1
|
Leddy O, Cui Y, Ahn R, Stopfer L, Choe E, Kim DH, Roerden M, Spranger S, Bryson BD, White FM. Validation and quantification of peptide antigens presented on MHCs using SureQuant. Nat Protoc 2025; 20:1196-1222. [PMID: 39438697 PMCID: PMC12012165 DOI: 10.1038/s41596-024-01076-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 09/19/2024] [Indexed: 10/25/2024]
Abstract
Vaccines and immunotherapies that target peptide-major histocompatibility complexes (peptide-MHCs) have the potential to address multiple unmet medical needs in cancer and infectious disease. Designing vaccines and immunotherapies to target peptide-MHCs requires accurate identification of target peptides in infected or cancerous cells or tissue, and may require absolute or relative quantification to identify abundant targets and measure changes in presentation under different treatment conditions. Internal standard parallel reaction monitoring (also known as 'SureQuant') can be used to validate and/or quantify MHC peptides previously identified by using untargeted methods such as data-dependent acquisition. SureQuant MHC has three main use cases: (i) conclusive confirmation of the identities of putative MHC peptides via comparison with an internal synthetic stable isotope labeled (SIL) peptide standard; (ii) accurate relative quantification by using pre-formed heavy isotope-labeled peptide-MHC complexes (hipMHCs) containing SIL peptides as internal controls for technical variation; and (iii) absolute quantification of each target peptide by using different amounts of hipMHCs loaded with synthetic peptides containing one, two or three SIL amino acids to provide an internal standard curve. Absolute quantification can help determine whether the abundance of a peptide-MHC is sufficient for certain therapeutic modalities. SureQuant MHC therefore provides unique advantages for immunologists seeking to confidently validate antigenic targets and understand the dynamics of the MHC repertoire. After synthetic standards are ordered (3-4 weeks), this protocol can be carried out in 3-4 days and is suitable for individuals with mass spectrometry experience who are comfortable with customizing instrument methods.
Collapse
Affiliation(s)
- Owen Leddy
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Medicine, Cambridge, MA, USA
| | - Yufei Cui
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Medicine, Cambridge, MA, USA
| | - Ryuhjin Ahn
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Medicine, Cambridge, MA, USA
| | - Lauren Stopfer
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Medicine, Cambridge, MA, USA
- Aethon Therapeutics, New York, NY, USA
| | - Elizabeth Choe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Medicine, Cambridge, MA, USA
| | - Do Hun Kim
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Medicine, Cambridge, MA, USA
| | - Malte Roerden
- Koch Institute for Integrative Cancer Medicine, Cambridge, MA, USA
| | - Stefani Spranger
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Medicine, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Bryan D Bryson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA, USA
| | - Forest M White
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Koch Institute for Integrative Cancer Medicine, Cambridge, MA, USA.
- Center for Precision Cancer Medicine, Cambridge, MA, USA.
| |
Collapse
|
2
|
Borgers JSW, Lenkala D, Kohler V, Jackson EK, Linssen MD, Hymson S, McCarthy B, O'Reilly Cosgrove E, Balogh KN, Esaulova E, Starr K, Ware Y, Klobuch S, Sciuto T, Chen X, Mahimkar G, Sheen JHF, Ramesh S, Wilgenhof S, van Thienen JV, Scheiner KC, Jedema I, Rooney M, Dong JZ, Srouji JR, Juneja VR, Arieta CM, Nuijen B, Gottstein C, Finney OC, Manson K, Nijenhuis CM, Gaynor RB, DeMario M, Haanen JB, van Buuren MM. Personalized, autologous neoantigen-specific T cell therapy in metastatic melanoma: a phase 1 trial. Nat Med 2025; 31:881-893. [PMID: 39753970 PMCID: PMC11922764 DOI: 10.1038/s41591-024-03418-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 11/13/2024] [Indexed: 03/21/2025]
Abstract
New treatment approaches are warranted for patients with advanced melanoma refractory to immune checkpoint blockade (ICB) or BRAF-targeted therapy. We designed BNT221, a personalized, neoantigen-specific autologous T cell product derived from peripheral blood, and tested this in a 3 + 3 dose-finding study with two dose levels (DLs) in patients with locally advanced or metastatic melanoma, disease progression after ICB, measurable disease (Response Evaluation Criteria in Solid Tumors version 1.1) and, where appropriate, BRAF-targeted therapy. Primary and secondary objectives were evaluation of safety, highest tolerated dose and anti-tumor activity. We report here the non-pre-specified, final results of the completed monotherapy arm consisting of nine patients: three at DL1 (1 × 108-1 × 109 cells) and six at DL2 (2 × 109-1 × 1010 cells). Drug products (DPs) were generated for all enrolled patients. BNT221 was well tolerated across both DLs, with no dose-limiting toxicities of grade 3 or higher attributed to the T cell product observed. Specifically, no cytokine release, immune effector cell-associated neurotoxicity or macrophage activation syndromes were reported. A dose of 5.0 × 108-1.0 × 1010 cells was identified for further study conduct. Six patients showed stable disease as best overall response, and tumor reductions (≤20%) were reported for four of these patients. In exploratory analyses, multiple mutant-specific CD4+ and CD8+ T cell responses were generated in each DP. These were cytotoxic, polyfunctional and expressed T cell receptors with broad functional avidities. Neoantigen-specific clonotypes were detected after treatment in blood and tumor. Our results provide key insights into this neoantigen-specific adoptive T cell therapy and demonstrate proof of concept for this new therapeutic approach. ClinicalTrials.gov registration: NCT04625205 .
Collapse
Affiliation(s)
- Jessica S W Borgers
- Department of Medical Oncology, Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands
| | | | | | | | - Matthijs D Linssen
- BioTherapeutics Unit, Division of Pharmacy and Pharmacology, Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | - Sebastian Klobuch
- Department of Medical Oncology, Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands
| | | | - Xi Chen
- BioNTech US, Cambridge, MA, USA
| | | | | | | | - Sofie Wilgenhof
- Department of Medical Oncology, Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands
| | - Johannes V van Thienen
- Department of Medical Oncology, Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands
| | - Karina C Scheiner
- BioTherapeutics Unit, Division of Pharmacy and Pharmacology, Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands
| | - Inge Jedema
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands
| | | | | | | | | | | | - Bastiaan Nuijen
- BioTherapeutics Unit, Division of Pharmacy and Pharmacology, Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands
| | | | | | | | - Cynthia M Nijenhuis
- BioTherapeutics Unit, Division of Pharmacy and Pharmacology, Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands
| | | | | | - John B Haanen
- Department of Medical Oncology, Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands.
| | | |
Collapse
|
3
|
Floudas CS, Sarkizova S, Ceccarelli M, Zheng W. Leveraging mRNA technology for antigen based immuno-oncology therapies. J Immunother Cancer 2025; 13:e010569. [PMID: 39848687 PMCID: PMC11784169 DOI: 10.1136/jitc-2024-010569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/03/2025] [Indexed: 01/25/2025] Open
Abstract
The application of messenger RNA (mRNA) technology in antigen-based immuno-oncology therapies represents a significant advancement in cancer treatment. Cancer vaccines are an effective combinatorial partner to sensitize the host immune system to the tumor and boost the efficacy of immune therapies. Selecting suitable tumor antigens is the key step to devising effective vaccinations and amplifying the immune response. Tumor neoantigens are de novo epitopes derived from somatic mutations, avoiding T-cell central tolerance of self-epitopes and inducing immune responses to tumors. The identification and prioritization of patient-specific tumor neoantigens are based on advanced computational algorithms taking advantage of the profiling with next-generation sequencing considering factors involved in human leukocyte antigen (HLA)-peptide-T-cell receptor (TCR) complex formation, including peptide presentation, HLA-peptide affinity, and TCR recognition. This review discusses the development and clinical application of mRNA vaccines in oncology, with a particular focus on recent clinical trials and the computational workflows and methodologies for identifying both shared and individual antigens. While this review centers on therapeutic mRNA vaccines targeting existing tumors, it does not cover preventative vaccines. Preclinical experimental validations are crucial in cancer vaccine development, but we emphasize the computational approaches that facilitate neoantigen selection and design, highlighting their role in advancing mRNA vaccine development. The versatility and rapid development potential of mRNA make it an ideal platform for personalized neoantigen immunotherapy. We explore various strategies for antigen target identification, including tumor-associated and tumor-specific antigens and the computational tools used to predict epitopes capable of eliciting strong immune responses. We address key design considerations for enhancing the immunogenicity and stability of mRNA vaccines, as well as emerging trends and challenges in the field. This comprehensive overview highlights the therapeutic potential of mRNA-based cancer vaccines and underscores ongoing research efforts aimed at optimizing these therapies for improved clinical outcomes.
Collapse
Affiliation(s)
- Charalampos S Floudas
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | | | - Michele Ceccarelli
- Sylvester Comprehensive Cancer Center, Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Wei Zheng
- Moderna, Inc, Cambridge, Massachusetts, USA
| |
Collapse
|
4
|
Sun Z, Hu M, Huang X, Song M, Chen X, Bei J, Lin Y, Chen S. Predictive value of dendritic cell-related genes for prognosis and immunotherapy response in lung adenocarcinoma. Cancer Cell Int 2025; 25:13. [PMID: 39810206 PMCID: PMC11730157 DOI: 10.1186/s12935-025-03642-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Patients with lung adenocarcinoma (LUAD) receiving drug treatment often have an unpredictive response and there is a lack of effective methods to predict treatment outcome for patients. Dendritic cells (DCs) play a significant role in the tumor microenvironment and the DCs-related gene signature may be used to predict treatment outcome. Here, we screened for DC-related genes to construct a prognostic signature to predict prognosis and response to immunotherapy in LUAD patients. METHODS DC-related biological functions and genes were identified using single-cell RNA sequencing (scRNA-seq) and bulk RNA sequencing. DCs-related gene signature (DCRGS) was constructed using integrated machine learning algorithms. Expression of key genes in clinical samples was examined by real-time q-PCR. Performance of the prognostic model, DCRGS, for the prognostic evaluation, was assessed using a multiple time-dependent receiver operating characteristic (ROC) curve, the R package, "timeROC", and validated using GEO datasets. RESULTS Analysis of scRNA-seq data showed that there is a significant upregulation of LGALS9 expression in DCs isolated from malignant pleural effusion samples. Leveraging the Coxboost and random survival forest combination algorithm, we filtered out six DC-related genes on which a prognostic prediction model, DCRGS, was established. A high predictive capability nomogram was constructed by combining DCRGS with clinical features. We found that patients with a high-DCRGS score had immunosuppression, activated tumor-associated pathways, and elevated somatic mutational load and copy number variant load. In contrast, patients in the low-DCRGS subgroup were resistant to chemotherapy but sensitive to the CTLA-4 immune checkpoint inhibitor and targeted therapy. CONCLUSION We have innovatively established a deep learning-based prediction model, DCRGS, for the prediction of the prognosis of patients with LUAD. The model possesses a strong prognostic prediction performance with high accuracy and sensitivity and could be clinically useful to guide the management of LUAD. Furthermore, the findings of this study could provide an important reference for individualized clinical treatment and prognostic prediction of patients with LUAD.
Collapse
Affiliation(s)
- Zihao Sun
- Department of Immuno-Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
- Guangdong Provincial Engineering Research Center for Esophageal Cancer Precision Therapy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Mengfei Hu
- Department of Internal Medicine, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230000, China
| | - Xiaoning Huang
- Department of Immuno-Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
- Guangdong Provincial Engineering Research Center for Esophageal Cancer Precision Therapy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Minghan Song
- Department of Immuno-Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
- Guangdong Provincial Engineering Research Center for Esophageal Cancer Precision Therapy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Xiujing Chen
- Department of Immuno-Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
- Guangdong Provincial Engineering Research Center for Esophageal Cancer Precision Therapy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Jiaxin Bei
- Department of Immuno-Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China.
- Guangdong Provincial Engineering Research Center for Esophageal Cancer Precision Therapy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China.
| | - Yiguang Lin
- Department of Immuno-Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China.
- Research & Development Division, Guangzhou Anjie Biomedical Technology Co., Ltd., Guangzhou, 510535, China.
| | - Size Chen
- Department of Immuno-Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China.
- Guangdong Provincial Engineering Research Center for Esophageal Cancer Precision Therapy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China.
- Key Laboratory of Cancer Immunotherapy of Guangdong Higher Education Institutes, Guangzhou, 510080, China.
- Key Laboratory of Monitoring Adverse Reactions Associated with CAR-T Cell Therapy, Guangzhou, 510080, China.
| |
Collapse
|
5
|
Chang Y, Wu L. CapHLA: a comprehensive tool to predict peptide presentation and binding to HLA class I and class II. Brief Bioinform 2024; 26:bbae595. [PMID: 39688477 DOI: 10.1093/bib/bbae595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/13/2024] [Accepted: 12/14/2024] [Indexed: 12/18/2024] Open
Abstract
Human leukocyte antigen class I (HLA-I) and class II (HLA-II) proteins play an essential role in epitope binding and presentation to initiate an immune response. Accurate prediction of peptide-HLA (pHLA) binding and presentation is critical for developing effective immunotherapies. However, current tools can predict antigens exclusively for pHLA-I or pHLA-II, but not both; have constraints on peptide length; and commonly show unsatisfactory predictive accuracy. Here, we developed a convolution and attention-based model, CapHLA, trained with eluted ligand and binding affinity mass spectrometry data, to predict peptide presentation probability (PB) and binding affinities (BA) for HLA-I and HLA-II. In comparison with 11 other methods, CapHLA consistently showed improved performance in predicting pHLA BA and PB, particularly in HLA-II and non-classical peptide length datasets. Using CapHLA PB and BA predictions in combination with antigen expression level (EP) from transcriptomic data, we developed a neoantigen quality model for predicting immunotherapy response. In analyses of clinical response among 276 cancer patients given immunotherapy and overall survival in 7228 cancer patients, our neoantigen quality model outperformed other genetics-based models in predicting response to checkpoint inhibitors and patient prognosis. This study provides a versatile neoantigen screening tool, illustrating the prognostic value of neoantigen quality.
Collapse
Affiliation(s)
- Yunjian Chang
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Ligang Wu
- Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| |
Collapse
|
6
|
Zhang Z, Zhang P, Xie J, Cui Y, Shuo Wang, Yue D. Five-gene prognostic model based on autophagy-dependent cell death for predicting prognosis in lung adenocarcinoma. Sci Rep 2024; 14:26449. [PMID: 39488588 PMCID: PMC11531468 DOI: 10.1038/s41598-024-76186-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/11/2024] [Indexed: 11/04/2024] Open
Abstract
Non-small cell lung adenocarcinoma (LUAD) is the predominant form of lung cancer originating from lung epithelial cells, making it the most prevalent pathological type. Currently, reliable indicators for predicting treatment efficacy and disease prognosis are lacking. Despite extensive validation of autophagy-dependent cell death (ADCD) in solid tumor studies and its correlation with immunotherapy effectiveness and cancer prognosis, systematic research on ADCD-related genes in LUAD is limited. We utilized AddModuleScore, ssGSEA, and WGCNA to identify genes associated with ADCD across single-cell and bulk transcriptome datasets. The TCGA dataset, comprising 598 cases, was randomly divided into training and validation sets to develop an ADCD-related LUAD prediction model. Internal validation was performed using the TCGA validation set. For external validation, datasets GSE13213 (119 LUAD samples), GSE26939 (115 LUAD samples), GSE29016 (39 LUAD samples), and GSE30219 (86 LUAD samples) were employed. We evaluated the model's accuracy and effectiveness in predicting prognostic risk. Additionally, CIBERSORT, ESTIMATE, and ssGSEA techniques were used to explore immunological characteristics, drug response, and gene expression in LUAD. Real-time RT-PCR was conducted to assess variations in mRNA expression levels of the gene XCR1 between cancerous and normal tissues in 10 lung cancer patients. We identified 249 genes associated with autophagy-dependent cell death (ADCD) at both single-cell and bulk transcriptome levels. Univariate COX regression analysis revealed that 18 genes were significantly associated with overall survival (OS). Using LASSO-Cox analysis, we developed an ADCD signature based on five genes (BIRC3, TAP1, SLAMF1, XCR1, and HLA-DMB) and created the ADCD-related risk scoring system (ADCDRS). Validation of this model demonstrated its ability to predict disease prognosis and its correlation with clinical characteristics, immune cell infiltration, and the tumor microenvironment. To enhance clinical applicability, we integrated an ADCDRS nomogram. Furthermore, we identified potential drugs targeting specific risk subgroups. We successfully identified a model based on five ADCD genes to predict disease prognosis and treatment efficacy in LUAD, as well as to assess the tumor immune microenvironment. An efficient and practical ADCDRS nomogram was designed.
Collapse
Affiliation(s)
- Zhanshuo Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Pengpeng Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Jiping Xie
- Department of Lung Cancer Surgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yuechen Cui
- Department of Lung Cancer Surgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Shuo Wang
- Department of Lung Cancer Surgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Dongsheng Yue
- Department of Lung Cancer Surgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| |
Collapse
|
7
|
Cui C, Ott PA, Wu CJ. Advances in Vaccines for Melanoma. Hematol Oncol Clin North Am 2024; 38:1045-1060. [PMID: 39079791 PMCID: PMC11524149 DOI: 10.1016/j.hoc.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2024]
Abstract
Personalized neoantigen vaccines have achieved major advancements in recent years, with studies in melanoma leading progress in the field. Early clinical trials have demonstrated their feasibility, safety, immunogenicity, and potential efficacy. Advances in sequencing technologies and neoantigen prediction algorithms have substantively improved the identification and prioritization of neoantigens. Innovative delivery platforms now support the rapid and flexible production of vaccines. Several ongoing efforts in the field are aimed at improving the integration of large datasets, refining the training of prediction models, and ensuring the functional validation of vaccine immunogenicity.
Collapse
Affiliation(s)
- Can Cui
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Patrick A Ott
- Harvard Medical School, Boston, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Catherine J Wu
- Harvard Medical School, Boston, MA, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
8
|
de Graaf JF, Pesic T, Spitzer FS, Oosterhuis K, Camps MG, Zoutendijk I, Teunisse B, Zhu W, Arakelian T, Zondag GC, Arens R, van Bergen J, Ossendorp F. Neoantigen-specific T cell help outperforms non-specific help in multi-antigen DNA vaccination against cancer. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200835. [PMID: 39040850 PMCID: PMC11261851 DOI: 10.1016/j.omton.2024.200835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/22/2024] [Accepted: 06/13/2024] [Indexed: 07/24/2024]
Abstract
CD4+ T helper antigens are essential components of cancer vaccines, but the relevance of the source of these MHC class II-restricted antigens remains underexplored. To compare the effectiveness of tumor-specific versus tumor-unrelated helper antigens, we designed three DNA vaccines for the murine MC-38 colon carcinoma, encoding CD8+ T cell neoantigens alone (noHELP) or in combination with either "universal" helper antigens (uniHELP) or helper neoantigens (neoHELP). Both types of helped vaccines increased the frequency of vaccine-induced CD8+ T cells, and particularly uniHELP increased the fraction of KLRG1+ and PD-1low effector cells. However, when mice were subsequently injected with MC-38 cells, only neoHELP vaccination resulted in significantly better tumor control than noHELP. In contrast to uniHELP, neoHELP-induced tumor control was dependent on the presence of CD4+ T cells, while both vaccines relied on CD8+ T cells. In line with this, neoHELP variants containing wild-type counterparts of the CD4+ or CD8+ T cell neoantigens displayed reduced tumor control. These data indicate that optimal personalized cancer vaccines should include MHC class II-restricted neoantigens to elicit tumor-specific CD4+ T cell help.
Collapse
Affiliation(s)
| | - Tamara Pesic
- Department of Immunology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Felicia S. Spitzer
- Department of Immunology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | | | - Marcel G.M. Camps
- Department of Immunology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | | | | | - Wahwah Zhu
- Synvolux BV, 2333 CH Leiden, the Netherlands
| | - Tsolere Arakelian
- Department of Immunology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Gerben C. Zondag
- Immunetune BV, 2333 CH Leiden, the Netherlands
- Synvolux BV, 2333 CH Leiden, the Netherlands
| | - Ramon Arens
- Department of Immunology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | | | - Ferry Ossendorp
- Department of Immunology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| |
Collapse
|
9
|
Weitzen M, Shahbazy M, Kapoor S, Caron E. Deciphering the HLA-E immunopeptidome with mass spectrometry: an opportunity for universal mRNA vaccines and T-cell-directed immunotherapies. Front Immunol 2024; 15:1442783. [PMID: 39301027 PMCID: PMC11410602 DOI: 10.3389/fimmu.2024.1442783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/15/2024] [Indexed: 09/22/2024] Open
Abstract
Advances in immunotherapy rely on targeting novel cell surface antigens, including therapeutically relevant peptide fragments presented by HLA molecules, collectively known as the actionable immunopeptidome. Although the immunopeptidome of classical HLA molecules is extensively studied, exploration of the peptide repertoire presented by non-classical HLA-E remains limited. Growing evidence suggests that HLA-E molecules present pathogen-derived and tumor-associated peptides to CD8+ T cells, positioning them as promising targets for universal immunotherapies due to their minimal polymorphism. This mini-review highlights recent developments in mass spectrometry (MS) technologies for profiling the HLA-E immunopeptidome in various diseases. We discuss the unique features of HLA-E, its expression patterns, stability, and the potential for identifying new therapeutic targets. Understanding the broad repertoire of actionable peptides presented by HLA-E can lead to innovative treatments for viral and pathogen infections and cancer, leveraging its monomorphic nature for broad therapeutic efficacy.
Collapse
Affiliation(s)
- Maya Weitzen
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, United States
| | - Mohammad Shahbazy
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Saketh Kapoor
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, United States
| | - Etienne Caron
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, United States
- Yale Center for Immuno-Oncology, Yale Center for Systems and Engineering Immunology, Yale Center for Infection and Immunity, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
10
|
Hong N, Jiang D, Wang Z, Sun H, Luo H, Bao L, Song M, Kang Y, Hou T. TransfIGN: A Structure-Based Deep Learning Method for Modeling the Interaction between HLA-A*02:01 and Antigen Peptides. J Chem Inf Model 2024; 64:5016-5027. [PMID: 38920330 DOI: 10.1021/acs.jcim.4c00678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The intricate interaction between major histocompatibility complexes (MHCs) and antigen peptides with diverse amino acid sequences plays a pivotal role in immune responses and T cell activity. In recent years, deep learning (DL)-based models have emerged as promising tools for accelerating antigen peptide screening. However, most of these models solely rely on one-dimensional amino acid sequences, overlooking crucial information required for the three-dimensional (3-D) space binding process. In this study, we propose TransfIGN, a structure-based DL model that is inspired by our previously developed framework, Interaction Graph Network (IGN), and incorporates sequence information from transformers to predict the interactions between HLA-A*02:01 and antigen peptides. Our model, trained on a comprehensive data set containing 61,816 sequences with 9051 binding affinity labels and 56,848 eluted ligand labels, achieves an area under the curve (AUC) of 0.893 on the binary data set, better than state-of-the-art sequence-based models trained on larger data sets such as NetMHCpan4.1, ANN, and TransPHLA. Furthermore, when evaluated on the IEDB weekly benchmark data sets, our predictions (AUC = 0.816) are better than those of the recommended methods like the IEDB consensus (AUC = 0.795). Notably, the interaction weight matrices generated by our method highlight the strong interactions at specific positions within peptides, emphasizing the model's ability to provide physical interpretability. This capability to unveil binding mechanisms through intricate structural features holds promise for new immunotherapeutic avenues.
Collapse
Affiliation(s)
- Nanqi Hong
- College of Computer Science and Technology, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Dejun Jiang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhe Wang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Huiyong Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Hao Luo
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lingjie Bao
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Mingli Song
- College of Computer Science and Technology, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Yu Kang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Tingjun Hou
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
11
|
Koncz B, Balogh GM, Manczinger M. A journey to your self: The vague definition of immune self and its practical implications. Proc Natl Acad Sci U S A 2024; 121:e2309674121. [PMID: 38722806 PMCID: PMC11161755 DOI: 10.1073/pnas.2309674121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2024] Open
Abstract
The identification of immunogenic peptides has become essential in an increasing number of fields in immunology, ranging from tumor immunotherapy to vaccine development. The nature of the adaptive immune response is shaped by the similarity between foreign and self-protein sequences, a concept extensively applied in numerous studies. Can we precisely define the degree of similarity to self? Furthermore, do we accurately define immune self? In the current work, we aim to unravel the conceptual and mechanistic vagueness hindering the assessment of self-similarity. Accordingly, we demonstrate the remarkably low consistency among commonly employed measures and highlight potential avenues for future research.
Collapse
Affiliation(s)
- Balázs Koncz
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Hungarian Research Network (HUN-REN) Biological Research Centre, Szeged6726, Hungary
- Hungarian Centre of Excellence for Molecular Medicine - Biological Research Centre (HCEMM-BRC) Systems Immunology Research Group, Szeged6726, Hungary
- Department of Dermatology and Allergology, University of Szeged, Szeged6720, Hungary
| | - Gergő Mihály Balogh
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Hungarian Research Network (HUN-REN) Biological Research Centre, Szeged6726, Hungary
- Hungarian Centre of Excellence for Molecular Medicine - Biological Research Centre (HCEMM-BRC) Systems Immunology Research Group, Szeged6726, Hungary
- Department of Dermatology and Allergology, University of Szeged, Szeged6720, Hungary
| | - Máté Manczinger
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Hungarian Research Network (HUN-REN) Biological Research Centre, Szeged6726, Hungary
- Hungarian Centre of Excellence for Molecular Medicine - Biological Research Centre (HCEMM-BRC) Systems Immunology Research Group, Szeged6726, Hungary
- Department of Dermatology and Allergology, University of Szeged, Szeged6720, Hungary
| |
Collapse
|
12
|
Sugiyama N, Terry FE, Gutierrez AH, Hirano T, Hoshi M, Mizuno Y, Martin W, Yasunaga S, Niiro H, Fujio K, De Groot AS. Individual and population-level variability in HLA-DR associated immunogenicity risk of biologics used for the treatment of rheumatoid arthritis. Front Immunol 2024; 15:1377911. [PMID: 38812524 PMCID: PMC11134572 DOI: 10.3389/fimmu.2024.1377911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/24/2024] [Indexed: 05/31/2024] Open
Abstract
Hypothesis While conventional in silico immunogenicity risk assessments focus on measuring immunogenicity based on the potential of therapeutic proteins to be processed and presented by a global population-wide set of human leukocyte antigen (HLA) alleles to T cells, future refinements might adjust for HLA allele frequencies in different geographic regions or populations, as well for as individuals in those populations. Adjustment by HLA allele distribution may reveal risk patterns that are specific to population groups or individuals, which current methods that rely on global-population HLA prevalence may obscure. Key findings This analysis uses HLA frequency-weighted binding predictions to define immunogenicity risk for global and sub-global populations. A comparison of assessments tuned for North American/European versus Japanese/Asian populations suggests that the potential for anti-therapeutic responses (anti-therapeutic antibodies or ATA) for several commonly prescribed Rheumatoid Arthritis (RA) therapeutic biologics may differ, significantly, between the Caucasian and Japanese populations. This appears to align with reports of differing product-related immunogenicity that is observed in different populations. Relevance to clinical practice Further definition of population-level (regional) and individual patient-specific immunogenic risk profiles may enable prescription of the RA therapeutic with the highest probability of success to each patient, depending on their population of origin and/or their individual HLA background. Furthermore, HLA-specific immunogenicity outcomes data are limited, thus there is a need to expand HLA-association studies that examine the relationship between HLA haplotype and ATA in the clinic.
Collapse
Affiliation(s)
- Naonobu Sugiyama
- Rheumatology, Inflammation and Immunology Medical Affairs, Pfizer Japan Inc., Tokyo, Japan
| | | | | | - Toshitaka Hirano
- Rheumatology, Inflammation and Immunology Medical Affairs, Pfizer Japan Inc., Tokyo, Japan
| | - Masato Hoshi
- Rheumatology, Inflammation and Immunology Medical Affairs, Pfizer Japan Inc., Tokyo, Japan
| | - Yasushi Mizuno
- Rheumatology, Inflammation and Immunology Medical Affairs, Pfizer Japan Inc., Tokyo, Japan
| | | | - Shin’ichiro Yasunaga
- Department of Biochemistry, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Hiroaki Niiro
- Department of Medical Education, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
13
|
Weisbrod L, Capriotti L, Hofmann M, Spieler V, Dersch H, Voedisch B, Schmidt P, Knake S. FASTMAP-a flexible and scalable immunopeptidomics pipeline for HLA- and antigen-specific T-cell epitope mapping based on artificial antigen-presenting cells. Front Immunol 2024; 15:1386160. [PMID: 38779658 PMCID: PMC11109385 DOI: 10.3389/fimmu.2024.1386160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
The study of peptide repertoires presented by major histocompatibility complex (MHC) molecules and the identification of potential T-cell epitopes contribute to a multitude of immunopeptidome-based treatment approaches. Epitope mapping is essential for the development of promising epitope-based approaches in vaccination as well as for innovative therapeutics for autoimmune diseases, infectious diseases, and cancer. It also plays a critical role in the immunogenicity assessment of protein therapeutics with regard to safety and efficacy concerns. The main challenge emerges from the highly polymorphic nature of the human leukocyte antigen (HLA) molecules leading to the requirement of a peptide mapping strategy for a single HLA allele. As many autoimmune diseases are linked to at least one specific antigen, we established FASTMAP, an innovative strategy to transiently co-transfect a single HLA allele combined with a disease-specific antigen into a human cell line. This approach allows the specific identification of HLA-bound peptides using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Using FASTMAP, we found a comparable spectrum of endogenous peptides presented by the most frequently expressed HLA alleles in the world's population compared to what has been described in literature. To ensure a reliable peptide mapping workflow, we combined the HLA alleles with well-known human model antigens like coagulation factor VIII, acetylcholine receptor subunit alpha, protein structures of the SARS-CoV-2 virus, and myelin basic protein. Using these model antigens, we have been able to identify a broad range of peptides that are in line with already published and in silico predicted T-cell epitopes of the specific HLA/model antigen combination. The transient co-expression of a single affinity-tagged MHC molecule combined with a disease-specific antigen in a human cell line in our FASTMAP pipeline provides the opportunity to identify potential T-cell epitopes/endogenously processed MHC-bound peptides in a very cost-effective, fast, and customizable system with high-throughput potential.
Collapse
Affiliation(s)
- Luisa Weisbrod
- Recombinant Protein Discovery, CSL Innovation GmbH, Marburg, Germany
| | - Luigi Capriotti
- Analytical Biochemistry, Research and Development, CSL Behring AG, Bern, Switzerland
| | - Marco Hofmann
- Recombinant Protein Discovery, CSL Innovation GmbH, Marburg, Germany
| | - Valerie Spieler
- Recombinant Protein Discovery, CSL Innovation GmbH, Marburg, Germany
| | - Herbert Dersch
- Recombinant Protein Discovery, CSL Innovation GmbH, Marburg, Germany
| | - Bernd Voedisch
- Recombinant Protein Discovery, CSL Innovation GmbH, Marburg, Germany
| | - Peter Schmidt
- Protein Biochemistry, Bio21 Institute, CSL Limited, Parkville, VIC, Australia
| | - Susanne Knake
- Department of Neurology, Epilepsy Center Hessen, Philipps University Marburg, Marburg, Germany
| |
Collapse
|
14
|
Egholm Bruun Jensen E, Reynisson B, Barra C, Nielsen M. New light on the HLA-DR immunopeptidomic landscape. J Leukoc Biol 2024; 115:913-925. [PMID: 38214568 PMCID: PMC11057780 DOI: 10.1093/jleuko/qiae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 01/13/2024] Open
Abstract
The set of peptides processed and presented by major histocompatibility complex class II molecules defines the immunopeptidome, and its characterization holds keys to understanding essential properties of the immune system. High-throughput mass spectrometry (MS) techniques enable interrogation of the diversity and complexity of the immunopeptidome at an unprecedented scale. Here, we analyzed a large set of MS immunopeptidomics data from 40 donors, 221 samples, covering 30 unique HLA-DR molecules. We identified likely co-immunoprecipitated HLA-DR irrelevant contaminants using state-of-the-art prediction methods and unveiled novel light on the properties of HLA antigen processing and presentation. The ligandome (HLA binders) was enriched in 15-mer peptides, and the contaminome (nonbinders) in longer peptides. Classification of singletons and nested sets showed that the first were enriched in contaminants. Investigating the source protein location of ligands revealed that only contaminants shared a positional bias. Regarding subcellular localization, nested peptides were found to be predominantly of endolysosomal origin, whereas singletons shared an equal distribution between the cytosolic and endolysosomal origin. According to antigen-processing signatures, no significant differences were observed between the cytosolic and endolysosomal ligands. Further, the sensitivity of MS immunopeptidomics was investigated by analyzing overlap and saturation between biological MS replicas, concluding that at least 5 replicas are needed to identify 80% of the immunopeptidome. Moreover, the overlap in immunopeptidome between donors was found to be very low both in terms of peptides and source proteins, the latter indicating a critical HLA bias in the antigen sampling in the HLA antigen presentation. Finally, the complementarity between MS and in silico approaches for comprehensively sampling the immunopeptidome was demonstrated.
Collapse
Affiliation(s)
| | - Birkir Reynisson
- Department of Health Technology, Building 204, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Carolina Barra
- Department of Health Technology, Building 204, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Morten Nielsen
- Department of Health Technology, Building 204, Technical University of Denmark, DK-2800 Lyngby, Denmark
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, B 1650 HMP, Buenos Aires, Argentina
| |
Collapse
|
15
|
Ma W, Zhang J, Yao H. NeoMUST: an accurate and efficient multi-task learning model for neoantigen presentation. Life Sci Alliance 2024; 7:e202302255. [PMID: 38290755 PMCID: PMC10828515 DOI: 10.26508/lsa.202302255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/01/2024] Open
Abstract
Accurate identification of neoantigens is important for advancing cancer immunotherapies. This study introduces Neoantigen MUlti-taSk Tower (NeoMUST), a model employing multi-task learning to effectively capture task-specific information across related tasks. Our results show that NeoMUST rivals existing algorithms in predicting the presentation of neoantigens via MHC-I molecules, while demonstrating a significantly shorter training time for enhanced computational efficiency. The use of multi-task learning enables NeoMUST to leverage shared knowledge and task dependencies, leading to improved performance metrics and a significant reduction in the training time. NeoMUST, implemented in Python, is freely accessible at the GitHub repository. Our model will facilitate neoantigen prediction and empower the development of effective cancer immunotherapeutic approaches.
Collapse
Affiliation(s)
- Wang Ma
- Fresh Wind Biotechnologies Inc. (Tianjin), Tianjin, China
| | - Jiawei Zhang
- Fresh Wind Biotechnologies Inc. (Tianjin), Tianjin, China
| | - Hui Yao
- Fresh Wind Biotechnologies USA Inc., Houston, TX, USA
| |
Collapse
|
16
|
Li Y, Wu X, Fang D, Luo Y. Informing immunotherapy with multi-omics driven machine learning. NPJ Digit Med 2024; 7:67. [PMID: 38486092 PMCID: PMC10940614 DOI: 10.1038/s41746-024-01043-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 02/14/2024] [Indexed: 03/18/2024] Open
Abstract
Progress in sequencing technologies and clinical experiments has revolutionized immunotherapy on solid and hematologic malignancies. However, the benefits of immunotherapy are limited to specific patient subsets, posing challenges for broader application. To improve its effectiveness, identifying biomarkers that can predict patient response is crucial. Machine learning (ML) play a pivotal role in harnessing multi-omic cancer datasets and unlocking new insights into immunotherapy. This review provides an overview of cutting-edge ML models applied in omics data for immunotherapy analysis, including immunotherapy response prediction and immunotherapy-relevant tumor microenvironment identification. We elucidate how ML leverages diverse data types to identify significant biomarkers, enhance our understanding of immunotherapy mechanisms, and optimize decision-making process. Additionally, we discuss current limitations and challenges of ML in this rapidly evolving field. Finally, we outline future directions aimed at overcoming these barriers and improving the efficiency of ML in immunotherapy research.
Collapse
Affiliation(s)
- Yawei Li
- Department of Preventive Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
- Center for Collaborative AI in Healthcare, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Xin Wu
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Yuan Luo
- Department of Preventive Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Center for Collaborative AI in Healthcare, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
17
|
Yang Y, Wei Z, Cia G, Song X, Pucci F, Rooman M, Xue F, Hou Q. MHCII-peptide presentation: an assessment of the state-of-the-art prediction methods. Front Immunol 2024; 15:1293706. [PMID: 38646540 PMCID: PMC11027168 DOI: 10.3389/fimmu.2024.1293706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/19/2024] [Indexed: 04/23/2024] Open
Abstract
Major histocompatibility complex Class II (MHCII) proteins initiate and regulate immune responses by presentation of antigenic peptides to CD4+ T-cells and self-restriction. The interactions between MHCII and peptides determine the specificity of the immune response and are crucial in immunotherapy and cancer vaccine design. With the ever-increasing amount of MHCII-peptide binding data available, many computational approaches have been developed for MHCII-peptide interaction prediction over the last decade. There is thus an urgent need to provide an up-to-date overview and assessment of these newly developed computational methods. To benchmark the prediction performance of these methods, we constructed an independent dataset containing binding and non-binding peptides to 20 human MHCII protein allotypes from the Immune Epitope Database, covering DP, DR and DQ alleles. After collecting 11 known predictors up to January 2022, we evaluated those available through a webserver or standalone packages on this independent dataset. The benchmarking results show that MixMHC2pred and NetMHCIIpan-4.1 achieve the best performance among all predictors. In general, newly developed methods perform better than older ones due to the rapid expansion of data on which they are trained and the development of deep learning algorithms. Our manuscript not only draws a full picture of the state-of-art of MHCII-peptide binding prediction, but also guides researchers in the choice among the different predictors. More importantly, it will inspire biomedical researchers in both academia and industry for the future developments in this field.
Collapse
Affiliation(s)
- Yaqing Yang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- National Institute of Health Data Science of China, Shandong University, Jinan, China
| | - Zhonghui Wei
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- National Institute of Health Data Science of China, Shandong University, Jinan, China
| | - Gabriel Cia
- Computational Biology and Bioinformatics, Université Libre de Bruxelles, Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels, Brussels, Belgium
| | - Xixi Song
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- National Institute of Health Data Science of China, Shandong University, Jinan, China
| | - Fabrizio Pucci
- Computational Biology and Bioinformatics, Université Libre de Bruxelles, Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels, Brussels, Belgium
| | - Marianne Rooman
- Computational Biology and Bioinformatics, Université Libre de Bruxelles, Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels, Brussels, Belgium
| | - Fuzhong Xue
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- National Institute of Health Data Science of China, Shandong University, Jinan, China
| | - Qingzhen Hou
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- National Institute of Health Data Science of China, Shandong University, Jinan, China
| |
Collapse
|
18
|
Fasoulis R, Rigo MM, Antunes DA, Paliouras G, Kavraki LE. Transfer learning improves pMHC kinetic stability and immunogenicity predictions. IMMUNOINFORMATICS (AMSTERDAM, NETHERLANDS) 2024; 13:100030. [PMID: 38577265 PMCID: PMC10994007 DOI: 10.1016/j.immuno.2023.100030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
The cellular immune response comprises several processes, with the most notable ones being the binding of the peptide to the Major Histocompability Complex (MHC), the peptide-MHC (pMHC) presentation to the surface of the cell, and the recognition of the pMHC by the T-Cell Receptor. Identifying the most potent peptide targets for MHC binding, presentation and T-cell recognition is vital for developing peptide-based vaccines and T-cell-based immunotherapies. Data-driven tools that predict each of these steps have been developed, and the availability of mass spectrometry (MS) datasets has facilitated the development of accurate Machine Learning (ML) methods for class-I pMHC binding prediction. However, the accuracy of ML-based tools for pMHC kinetic stability prediction and peptide immunogenicity prediction is uncertain, as stability and immunogenicity datasets are not abundant. Here, we use transfer learning techniques to improve stability and immunogenicity predictions, by taking advantage of a large number of binding affinity and MS datasets. The resulting models, TLStab and TLImm, exhibit comparable or better performance than state-of-the-art approaches on different stability and immunogenicity test sets respectively. Our approach demonstrates the promise of learning from the task of peptide binding to improve predictions on downstream tasks. The source code of TLStab and TLImm is publicly available at https://github.com/KavrakiLab/TL-MHC.
Collapse
Affiliation(s)
- Romanos Fasoulis
- Department of Computer Science, Rice University, 6100 Main St, Houston, 77005, TX, United States
| | - Mauricio Menegatti Rigo
- Department of Computer Science, Rice University, 6100 Main St, Houston, 77005, TX, United States
| | - Dinler Amaral Antunes
- Department of Biology and Biochemistry, University of Houston, 4800 Calhoun Rd, Houston, 77004, TX, United States
| | - Georgios Paliouras
- Institute of Informatics and Telecommunications, NCSR Demokritos, Patr. Gregoriou E and 27 Neapoleos St, Athens, 15341, Greece
| | - Lydia E. Kavraki
- Department of Computer Science, Rice University, 6100 Main St, Houston, 77005, TX, United States
| |
Collapse
|
19
|
Harris CT, Cohen S. Reducing Immunogenicity by Design: Approaches to Minimize Immunogenicity of Monoclonal Antibodies. BioDrugs 2024; 38:205-226. [PMID: 38261155 PMCID: PMC10912315 DOI: 10.1007/s40259-023-00641-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2023] [Indexed: 01/24/2024]
Abstract
Monoclonal antibodies (mAbs) have transformed therapeutic strategies for various diseases. Their high specificity to target antigens makes them ideal therapeutic agents for certain diseases. However, a challenge to their application in clinical practice is their potential risk to induce unwanted immune response, termed immunogenicity. This challenge drives the continued efforts to deimmunize these protein therapeutics while maintaining their pharmacokinetic properties and therapeutic efficacy. Because mAbs hold a central position in therapeutic strategies against an array of diseases, the importance of conducting comprehensive immunogenicity risk assessment during the drug development process cannot be overstated. Such assessment necessitates the employment of in silico, in vitro, and in vivo strategies to evaluate the immunogenicity risk of mAbs. Understanding the intricacies of the mechanisms that drive mAb immunogenicity is crucial to improving their therapeutic efficacy and safety and developing the most effective strategies to determine and mitigate their immunogenic risk. This review highlights recent advances in immunogenicity prediction strategies, with a focus on protein engineering strategies used throughout development to reduce immunogenicity.
Collapse
Affiliation(s)
- Chantal T Harris
- Department of BioAnalytical Sciences, Genentech Inc., South San Francisco, CA, 94080-4990, USA
| | - Sivan Cohen
- Department of BioAnalytical Sciences, Genentech Inc., South San Francisco, CA, 94080-4990, USA.
| |
Collapse
|
20
|
Mikhaylov V, Brambley CA, Keller GLJ, Arbuiso AG, Weiss LI, Baker BM, Levine AJ. Accurate modeling of peptide-MHC structures with AlphaFold. Structure 2024; 32:228-241.e4. [PMID: 38113889 PMCID: PMC10872456 DOI: 10.1016/j.str.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/17/2023] [Accepted: 11/22/2023] [Indexed: 12/21/2023]
Abstract
Major histocompatibility complex (MHC) proteins present peptides on the cell surface for T cell surveillance. Reliable in silico prediction of which peptides would be presented and which T cell receptors would recognize them is an important problem in structural immunology. Here, we introduce an AlphaFold-based pipeline for predicting the three-dimensional structures of peptide-MHC complexes for class I and class II MHC molecules. Our method demonstrates high accuracy, outperforming existing tools in class I modeling accuracy and class II peptide register prediction. We validate its performance and utility with new experimental data on a recently described cancer neoantigen/wild-type peptide pair and explore applications toward improving peptide-MHC binding prediction.
Collapse
Affiliation(s)
- Victor Mikhaylov
- The Simons Center for Systems Biology, Institute for Advanced Study, 1 Einstein Drive, Princeton, NJ 08540, USA.
| | - Chad A Brambley
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Grant L J Keller
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Alyssa G Arbuiso
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Laura I Weiss
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Brian M Baker
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Arnold J Levine
- The Simons Center for Systems Biology, Institute for Advanced Study, 1 Einstein Drive, Princeton, NJ 08540, USA
| |
Collapse
|
21
|
Weingarten-Gabbay S, Chen DY, Sarkizova S, Taylor HB, Gentili M, Hernandez GM, Pearlman LR, Bauer MR, Rice CM, Clauser KR, Hacohen N, Carr SA, Abelin JG, Saeed M, Sabeti PC. The HLA-II immunopeptidome of SARS-CoV-2. Cell Rep 2024; 43:113596. [PMID: 38117652 PMCID: PMC10860710 DOI: 10.1016/j.celrep.2023.113596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/08/2023] [Accepted: 12/01/2023] [Indexed: 12/22/2023] Open
Abstract
Targeted synthetic vaccines have the potential to transform our response to viral outbreaks, yet the design of these vaccines requires a comprehensive knowledge of viral immunogens. Here, we report severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) peptides that are naturally processed and loaded onto human leukocyte antigen-II (HLA-II) complexes in infected cells. We identify over 500 unique viral peptides from canonical proteins as well as from overlapping internal open reading frames. Most HLA-II peptides colocalize with known CD4+ T cell epitopes in coronavirus disease 2019 patients, including 2 reported immunodominant regions in the SARS-CoV-2 membrane protein. Overall, our analyses show that HLA-I and HLA-II pathways target distinct viral proteins, with the structural proteins accounting for most of the HLA-II peptidome and nonstructural and noncanonical proteins accounting for the majority of the HLA-I peptidome. These findings highlight the need for a vaccine design that incorporates multiple viral elements harboring CD4+ and CD8+ T cell epitopes to maximize vaccine effectiveness.
Collapse
Affiliation(s)
- Shira Weingarten-Gabbay
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA; Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA.
| | - Da-Yuan Chen
- Department of Biochemistry & Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | | | - Hannah B Taylor
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Matteo Gentili
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | | | - Leah R Pearlman
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Matthew R Bauer
- Harvard Program in Biological and Biomedical Sciences, Division of Medical Sciences, Harvard University Medical School, Boston, MA, USA
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Karl R Clauser
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Nir Hacohen
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA; Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Steven A Carr
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | | | - Mohsan Saeed
- Department of Biochemistry & Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Pardis C Sabeti
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA; Massachusetts Consortium on Pathogen Readiness, Boston, MA, USA; Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
22
|
Bravi B. Development and use of machine learning algorithms in vaccine target selection. NPJ Vaccines 2024; 9:15. [PMID: 38242890 PMCID: PMC10798987 DOI: 10.1038/s41541-023-00795-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/07/2023] [Indexed: 01/21/2024] Open
Abstract
Computer-aided discovery of vaccine targets has become a cornerstone of rational vaccine design. In this article, I discuss how Machine Learning (ML) can inform and guide key computational steps in rational vaccine design concerned with the identification of B and T cell epitopes and correlates of protection. I provide examples of ML models, as well as types of data and predictions for which they are built. I argue that interpretable ML has the potential to improve the identification of immunogens also as a tool for scientific discovery, by helping elucidate the molecular processes underlying vaccine-induced immune responses. I outline the limitations and challenges in terms of data availability and method development that need to be addressed to bridge the gap between advances in ML predictions and their translational application to vaccine design.
Collapse
Affiliation(s)
- Barbara Bravi
- Department of Mathematics, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
23
|
Wallace RP, Refvik KC, Antane JT, Brünggel K, Tremain AC, Raczy MR, Alpar AT, Nguyen M, Solanki A, Slezak AJ, Watkins EA, Lauterbach AL, Cao S, Wilson DS, Hubbell JA. Synthetically mannosylated antigens induce antigen-specific humoral tolerance and reduce anti-drug antibody responses to immunogenic biologics. Cell Rep Med 2024; 5:101345. [PMID: 38128533 PMCID: PMC10829756 DOI: 10.1016/j.xcrm.2023.101345] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/21/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
Immunogenic biologics trigger an anti-drug antibody (ADA) response in patients that reduces efficacy and increases adverse reactions. Our laboratory has shown that targeting protein antigen to the liver microenvironment can reduce antigen-specific T cell responses; herein, we present a strategy to increase delivery of otherwise immunogenic biologics to the liver via conjugation to a synthetic mannose polymer, p(Man). This delivery leads to reduced antigen-specific T follicular helper cell and B cell responses resulting in diminished ADA production, which is maintained throughout subsequent administrations of the native biologic. We find that p(Man)-antigen treatment impairs the ADA response against recombinant uricase, a highly immunogenic biologic, without a dependence on hapten immunodominance or control by T regulatory cells. We identify increased T cell receptor signaling and increased apoptosis and exhaustion in T cells as effects of p(Man)-antigen treatment via transcriptomic analyses. This modular platform may enhance tolerance to biologics, enabling long-term solutions for an ever-increasing healthcare problem.
Collapse
Affiliation(s)
- Rachel P Wallace
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Kirsten C Refvik
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Jennifer T Antane
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Kym Brünggel
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Andrew C Tremain
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Michal R Raczy
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Aaron T Alpar
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Mindy Nguyen
- Animal Resources Center, University of Chicago, Chicago, IL 60637, USA
| | - Ani Solanki
- Animal Resources Center, University of Chicago, Chicago, IL 60637, USA
| | - Anna J Slezak
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Elyse A Watkins
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Abigail L Lauterbach
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Shijie Cao
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - D Scott Wilson
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA; Biomedical Engineering Department, Johns Hopkins University, Baltimore, MD 21211, USA.
| | - Jeffrey A Hubbell
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA; Committee on Immunology, University of Chicago, Chicago, IL 60637, USA; Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
24
|
Wongklaew P, Sriswasdi S, Chuangsuwanich E. MHCSeqNet2-improved peptide-class I MHC binding prediction for alleles with low data. Bioinformatics 2024; 40:btad780. [PMID: 38152987 PMCID: PMC10783953 DOI: 10.1093/bioinformatics/btad780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/14/2023] [Accepted: 12/27/2023] [Indexed: 12/29/2023] Open
Abstract
MOTIVATION The binding of a peptide antigen to a Class I major histocompatibility complex (MHC) protein is part of a key process that lets the immune system recognize an infected cell or a cancer cell. This mechanism enabled the development of peptide-based vaccines that can activate the patient's immune response to treat cancers. Hence, the ability of accurately predict peptide-MHC binding is an essential component for prioritizing the best peptides for each patient. However, peptide-MHC binding experimental data for many MHC alleles are still lacking, which limited the accuracy of existing prediction models. RESULTS In this study, we presented an improved version of MHCSeqNet that utilized sub-word-level peptide features, a 3D structure embedding for MHC alleles, and an expanded training dataset to achieve better generalizability on MHC alleles with small amounts of data. Visualization of MHC allele embeddings confirms that the model was able to group alleles with similar binding specificity, including those with no peptide ligand in the training dataset. Furthermore, an external evaluation suggests that MHCSeqNet2 can improve the prioritization of T cell epitopes for MHC alleles with small amount of training data. AVAILABILITY AND IMPLEMENTATION The source code and installation instruction for MHCSeqNet2 are available at https://github.com/cmb-chula/MHCSeqNet2.
Collapse
Affiliation(s)
- Patiphan Wongklaew
- Department of Computer Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sira Sriswasdi
- Center of Excellence in Computational Molecular Biology, Division of Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Center for Artificial Intelligence in Medicine, Division of Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ekapol Chuangsuwanich
- Department of Computer Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Computational Molecular Biology, Division of Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
25
|
Racle J, Gfeller D. How to Predict Binding Specificity and Ligands for New MHC-II Alleles with MixMHC2pred. Methods Mol Biol 2024; 2809:215-235. [PMID: 38907900 DOI: 10.1007/978-1-0716-3874-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
MHC-II molecules are key mediators of antigen presentation in vertebrate species and bind to their ligands with high specificity. The very high polymorphism of MHC-II genes within species and the fast-evolving nature of these genes across species has resulted in tens of thousands of different alleles, with hundreds of new alleles being discovered yearly through large sequencing projects in different species. Here we describe how to use MixMHC2pred to predict the binding specificity of any MHC-II allele directly from its amino acid sequence. We then show how both MHC-II ligands and CD4+ T cell epitopes can be predicted in different species with our approach. MixMHC2pred is available at http://mixmhc2pred.gfellerlab.org/ .
Collapse
Affiliation(s)
- Julien Racle
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
- Agora Cancer Research Centre, Lausanne, Switzerland
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
| | - David Gfeller
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.
- Agora Cancer Research Centre, Lausanne, Switzerland.
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland.
| |
Collapse
|
26
|
Fan T, Zhang M, Yang J, Zhu Z, Cao W, Dong C. Therapeutic cancer vaccines: advancements, challenges, and prospects. Signal Transduct Target Ther 2023; 8:450. [PMID: 38086815 PMCID: PMC10716479 DOI: 10.1038/s41392-023-01674-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/08/2023] [Accepted: 09/19/2023] [Indexed: 12/18/2023] Open
Abstract
With the development and regulatory approval of immune checkpoint inhibitors and adoptive cell therapies, cancer immunotherapy has undergone a profound transformation over the past decades. Recently, therapeutic cancer vaccines have shown promise by eliciting de novo T cell responses targeting tumor antigens, including tumor-associated antigens and tumor-specific antigens. The objective was to amplify and diversify the intrinsic repertoire of tumor-specific T cells. However, the complete realization of these capabilities remains an ongoing pursuit. Therefore, we provide an overview of the current landscape of cancer vaccines in this review. The range of antigen selection, antigen delivery systems development the strategic nuances underlying effective antigen presentation have pioneered cancer vaccine design. Furthermore, this review addresses the current status of clinical trials and discusses their strategies, focusing on tumor-specific immunogenicity and anti-tumor efficacy assessment. However, current clinical attempts toward developing cancer vaccines have not yielded breakthrough clinical outcomes due to significant challenges, including tumor immune microenvironment suppression, optimal candidate identification, immune response evaluation, and vaccine manufacturing acceleration. Therefore, the field is poised to overcome hurdles and improve patient outcomes in the future by acknowledging these clinical complexities and persistently striving to surmount inherent constraints.
Collapse
Affiliation(s)
- Ting Fan
- Department of Oncology, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai, China
| | - Mingna Zhang
- Postgraduate Training Base, Shanghai East Hospital, Jinzhou Medical University, Shanghai, 200120, China
| | - Jingxian Yang
- Department of Oncology, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai, China
| | - Zhounan Zhu
- Department of Oncology, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai, China
| | - Wanlu Cao
- Department of Oncology, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai, China.
| | - Chunyan Dong
- Department of Oncology, East Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
27
|
Nilsson JB, Kaabinejadian S, Yari H, Kester MG, van Balen P, Hildebrand WH, Nielsen M. Accurate prediction of HLA class II antigen presentation across all loci using tailored data acquisition and refined machine learning. SCIENCE ADVANCES 2023; 9:eadj6367. [PMID: 38000035 PMCID: PMC10672173 DOI: 10.1126/sciadv.adj6367] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023]
Abstract
Accurate prediction of antigen presentation by human leukocyte antigen (HLA) class II molecules is crucial for rational development of immunotherapies and vaccines targeting CD4+ T cell activation. So far, most prediction methods for HLA class II antigen presentation have focused on HLA-DR because of limited availability of immunopeptidomics data for HLA-DQ and HLA-DP while not taking into account alternative peptide binding modes. We present an update to the NetMHCIIpan prediction method, which closes the performance gap between all three HLA class II loci. We accomplish this by first integrating large immunopeptidomics datasets describing the HLA class II specificity space across all loci using a refined machine learning framework that accommodates inverted peptide binders. Next, we apply targeted immunopeptidomics assays to generate data that covers additional HLA-DP specificities. The final method, NetMHCIIpan-4.3, achieves high accuracy and molecular coverage across all HLA class II allotypes.
Collapse
Affiliation(s)
- Jonas B. Nilsson
- Department of Health Technology, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Saghar Kaabinejadian
- Pure MHC LLC, Oklahoma City, OK, USA
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Hooman Yari
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Michel G. D. Kester
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - Peter van Balen
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - William H. Hildebrand
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Morten Nielsen
- Department of Health Technology, Technical University of Denmark, DK-2800 Lyngby, Denmark
| |
Collapse
|
28
|
Federico L, Malone B, Tennøe S, Chaban V, Osen JR, Gainullin M, Smorodina E, Kared H, Akbar R, Greiff V, Stratford R, Clancy T, Munthe LA. Experimental validation of immunogenic SARS-CoV-2 T cell epitopes identified by artificial intelligence. Front Immunol 2023; 14:1265044. [PMID: 38045681 PMCID: PMC10691274 DOI: 10.3389/fimmu.2023.1265044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/01/2023] [Indexed: 12/05/2023] Open
Abstract
During the COVID-19 pandemic we utilized an AI-driven T cell epitope prediction tool, the NEC Immune Profiler (NIP) to scrutinize and predict regions of T cell immunogenicity (hotspots) from the entire SARS-CoV-2 viral proteome. These immunogenic regions offer potential for the development of universally protective T cell vaccine candidates. Here, we validated and characterized T cell responses to a set of minimal epitopes from these AI-identified universal hotspots. Utilizing a flow cytometry-based T cell activation-induced marker (AIM) assay, we identified 59 validated screening hits, of which 56% (33 peptides) have not been previously reported. Notably, we found that most of these novel epitopes were derived from the non-spike regions of SARS-CoV-2 (Orf1ab, Orf3a, and E). In addition, ex vivo stimulation with NIP-predicted peptides from the spike protein elicited CD8+ T cell response in PBMC isolated from most vaccinated donors. Our data confirm the predictive accuracy of AI platforms modelling bona fide immunogenicity and provide a novel framework for the evaluation of vaccine-induced T cell responses.
Collapse
Affiliation(s)
- Lorenzo Federico
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | | | - Viktoriia Chaban
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Julie Røkke Osen
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Murat Gainullin
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Eva Smorodina
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Oslo University Hospital, Oslo, Norway
| | - Hassen Kared
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Rahmad Akbar
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Oslo University Hospital, Oslo, Norway
| | - Victor Greiff
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Oslo University Hospital, Oslo, Norway
| | | | | | - Ludvig Andre Munthe
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for B cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
29
|
Müller M, Huber F, Arnaud M, Kraemer AI, Altimiras ER, Michaux J, Taillandier-Coindard M, Chiffelle J, Murgues B, Gehret T, Auger A, Stevenson BJ, Coukos G, Harari A, Bassani-Sternberg M. Machine learning methods and harmonized datasets improve immunogenic neoantigen prediction. Immunity 2023; 56:2650-2663.e6. [PMID: 37816353 DOI: 10.1016/j.immuni.2023.09.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/26/2023] [Accepted: 09/05/2023] [Indexed: 10/12/2023]
Abstract
The accurate selection of neoantigens that bind to class I human leukocyte antigen (HLA) and are recognized by autologous T cells is a crucial step in many cancer immunotherapy pipelines. We reprocessed whole-exome sequencing and RNA sequencing (RNA-seq) data from 120 cancer patients from two external large-scale neoantigen immunogenicity screening assays combined with an in-house dataset of 11 patients and identified 46,017 somatic single-nucleotide variant mutations and 1,781,445 neo-peptides, of which 212 mutations and 178 neo-peptides were immunogenic. Beyond features commonly used for neoantigen prioritization, factors such as the location of neo-peptides within protein HLA presentation hotspots, binding promiscuity, and the role of the mutated gene in oncogenicity were predictive for immunogenicity. The classifiers accurately predicted neoantigen immunogenicity across datasets and improved their ranking by up to 30%. Besides insights into machine learning methods for neoantigen ranking, we have provided homogenized datasets valuable for developing and benchmarking companion algorithms for neoantigen-based immunotherapies.
Collapse
Affiliation(s)
- Markus Müller
- Ludwig Institute for Cancer Research, University of Lausanne, Agora Center Bugnon 25A, 1005 Lausanne, Switzerland; Department of Oncology, Centre hospitalier universitaire vaudois (CHUV), Rue du Bugnon 46, 1005 Lausanne, Switzerland; Agora Cancer Research Centre, 1011 Lausanne, Switzerland; SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Amphipôle, 1015 Lausanne, Switzerland.
| | - Florian Huber
- Ludwig Institute for Cancer Research, University of Lausanne, Agora Center Bugnon 25A, 1005 Lausanne, Switzerland; Department of Oncology, Centre hospitalier universitaire vaudois (CHUV), Rue du Bugnon 46, 1005 Lausanne, Switzerland; Agora Cancer Research Centre, 1011 Lausanne, Switzerland
| | - Marion Arnaud
- Ludwig Institute for Cancer Research, University of Lausanne, Agora Center Bugnon 25A, 1005 Lausanne, Switzerland; Department of Oncology, Centre hospitalier universitaire vaudois (CHUV), Rue du Bugnon 46, 1005 Lausanne, Switzerland; Agora Cancer Research Centre, 1011 Lausanne, Switzerland
| | - Anne I Kraemer
- Ludwig Institute for Cancer Research, University of Lausanne, Agora Center Bugnon 25A, 1005 Lausanne, Switzerland; Department of Oncology, Centre hospitalier universitaire vaudois (CHUV), Rue du Bugnon 46, 1005 Lausanne, Switzerland; Agora Cancer Research Centre, 1011 Lausanne, Switzerland
| | - Emma Ricart Altimiras
- Ludwig Institute for Cancer Research, University of Lausanne, Agora Center Bugnon 25A, 1005 Lausanne, Switzerland; Department of Oncology, Centre hospitalier universitaire vaudois (CHUV), Rue du Bugnon 46, 1005 Lausanne, Switzerland; Agora Cancer Research Centre, 1011 Lausanne, Switzerland
| | - Justine Michaux
- Ludwig Institute for Cancer Research, University of Lausanne, Agora Center Bugnon 25A, 1005 Lausanne, Switzerland; Department of Oncology, Centre hospitalier universitaire vaudois (CHUV), Rue du Bugnon 46, 1005 Lausanne, Switzerland; Agora Cancer Research Centre, 1011 Lausanne, Switzerland
| | - Marie Taillandier-Coindard
- Ludwig Institute for Cancer Research, University of Lausanne, Agora Center Bugnon 25A, 1005 Lausanne, Switzerland; Department of Oncology, Centre hospitalier universitaire vaudois (CHUV), Rue du Bugnon 46, 1005 Lausanne, Switzerland; Agora Cancer Research Centre, 1011 Lausanne, Switzerland
| | - Johanna Chiffelle
- Ludwig Institute for Cancer Research, University of Lausanne, Agora Center Bugnon 25A, 1005 Lausanne, Switzerland; Department of Oncology, Centre hospitalier universitaire vaudois (CHUV), Rue du Bugnon 46, 1005 Lausanne, Switzerland; Agora Cancer Research Centre, 1011 Lausanne, Switzerland
| | - Baptiste Murgues
- Ludwig Institute for Cancer Research, University of Lausanne, Agora Center Bugnon 25A, 1005 Lausanne, Switzerland; Department of Oncology, Centre hospitalier universitaire vaudois (CHUV), Rue du Bugnon 46, 1005 Lausanne, Switzerland; Agora Cancer Research Centre, 1011 Lausanne, Switzerland
| | - Talita Gehret
- Ludwig Institute for Cancer Research, University of Lausanne, Agora Center Bugnon 25A, 1005 Lausanne, Switzerland; Department of Oncology, Centre hospitalier universitaire vaudois (CHUV), Rue du Bugnon 46, 1005 Lausanne, Switzerland; Agora Cancer Research Centre, 1011 Lausanne, Switzerland
| | - Aymeric Auger
- Ludwig Institute for Cancer Research, University of Lausanne, Agora Center Bugnon 25A, 1005 Lausanne, Switzerland; Department of Oncology, Centre hospitalier universitaire vaudois (CHUV), Rue du Bugnon 46, 1005 Lausanne, Switzerland; Agora Cancer Research Centre, 1011 Lausanne, Switzerland
| | - Brian J Stevenson
- Agora Cancer Research Centre, 1011 Lausanne, Switzerland; SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Amphipôle, 1015 Lausanne, Switzerland
| | - George Coukos
- Ludwig Institute for Cancer Research, University of Lausanne, Agora Center Bugnon 25A, 1005 Lausanne, Switzerland; Department of Oncology, Centre hospitalier universitaire vaudois (CHUV), Rue du Bugnon 46, 1005 Lausanne, Switzerland; Agora Cancer Research Centre, 1011 Lausanne, Switzerland; Center of Experimental Therapeutics, Department of Oncology, Centre hospitalier universitaire vaudois (CHUV), Rue du Bugnon 46, 1005 Lausanne, Switzerland
| | - Alexandre Harari
- Ludwig Institute for Cancer Research, University of Lausanne, Agora Center Bugnon 25A, 1005 Lausanne, Switzerland; Department of Oncology, Centre hospitalier universitaire vaudois (CHUV), Rue du Bugnon 46, 1005 Lausanne, Switzerland; Agora Cancer Research Centre, 1011 Lausanne, Switzerland; Center of Experimental Therapeutics, Department of Oncology, Centre hospitalier universitaire vaudois (CHUV), Rue du Bugnon 46, 1005 Lausanne, Switzerland
| | - Michal Bassani-Sternberg
- Ludwig Institute for Cancer Research, University of Lausanne, Agora Center Bugnon 25A, 1005 Lausanne, Switzerland; Department of Oncology, Centre hospitalier universitaire vaudois (CHUV), Rue du Bugnon 46, 1005 Lausanne, Switzerland; Agora Cancer Research Centre, 1011 Lausanne, Switzerland; Center of Experimental Therapeutics, Department of Oncology, Centre hospitalier universitaire vaudois (CHUV), Rue du Bugnon 46, 1005 Lausanne, Switzerland.
| |
Collapse
|
30
|
Meng W, Schreiber RD, Lichti CF. Recent advances in immunopeptidomic-based tumor neoantigen discovery. Adv Immunol 2023; 160:1-36. [PMID: 38042584 DOI: 10.1016/bs.ai.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2023]
Abstract
The role of aberrantly expressed proteins in tumors in driving immune-mediated control of cancer has been well documented for more than five decades. Today, we know that both aberrantly expressed normal proteins as well as mutant proteins (neoantigens) can function as tumor antigens in both humans and mice. Next-generation sequencing (NGS) and high-resolution mass spectrometry (MS) technologies have made significant advances since the early 2010s, enabling detection of rare but clinically relevant neoantigens recognized by T cells. MS profiling of tumor-specific immunopeptidomes remains the most direct method to identify mutant peptides bound to cellular MHC. However, the need for use of large numbers of cells or significant amounts of tumor tissue to achieve neoantigen detection has historically limited the application of MS. Newer, more sensitive MS technologies have recently demonstrated the capacities to detect neoantigens from fewer cells. Here, we highlight recent advancements in immunopeptidomics-based characterization of tumor-specific neoantigens. Various tumor antigen categories and neoantigen identification approaches are also discussed. Furthermore, we summarize recent reports that achieved successful tumor neoantigen detection by MS using a variety of starting materials, MS acquisition modes, and novel ion mobility devices.
Collapse
Affiliation(s)
- Wei Meng
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, United States; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, United States
| | - Robert D Schreiber
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, United States; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, United States.
| | - Cheryl F Lichti
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, United States; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, United States.
| |
Collapse
|
31
|
Boughter CT, Meier-Schellersheim M. An integrated approach to the characterization of immune repertoires using AIMS: An Automated Immune Molecule Separator. PLoS Comput Biol 2023; 19:e1011577. [PMID: 37862356 PMCID: PMC10619816 DOI: 10.1371/journal.pcbi.1011577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 11/01/2023] [Accepted: 10/06/2023] [Indexed: 10/22/2023] Open
Abstract
The adaptive immune system employs an array of receptors designed to respond with high specificity to pathogens or molecular aberrations faced by the host organism. Binding of these receptors to molecular fragments-collectively referred to as antigens-initiates immune responses. These antigenic targets are recognized in their native state on the surfaces of pathogens by antibodies, whereas T cell receptors (TCR) recognize processed antigens as short peptides, presented on major histocompatibility complex (MHC) molecules. Recent research has led to a wealth of immune repertoire data that are key to interrogating the nature of these molecular interactions. However, existing tools for the analysis of these large datasets typically focus on molecular sets of a single type, forcing researchers to separately analyze strongly coupled sequences of interacting molecules. Here, we introduce a software package for the integrated analysis of immune repertoire data, capable of identifying distinct biophysical differences in isolated TCR, MHC, peptide, antibody, and antigen sequence data. This integrated analytical approach allows for direct comparisons across immune repertoire subsets and provides a starting point for the identification of key interaction hotspots in complementary receptor-antigen pairs. The software (AIMS-Automated Immune Molecule Separator) is freely available as an open access package in GUI or command-line form.
Collapse
Affiliation(s)
- Christopher T. Boughter
- Computational Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Martin Meier-Schellersheim
- Computational Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
32
|
Hartman K, Steiner G, Siegel M, Looney CM, Hickling TP, Bray-French K, Springer S, Marban-Doran C, Ducret A. Expanding the MAPPs Assay to Accommodate MHC-II Pan Receptors for Improved Predictability of Potential T Cell Epitopes. BIOLOGY 2023; 12:1265. [PMID: 37759665 PMCID: PMC10525474 DOI: 10.3390/biology12091265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
A critical step in the immunogenicity cascade is attributed to human leukocyte antigen (HLA) II presentation triggering T cell immune responses. The liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based major histocompatibility complex (MHC) II-associated peptide proteomics (MAPPs) assay is implemented during preclinical risk assessments to identify biotherapeutic-derived T cell epitopes. Although studies indicate that HLA-DP and HLA-DQ alleles are linked to immunogenicity, most MAPPs studies are restricted to using HLA-DR as the dominant HLA II genotype due to the lack of well-characterized immunoprecipitating antibodies. Here, we address this issue by testing various commercially available clones of MHC-II pan (CR3/43, WR18, and Tü39), HLA-DP (B7/21), and HLA-DQ (SPV-L3 and 1a3) antibodies in the MAPPs assay, and characterizing identified peptides according to binding specificity. Our results reveal that HLA II receptor-precipitating reagents with similar reported specificities differ based on clonality and that MHC-II pan antibodies do not entirely exhibit pan-specific tendencies. Since no individual antibody clone is able to recover the complete HLA II peptide repertoire, we recommend a mixed strategy of clones L243, WR18, and SPV-L3 in a single immunoprecipitation step for more robust compound-specific peptide detection. Ultimately, our optimized MAPPs strategy improves the predictability and additional identification of T cell epitopes in immunogenicity risk assessments.
Collapse
Affiliation(s)
- Katharina Hartman
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland (C.M.L.)
| | - Guido Steiner
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland (C.M.L.)
| | - Michel Siegel
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland (C.M.L.)
| | - Cary M. Looney
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland (C.M.L.)
| | - Timothy P. Hickling
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland (C.M.L.)
| | - Katharine Bray-French
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland (C.M.L.)
| | - Sebastian Springer
- School of Science, Department of Biochemistry and Cell Biology, Constructor University, Campus Ring 1, 28759 Bremen, Germany
| | - Céline Marban-Doran
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland (C.M.L.)
| | - Axel Ducret
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland (C.M.L.)
| |
Collapse
|
33
|
Pu T, Peddle A, Zhu J, Tejpar S, Verbandt S. Neoantigen identification: Technological advances and challenges. Methods Cell Biol 2023; 183:265-302. [PMID: 38548414 DOI: 10.1016/bs.mcb.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Neoantigens have emerged as promising targets for cutting-edge immunotherapies, such as cancer vaccines and adoptive cell therapy. These neoantigens are unique to tumors and arise exclusively from somatic mutations or non-genomic aberrations in tumor proteins. They encompass a wide range of alterations, including genomic mutations, post-transcriptomic variants, and viral oncoproteins. With the advancements in technology, the identification of immunogenic neoantigens has seen rapid progress, raising new opportunities for enhancing their clinical significance. Prediction of neoantigens necessitates the acquisition of high-quality samples and sequencing data, followed by mutation calling. Subsequently, the pipeline involves integrating various tools that can predict the expression, processing, binding, and recognition potential of neoantigens. However, the continuous improvement of computational tools is constrained by the availability of datasets which contain validated immunogenic neoantigens. This review article aims to provide a comprehensive summary of the current knowledge as well as limitations in neoantigen prediction and validation. Additionally, it delves into the origin and biological role of neoantigens, offering a deeper understanding of their significance in the field of cancer immunotherapy. This article thus seeks to contribute to the ongoing efforts to harness neoantigens as powerful weapons in the fight against cancer.
Collapse
Affiliation(s)
- Ting Pu
- Digestive Oncology Unit, KULeuven, Leuven, Belgium
| | | | - Jingjing Zhu
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | | | | |
Collapse
|
34
|
Wallace RP, Refvik KC, Antane JT, Brünggel K, Tremain AC, Raczy MR, Alpar AT, Nguyen M, Solanki A, Slezak AJ, Watkins EA, Lauterbach AL, Cao S, Wilson DS, Hubbell JA. Synthetically mannosylated antigens induce antigen-specific humoral tolerance and reduce anti-drug antibody responses to immunogenic biologics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.07.534593. [PMID: 37066302 PMCID: PMC10104138 DOI: 10.1101/2023.04.07.534593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Immunogenic biologics trigger an anti-drug antibody (ADA) response in patients, which reduces efficacy and increases adverse reactions. Our laboratory has previously shown that targeting protein antigen to the liver microenvironment can reduce antigen-specific T cell responses; herein, we present a strategy to increase delivery of otherwise immunogenic biologics to the liver via conjugation to a synthetic mannose polymer (p(Man)). This delivery leads to reduced antigen-specific T follicular helper cell and B cell responses resulting in diminished ADA production, which is maintained throughout subsequent administrations of the native biologic. We found that p(Man)-antigen treatment impairs the ADA response against recombinant uricase, a highly immunogenic biologic, without a dependence on hapten immunodominance or control by Tregs. We identify increased TCR signaling and increased apoptosis and exhaustion in T cells as effects of p(Man)-antigen treatment via transcriptomic analyses. This modular platform may enhance tolerance to biologics, enabling long-term solutions for an ever-increasing healthcare problem.
Collapse
|
35
|
Prensner JR, Abelin JG, Kok LW, Clauser KR, Mudge JM, Ruiz-Orera J, Bassani-Sternberg M, Moritz RL, Deutsch EW, van Heesch S. What Can Ribo-Seq, Immunopeptidomics, and Proteomics Tell Us About the Noncanonical Proteome? Mol Cell Proteomics 2023; 22:100631. [PMID: 37572790 PMCID: PMC10506109 DOI: 10.1016/j.mcpro.2023.100631] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/21/2023] [Accepted: 08/08/2023] [Indexed: 08/14/2023] Open
Abstract
Ribosome profiling (Ribo-Seq) has proven transformative for our understanding of the human genome and proteome by illuminating thousands of noncanonical sites of ribosome translation outside the currently annotated coding sequences (CDSs). A conservative estimate suggests that at least 7000 noncanonical ORFs are translated, which, at first glance, has the potential to expand the number of human protein CDSs by 30%, from ∼19,500 annotated CDSs to over 26,000 annotated CDSs. Yet, additional scrutiny of these ORFs has raised numerous questions about what fraction of them truly produce a protein product and what fraction of those can be understood as proteins according to conventional understanding of the term. Adding further complication is the fact that published estimates of noncanonical ORFs vary widely by around 30-fold, from several thousand to several hundred thousand. The summation of this research has left the genomics and proteomics communities both excited by the prospect of new coding regions in the human genome but searching for guidance on how to proceed. Here, we discuss the current state of noncanonical ORF research, databases, and interpretation, focusing on how to assess whether a given ORF can be said to be "protein coding."
Collapse
Affiliation(s)
- John R Prensner
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| | | | - Leron W Kok
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Karl R Clauser
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Jonathan M Mudge
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, UK
| | - Jorge Ruiz-Orera
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Michal Bassani-Sternberg
- Ludwig Institute for Cancer Research, Agora Center Bugnon 25A, University of Lausanne, Lausanne, Switzerland; Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland; Agora Cancer Research Centre, Lausanne, Switzerland
| | - Robert L Moritz
- Institute for Systems Biology (ISB), Seattle, Washington, USA
| | - Eric W Deutsch
- Institute for Systems Biology (ISB), Seattle, Washington, USA
| | | |
Collapse
|
36
|
Li J, Xiao Z, Wang D, Jia L, Nie S, Zeng X, Hu W. The screening, identification, design and clinical application of tumor-specific neoantigens for TCR-T cells. Mol Cancer 2023; 22:141. [PMID: 37649123 PMCID: PMC10466891 DOI: 10.1186/s12943-023-01844-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023] Open
Abstract
Recent advances in neoantigen research have accelerated the development of tumor immunotherapies, including adoptive cell therapies (ACTs), cancer vaccines and antibody-based therapies, particularly for solid tumors. With the development of next-generation sequencing and bioinformatics technology, the rapid identification and prediction of tumor-specific antigens (TSAs) has become possible. Compared with tumor-associated antigens (TAAs), highly immunogenic TSAs provide new targets for personalized tumor immunotherapy and can be used as prospective indicators for predicting tumor patient survival, prognosis, and immune checkpoint blockade response. Here, the identification and characterization of neoantigens and the clinical application of neoantigen-based TCR-T immunotherapy strategies are summarized, and the current status, inherent challenges, and clinical translational potential of these strategies are discussed.
Collapse
Affiliation(s)
- Jiangping Li
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| | - Zhiwen Xiao
- Department of Otolaryngology Head and Neck Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, People's Republic of China
| | - Donghui Wang
- Department of Radiation Oncology, The Third Affiliated Hospital Sun Yat-Sen University, Guangzhou, 510630, People's Republic of China
| | - Lei Jia
- International Health Medicine Innovation Center, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Shihong Nie
- Department of Radiation Oncology, West China Hospital, Sichuan University, Cancer Center, Chengdu, 610041, People's Republic of China
| | - Xingda Zeng
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Wei Hu
- Division of Vascular Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China
| |
Collapse
|
37
|
Tian J, Ma J. The Value of Microbes in Cancer Neoantigen Immunotherapy. Pharmaceutics 2023; 15:2138. [PMID: 37631352 PMCID: PMC10459105 DOI: 10.3390/pharmaceutics15082138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/06/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Tumor neoantigens are widely used in cancer immunotherapy, and a growing body of research suggests that microbes play an important role in these neoantigen-based immunotherapeutic processes. The human body and its surrounding environment are filled with a large number of microbes that are in long-term interaction with the organism. The microbiota can modulate our immune system, help activate neoantigen-reactive T cells, and play a great role in the process of targeting tumor neoantigens for therapy. Recent studies have revealed the interconnection between microbes and neoantigens, which can cross-react with each other through molecular mimicry, providing theoretical guidance for more relevant studies. The current applications of microbes in immunotherapy against tumor neoantigens are mainly focused on cancer vaccine development and immunotherapy with immune checkpoint inhibitors. This article summarizes the related fields and suggests the importance of microbes in immunotherapy against neoantigens.
Collapse
Affiliation(s)
- Junrui Tian
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China;
- Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha 410078, China
| | - Jian Ma
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China;
- Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha 410078, China
| |
Collapse
|
38
|
Macy AM, Herrmann LM, Adams AC, Hastings KT. Major histocompatibility complex class II in the tumor microenvironment: functions of nonprofessional antigen-presenting cells. Curr Opin Immunol 2023; 83:102330. [PMID: 37130456 PMCID: PMC10524529 DOI: 10.1016/j.coi.2023.102330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/30/2023] [Accepted: 04/02/2023] [Indexed: 05/04/2023]
Abstract
Major histocompatibility complex class-II-restricted presentation by nonprofessional antigen-presenting cells in the tumor microenvironment can regulate antitumor T-cell responses. In murine models, tumor cell-specific MHC class II expression decreases in vivo tumor growth, dependent on T cells. Tumor cell-specific MHC class II expression is associated with improved survival and response to immune checkpoint inhibitors in human cancers. Antigen-presenting cancer-associated fibroblasts (apCAF) present MHC class-II-restricted antigens and activate CD4 T cells. The role of MHC class II on apCAFs depends on the cell of origin. MHC class II on tumoral lymphatic endothelial cells leads to expansion of regulatory T cells and increased in vivo tumor growth.
Collapse
Affiliation(s)
- Anne M Macy
- University of Arizona College of Medicine Phoenix, 425 N. 5th St., Phoenix, AZ 85004, USA; Phoenix Veterans Affairs Health Care System, 650 E. Indian School Rd., Phoenix, AZ 85023, USA
| | - Lauren M Herrmann
- University of Arizona College of Medicine Phoenix, 425 N. 5th St., Phoenix, AZ 85004, USA; Phoenix Veterans Affairs Health Care System, 650 E. Indian School Rd., Phoenix, AZ 85023, USA
| | - Anngela C Adams
- University of Arizona College of Medicine Phoenix, 425 N. 5th St., Phoenix, AZ 85004, USA; Phoenix Veterans Affairs Health Care System, 650 E. Indian School Rd., Phoenix, AZ 85023, USA
| | - K Taraszka Hastings
- University of Arizona College of Medicine Phoenix, 425 N. 5th St., Phoenix, AZ 85004, USA; Phoenix Veterans Affairs Health Care System, 650 E. Indian School Rd., Phoenix, AZ 85023, USA; University of Arizona Cancer Center, University of Arizona, 1515 N. Campbell Ave., Tucson, AZ 85724, USA.
| |
Collapse
|
39
|
Zhu D, Zhou M, Zhang H, Gong L, Hu J, Luo H, Zhou X. Network analysis identifies a gene biomarker panel for sepsis-induced acute respiratory distress syndrome. BMC Med Genomics 2023; 16:165. [PMID: 37443002 PMCID: PMC10339646 DOI: 10.1186/s12920-023-01595-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) is characterized by non-cardiogenic pulmonary edema caused by inflammation, which can lead to serious respiratory complications. Due to the high mortality of ARDS caused by sepsis, biological markers that enable early diagnosis are urgently needed for clinical treatment. METHODS In the present study, we used the public microarray data of whole blood from patients with sepsis-induced ARDS, patients with sepsis-alone and healthy controls to perform an integrated analysis based on differential expressed genes (DEGs) and co-expression network to identify the key genes and pathways related to the development of sepsis into ARDS that may be key targets for diagnosis and treatment. RESULTS Compared with controls, we identified 180 DEGs in the sepsis-alone group and 152 DEGs in the sepsis-induced ARDS group. About 70% of these genes were unique to the two groups. Functional analysis of DEGs showed that neutrophil-mediated inflammation and mitochondrial dysfunction are the main features of ARDS induced by sepsis. Gene network analysis identified key modules and screened out key regulatory genes related to ARDS. The key genes and their upstream regulators comprised a gene panel, including EOMES, LTF, CSF1R, HLA-DRA, IRF8 and MPEG1. Compared with the healthy controls, the panel had an area under the curve (AUC) of 0.900 and 0.914 for sepsis-alone group and sepsis-induced ARDS group, respectively. The AUC was 0.746 between the sepsis-alone group and sepsis-induced ARDS group. Moreover, the panel of another independent blood transcriptional expression profile dataset showed the AUC was 0.769 in diagnosing sepsis-alone group and sepsis-induced ARDS group. CONCLUSIONS Taken together, our method contributes to the diagnosis of sepsis and sepsis-induced ARDS. The biological pathway involved in this gene biomarker panel may also be a critical target in combating ARDS caused by sepsis.
Collapse
Affiliation(s)
- Duan Zhu
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Army Medical University (Southwest Hospital), No.30 Gaotanyan Main Street, Chongqing, 400038, China
| | - Mi Zhou
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, China
| | - Houli Zhang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Army Medical University (Southwest Hospital), No.30 Gaotanyan Main Street, Chongqing, 400038, China
| | - Liang Gong
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Army Medical University (Southwest Hospital), No.30 Gaotanyan Main Street, Chongqing, 400038, China
| | - Jianlin Hu
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Army Medical University (Southwest Hospital), No.30 Gaotanyan Main Street, Chongqing, 400038, China
| | - Hu Luo
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Army Medical University (Southwest Hospital), No.30 Gaotanyan Main Street, Chongqing, 400038, China.
| | - Xiangdong Zhou
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Army Medical University (Southwest Hospital), No.30 Gaotanyan Main Street, Chongqing, 400038, China.
| |
Collapse
|
40
|
Stražar M, Park J, Abelin JG, Taylor HB, Pedersen TK, Plichta DR, Brown EM, Eraslan B, Hung YM, Ortiz K, Clauser KR, Carr SA, Xavier RJ, Graham DB. HLA-II immunopeptidome profiling and deep learning reveal features of antigenicity to inform antigen discovery. Immunity 2023; 56:1681-1698.e13. [PMID: 37301199 PMCID: PMC10519123 DOI: 10.1016/j.immuni.2023.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 02/08/2023] [Accepted: 05/11/2023] [Indexed: 06/12/2023]
Abstract
CD4+ T cell responses are exquisitely antigen specific and directed toward peptide epitopes displayed by human leukocyte antigen class II (HLA-II) on antigen-presenting cells. Underrepresentation of diverse alleles in ligand databases and an incomplete understanding of factors affecting antigen presentation in vivo have limited progress in defining principles of peptide immunogenicity. Here, we employed monoallelic immunopeptidomics to identify 358,024 HLA-II binders, with a particular focus on HLA-DQ and HLA-DP. We uncovered peptide-binding patterns across a spectrum of binding affinities and enrichment of structural antigen features. These aspects underpinned the development of context-aware predictor of T cell antigens (CAPTAn), a deep learning model that predicts peptide antigens based on their affinity to HLA-II and full sequence of their source proteins. CAPTAn was instrumental in discovering prevalent T cell epitopes from bacteria in the human microbiome and a pan-variant epitope from SARS-CoV-2. Together CAPTAn and associated datasets present a resource for antigen discovery and the unraveling genetic associations of HLA alleles with immunopathologies.
Collapse
Affiliation(s)
- Martin Stražar
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jihye Park
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Hannah B Taylor
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Thomas K Pedersen
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Eric M Brown
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Basak Eraslan
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Yuan-Mao Hung
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Kayla Ortiz
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Karl R Clauser
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Daniel B Graham
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
41
|
Stutzmann C, Peng J, Wu Z, Savoie C, Sirois I, Thibault P, Wheeler AR, Caron E. Unlocking the potential of microfluidics in mass spectrometry-based immunopeptidomics for tumor antigen discovery. CELL REPORTS METHODS 2023; 3:100511. [PMID: 37426761 PMCID: PMC10326451 DOI: 10.1016/j.crmeth.2023.100511] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The identification of tumor-specific antigens (TSAs) is critical for developing effective cancer immunotherapies. Mass spectrometry (MS)-based immunopeptidomics has emerged as a powerful tool for identifying TSAs as physical molecules. However, current immunopeptidomics platforms face challenges in measuring low-abundance TSAs in a precise, sensitive, and reproducible manner from small needle-tissue biopsies (<1 mg). Inspired by recent advances in single-cell proteomics, microfluidics technology offers a promising solution to these limitations by providing improved isolation of human leukocyte antigen (HLA)-associated peptides with higher sensitivity. In this context, we highlight the challenges in sample preparation and the rationale for developing microfluidics technology in immunopeptidomics. Additionally, we provide an overview of promising microfluidic methods, including microchip pillar arrays, valved-based systems, droplet microfluidics, and digital microfluidics, and discuss the latest research on their application in MS-based immunopeptidomics and single-cell proteomics.
Collapse
Affiliation(s)
| | - Jiaxi Peng
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Zhaoguan Wu
- CHU Sainte Justine Research Center, Montreal, QC, Canada
| | | | | | - Pierre Thibault
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC, Canada
- Department of Chemistry, University of Montreal, Montreal, QC, Canada
| | - Aaron R. Wheeler
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Etienne Caron
- CHU Sainte Justine Research Center, Montreal, QC, Canada
- Department of Pathology and Cellular Biology, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
42
|
Weingarten-Gabbay S, Chen DY, Sarkizova S, Taylor HB, Gentili M, Pearlman LR, Bauer MR, Rice CM, Clauser KR, Hacohen N, Carr SA, Abelin JG, Saeed M, Sabeti PC. The HLA-II immunopeptidome of SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.26.542482. [PMID: 37398281 PMCID: PMC10312465 DOI: 10.1101/2023.05.26.542482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Targeted synthetic vaccines have the potential to transform our response to viral outbreaks; yet the design of these vaccines requires a comprehensive knowledge of viral immunogens, including T-cell epitopes. Having previously mapped the SARS-CoV-2 HLA-I landscape, here we report viral peptides that are naturally processed and loaded onto HLA-II complexes in infected cells. We identified over 500 unique viral peptides from canonical proteins, as well as from overlapping internal open reading frames (ORFs), revealing, for the first time, the contribution of internal ORFs to the HLA-II peptide repertoire. Most HLA-II peptides co-localized with the known CD4+ T cell epitopes in COVID-19 patients. We also observed that two reported immunodominant regions in the SARS-CoV-2 membrane protein are formed at the level of HLA-II presentation. Overall, our analyses show that HLA-I and HLA-II pathways target distinct viral proteins, with the structural proteins accounting for most of the HLA-II peptidome and non-structural and non-canonical proteins accounting for the majority of the HLA-I peptidome. These findings highlight the need for a vaccine design that incorporates multiple viral elements harboring CD4+ and CD8+ T cell epitopes to maximize the vaccine effectiveness.
Collapse
|
43
|
Abstract
Efforts to tackle pancreatic cancer by harnessing immune cells have had limited success. A clinical trial reports promising results from testing a personalized approach to boosting immune responses to such tumours. See p.144
Collapse
|
44
|
Arieta CM, Xie YJ, Rothenberg DA, Diao H, Harjanto D, Meda S, Marquart K, Koenitzer B, Sciuto TE, Lobo A, Zuiani A, Krumm SA, Cadima Couto CI, Hein S, Heinen AP, Ziegenhals T, Liu-Lupo Y, Vogel AB, Srouji JR, Fesser S, Thanki K, Walzer K, Addona TA, Türeci Ö, Şahin U, Gaynor RB, Poran A. The T-cell-directed vaccine BNT162b4 encoding conserved non-spike antigens protects animals from severe SARS-CoV-2 infection. Cell 2023; 186:2392-2409.e21. [PMID: 37164012 PMCID: PMC10099181 DOI: 10.1016/j.cell.2023.04.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/12/2023] [Accepted: 04/05/2023] [Indexed: 05/12/2023]
Abstract
T cell responses play an important role in protection against beta-coronavirus infections, including SARS-CoV-2, where they associate with decreased COVID-19 disease severity and duration. To enhance T cell immunity across epitopes infrequently altered in SARS-CoV-2 variants, we designed BNT162b4, an mRNA vaccine component that is intended to be combined with BNT162b2, the spike-protein-encoding vaccine. BNT162b4 encodes variant-conserved, immunogenic segments of the SARS-CoV-2 nucleocapsid, membrane, and ORF1ab proteins, targeting diverse HLA alleles. BNT162b4 elicits polyfunctional CD4+ and CD8+ T cell responses to diverse epitopes in animal models, alone or when co-administered with BNT162b2 while preserving spike-specific immunity. Importantly, we demonstrate that BNT162b4 protects hamsters from severe disease and reduces viral titers following challenge with viral variants. These data suggest that a combination of BNT162b2 and BNT162b4 could reduce COVID-19 disease severity and duration caused by circulating or future variants. BNT162b4 is currently being clinically evaluated in combination with the BA.4/BA.5 Omicron-updated bivalent BNT162b2 (NCT05541861).
Collapse
Affiliation(s)
| | - Yushu Joy Xie
- BioNTech US, 40 Erie Street, Cambridge, MA 02139, USA
| | | | - Huitian Diao
- BioNTech US, 40 Erie Street, Cambridge, MA 02139, USA
| | - Dewi Harjanto
- BioNTech US, 40 Erie Street, Cambridge, MA 02139, USA
| | - Shirisha Meda
- BioNTech US, 40 Erie Street, Cambridge, MA 02139, USA
| | | | | | | | | | - Adam Zuiani
- BioNTech US, 40 Erie Street, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | - John R Srouji
- BioNTech US, 40 Erie Street, Cambridge, MA 02139, USA
| | | | | | | | | | - Özlem Türeci
- BioNTech SE, An der Goldgrube 12, 55131 Mainz, Germany; HI-TRON - Helmholtz Institute for Translational Oncology Mainz by DKFZ, Obere Zahlbacherstr. 63, 55131 Mainz, Germany
| | - Uğur Şahin
- BioNTech SE, An der Goldgrube 12, 55131 Mainz, Germany; TRON gGmbH - Translational Oncology at the University Medical Center of the Johannes Gutenberg University, Freiligrathstraße 12, 55131 Mainz, Germany
| | | | - Asaf Poran
- BioNTech US, 40 Erie Street, Cambridge, MA 02139, USA.
| |
Collapse
|
45
|
Prensner JR, Abelin JG, Kok LW, Clauser KR, Mudge JM, Ruiz-Orera J, Bassani-Sternberg M, Deutsch EW, van Heesch S. What can Ribo-seq and proteomics tell us about the non-canonical proteome? BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.16.541049. [PMID: 37292611 PMCID: PMC10245706 DOI: 10.1101/2023.05.16.541049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ribosome profiling (Ribo-seq) has proven transformative for our understanding of the human genome and proteome by illuminating thousands of non-canonical sites of ribosome translation outside of the currently annotated coding sequences (CDSs). A conservative estimate suggests that at least 7,000 non-canonical open reading frames (ORFs) are translated, which, at first glance, has the potential to expand the number of human protein-coding sequences by 30%, from ∼19,500 annotated CDSs to over 26,000. Yet, additional scrutiny of these ORFs has raised numerous questions about what fraction of them truly produce a protein product and what fraction of those can be understood as proteins according to conventional understanding of the term. Adding further complication is the fact that published estimates of non-canonical ORFs vary widely by around 30-fold, from several thousand to several hundred thousand. The summation of this research has left the genomics and proteomics communities both excited by the prospect of new coding regions in the human genome, but searching for guidance on how to proceed. Here, we discuss the current state of non-canonical ORF research, databases, and interpretation, focusing on how to assess whether a given ORF can be said to be "protein-coding". In brief The human genome encodes thousands of non-canonical open reading frames (ORFs) in addition to protein-coding genes. As a nascent field, many questions remain regarding non-canonical ORFs. How many exist? Do they encode proteins? What level of evidence is needed for their verification? Central to these debates has been the advent of ribosome profiling (Ribo-seq) as a method to discern genome-wide ribosome occupancy, and immunopeptidomics as a method to detect peptides that are processed and presented by MHC molecules and not observed in traditional proteomics experiments. This article provides a synthesis of the current state of non-canonical ORF research and proposes standards for their future investigation and reporting. Highlights Combined use of Ribo-seq and proteomics-based methods enables optimal confidence in detecting non-canonical ORFs and their protein products.Ribo-seq can provide more sensitive detection of non-canonical ORFs, but data quality and analytical pipelines will impact results.Non-canonical ORF catalogs are diverse and span both high-stringency and low-stringency ORF nominations.A framework for standardized non-canonical ORF evidence will advance the research field.
Collapse
Affiliation(s)
- John R. Prensner
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | - Leron W. Kok
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands
| | - Karl R. Clauser
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Jonathan M. Mudge
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Jorge Ruiz-Orera
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Michal Bassani-Sternberg
- Ludwig Institute for Cancer Research, University of Lausanne, Agora Center Bugnon 25A, 1005 Lausanne, Switzerland
- Department of Oncology, Centre hospitalier universitaire vaudois (CHUV), Rue du Bugnon 46, 1005 Lausanne, Switzerland
- Agora Cancer Research Centre, 1011 Lausanne, Switzerland
| | - Eric W. Deutsch
- Institute for Systems Biology (ISB), Seattle, Washington 98109, USA
| | - Sebastiaan van Heesch
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, the Netherlands
| |
Collapse
|
46
|
Admon A. The biogenesis of the immunopeptidome. Semin Immunol 2023; 67:101766. [PMID: 37141766 DOI: 10.1016/j.smim.2023.101766] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023]
Abstract
The immunopeptidome is the repertoire of peptides bound and presented by the MHC class I, class II, and non-classical molecules. The peptides are produced by the degradation of most cellular proteins, and in some cases, peptides are produced from extracellular proteins taken up by the cells. This review attempts to first describe some of its known and well-accepted concepts, and next, raise some questions about a few of the established dogmas in this field: The production of novel peptides by splicing is questioned, suggesting here that spliced peptides are extremely rare, if existent at all. The degree of the contribution to the immunopeptidome by degradation of cellular protein by the proteasome is doubted, therefore this review attempts to explain why it is likely that this contribution to the immunopeptidome is possibly overstated. The contribution of defective ribosome products (DRiPs) and non-canonical peptides to the immunopeptidome is noted and methods are suggested to quantify them. In addition, the common misconception that the MHC class II peptidome is mostly derived from extracellular proteins is noted, and corrected. It is stressed that the confirmation of sequence assignments of non-canonical and spliced peptides should rely on targeted mass spectrometry using spiking-in of heavy isotope-labeled peptides. Finally, the new methodologies and modern instrumentation currently available for high throughput kinetics and quantitative immunopeptidomics are described. These advanced methods open up new possibilities for utilizing the big data generated and taking a fresh look at the established dogmas and reevaluating them critically.
Collapse
Affiliation(s)
- Arie Admon
- Faculty of Biology, Technion-Israel Institute of Technology, Israel.
| |
Collapse
|
47
|
Phulphagar KM, Ctortecka C, Jacome ASV, Klaeger S, Verzani EK, Hernandez GM, Udeshi ND, Clauser KR, Abelin JG, Carr SA. Sensitive, high-throughput HLA-I and HLA-II immunopeptidomics using parallel accumulation-serial fragmentation mass spectrometry. Mol Cell Proteomics 2023:100563. [PMID: 37142057 DOI: 10.1016/j.mcpro.2023.100563] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/06/2023] Open
Abstract
Comprehensive, in-depth identification of the human leukocyte antigen HLA-I and HLA-II tumor immunopeptidome can inform the development of cancer immunotherapies. Mass spectrometry (MS) is powerful technology for direct identification of HLA peptides from patient derived tumor samples or cell lines. However, achieving sufficient coverage to detect rare, clinically relevant antigens requires highly sensitive MS-based acquisition methods and large amounts of sample. While immunopeptidome depth can be increased by off-line fractionation prior to MS, its use is impractical when analyzing limited amounts of primary tissue biopsies. To address this challenge, we developed and applied a high throughput, sensitive, single-shot MS-based immunopeptidomics workflow that leverages trapped ion mobility time-of-flight mass spectrometry on the Bruker timsTOF SCP. We demonstrate >2-fold improved coverage of HLA immunopeptidomes relative to prior methods with up to 15,000 distinct HLA-I and HLA-II peptides from 4e7 cells. Our optimized single-shot MS acquisition method on the timsTOF SCP maintains high coverage, eliminates the need for off-line fractionation and reduces input requirements to as few as 1e6 A375 cells for > 800 distinct HLA-I peptides. This depth is sufficient to identify HLA-I peptides derived from cancer-testis antigen, and non-canonical proteins. We also apply our optimized single-shot SCP acquisition methods to tumor derived samples, enabling sensitive, high throughput and reproducible immunopeptidome profiling with detection of clinically relevant peptides from less than 4e7 cells or 15 mg wet weight tissue.
Collapse
|
48
|
Oreper D, Klaeger S, Jhunjhunwala S, Delamarre L. The peptide woods are lovely, dark and deep: Hunting for novel cancer antigens. Semin Immunol 2023; 67:101758. [PMID: 37027981 DOI: 10.1016/j.smim.2023.101758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 04/08/2023]
Abstract
Harnessing the patient's immune system to control a tumor is a proven avenue for cancer therapy. T cell therapies as well as therapeutic vaccines, which target specific antigens of interest, are being explored as treatments in conjunction with immune checkpoint blockade. For these therapies, selecting the best suited antigens is crucial. Most of the focus has thus far been on neoantigens that arise from tumor-specific somatic mutations. Although there is clear evidence that T-cell responses against mutated neoantigens are protective, the large majority of these mutations are not immunogenic. In addition, most somatic mutations are unique to each individual patient and their targeting requires the development of individualized approaches. Therefore, novel antigen types are needed to broaden the scope of such treatments. We review high throughput approaches for discovering novel tumor antigens and some of the key challenges associated with their detection, and discuss considerations when selecting tumor antigens to target in the clinic.
Collapse
Affiliation(s)
- Daniel Oreper
- Genentech, 1 DNA way, South San Francisco, 94080 CA, USA.
| | - Susan Klaeger
- Genentech, 1 DNA way, South San Francisco, 94080 CA, USA.
| | | | | |
Collapse
|
49
|
Abelin JG, Bergstrom EJ, Rivera KD, Taylor HB, Klaeger S, Xu C, Verzani EK, Jackson White C, Woldemichael HB, Virshup M, Olive ME, Maynard M, Vartany SA, Allen JD, Phulphagar K, Harry Kane M, Rachimi S, Mani DR, Gillette MA, Satpathy S, Clauser KR, Udeshi ND, Carr SA. Workflow enabling deepscale immunopeptidome, proteome, ubiquitylome, phosphoproteome, and acetylome analyses of sample-limited tissues. Nat Commun 2023; 14:1851. [PMID: 37012232 PMCID: PMC10070353 DOI: 10.1038/s41467-023-37547-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
Serial multi-omic analysis of proteome, phosphoproteome, and acetylome provides insights into changes in protein expression, cell signaling, cross-talk and epigenetic pathways involved in disease pathology and treatment. However, ubiquitylome and HLA peptidome data collection used to understand protein degradation and antigen presentation have not together been serialized, and instead require separate samples for parallel processing using distinct protocols. Here we present MONTE, a highly sensitive multi-omic native tissue enrichment workflow, that enables serial, deep-scale analysis of HLA-I and HLA-II immunopeptidome, ubiquitylome, proteome, phosphoproteome, and acetylome from the same tissue sample. We demonstrate that the depth of coverage and quantitative precision of each 'ome is not compromised by serialization, and the addition of HLA immunopeptidomics enables the identification of peptides derived from cancer/testis antigens and patient specific neoantigens. We evaluate the technical feasibility of the MONTE workflow using a small cohort of patient lung adenocarcinoma tumors.
Collapse
Affiliation(s)
- Jennifer G Abelin
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA.
| | - Erik J Bergstrom
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Keith D Rivera
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Hannah B Taylor
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Susan Klaeger
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Charles Xu
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Eva K Verzani
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - C Jackson White
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Hilina B Woldemichael
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Maya Virshup
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Meagan E Olive
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Myranda Maynard
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Stephanie A Vartany
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Joseph D Allen
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Kshiti Phulphagar
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - M Harry Kane
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Suzanna Rachimi
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - D R Mani
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Michael A Gillette
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
- Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Shankha Satpathy
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Karl R Clauser
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Namrata D Udeshi
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA.
| | - Steven A Carr
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA.
| |
Collapse
|
50
|
Racle J, Guillaume P, Schmidt J, Michaux J, Larabi A, Lau K, Perez MAS, Croce G, Genolet R, Coukos G, Zoete V, Pojer F, Bassani-Sternberg M, Harari A, Gfeller D. Machine learning predictions of MHC-II specificities reveal alternative binding mode of class II epitopes. Immunity 2023:S1074-7613(23)00129-2. [PMID: 37023751 DOI: 10.1016/j.immuni.2023.03.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/09/2022] [Accepted: 03/15/2023] [Indexed: 04/08/2023]
Abstract
CD4+ T cells orchestrate the adaptive immune response against pathogens and cancer by recognizing epitopes presented on class II major histocompatibility complex (MHC-II) molecules. The high polymorphism of MHC-II genes represents an important hurdle toward accurate prediction and identification of CD4+ T cell epitopes. Here we collected and curated a dataset of 627,013 unique MHC-II ligands identified by mass spectrometry. This enabled us to precisely determine the binding motifs of 88 MHC-II alleles across humans, mice, cattle, and chickens. Analysis of these binding specificities combined with X-ray crystallography refined our understanding of the molecular determinants of MHC-II motifs and revealed a widespread reverse-binding mode in HLA-DP ligands. We then developed a machine-learning framework to accurately predict binding specificities and ligands of any MHC-II allele. This tool improves and expands predictions of CD4+ T cell epitopes and enables us to discover viral and bacterial epitopes following the aforementioned reverse-binding mode.
Collapse
Affiliation(s)
- Julien Racle
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland; Agora Cancer Research Centre, Lausanne, Switzerland; Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland.
| | - Philippe Guillaume
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland; Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University Hospital of Lausanne, Lausanne, Switzerland
| | - Julien Schmidt
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland; Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University Hospital of Lausanne, Lausanne, Switzerland
| | - Justine Michaux
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Agora Cancer Research Centre, Lausanne, Switzerland; Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland; Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University Hospital of Lausanne, Lausanne, Switzerland; Center of Experimental Therapeutics, Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Amédé Larabi
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Kelvin Lau
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Marta A S Perez
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland; Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
| | - Giancarlo Croce
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland; Agora Cancer Research Centre, Lausanne, Switzerland; Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
| | - Raphaël Genolet
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland; Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University Hospital of Lausanne, Lausanne, Switzerland
| | - George Coukos
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Agora Cancer Research Centre, Lausanne, Switzerland; Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland; Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University Hospital of Lausanne, Lausanne, Switzerland
| | - Vincent Zoete
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland; Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
| | - Florence Pojer
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Michal Bassani-Sternberg
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Agora Cancer Research Centre, Lausanne, Switzerland; Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland; Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University Hospital of Lausanne, Lausanne, Switzerland; Center of Experimental Therapeutics, Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Alexandre Harari
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Agora Cancer Research Centre, Lausanne, Switzerland; Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland; Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University Hospital of Lausanne, Lausanne, Switzerland
| | - David Gfeller
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland; Agora Cancer Research Centre, Lausanne, Switzerland; Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland.
| |
Collapse
|