité 1151, Hôpital Necker Enfants-Malades, Laboratoire d'Onco-Hématologie, Assistance Publique-Hôpitaux de Paris (AP-HP), Université de Paris, Paris, France
| | - Zeinab Kasraian
- Institut Necker Enfants-Malades, Team 2, INSERM Unité 1151, Hôpital Necker Enfants-Malades, Laboratoire d'Onco-Hématologie, Assistance Publique-Hôpitaux de Paris (AP-HP), Université de Paris, Paris, France
| | - François Jouen
- Laboratoire Cognitions Humaine et Artificielle (CHArt) EA 4004 FED 4246, École Pratique des Hautes Études/PSL Research University, Paris, France
| | - Michele Goodhardt
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France
| | - David Garrick
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France
| | - Frederic Chalmel
- INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, University Rennes, Rennes, France
| | - Kutaiba Alhaj Hussen
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France; Service de Biochimie, Université de Paris Saclay, Hôpital Paul Brousse, AP-HP, Paris, France.
| | - Bruno Canque
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France.
| |
Collapse
|
8
|
Shin B, Rothenberg EV. Multi-modular structure of the gene regulatory network for specification and commitment of murine T cells. Front Immunol 2023; 14:1108368. [PMID: 36817475 PMCID: PMC9928580 DOI: 10.3389/fimmu.2023.1108368] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/11/2023] [Indexed: 02/04/2023] Open
Abstract
T cells develop from multipotent progenitors by a gradual process dependent on intrathymic Notch signaling and coupled with extensive proliferation. The stages leading them to T-cell lineage commitment are well characterized by single-cell and bulk RNA analyses of sorted populations and by direct measurements of precursor-product relationships. This process depends not only on Notch signaling but also on multiple transcription factors, some associated with stemness and multipotency, some with alternative lineages, and others associated with T-cell fate. These factors interact in opposing or semi-independent T cell gene regulatory network (GRN) subcircuits that are increasingly well defined. A newly comprehensive picture of this network has emerged. Importantly, because key factors in the GRN can bind to markedly different genomic sites at one stage than they do at other stages, the genes they significantly regulate are also stage-specific. Global transcriptome analyses of perturbations have revealed an underlying modular structure to the T-cell commitment GRN, separating decisions to lose "stem-ness" from decisions to block alternative fates. Finally, the updated network sheds light on the intimate relationship between the T-cell program, which depends on the thymus, and the innate lymphoid cell (ILC) program, which does not.
Collapse
Affiliation(s)
- Boyoung Shin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Ellen V. Rothenberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
9
|
van de Pavert SA. Layered origins of lymphoid tissue inducer cells. Immunol Rev 2023; 315:71-78. [PMID: 36705244 DOI: 10.1111/imr.13189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The Innate Lymphoid Cell (ILC) family is a relatively recently described immune cell family involved in innate immune responses and tissue homeostasis. Lymphoid Tissue Inducer (LTi) cells are part of the type 3 (ILC3) family. The ILC3 family is the main ILC population within the embryo, in which the LTi cells are critically associated with embryonic lymph node formation. Recent studies have shown more insights in ILC origin and residency from local embryonic and tissue resident precursors. Embryonic LTi cells originating from a different hemogenic endothelial source were shown to be replaced by HSC derived progenitors in adult. This review will discuss the layered origin of the ILC3 family with an emphasis on the LTi cell lineage.
Collapse
Affiliation(s)
- Serge A van de Pavert
- Aix-Marseille Univ, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), Marseille, France
| |
Collapse
|
10
|
Khabirova E, Jardine L, Coorens THH, Webb S, Treger TD, Engelbert J, Porter T, Prigmore E, Collord G, Piapi A, Teichmann SA, Inglott S, Williams O, Heidenreich O, Young MD, Straathof K, Bomken S, Bartram J, Haniffa M, Behjati S. Single-cell transcriptomics reveals a distinct developmental state of KMT2A-rearranged infant B-cell acute lymphoblastic leukemia. Nat Med 2022; 28:743-751. [PMID: 35288693 PMCID: PMC9018413 DOI: 10.1038/s41591-022-01720-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/27/2022] [Indexed: 12/23/2022]
Abstract
KMT2A-rearranged infant ALL is an aggressive childhood leukemia with poor prognosis. Here, we investigated the developmental state of KMT2A-rearranged infant B-cell acute lymphoblastic leukemia (B-ALL) using bulk messenger RNA (mRNA) meta-analysis and examination of single lymphoblast transcriptomes against a developing bone marrow reference. KMT2A-rearranged infant B-ALL was uniquely dominated by an early lymphocyte precursor (ELP) state, whereas less adverse NUTM1-rearranged infant ALL demonstrated signals of later developing B cells, in line with most other childhood B-ALLs. We compared infant lymphoblasts with ELP cells and revealed that the cancer harbored hybrid myeloid-lymphoid features, including nonphysiological antigen combinations potentially targetable to achieve cancer specificity. We validated surface coexpression of exemplar combinations by flow cytometry. Through analysis of shared mutations in separate leukemias from a child with infant KMT2A-rearranged B-ALL relapsing as AML, we established that KMT2A rearrangement occurred in very early development, before hematopoietic specification, emphasizing that cell of origin cannot be inferred from the transcriptional state.
Collapse
Affiliation(s)
| | - Laura Jardine
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Haematology Department, Freeman Hospital, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | | | - Simone Webb
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Taryn D Treger
- Wellcome Sanger Institute, Hinxton, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Justin Engelbert
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | | | | | - Grace Collord
- Wellcome Sanger Institute, Hinxton, UK
- Department of Haematology, University College London Hospital, London, UK
- Department of Haematology, University College London Cancer Institute, London, UK
| | - Alice Piapi
- Great Ormond Street Hospital for Children NHS Foundation Trust and NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | | | - Sarah Inglott
- Great Ormond Street Hospital for Children NHS Foundation Trust and NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - Owen Williams
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Olaf Heidenreich
- Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | | | - Karin Straathof
- Great Ormond Street Hospital for Children NHS Foundation Trust and NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Simon Bomken
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.
- The Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| | - Jack Bartram
- Great Ormond Street Hospital for Children NHS Foundation Trust and NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK.
- UCL Great Ormond Street Institute of Child Health, London, UK.
| | - Muzlifah Haniffa
- Wellcome Sanger Institute, Hinxton, UK.
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| | - Sam Behjati
- Wellcome Sanger Institute, Hinxton, UK.
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
- Department of Paediatrics, University of Cambridge, Cambridge, UK.
| |
Collapse
|
11
|
Novel insights into residual hematopoiesis from stem cell populations in pediatric B-acute lymphoblastic leukemia. Pediatr Res 2022; 91:1064-1068. [PMID: 34887525 DOI: 10.1038/s41390-021-01885-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/19/2021] [Indexed: 11/08/2022]
|
12
|
Watt SM, Hua P, Roberts I. Increasing Complexity of Molecular Landscapes in Human Hematopoietic Stem and Progenitor Cells during Development and Aging. Int J Mol Sci 2022; 23:3675. [PMID: 35409034 PMCID: PMC8999121 DOI: 10.3390/ijms23073675] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 02/05/2023] Open
Abstract
The past five decades have seen significant progress in our understanding of human hematopoiesis. This has in part been due to the unprecedented development of advanced technologies, which have allowed the identification and characterization of rare subsets of human hematopoietic stem and progenitor cells and their lineage trajectories from embryonic through to adult life. Additionally, surrogate in vitro and in vivo models, although not fully recapitulating human hematopoiesis, have spurred on these scientific advances. These approaches have heightened our knowledge of hematological disorders and diseases and have led to their improved diagnosis and therapies. Here, we review human hematopoiesis at each end of the age spectrum, during embryonic and fetal development and on aging, providing exemplars of recent progress in deciphering the increasingly complex cellular and molecular hematopoietic landscapes in health and disease. This review concludes by highlighting links between chronic inflammation and metabolic and epigenetic changes associated with aging and in the development of clonal hematopoiesis.
Collapse
Affiliation(s)
- Suzanne M. Watt
- Stem Cell Research, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9BQ, UK
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, North Terrace, Adelaide 5005, Australia
- Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide 5001, Australia
| | - Peng Hua
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China;
| | - Irene Roberts
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, and NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK;
- Department of Paediatrics and NIHR Oxford Biomedical Research Centre Haematology Theme, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
13
|
Jaffredo T, Balduini A, Bigas A, Bernardi R, Bonnet D, Canque B, Charbord P, Cumano A, Delwel R, Durand C, Fibbe W, Forrester L, de Franceschi L, Ghevaert C, Gjertsen B, Gottgens B, Graf T, Heidenreich O, Hermine O, Higgs D, Kleanthous M, Klump H, Kouskoff V, Krause D, Lacaud G, Celso CL, Martens JH, Méndez-Ferrer S, Menendez P, Oostendorp R, Philipsen S, Porse B, Raaijmakers M, Robin C, Stunnenberg H, Theilgaard-Mönch K, Touw I, Vainchenker W, Corrons JLV, Yvernogeau L, Schuringa JJ. The EHA Research Roadmap: Normal Hematopoiesis. Hemasphere 2021; 5:e669. [PMID: 34853826 PMCID: PMC8615310 DOI: 10.1097/hs9.0000000000000669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/02/2021] [Indexed: 01/01/2023] Open
Affiliation(s)
- Thierry Jaffredo
- Sorbonne Université, Institut de Biologie Paris Seine, Laboratoire de Biologie du Développement/UMR7622, Paris, France
| | | | - Anna Bigas
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Josep Carreras Leukemia Research Institute (IJC), Barcelona, Spain
- Centro de Investigación Biomedica en Red-Oncología (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Rosa Bernardi
- IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Bruno Canque
- INSERM U976, Universite de Paris, Ecole Pratique des Hautes Etudes/PSL Research University, Institut de Recherche Saint Louis, France
| | - Pierre Charbord
- Sorbonne Université, Institut de Biologie Paris Seine, Laboratoire de Biologie du Développement/UMR7622, Paris, France
| | - Anna Cumano
- Unité Lymphopoïèse, Département d’Immunologie, INSERM U1223, Institut Pasteur, Cellule Pasteur, Université de Paris, France
| | - Ruud Delwel
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Charles Durand
- Sorbonne Université, Institut de Biologie Paris Seine, Laboratoire de Biologie du Développement/UMR7622, Paris, France
| | - Willem Fibbe
- Leiden University Medical Center, The Netherlands
| | - Lesley Forrester
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Scotland
| | | | | | - Bjørn Gjertsen
- Department of Medicine, Hematology Section, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, Centre for Cancer Biomarkers CCBIO, University of Bergen, Norway
| | - Berthold Gottgens
- Wellcome - MRC Cambridge Stem Cell Institute and Department of Haematology, University of Cambridge, United Kingdom
| | - Thomas Graf
- Center for Genomic Regulation, Barcelona Institute for Science and Technology and Universitat Pompeu Fabra, Barcelona, Spain
| | - Olaf Heidenreich
- Prinses Máxima Centrum voor kinderoncologie, Utecht, The Netherlands
| | - Olivier Hermine
- Department of Hematology and Laboratory of Physiopathology and Treatment of Blood Disorders, Hôpital Necker, Imagine institute, University of Paris, France
| | - Douglas Higgs
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom
| | | | - Hannes Klump
- Institute for Transfusion Medicine, University Hospital Essen, Germany
| | | | - Daniela Krause
- Goethe University Frankfurt and Georg-Speyer-Haus, Frankfurt am Main, Germany
| | - George Lacaud
- Cancer Research UK Manchester Institute, The University of Manchester, United Kingdom
| | | | - Joost H.A. Martens
- Department of Molecular Biology, RIMLS, Radboud University, Nijmegen, The Netherlands
| | | | - Pablo Menendez
- Centro de Investigación Biomedica en Red-Oncología (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- Josep Carreras Leukemia Research Institute, Barcelona, Spain
- RICORS-RETAV, Instituto de Salud Carlos III, Madrid, Spain
- Department of Biomedicine, School of Medicine, Universitat de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avancats (ICREA), Barcelona, Spain
| | - Robert Oostendorp
- Department of Internal Medicine III, Technical University of Munich, School of Medicine, Germany
| | - Sjaak Philipsen
- Department of Cell Biology, Erasmus University Medical Center Rotterdam, The Netherlands
| | - Bo Porse
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Denmark
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Marc Raaijmakers
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Catherine Robin
- Hubrecht Institute-KNAW and University Medical Center Utrecht, The Netherlands
- Regenerative medicine center, University Medical Center Utrecht, The Netherlands
| | - Henk Stunnenberg
- Prinses Máxima Centrum voor kinderoncologie, Utecht, The Netherlands
| | - Kim Theilgaard-Mönch
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Denmark
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, Denmark
- Department of Hematology, Rigshospitalet/National University Hospital, University of Copenhagen, Denmark
| | - Ivo Touw
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Joan-Lluis Vives Corrons
- Red Blood Cell and Hematopoietic Disorders Research Unit, Institute for Leukaemia Research Josep Carreras, Badalona, Barcelona
| | - Laurent Yvernogeau
- Sorbonne Université, Institut de Biologie Paris Seine, Laboratoire de Biologie du Développement/UMR7622, Paris, France
| | - Jan Jacob Schuringa
- Department of Experimental Hematology, University Medical Center Groningen, The Netherlands
| |
Collapse
|
14
|
Zhuang Q, Li H, Peng B, Liu Y, Zhang Y, Cai H, Liu S, Ming Y. Single-Cell Transcriptomic Analysis of Peripheral Blood Reveals a Novel B-Cell Subset in Renal Allograft Recipients With Accommodation. Front Pharmacol 2021; 12:706580. [PMID: 34658852 PMCID: PMC8514638 DOI: 10.3389/fphar.2021.706580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/13/2021] [Indexed: 02/05/2023] Open
Abstract
Background: Kidney transplantation (KTx) is a preeminent treatment for end-stage renal disease (ESRD). After the application of immunosuppressants (IS), renal allograft recipients could reach a state called accommodation which means they are neither rejected nor infected. This study aimed to describe the details of this immune accommodation and reveal a novel mechanism of IS on immune cell subpopulations. Methods: We analyzed multiple cell subgroups and their gene expression of peripheral T, B, myeloid, and NK cells from renal allograft recipients with accommodation and healthy control (HC) by single-cell transcriptomics sequencing (scRNA-seq) and flow cytometry. Results: A total of 8,272 cells were isolated and sequenced from three individuals, including 2,758 cells from HC, 2,550 cells from ESRD patient, and 2,964 cells from KTx patient, as well as 396 immune response–related genes were detected during sequencing. 5 T-cell, 4 NK-cell, 5 myeloid, and 4 B-cell clusters were defined. Among them, a B-cell subset (CD19+IGLC3lowIGKChighTCL1A-CD127+) of renal transplant recipients with accommodation was significantly lower than that of HC and verified by flow cytometry, and this B-cell subset showed an activated potential because of its high expression of CD127. Furthermore, we found that IL32 might be the key cytokine to induce the differentiation of this B-cell cluster. Conclusion: We found a novel B-cell subset (CD19+IGLC3lowIGKChighTCL1A-CD127+) which was inhibited and decreased in renal allograft recipients with accommodation. This study might reveal the effect of commonly used IS in clinical practice on B-cell subsets and related mechanism.
Collapse
Affiliation(s)
- Quan Zhuang
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, China.,Research Center of National Health Ministry on Transplantation Medicine, Changsha, China
| | - Hao Li
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Bo Peng
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, China.,Research Center of National Health Ministry on Transplantation Medicine, Changsha, China
| | - Yang Liu
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ying Zhang
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Haozheng Cai
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Shu Liu
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, China.,Research Center of National Health Ministry on Transplantation Medicine, Changsha, China
| | - Yingzi Ming
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, China.,Research Center of National Health Ministry on Transplantation Medicine, Changsha, China
| |
Collapse
|
15
|
Mack R, Zhang L, Breslin Sj P, Zhang J. The Fetal-to-Adult Hematopoietic Stem Cell Transition and its Role in Childhood Hematopoietic Malignancies. Stem Cell Rev Rep 2021; 17:2059-2080. [PMID: 34424480 DOI: 10.1007/s12015-021-10230-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2021] [Indexed: 01/07/2023]
Abstract
As with most organ systems that undergo continuous generation and maturation during the transition from fetal to adult life, the hematopoietic and immune systems also experience dynamic changes. Such changes lead to many unique features in blood cell function and immune responses in early childhood. The blood cells and immune cells in neonates are a mixture of fetal and adult origin due to the co-existence of both fetal and adult types of hematopoietic stem cells (HSCs) and progenitor cells (HPCs). Fetal blood and immune cells gradually diminish during maturation of the infant and are almost completely replaced by adult types of cells by 3 to 4 weeks after birth in mice. Such features in early childhood are associated with unique features of hematopoietic and immune diseases, such as leukemia, at these developmental stages. Therefore, understanding the cellular and molecular mechanisms by which hematopoietic and immune changes occur throughout ontogeny will provide useful information for the study and treatment of pediatric blood and immune diseases. In this review, we summarize the most recent studies on hematopoietic initiation during early embryonic development, the expansion of both fetal and adult types of HSCs and HPCs in the fetal liver and fetal bone marrow stages, and the shift from fetal to adult hematopoiesis/immunity during neonatal/infant development. We also discuss the contributions of fetal types of HSCs/HPCs to childhood leukemias.
Collapse
Affiliation(s)
- Ryan Mack
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Lei Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Peter Breslin Sj
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA.,Departments of Molecular/Cellular Physiology and Biology, Loyola University Medical Center and Loyola University Chicago, Chicago, IL, 60660, USA
| | - Jiwang Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA.
| |
Collapse
|
16
|
Lefeivre T, Jones L, Trinquand A, Pinton A, Macintyre E, Laurenti E, Bond J. Immature acute leukaemias: lessons from the haematopoietic roadmap. FEBS J 2021; 289:4355-4370. [PMID: 34028982 DOI: 10.1111/febs.16030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/30/2021] [Accepted: 05/20/2021] [Indexed: 11/29/2022]
Abstract
It is essential to relate the biology of acute leukaemia to normal blood cell development. In this review, we discuss how modern models of haematopoiesis might inform approaches to diagnosis and management of immature leukaemias, with a specific focus on T-lymphoid and myeloid cases. In particular, we consider whether next-generation analytical tools could provide new perspectives that could improve our understanding of immature blood cancer biology.
Collapse
Affiliation(s)
- Thomas Lefeivre
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland.,National Children's Research Centre, Dublin, Ireland
| | - Luke Jones
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland.,National Children's Research Centre, Dublin, Ireland
| | - Amélie Trinquand
- National Children's Research Centre, Dublin, Ireland.,Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Antoine Pinton
- Laboratory of Onco-Haematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, Université de Paris, Paris, France.,Institut Necker-Enfants Malades (INEM), Institut national de la santé et de la recherche médicale (Inserm) U1151, Paris, France
| | - Elizabeth Macintyre
- Laboratory of Onco-Haematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants-Malades, Université de Paris, Paris, France.,Institut Necker-Enfants Malades (INEM), Institut national de la santé et de la recherche médicale (Inserm) U1151, Paris, France
| | - Elisa Laurenti
- Department of Haematology, University of Cambridge, Cambridge, UK.,Wellcome and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Jonathan Bond
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland.,National Children's Research Centre, Dublin, Ireland.,Children's Health Ireland at Crumlin, Dublin, Ireland
| |
Collapse
|
17
|
Rothenberg EV. Single-cell insights into the hematopoietic generation of T-lymphocyte precursors in mouse and human. Exp Hematol 2021; 95:1-12. [PMID: 33454362 PMCID: PMC8018899 DOI: 10.1016/j.exphem.2020.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 01/29/2023]
Abstract
T-Cell development is a major branch of lymphoid development and a key output of hematopoiesis, especially in early life, but the molecular requirements for T-cell potential have remained obscure. Considerable advances have now been made toward solving this problem through single-cell transcriptome studies, interfaced with in vitro differentiation assays that monitor potential efficiently at the single-cell level. This review focuses on a series of recent reports studying mouse and human early T-cell precursors, both in the developing fetus and in stringently purified postnatal samples of intrathymic and prethymic T-lineage precursors. Cross-comparison of results reveals a robustly conserved core program in mouse and human, but with some informative and provocative variations between species and between ontogenic states. Repeated findings are the multipotent progenitor regulatory signature of thymus-seeding cells and the proximity of the T-cell program to dendritic cell programs, especially to plasmacytoid dendritic cells in humans.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA.
| |
Collapse
|
18
|
Jackson TR, Ling RE, Roy A. The Origin of B-cells: Human Fetal B Cell Development and Implications for the Pathogenesis of Childhood Acute Lymphoblastic Leukemia. Front Immunol 2021; 12:637975. [PMID: 33679795 PMCID: PMC7928347 DOI: 10.3389/fimmu.2021.637975] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/28/2021] [Indexed: 12/27/2022] Open
Abstract
Human B-lymphopoiesis is a dynamic life-long process that starts in utero by around six post-conception weeks. A detailed understanding of human fetal B-lymphopoiesis and how it changes in postnatal life is vital for building a complete picture of normal B-lymphoid development through ontogeny, and its relevance in disease. B-cell acute lymphoblastic leukemia (B-ALL) is one of the most common cancers in children, with many of the leukemia-initiating events originating in utero. It is likely that the biology of B-ALL, including leukemia initiation, maintenance and progression depends on the developmental stage and type of B-lymphoid cell in which it originates. This is particularly important for early life leukemias, where specific characteristics of fetal B-cells might be key to determining how the disease behaves, including response to treatment. These cellular, molecular and/or epigenetic features are likely to change with age in a cell intrinsic and/or microenvironment directed manner. Most of our understanding of fetal B-lymphopoiesis has been based on murine data, but many recent studies have focussed on characterizing human fetal B-cell development, including functional and molecular assays at a single cell level. In this mini-review we will give a short overview of the recent advances in the understanding of human fetal B-lymphopoiesis, including its relevance to infant/childhood leukemia, and highlight future questions in the field.
Collapse
Affiliation(s)
- Thomas R Jackson
- Department of Paediatrics and MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Rebecca E Ling
- Department of Paediatrics and MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Anindita Roy
- Department of Paediatrics and MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford, United Kingdom
| |
Collapse
|
19
|
Keita S, Canque B, Alhaj Hussen K. Modeling Human Fetal Hematopoiesis in Humanized Mice. Methods Mol Biol 2021; 2308:225-233. [PMID: 34057726 DOI: 10.1007/978-1-0716-1425-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Due to difficulties to access primary human bone marrow samples and age or donor effects, human hematopoiesis has long remained far less well characterized than in the mouse. Despite recent progresses in single-cell RNA profiling only little is known as to phenotype, function and developmental trajectories of human lymphomyeloid progenitors and precursors. This is especially true regarding the developmental architecture of the lymphoid lineage which has been the subject of persistent controversies over the past decades. Here, we describe an original approach of in vivo modeling of human fetal hematopoiesis immunodeficient NSG mice engrafted with neonatal CD34+ hematopoietic progenitor cells (HPCs) allowing for rapid identification and isolation of lymphomyeloid developmental intermediates.
Collapse
Affiliation(s)
- Seydou Keita
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France
| | - Bruno Canque
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France.
| | - Kutaiba Alhaj Hussen
- INSERM U976, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut de Recherche Saint Louis, Paris, France
- Service d'Hématologie Biologique, Hôpital Tenon, Hôpitaux Universitaires de l'Est Parisien, Assistance Publique Hôpitaux de Paris, Paris, France
| |
Collapse
|
20
|
Hypoxia Regulates Lymphoid Development of Human Hematopoietic Progenitors. Cell Rep 2020; 29:2307-2320.e6. [PMID: 31747603 DOI: 10.1016/j.celrep.2019.10.050] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/29/2019] [Accepted: 10/10/2019] [Indexed: 01/04/2023] Open
Abstract
Hypoxia plays a major role in the physiology of hematopoietic and immune niches. Important clues from works in mouse have paved the way to investigate the role of low O2 levels in hematopoiesis. However, whether hypoxia impacts the initial steps of human lymphopoiesis remains unexplored. Here, we show that hypoxia regulates cellular and metabolic profiles of umbilical cord blood (UCB)-derived hematopoietic progenitor cells. Hypoxia more specifically enhances in vitro lymphoid differentiation potentials of lymphoid-primed multipotent progenitors (LMPPs) and pro-T/natural killer (NK) cells and in vivo B cell potential of LMPPs. In accordance, hypoxia exacerbates the lymphoid gene expression profile through hypoxia-inducible factor (HIF)-1α (for LMPPs) and HIF-2α (for pro-T/NK). Moreover, loss of HIF-1/2α expression seriously impedes NK and B cell production from LMPPs and pro-T/NK. Our study describes how hypoxia contributes to the lymphoid development of human progenitors and reveals the implication of the HIF pathway in LMPPs and pro-T/NK-cell lymphoid identities.
Collapse
|
21
|
Cherrier M, Ramachandran G, Golub R. The interplay between innate lymphoid cells and T cells. Mucosal Immunol 2020; 13:732-742. [PMID: 32651476 DOI: 10.1038/s41385-020-0320-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 06/25/2020] [Accepted: 06/25/2020] [Indexed: 02/04/2023]
Abstract
ILCs and T cells are closely related functionally but they significantly differ in their ability to circulate, expand, and renew. Cooperation and reciprocal functional regulation suggest that these cell types are more complementary than simply redundant during immune responses. How ILCs shape T-cell responses is strongly dependent on the tissue and inflammatory context. Likewise, indirect regulation of ILCs by adaptive immunity is induced by environmental cues such as the gut microbiota. Here, we review shared requirements for the development and function of both cell types and divergences in the orchestration of prototypic immune functions. We discuss the diversity of functional interactions between T cells and ILCs during homeostasis and immune responses. Identifying the location and the nature of the tissue microenvironment in which these interactions are taking place may uncover the remaining mysteries of their close encounters.
Collapse
Affiliation(s)
- Marie Cherrier
- Laboratoire d'Immunité Intestinale, Institut Imagine, INSERM U1163, Université Sorbonne Paris Cité, Paris, France.
| | - Gayetri Ramachandran
- Host-Microbiota Interaction, Institut Necker Enfants Malades, INSERM U1151, Université Sorbonne Paris Cité, Paris, France
| | - Rachel Golub
- Unité Lymphocytes et Immunité, Institut Pasteur, Paris, France. .,INSERM U1223, Paris, France. .,Université de Paris, F-75006, Paris, France.
| |
Collapse
|
22
|
A transcriptomic continuum of differentiation arrest identifies myeloid interface acute leukemias with poor prognosis. Leukemia 2020; 35:724-736. [PMID: 32655144 PMCID: PMC7932917 DOI: 10.1038/s41375-020-0965-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 06/11/2020] [Accepted: 07/01/2020] [Indexed: 12/17/2022]
Abstract
Classification of acute lymphoblastic and myeloid leukemias (ALL and AML) remains heavily based on phenotypic resemblance to normal hematopoietic precursors. This framework can provide diagnostic challenges for immunophenotypically heterogeneous immature leukemias, and ignores recent advances in understanding of developmental multipotency of diverse normal hematopoietic progenitor populations that are identified by transcriptional signatures. We performed transcriptional analyses of a large series of acute myeloid and lymphoid leukemias and detected significant overlap in gene expression between cases in different diagnostic categories. Bioinformatic classification of leukemias along a continuum of hematopoietic differentiation identified leukemias at the myeloid/T-lymphoid interface, which shared gene expression programs with a series of multi or oligopotent hematopoietic progenitor populations, including the most immature CD34+CD1a−CD7− subset of early thymic precursors. Within these interface acute leukemias (IALs), transcriptional resemblance to early lymphoid progenitor populations and biphenotypic leukemias was more evident in cases originally diagnosed as AML, rather than T-ALL. Further prognostic analyses revealed that expression of IAL transcriptional programs significantly correlated with poor outcome in independent AML patient cohorts. Our results suggest that traditional binary approaches to acute leukemia categorization are reductive, and that identification of IALs could allow better treatment allocation and evaluation of therapeutic options.
Collapse
|
23
|
Saito Y, Shultz LD, Ishikawa F. Understanding Normal and Malignant Human Hematopoiesis Using Next-Generation Humanized Mice. Trends Immunol 2020; 41:706-720. [PMID: 32631635 DOI: 10.1016/j.it.2020.06.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 06/12/2020] [Accepted: 06/14/2020] [Indexed: 12/11/2022]
Abstract
Rodent models for human diseases contribute significantly to understanding human physiology and pathophysiology. However, given the accelerating pace of drug development, there is a crucial need for in vivo preclinical models of human biology and pathology. The humanized mouse is one tool to bridge the gap between traditional animal models and the clinic. The development of immunodeficient mouse strains with high-level engraftment of normal and diseased human immune/hematopoietic cells has made in vivo functional characterization possible. As a patient-derived xenograft (PDX) model, humanized mice functionally correlate putative mechanisms with in vivo behavior and help to reveal pathogenic mechanisms. Combined with single-cell genomics, humanized mice can facilitate functional precision medicine such as risk stratification and individually optimized therapeutic approaches.
Collapse
Affiliation(s)
- Yoriko Saito
- RIKEN Center for Integrative Medical Sciences, Yokohama City, Kanagawa, 230-0045, Japan
| | | | - Fumihiko Ishikawa
- RIKEN Center for Integrative Medical Sciences, Yokohama City, Kanagawa, 230-0045, Japan.
| |
Collapse
|
24
|
MLL-rearranged infant leukaemia: A 'thorn in the side' of a remarkable success story. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194564. [PMID: 32376390 DOI: 10.1016/j.bbagrm.2020.194564] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 12/20/2022]
Abstract
Advances in treatment of childhood leukaemia has led to vastly improved survival rates, however some subtypes such as those characterised by MLL gene rearrangement (MLL-r), especially in infants, continue to have high relapse rates and poor survival. Natural history and molecular studies indicate that infant acute lymphoblastic leukaemia (ALL) originates in utero, is distinct from childhood ALL, and most cases are caused by MLL-r resulting in an oncogenic MLL fusion protein. Unlike childhood ALL, only a very small number of additional mutations are present in infant ALL, indicating that MLL-r alone may be sufficient to give rise to this rapid onset, aggressive leukaemia in an appropriate fetal cell context. Despite modifications in treatment approaches, the outcome of MLL-r infant ALL has remained dismal and a clear understanding of the underlying biology of the disease is required in order to develop appropriate disease models and more effective therapeutic strategies.
Collapse
|
25
|
Lavaert M, Liang KL, Vandamme N, Park JE, Roels J, Kowalczyk MS, Li B, Ashenberg O, Tabaka M, Dionne D, Tickle TL, Slyper M, Rozenblatt-Rosen O, Vandekerckhove B, Leclercq G, Regev A, Van Vlierberghe P, Guilliams M, Teichmann SA, Saeys Y, Taghon T. Integrated scRNA-Seq Identifies Human Postnatal Thymus Seeding Progenitors and Regulatory Dynamics of Differentiating Immature Thymocytes. Immunity 2020; 52:1088-1104.e6. [PMID: 32304633 DOI: 10.1016/j.immuni.2020.03.019] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/04/2020] [Accepted: 03/27/2020] [Indexed: 10/24/2022]
Abstract
During postnatal life, thymopoiesis depends on the continuous colonization of the thymus by bone-marrow-derived hematopoietic progenitors that migrate through the bloodstream. The current understanding of the nature of thymic immigrants is largely based on data from pre-clinical models. Here, we employed single-cell RNA sequencing (scRNA-seq) to examine the immature postnatal thymocyte population in humans. Integration of bone marrow and peripheral blood precursor datasets identified two putative thymus seeding progenitors that varied in expression of CD7; CD10; and the homing receptors CCR7, CCR9, and ITGB7. Whereas both precursors supported T cell development, only one contributed to intrathymic dendritic cell (DC) differentiation, predominantly of plasmacytoid dendritic cells. Trajectory inference delineated the transcriptional dynamics underlying early human T lineage development, enabling prediction of transcription factor (TF) modules that drive stage-specific steps of human T cell development. This comprehensive dataset defines the expression signature of immature human thymocytes and provides a resource for the further study of human thymopoiesis.
Collapse
Affiliation(s)
- Marieke Lavaert
- Faculty of Medicine and Health Sciences, Department of Diagnostic Sciences, Ghent University, C. Heymanslaan 10, MRB2, Entrance 38, 9000 Ghent, Belgium
| | - Kai Ling Liang
- Faculty of Medicine and Health Sciences, Department of Diagnostic Sciences, Ghent University, C. Heymanslaan 10, MRB2, Entrance 38, 9000 Ghent, Belgium
| | - Niels Vandamme
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Jong-Eun Park
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Juliette Roels
- Faculty of Medicine and Health Sciences, Department of Diagnostic Sciences, Ghent University, C. Heymanslaan 10, MRB2, Entrance 38, 9000 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Monica S Kowalczyk
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Bo Li
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA; Data Sciences Platform, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Orr Ashenberg
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Marcin Tabaka
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Danielle Dionne
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Timothy L Tickle
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA; Haematology Department, Royal Victoria Infirmary, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Michal Slyper
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | | | - Bart Vandekerckhove
- Faculty of Medicine and Health Sciences, Department of Diagnostic Sciences, Ghent University, C. Heymanslaan 10, MRB2, Entrance 38, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Georges Leclercq
- Faculty of Medicine and Health Sciences, Department of Diagnostic Sciences, Ghent University, C. Heymanslaan 10, MRB2, Entrance 38, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA; Howard Hughes Medical Institute, Koch Institute of Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Pieter Van Vlierberghe
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Martin Guilliams
- Laboratory of Myeloid Cell Ontogeny and Functional Specialization, VIB Center for Inflammation Research, Ghent, Belgium; Faculty of Sciences, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK; Theory of Condensed Matter Group, Cavendish Laboratory/Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK
| | - Yvan Saeys
- Data Mining and Modeling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| | - Tom Taghon
- Faculty of Medicine and Health Sciences, Department of Diagnostic Sciences, Ghent University, C. Heymanslaan 10, MRB2, Entrance 38, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium.
| |
Collapse
|
26
|
Kee BL, Morman RE, Sun M. Transcriptional regulation of natural killer cell development and maturation. Adv Immunol 2020; 146:1-28. [PMID: 32327150 DOI: 10.1016/bs.ai.2020.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Natural killer cells are lymphocytes that respond rapidly to intracellular pathogens or cancer/stressed cells by producing pro-inflammatory cytokines or chemokines and by killing target cells through direct cytolysis. NK cells are distinct from B and T lymphocytes in that they become activated through a series of broadly expressed germ line encoded activating and inhibitory receptors or through the actions of inflammatory cytokines. They are the founding member of the innate lymphoid cell family, which mirror the functions of T lymphocytes, with NK cells being the innate counterpart to CD8 T lymphocytes. Despite the functional relationship between NK cells and CD8 T cells, the mechanisms controlling their specification, differentiation and maturation are distinct, with NK cells emerging from multipotent lymphoid progenitors in the bone marrow under the control of a unique transcriptional program. Over the past few years, substantial progress has been made in understanding the developmental pathways and the factors involved in generating mature and functional NK cells. NK cells have immense therapeutic potential and understanding how to acquire large numbers of functional cells and how to endow them with potent activity to control hematopoietic and non-hematopoietic malignancies and autoimmunity is a major clinical goal. In this review, we examine basic aspects of conventional NK cell development in mice and humans and discuss multiple transcription factors that are known to guide the development of these cells.
Collapse
Affiliation(s)
- Barbara L Kee
- Department of Pathology and Committee on Immunology, The University of Chicago, Chicago, IL, United States.
| | - Rosmary E Morman
- Department of Pathology and Committee on Immunology, The University of Chicago, Chicago, IL, United States
| | - Mengxi Sun
- Department of Pathology and Committee on Immunology, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
27
|
Alisjahbana A, Mohammad I, Gao Y, Evren E, Ringqvist E, Willinger T. Human macrophages and innate lymphoid cells: Tissue-resident innate immunity in humanized mice. Biochem Pharmacol 2019; 174:113672. [PMID: 31634458 DOI: 10.1016/j.bcp.2019.113672] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/15/2019] [Indexed: 12/17/2022]
Abstract
Macrophages and innate lymphoid cells (ILCs) are tissue-resident cells that play important roles in organ homeostasis and tissue immunity. Their intricate relationship with the organs they reside in allows them to quickly respond to perturbations of organ homeostasis and environmental challenges, such as infection and tissue injury. Macrophages and ILCs have been extensively studied in mice, yet important species-specific differences exist regarding innate immunity between humans and mice. Complementary to ex-vivo studies with human cells, humanized mice (i.e. mice with a human immune system) offer the opportunity to study human macrophages and ILCs in vivo within their surrounding tissue microenvironments. In this review, we will discuss how humanized mice have helped gain new knowledge about the basic biology of these cells, as well as their function in infectious and malignant conditions. Furthermore, we will highlight active areas of investigation related to human macrophages and ILCs, such as their cellular heterogeneity, ontogeny, tissue residency, and plasticity. In the near future, we expect more fundamental discoveries in these areas through the combined use of improved humanized mouse models together with state-of-the-art technologies, such as single-cell RNA-sequencing and CRISPR/Cas9 genome editing.
Collapse
Affiliation(s)
- Arlisa Alisjahbana
- Center for Infectious Medicine, Karolinska Institutet, Alfred Nobels allé 8, 141 52 Stockholm, Sweden
| | - Imran Mohammad
- Center for Infectious Medicine, Karolinska Institutet, Alfred Nobels allé 8, 141 52 Stockholm, Sweden
| | - Yu Gao
- Center for Infectious Medicine, Karolinska Institutet, Alfred Nobels allé 8, 141 52 Stockholm, Sweden
| | - Elza Evren
- Center for Infectious Medicine, Karolinska Institutet, Alfred Nobels allé 8, 141 52 Stockholm, Sweden
| | - Emma Ringqvist
- Center for Infectious Medicine, Karolinska Institutet, Alfred Nobels allé 8, 141 52 Stockholm, Sweden
| | - Tim Willinger
- Center for Infectious Medicine, Karolinska Institutet, Alfred Nobels allé 8, 141 52 Stockholm, Sweden.
| |
Collapse
|
28
|
O'Byrne S, Elliott N, Rice S, Buck G, Fordham N, Garnett C, Godfrey L, Crump NT, Wright G, Inglott S, Hua P, Psaila B, Povinelli B, Knapp DJHF, Agraz-Doblas A, Bueno C, Varela I, Bennett P, Koohy H, Watt SM, Karadimitris A, Mead AJ, Ancliff P, Vyas P, Menendez P, Milne TA, Roberts I, Roy A. Discovery of a CD10-negative B-progenitor in human fetal life identifies unique ontogeny-related developmental programs. Blood 2019; 134:1059-1071. [PMID: 31383639 DOI: 10.1182/blood.2019001289] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 07/05/2019] [Indexed: 12/13/2022] Open
Abstract
Human lymphopoiesis is a dynamic lifelong process that starts in utero 6 weeks postconception. Although fetal B-lymphopoiesis remains poorly defined, it is key to understanding leukemia initiation in early life. Here, we provide a comprehensive analysis of the human fetal B-cell developmental hierarchy. We report the presence in fetal tissues of 2 distinct CD19+ B-progenitors, an adult-type CD10+ve ProB-progenitor and a new CD10-ve PreProB-progenitor, and describe their molecular and functional characteristics. PreProB-progenitors and ProB-progenitors appear early in the first trimester in embryonic liver, followed by a sustained second wave of B-progenitor development in fetal bone marrow (BM), where together they form >40% of the total hematopoietic stem cell/progenitor pool. Almost one-third of fetal B-progenitors are CD10-ve PreProB-progenitors, whereas, by contrast, PreProB-progenitors are almost undetectable (0.53% ± 0.24%) in adult BM. Single-cell transcriptomics and functional assays place fetal PreProB-progenitors upstream of ProB-progenitors, identifying them as the first B-lymphoid-restricted progenitor in human fetal life. Although fetal BM PreProB-progenitors and ProB-progenitors both give rise solely to B-lineage cells, they are transcriptionally distinct. As with their fetal counterparts, adult BM PreProB-progenitors give rise only to B-lineage cells in vitro and express the expected B-lineage gene expression program. However, fetal PreProB-progenitors display a distinct, ontogeny-related gene expression pattern that is not seen in adult PreProB-progenitors, and they share transcriptomic signatures with CD10-ve B-progenitor infant acute lymphoblastic leukemia blast cells. These data identify PreProB-progenitors as the earliest B-lymphoid-restricted progenitor in human fetal life and suggest that this fetal-restricted committed B-progenitor might provide a permissive cellular context for prenatal B-progenitor leukemia initiation.
Collapse
Affiliation(s)
| | | | - Siobhan Rice
- Medical Research Council (MRC) Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Gemma Buck
- Department of Paediatrics and
- Medical Research Council (MRC) Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicholas Fordham
- Medical Research Council (MRC) Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Catherine Garnett
- Medical Research Council (MRC) Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Laura Godfrey
- Medical Research Council (MRC) Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicholas T Crump
- Medical Research Council (MRC) Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Gary Wright
- Department of Haematology, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
| | - Sarah Inglott
- Department of Haematology, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
| | - Peng Hua
- Medical Research Council (MRC) Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- Stem Cell Research, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Bethan Psaila
- Medical Research Council (MRC) Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Benjamin Povinelli
- Medical Research Council (MRC) Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - David J H F Knapp
- Medical Research Council (MRC) Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Antonio Agraz-Doblas
- Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-CSIC, Santander, Spain
- Josep Carreras Leukemia Research Institute-Campus Clinic, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Clara Bueno
- Josep Carreras Leukemia Research Institute-Campus Clinic, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Ignacio Varela
- Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-CSIC, Santander, Spain
| | - Phillip Bennett
- Institute of Reproductive and Developmental Biology, Department of Surgery and Cancer, Hammersmith Hospital Campus, Imperial College London, London, United Kingdom
| | - Hashem Koohy
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Suzanne M Watt
- Stem Cell Research, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Anastasios Karadimitris
- Centre for Haematology, Department of Medicine, Hammersmith Hospital, Imperial College London, London, United Kingdom
| | - Adam J Mead
- Medical Research Council (MRC) Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- Haematology Theme, Oxford Biomedical Research Centre, Oxford University Hospitals, Oxford, United Kingdom
| | - Phillip Ancliff
- Department of Haematology, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
| | - Paresh Vyas
- Medical Research Council (MRC) Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- Haematology Theme, Oxford Biomedical Research Centre, Oxford University Hospitals, Oxford, United Kingdom
| | - Pablo Menendez
- Josep Carreras Leukemia Research Institute-Campus Clinic, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
- Institucio Catalana of Recerca i Estudis Avançats, Barcelona, Spain; and
- Centro de Investigación Biomédica en Red en Cancer-ISCIII, Barcelona, Spain
| | - Thomas A Milne
- Medical Research Council (MRC) Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- Haematology Theme, Oxford Biomedical Research Centre, Oxford University Hospitals, Oxford, United Kingdom
| | - Irene Roberts
- Department of Paediatrics and
- Medical Research Council (MRC) Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- Haematology Theme, Oxford Biomedical Research Centre, Oxford University Hospitals, Oxford, United Kingdom
| | | |
Collapse
|
29
|
Cichocki F, Grzywacz B, Miller JS. Human NK Cell Development: One Road or Many? Front Immunol 2019; 10:2078. [PMID: 31555287 PMCID: PMC6727427 DOI: 10.3389/fimmu.2019.02078] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/16/2019] [Indexed: 12/12/2022] Open
Abstract
CD3−CD56+ NK cells develop from CD34+ hematopoietic progenitors (HPCs) in vivo, and this process can be recapitulated in vitro. The prevailing model is that human NK cell development occurs along a continuum whereby common lymphocyte progenitors (CLPs) gradually downregulate CD34 and upregulate CD56. Acquisition of CD94 marks commitment to the CD56bright stage, and CD56bright NK cells subsequently differentiate into CD56dim NK cells that upregulate CD16 and killer immunoglobulin-like receptors (KIR). Support for this linear model comes from analyses of cell populations in secondary lymphoid tissues and in vitro studies of NK cell development from HPCs. However, several lines of evidence challenge this linear model and suggest a more branched model whereby different precursor populations may independently develop into distinct subsets of mature NK cells. A more definitive understanding of human NK cell development is needed to inform in vitro differentiation strategies designed to generate NK cells for immunotherapy. In this review, we summarize current evidence supporting the linear and branched models of human NK cell development and the challenges associated with reaching definitive conclusions.
Collapse
Affiliation(s)
- Frank Cichocki
- Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Bartosz Grzywacz
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, United States
| | - Jeffrey S Miller
- Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
30
|
Lim AI, Di Santo JP. ILC-poiesis: Ensuring tissue ILC differentiation at the right place and time. Eur J Immunol 2018; 49:11-18. [PMID: 30350853 DOI: 10.1002/eji.201747294] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/12/2018] [Accepted: 10/15/2018] [Indexed: 12/12/2022]
Abstract
Innate lymphoid cells (ILCs) represent a family of innate effector cells including NK cells, lymphoid tissue inducer (LTi) cells, and distinct ILC1, ILC2, and ILC3 subsets that produce IFN-γ, IL-5/IL-13, and IL-17A/IL-22, respectively. ILCs accumulate at mucosal sites and can promote the first-line defense against infection. ILCs are also implicated in tissue repair and can either pre-empt, or alternatively, exacerbate inflammation. Studies in mice have identified ILC precursors in fetal liver and adult BM that have diverse lineage potential. As such, these sites have been considered as the 'factories' to generate mature ILC. Here, we summarize knowledge concerning murine and human ILC development and discuss the recent identification of circulating multipotent and unipotent ILC precursors. We propose an alternative model of "ILC-poiesis", whereby blood ILC precursors migrate into tissues to complete their differentiation into mature ILC subsets under the influence of local environmental factors. Within this framework, ILC-poiesis guarantees appropriate ILC generation at the right place and the right time. We further discusss the potential applications of circulating ILC precursors for cell therapy of human disease.
Collapse
Affiliation(s)
- Ai Ing Lim
- Innate Immunity Unit, Institut Pasteur, 75724, Paris, France.,Inserm U1223, Paris, France
| | - James P Di Santo
- Innate Immunity Unit, Institut Pasteur, 75724, Paris, France.,Inserm U1223, Paris, France
| |
Collapse
|
31
|
Alhaj Hussen K, Chabaane E, Canque B. [Bipartite organization of human lymphopoiesis]. Med Sci (Paris) 2018; 34:665-670. [PMID: 30230453 DOI: 10.1051/medsci/20183408012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Due to difficulties to access primary bone marrow samples, human hematopoiesis has long remained far less characterized than in the mouse. Using an in vivo modeling approach of fetal hematopoiesis in humanized mice, we recently showed that human lymphoid cells stem from two functionally specialized populations of CD127- and CD127+ early lymphoid progenitors (ELP) that differentiate independently, respond differently to growth factors, undergo divergent modes of lineage restriction and generate distinct lymphoid populations. Our results demonstrate that, conversely to the mouse, human lymphopoiesis displays a bipartite developmental architecture.
Collapse
Affiliation(s)
- Kutaiba Alhaj Hussen
- Inserm U1126, université Paris-Diderot, école pratique des hautes études/Paris Sciences et Lettres (PSL research university), institut universitaire d'hématologie, hôpital Saint-Louis, 1, avenue Claude Vellefaux, 75010 Paris, France
| | - Emna Chabaane
- Inserm U1126, université Paris-Diderot, école pratique des hautes études/Paris Sciences et Lettres (PSL research university), institut universitaire d'hématologie, hôpital Saint-Louis, 1, avenue Claude Vellefaux, 75010 Paris, France
| | - Bruno Canque
- Inserm U1126, université Paris-Diderot, école pratique des hautes études/Paris Sciences et Lettres (PSL research university), institut universitaire d'hématologie, hôpital Saint-Louis, 1, avenue Claude Vellefaux, 75010 Paris, France
| |
Collapse
|