1
|
Liu XR, Li M, Hao QQ, Yu YJ, Liao C, Yu R, Kong DL, Wang Y. Unraveling cysteinyl leukotrienes and their receptors in inflammation through the brain-gut-lung axis. Virulence 2025; 16:2502555. [PMID: 40351036 PMCID: PMC12077450 DOI: 10.1080/21505594.2025.2502555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 04/21/2025] [Accepted: 04/23/2025] [Indexed: 05/14/2025] Open
Abstract
Cysteinyl leukotrienes (CysLTs), as potent lipid inflammatory mediators, play a pivotal role in systemic multi-organ inflammation and inter-organ communication through interactions with their receptors (CysLTRs). However, However, the function of CysLT3R is unclear and lacks a network of cross-organ metabolite interactions, and the clinical use of leukotriene receptor antagonists (LTRAs) has certain limitations. This review systematically synthesizes existing evidence and proposes future directions by clarifying receptor subtype specificity, optimizing targeted therapies, exploring CysLTs' applications in neuroimmunology, and elucidating the dual roles of CysLTs in chronic inflammation. It is indicated that CysLTs activate eosinophils, mast cells, and airway tuft cells, driving type 2 immune responses and mucus secretion in the lungs, thereby exacerbating respiratory diseases such as asthma. In the nervous system, CysLTs aggravate neurodegenerative disorders like cerebral ischemia and Alzheimer's disease by disrupting the blood-brain barrier, promoting glial activation, and inducing neuronal damage. In the gut, CysLTs regulate anti-helminth immunity via the tuft cell-ILC2 pathway and collaborate with prostaglandin D2 (PGD2) to modulate bile excretion and mucosal protection. Furthermore, CysLTs mediate communication through the gut-lung and gut-brain axes via metabolites such as succinate, contributing to cross-organ inflammatory regulation. In conclusion, this review highlights the complex roles of CysLTs in chronic inflammation, providing a theoretical foundation for precise intervention in multi-organ inflammatory diseases, which provides a theoretical framework for precision interventions in multi-organ inflammatory diseases and inspires interdisciplinary breakthroughs.
Collapse
Affiliation(s)
- Xiao-Ru Liu
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Ming Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qian-Qian Hao
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Ya-Jie Yu
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Cai Liao
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Rui Yu
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - De-Lei Kong
- Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yun Wang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
2
|
Churchill MJ, Pandeya A, Bauer R, Christopher T, Krug S, Honodel R, Smita S, Warner L, Mooney BM, Gibson AR, Mitchell PS, Tait Wojno ED, Rauch I. Enteric tuft cell inflammasome activation drives NKp46+ILC3 IL22 via PGD2 and inhibits Salmonella. J Exp Med 2025; 222:e20230803. [PMID: 40079814 PMCID: PMC11905811 DOI: 10.1084/jem.20230803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 12/12/2024] [Accepted: 02/10/2025] [Indexed: 03/15/2025] Open
Abstract
To distinguish pathogens from commensals, the intestinal epithelium employs cytosolic innate immune sensors. Activation of the NAIP-NLRC4 inflammasome initiates extrusion of infected intestinal epithelial cells (IEC) upon cytosolic bacterial sensing. We previously reported that activation of the inflammasome in tuft cells, which are primarily known for their role in parasitic infections, leads to the release of prostaglandin D2 (PGD2). We observe that NAIP-NLRC4 inflammasome activation in tuft cells leads to an antibacterial response with increased IL-22 and antimicrobial protein levels within the small intestine, which is dependent on PGD2 signaling. A NKp46+ subset of ILC3 expresses the PGD2 receptor CRTH2 and is the source of the increased IL-22. Inflammasome activation in tuft cells also leads to better control of Salmonella Typhimurium in the distal small intestine. However, tuft cells in the cecum and colon are dispensable for antibacterial immunity. These data support that intestinal tuft cells can also induce antibacterial responses, possibly in a tissue-specific manner.
Collapse
Affiliation(s)
- Madeline J. Churchill
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA
| | - Ankit Pandeya
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA
| | - Renate Bauer
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Tighe Christopher
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Stefanie Krug
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Roslyn Honodel
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA
| | - Shuchi Smita
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Lindsey Warner
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Bridget M. Mooney
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Alexis R. Gibson
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA
| | - Patrick S. Mitchell
- Department of Microbiology, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | | | - Isabella Rauch
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
3
|
Castranova D, Kenton MI, Kraus A, Dell CW, Park JS, Venero Galanternik M, Park G, Lumbantobing DN, Dye L, Marvel M, Iben J, Taimatsu K, Pham V, Willms RJ, Blevens L, Robertson TF, Hou Y, Huttenlocher A, Foley E, Parenti LR, Frazer JK, Narayan K, Weinstein BM. The axillary lymphoid organ is an external, experimentally accessible immune organ in the zebrafish. J Exp Med 2025; 222:e20241435. [PMID: 40167600 PMCID: PMC11960710 DOI: 10.1084/jem.20241435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/13/2025] [Accepted: 03/03/2025] [Indexed: 04/02/2025] Open
Abstract
Lymph nodes and other secondary lymphoid organs play critical roles in immune surveillance and immune activation in mammals, but the deep internal locations of these organs make it challenging to image and study them in living animals. Here, we describe a previously uncharacterized external immune organ in the zebrafish ideally suited for studying immune cell dynamics in vivo, the axillary lymphoid organ (ALO). This small, translucent organ has an outer cortex teeming with immune cells, an inner medulla with a mesh-like network of fibroblastic reticular cells along which immune cells migrate, and a network of lymphatic vessels draining to a large adjacent lymph sac. Noninvasive high-resolution imaging of transgenically marked immune cells can be carried out in ALOs of living animals, which are readily accessible to external treatment. This newly discovered tissue provides a superb model for dynamic live imaging of immune cells and their interaction with pathogens and surrounding tissues, including blood and lymphatic vessels.
Collapse
Affiliation(s)
- Daniel Castranova
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Madeleine I. Kenton
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Aurora Kraus
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Christopher W. Dell
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Jong S. Park
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Marina Venero Galanternik
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Gilseung Park
- Section of Pediatric Hematology-Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Daniel N. Lumbantobing
- Division of Fishes, Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Louis Dye
- Microscopy and Imaging Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Miranda Marvel
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - James Iben
- Molecular Genomics Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Kiyohito Taimatsu
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Van Pham
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Reegan J. Willms
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Lucas Blevens
- Section of Pediatric Hematology-Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Tanner F. Robertson
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Yiran Hou
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Edan Foley
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Lynne R. Parenti
- Division of Fishes, Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - J. Kimble Frazer
- Section of Pediatric Hematology-Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kedar Narayan
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Brant M. Weinstein
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
4
|
Xu H, Wang Y, Wang W, Fu YX, Qiu J, Shi Y, Yuan L, Dong C, Hu X, Chen YG, Guo X. ILC3s promote intestinal tuft cell hyperplasia and anthelmintic immunity through RANK signaling. Sci Immunol 2025; 10:eadn1491. [PMID: 40378237 DOI: 10.1126/sciimmunol.adn1491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 08/01/2024] [Accepted: 04/24/2025] [Indexed: 05/18/2025]
Abstract
Helminth infections, particularly in developing countries, remain a notable health burden worldwide. Group 3 innate lymphoid cells (ILC3s) are enriched in the intestine and play a critical role in immunity against extracellular bacteria and fungi. However, whether ILC3s are involved in intestinal helminth infection is still unclear. Here, we report that helminth infection reprograms ILC3s, which, in turn, promote anthelmintic immunity. ILC3-derived RANKL [receptor activator of NF-κB (nuclear factor κB) ligand] synergizes with interleukin-13 (IL-13) to facilitate intestinal tuft cell expansion after helminth infection, which further activates the tuft cell-group 2 innate lymphoid cell (ILC2) circuit to control helminth infection. Deletion of RANKL in ILC3s or deletion of RANK or its downstream adaptor RelB in intestinal epithelial cells substantially diminishes tuft cell hyperplasia and dampens anthelmintic immunity. Thus, ILC3s play an indispensable role in protecting against helminth infection through the regulation of intestinal tuft cell hyperplasia and type 2 immunity.
Collapse
Affiliation(s)
- Hongkai Xu
- Institute for Immunology, Tsinghua University, Beijing 100084, China
- School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing 100084, China
- Beijing Key Laboratory of Immunological Research of Allergy (LIRA), Tsinghua University, Beijing 100084, China
| | - Yibo Wang
- Institute for Immunology, Tsinghua University, Beijing 100084, China
- School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing 100084, China
- Beijing Key Laboratory of Immunological Research of Allergy (LIRA), Tsinghua University, Beijing 100084, China
- State Key Laboratory of Molecular Oncology, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Wenyan Wang
- School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Molecular Oncology, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Yang-Xin Fu
- School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Molecular Oncology, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Ju Qiu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Yan Shi
- Institute for Immunology, Tsinghua University, Beijing 100084, China
- School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing 100084, China
- Beijing Key Laboratory of Immunological Research of Allergy (LIRA), Tsinghua University, Beijing 100084, China
| | - Lei Yuan
- Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Chen Dong
- Westlake University, Hangzhou 310030, China
| | - Xiaoyu Hu
- Institute for Immunology, Tsinghua University, Beijing 100084, China
- School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing 100084, China
- Beijing Key Laboratory of Immunological Research of Allergy (LIRA), Tsinghua University, Beijing 100084, China
| | - Ye-Guang Chen
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiaohuan Guo
- Institute for Immunology, Tsinghua University, Beijing 100084, China
- School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing 100084, China
- Beijing Key Laboratory of Immunological Research of Allergy (LIRA), Tsinghua University, Beijing 100084, China
- State Key Laboratory of Molecular Oncology, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| |
Collapse
|
5
|
Yang S, Li Y, Ruan R, Yu J, Zhu B, Lou H, Zhang X, Wang S. Exogenous TSG-6 treatment alleviates DSS-induced colitis in mice by modulating Pou2f3 and promoting tuft cells differentiation. Mol Med 2025; 31:157. [PMID: 40301757 PMCID: PMC12042439 DOI: 10.1186/s10020-025-01230-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 04/24/2025] [Indexed: 05/01/2025] Open
Abstract
BACKGROUND Whereas intestinal epithelial barrier dysfunction is implicated in inflammatory bowel disease (IBD), the underlying mechanisms remain elusive. Tumor necrosis factor α stimulated gene 6 (TSG-6) is a secretory protein with anti-inflammatory properties. Our previous research demonstrated TSG-6 can relieve intestinal inflammation and mucosal damage. However, the underlying mechanism and targets remain unclear. This research sought to explore how TSG-6 regulates the intestinal epithelial barrier and its mechanistic role in experimental colitis. METHODS IBD mouse model was generated using dextran sodium sulfate (DSS), with or without intraperitoneal injection of TSG-6(100 µg/kg or 200 µg/kg). The effects of TSG-6 on colonic inflammation and intestinal barrier function were investigated. Label-free quantitative proteomic analysis was performed on intestinal samples to explore the mechanism and therapeutic target of TSG-6. Molecular interactions were determined by co-immunoprecipitation (Co-IP) and immunofluorescence colocalization. RESULTS TSG-6 treatment significantly attenuated DSS-induced colitis symptoms and inflammatory cell infiltration. Microarray analysis revealed that TSG-6 decreased pro-inflammatory cytokine levels in colon tissue. TSG-6 restored the intestinal epithelial barrier through the promotion of intestinal epithelial cells (IECs) proliferation and mitigation of tight junctions (TJs) damage. Mechanistically, TSG-6 promoted tuft cells differentiation and increased interleukin-25 (IL-25) levels by directly binding to Pou class 2 homeobox 3(Pou2f3) and up-regulating its expression in the gut. CONCLUSIONS This study demonstrated TSG-6 as a positive regulator of tuft cells differentiation by interacting with Pou2f3, and the effectiveness of exogenous TSG-6 treatment on maintaining intestinal barrier integrity showed a promising potential for its clinical application.
Collapse
Affiliation(s)
- Shaopeng Yang
- Department of Endoscopy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Yuqi Li
- Department of Endoscopy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Rongwei Ruan
- Department of Endoscopy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Jiangping Yu
- Department of Endoscopy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Bo Zhu
- Department of Endoscopy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Haibin Lou
- Department of Endoscopy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Xiaolan Zhang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China.
| | - Shi Wang
- Department of Endoscopy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China.
| |
Collapse
|
6
|
Shang K, Qi X, Tian T, Shi H, Zhu Y, Zhang F. Regulation of the tuft cell-ILC2 circuit in intestinal mucosal immunity. Front Immunol 2025; 16:1568062. [PMID: 40356895 PMCID: PMC12066627 DOI: 10.3389/fimmu.2025.1568062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 04/02/2025] [Indexed: 05/15/2025] Open
Abstract
The intestinal mucosal immune system maintains homeostasis through complex interactions between epithelial cells and innate lymphoid cells in the lamina propria. Tuft cells, previously overlooked intestinal epithelial cell types, detect parasites and metabolites via Sucnr1 and TAS2R receptors. They secrete IL-25, which activates type 2 innate lymphoid cell (ILC2) via the IL-25R receptor. ILC2 releases IL-13, resulting in further promotion of tuft and goblet cells from stem cells. This positive feedback loop amplifies the local type 2 immune response, combating parasitic infections. Tuft cells also recognize viruses and bacteria, but the role played by the tuft cell-ILC2 circuit in this process is not yet clear. Furthermore, tuft cell-ILC2 circuit is influenced by dietary fiber, intestinal microbiota, and other factors, contributing to new functions in maintaining intestinal homeostasis. In inflammatory bowel disease, this immunological circuit may be protective. This review summarizes the current understanding of the tuft cell-ILC2 circuit, its regulatory mechanisms, and potential implications in intestinal disease.Graphical abstract (by Figdraw 2.0).
Collapse
Affiliation(s)
- Kaiyu Shang
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xinxin Qi
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Tingting Tian
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Huidong Shi
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yuejie Zhu
- Reproductive Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Fengbo Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
7
|
Liang L, Dang B, Ouyang X, Zhao X, Huang Y, Lin Y, Cheng X, Xie G, Lin J, Mi P, Ye Z, Guleng B, Cheng SC. Dietary succinate supplementation alleviates DSS-induced colitis via the IL-4Rα/Hif-1α Axis. Int Immunopharmacol 2025; 152:114408. [PMID: 40086056 DOI: 10.1016/j.intimp.2025.114408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/22/2025] [Accepted: 03/01/2025] [Indexed: 03/16/2025]
Abstract
Inflammatory bowel disease (IBD) remains a pressing global health challenge, necessitating novel therapeutic strategies. Succinate, a metabolite known for its role in type 2 immunity and tuft cell activation in the small intestine, presents its potential in IBD management. However, its impact on colonic inflammation has not been explored. Here, we demonstrate that succinate administration induces a type 2 immune response, significantly alleviating dextran sulfate sodium (DSS)-induced colonic inflammation. Succinate enhances antibacterial capacity, reduces intestinal permeability, and reshapes the colonic cytokine milieu. Mechanistically, succinate promotes myeloid cell expansion in peripheral blood, mesenteric lymph nodes, and the colonic lamina propria. The protective effects of succinate were abolished in Ccr2-/- mice, confirming the role of monocyte recruitment, but persisted in Rag1-/- mice, indicating independence from adaptive immunity. Adoptive transfer of monocytes from succinate-treated donors mitigated intestinal inflammation in recipient mice. Transcriptomic analysis revealed heightened expression of Il1b and Il6, and higher lactate production in monocytes upon lipopolysaccharide (LPS) stimulation, highlighting a reprogrammed pro-inflammatory trained immunity phenotype. Finally, we identify the IL-4Rα/Hif-1α axis is critical for succinate-mediated protection. These findings reveal the ability of succinate to reprogram monocytes into protective intestinal macrophages via induction of type 2 response, restoring homeostasis through enhanced barrier function and immune modulation. Our study positions thus uncover succinate as a promising therapeutic candidate for IBD.
Collapse
Affiliation(s)
- Laiying Liang
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, Cancer Research Center & Institute of Microbial Ecology, School of Medicine, Xiamen University, Xiamen 361004, China; Department of Laboratory Medicine, West China Xiamen Hospital of Sichuan University, Xiamen 361000, China
| | - Buyun Dang
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, Cancer Research Center & Institute of Microbial Ecology, School of Medicine, Xiamen University, Xiamen 361004, China; State Key Laboratory of Cellular Stress Biology, School of Life Science, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Xiaomei Ouyang
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, Cancer Research Center & Institute of Microbial Ecology, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Xianling Zhao
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, Cancer Research Center & Institute of Microbial Ecology, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Yongdong Huang
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, Cancer Research Center & Institute of Microbial Ecology, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Ying Lin
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, Cancer Research Center & Institute of Microbial Ecology, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Xiaoshen Cheng
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, Cancer Research Center & Institute of Microbial Ecology, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Guijing Xie
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, Cancer Research Center & Institute of Microbial Ecology, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Junhui Lin
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, Cancer Research Center & Institute of Microbial Ecology, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Peng Mi
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, Cancer Research Center & Institute of Microbial Ecology, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Zhenyu Ye
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, Cancer Research Center & Institute of Microbial Ecology, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Bayasi Guleng
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, Cancer Research Center & Institute of Microbial Ecology, School of Medicine, Xiamen University, Xiamen 361004, China.
| | - Shih-Chin Cheng
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, Cancer Research Center & Institute of Microbial Ecology, School of Medicine, Xiamen University, Xiamen 361004, China; State Key Laboratory of Cellular Stress Biology, School of Life Science, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
8
|
Sun J, Borowska D, Furniss JJ, Sutton K, Macqueen DJ, Vervelde L. Cellular landscape of avian intestinal organoids revealed by single cell transcriptomics. Sci Rep 2025; 15:11362. [PMID: 40175530 PMCID: PMC11965369 DOI: 10.1038/s41598-025-95721-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/24/2025] [Indexed: 04/04/2025] Open
Abstract
Studies of the avian gastrointestinal tract, where nutrient absorption and key host-pathogen interactions occur, have been strongly enabled by the development of intestinal organoid models. Here we report a single cell transcriptomic atlas of intestinal organoid cells derived from embryos of broiler and layer chickens, capturing mesenchymal, epithelial, endothelial, immune and neuronal cell lineages. Eight inferred mesenchymal subpopulations reflect anatomically distinct intestinal layers, including fibroblasts, telocytes, myofibroblasts, smooth myocytes, pericytes, and interstitial cells of Cajal. Identified heterogeneity within the epithelial lineage included enterocytes, goblet cells, Paneth cells, tuft cells, and diverse enteroendocrine cell subtypes. Additionally, we identified candidate macrophages, monocytes, γδ T cells, NK cells and granulocytes. Layer and broiler organoids showed significant differences in cell-specific transcriptome, most pronounced in epithelial cells, pointing to divergent selection on intestinal physiology. Our analysis finally provides a catalogue of novel cell marker genes to enable future research of chicken intestinal organoids.
Collapse
Affiliation(s)
- Jianxuan Sun
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK
| | - Dominika Borowska
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK
| | - James J Furniss
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK
| | - Kate Sutton
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK
| | - Daniel J Macqueen
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK.
| | - Lonneke Vervelde
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK.
- Royal GD, Deventer, The Netherlands.
| |
Collapse
|
9
|
Feng X, Andersson T, Flüchter P, Gschwend J, Berest I, Muff JL, Lechner A, Gondrand A, Westermann P, Brander N, Carchidi D, De Tenorio JC, Pan T, Boehm U, Klose CSN, Artis D, Messner CB, Leinders-Zufall T, Zufall F, Schneider C. Tuft cell IL-17RB restrains IL-25 bioavailability and reveals context-dependent ILC2 hypoproliferation. Nat Immunol 2025; 26:567-581. [PMID: 40074948 PMCID: PMC11957993 DOI: 10.1038/s41590-025-02104-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 01/31/2025] [Indexed: 03/14/2025]
Abstract
The tuft cell-group 2 innate lymphoid cell (ILC2) circuit orchestrates rapid type 2 responses upon detecting microbially derived succinate and luminal helminths. Our findings delineate key mechanistic steps involving IP3R2 engagement and Ca2+ flux, governing interleukin-25 (IL-25) production by tuft cells triggered by succinate detection. While IL-17RB has a pivotal intrinsic role in ILC2 activation, it exerts a regulatory function in tuft cells. Tuft cells exhibit constitutive Il25 expression, placing them in an anticipatory state that facilitates rapid production of IL-25 protein for ILC2 activation. Tuft cell IL-17RB is crucial for restraining IL-25 bioavailability, preventing excessive tonic ILC2 stimulation due to basal Il25 expression. Supraoptimal ILC2 stimulation by IL-25 resulting from tuft cell Il17rb deficiency or prolonged succinate exposure induces a state of hypoproliferation in ILC2s, also observed in chronic helminth infection. Our study offers critical insights into the regulatory dynamics of IL-25 in this circuit, highlighting the delicate tuning required for responses to diverse luminal states.
Collapse
Grants
- R01 AR070116 NIAMS NIH HHS
- R01 AI095466 NIAID NIH HHS
- SPP1937 - KL 2963/3-1 and KL 2963/2-1 Deutsche Forschungsgemeinschaft (German Research Foundation)
- CRC/TRR 241 Project-ID 375876048 Deutsche Forschungsgemeinschaft (German Research Foundation)
- R01 DK132244 NIDDK NIH HHS
- R01 DK126871 NIDDK NIH HHS
- Sonderforschungsbereich-Transregio TRR 152 Deutsche Forschungsgemeinschaft (German Research Foundation)
- TRR 152 Deutsche Forschungsgemeinschaft (German Research Foundation)
- R01 AI151599 NIAID NIH HHS
- 194216 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
- U01 AI095608 NIAID NIH HHS
- R01 AI172027 NIAID NIH HHS
- FOR2599 Project-ID 22359157 Deutsche Forschungsgemeinschaft (German Research Foundation)
- Peter Hans Hofschneider Professorship for Molecular Medicine; Foundation for Research in Science and the Humanities at the University of Zurich; Olga Mayenfisch Foundation
- UZH Candoc Grant
- «Personenfoerderung» Program of the Department of Surgery at the University Hospital Basel
- Leopoldina Postdoctoral Fellowship (LPDS 2022-07)
- Jill Roberts Institute for Research in IBD, Kenneth Rainin Foundation, the Sanders Family Foundation, Rosanne H. Silbermann Foundation, CURE for IBD, the Allen Discovery Center program, a Paul G. Allen Frontiers Group advised program of the Paul G. Allen Family Foundation, and the US National Institutes of Health (DK126871, AI151599, AI095466, AI095608, AR070116, AI172027, DK132244)
- Swiss canton of Grisons, The LOOP Zurich, and the Uniscientia Stiftung
Collapse
Affiliation(s)
- Xiaogang Feng
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Tilde Andersson
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Pascal Flüchter
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Julia Gschwend
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Ivan Berest
- Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Julian L Muff
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Department of Pediatric Surgery, University Children's Hospital of Basel, Basel, Switzerland
| | - Antonie Lechner
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Aurelia Gondrand
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Patrick Westermann
- Precision Proteomics Center, Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Nina Brander
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Daniele Carchidi
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | | | - Tianlang Pan
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Ulrich Boehm
- Experimental Pharmacology, Center for Molecular Signaling (PZMS) and Center for Gender-Specific Biology and Medicine (CGBM), Saarland University, Homburg, Germany
| | - Christoph S N Klose
- Department of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Allen Discovery Center for Neuroimmune Interactions, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Christoph B Messner
- Precision Proteomics Center, Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Trese Leinders-Zufall
- Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Frank Zufall
- Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | | |
Collapse
|
10
|
Cortez VS, Viragova S, Koga S, Liu M, O'Leary CE, Ricardo-Gonzalez RR, Schroeder AW, Kochhar N, Klein OD, Diamond MS, Liang HE, Locksley RM. IL-25-induced memory ILC2s mediate long-term small intestinal adaptation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.25.645270. [PMID: 40196473 PMCID: PMC11974837 DOI: 10.1101/2025.03.25.645270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
The adaptation of intestinal helminths to vertebrates evolved strategies to attenuate host tissue damage to support reproductive needs of parasites necessary to disseminate offspring to the environment. Helminths initiate the IL-25-mediated tuft cell-ILC2 circuit that enhances barrier protection of the host although viable parasites can target and limit the pathway. We used IL-25 to create small intestinal adaptation marked by anatomic, cell compositional and immunologic changes that persisted months after induction. Small intestinal adaptation was associated with heightened resistance to barrier pathogens, including in the lung, and sustained by transcriptionally and epigenetically modified, tissue-resident, memory-effector ILC2s distinct from those described by innate 'training'; epithelial stem cells remained unaltered. Despite requiring IL-25 for induction, memory ILC2s maintained an activated state in the absence of multiple alarmins and supported mucosal resilience while avoiding adverse sensitization to chronic inflammation, revealing a pathway for deploying innate immune cells to coordinate a distributed mucosal defense.
Collapse
|
11
|
Salas-Escabillas DJ, Hoffman MT, Brender SM, Moore JS, Wen HJ, Benitz S, Davis ET, Long D, Wombwell AM, Chianis ERD, Allen-Petersen BL, Steele NG, Sears RC, Matsumoto I, DelGiorno KE, Crawford HC. Tuft cells transdifferentiate to neural-like progenitor cells in the progression of pancreatic cancer. Dev Cell 2025; 60:837-852.e3. [PMID: 39721583 DOI: 10.1016/j.devcel.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/13/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is partly initiated through the transdifferentiation of acinar cells to metaplasia, which progresses to neoplasia and cancer. Tuft cells (TCs) are chemosensory cells not found in the normal pancreas but arise in cancer precursor lesions and diminish during progression to carcinoma. These metaplastic TCs (mTCs) suppress tumor progression through communication with the tumor microenvironment, but their fate during progression is unknown. To determine the fate of mTCs during PDA progression, we created a dual recombinase lineage trace model, wherein a pancreas-specific FlpO was used to induce tumorigenesis, while a tuft-cell specific Pou2f3CreERT/+ driver was used to induce expression of a tdTomato reporter. We found that mTCs in carcinoma transdifferentiate into neural-like progenitor cells (NRPs), a cell type associated with poor survival in patients. Using conditional knockout and overexpression systems, we found that Myc activity in mTCs is necessary and sufficient to induce this tuft-to-neuroendocrine transition (TNT).
Collapse
Affiliation(s)
- Daniel J Salas-Escabillas
- Cancer Biology, University of Michigan, Ann Arbor, MI, USA; Department of Surgery, Henry Ford Health, Detroit, MI, USA; Department of Pharmacology and Toxicology, Michigan State University, Lansing, MI, USA
| | - Megan T Hoffman
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Sydney M Brender
- Department of Surgery, Henry Ford Health, Detroit, MI, USA; Department of Pharmacology and Toxicology, Michigan State University, Lansing, MI, USA
| | - Jacee S Moore
- Department of Surgery, Henry Ford Health, Detroit, MI, USA; Department of Pharmacology and Toxicology, Michigan State University, Lansing, MI, USA
| | - Hui-Ju Wen
- Department of Surgery, Henry Ford Health, Detroit, MI, USA; Department of Pharmacology and Toxicology, Michigan State University, Lansing, MI, USA
| | - Simone Benitz
- Department of Surgery, Henry Ford Health, Detroit, MI, USA; Department of Pharmacology and Toxicology, Michigan State University, Lansing, MI, USA
| | - Erick T Davis
- Department of Surgery, Henry Ford Health, Detroit, MI, USA; Department of Pharmacology and Toxicology, Michigan State University, Lansing, MI, USA
| | - Daniel Long
- Department of Surgery, Henry Ford Health, Detroit, MI, USA; Department of Pharmacology and Toxicology, Michigan State University, Lansing, MI, USA
| | - Allison M Wombwell
- Department of Surgery, Henry Ford Health, Detroit, MI, USA; Department of Pharmacology and Toxicology, Michigan State University, Lansing, MI, USA
| | - Ella Rose D Chianis
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | | | - Nina G Steele
- Department of Surgery, Henry Ford Health, Detroit, MI, USA; Department of Pharmacology and Toxicology, Michigan State University, Lansing, MI, USA
| | - Rosalie C Sears
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | | | - Kathleen E DelGiorno
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Howard C Crawford
- Department of Surgery, Henry Ford Health, Detroit, MI, USA; Department of Pharmacology and Toxicology, Michigan State University, Lansing, MI, USA.
| |
Collapse
|
12
|
Meloun A, León B. Beyond CCR7: dendritic cell migration in type 2 inflammation. Front Immunol 2025; 16:1558228. [PMID: 40093008 PMCID: PMC11906670 DOI: 10.3389/fimmu.2025.1558228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 02/13/2025] [Indexed: 03/19/2025] Open
Abstract
Conventional dendritic cells (cDCs) are crucial antigen-presenting cells that initiate and regulate T cell responses, thereby shaping immunity against pathogens, innocuous antigens, tumors, and self-antigens. The migration of cDCs from peripheral tissues to draining lymph nodes (dLNs) is essential for their function in immune surveillance. This migration allows cDCs to convey the conditions of peripheral tissues to antigen-specific T cells in the dLNs, facilitating effective immune responses. Migration is primarily mediated by chemokine receptor CCR7, which is upregulated in response to homeostatic and inflammatory cues, guiding cDCs to dLNs. However, during type 2 immune responses, such as those triggered by parasites or allergens, a paradox arises-cDCs exhibit robust migration to dLNs despite low CCR7 expression. This review discusses how type 2 inflammation relies on additional signaling pathways, including those induced by membrane-derived bioactive lipid mediators like eicosanoids, sphingolipids, and oxysterols, which cooperate with CCR7 to enhance cDC migration and T helper 2 (Th2) differentiation. We explore the potential regulatory mechanisms of cDC migration in type 2 immunity, offering insights into the differential control of cDC trafficking in diverse immune contexts and its impact on immune responses.
Collapse
Affiliation(s)
- Audrey Meloun
- Innate Cells and Th2 Immunity Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Beatriz León
- Innate Cells and Th2 Immunity Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
13
|
Gerrick ER, Howitt MR. The Lost Kingdom: commensal protists in the gut microbiota. Trends Microbiol 2025:S0966-842X(25)00009-5. [PMID: 39952813 DOI: 10.1016/j.tim.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 02/17/2025]
Abstract
The gut microbiota critically influences many aspects of host biology, from nutrient acquisition to immunological function, and is integral to metazoan life. While most microbiome research has focused on bacteria, the intestinal microbiota encompasses a diverse constellation of microorganisms, including viruses, fungi, archaea, and protists. Among these microbes, commensal protists have been particularly neglected, to the point that their status as true members of the microbiota remained contentious. However, findings over the past decade revealed that commensal protists, particularly those in the Parabasalia phylum (parabasalids), perform keystone roles within the intestinal ecosystem. Emerging evidence highlights how parabasalids dramatically impact host immunity, gut microbiome ecology, and host susceptibility to both infectious and inflammatory diseases. In this review, we discuss the recent discoveries of the varied and powerful roles of commensal parabasalids in the intestinal microbiota and outline the challenges and opportunities in this burgeoning new area of the microbiome field.
Collapse
Affiliation(s)
- Elias R Gerrick
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA.
| | - Michael R Howitt
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
14
|
Lee M, Boyce JA, Barrett NA. Cysteinyl Leukotrienes in Allergic Inflammation. ANNUAL REVIEW OF PATHOLOGY 2025; 20:115-141. [PMID: 39374430 PMCID: PMC11759657 DOI: 10.1146/annurev-pathmechdis-111523-023509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
The cysteinyl leukotrienes (CysLTs), LTC4, LTD4, and LTE4, are potent lipid mediators derived from arachidonic acid through the 5-lipoxygenase pathway. These mediators produce both inflammation and bronchoconstriction through three distinct G protein-coupled receptors (GPCRs)-CysLT1, CysLT2, and OXGR1 (also known as CysLT3 or GPR99). While CysLT-mediated functions in the effector phase of allergic inflammation and asthma have been established for some time, recent work has demonstrated novel roles for these mediators and their receptors in the induction and amplification of type 2 inflammation. Additionally, in vitro studies and murine models have uncovered diverse regulatory mechanisms that restrain or amplify CysLT receptor activation and CysLT receptor function. This review provides an overview of CysLT biosynthesis and its regulation, the molecular and functional pharmacology of CysLT receptors, and an overview of the established and emerging roles of CysLTs in asthma, aspirin-exacerbated respiratory disease, and type 2 inflammation.
Collapse
Affiliation(s)
- Minkyu Lee
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Massachusetts, USA; , ,
| | - Joshua A Boyce
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Massachusetts, USA; , ,
| | - Nora A Barrett
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, Boston, Massachusetts, USA; , ,
| |
Collapse
|
15
|
Bohnacker S, Henkel FDR, Hartung F, Geerlof A, Riemer S, Prodjinotho UF, Salah EB, Mourão ASD, Bohn S, Teder T, Thomas D, Gurke R, Boeckel C, Ud-Dean M, König AC, Quaranta A, Alessandrini F, Lechner A, Spitzlberger B, Kabat AM, Pearce E, Haeggström JZ, Hauck SM, Wheelock CE, Jakobsson PJ, Sattler M, Voehringer D, Feige MJ, da Costa CP, Esser-von Bieren J. A helminth enzyme subverts macrophage-mediated immunity by epigenetic targeting of prostaglandin synthesis. Sci Immunol 2024; 9:eadl1467. [PMID: 39642243 DOI: 10.1126/sciimmunol.adl1467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/13/2024] [Indexed: 12/08/2024]
Abstract
The molecular mechanisms by which worm parasites evade host immunity are incompletely understood. In a mouse model of intestinal helminth infection using Heligmosomoides polygyrus bakeri (Hpb), we show that helminthic glutamate dehydrogenase (heGDH) drives parasite chronicity by suppressing macrophage-mediated host defense. Combining RNA-seq, ChIP-seq, and targeted lipidomics, we identify prostaglandin E2 (PGE2) as a major immune regulatory mechanism of heGDH. The induction of PGE2 and other immunoregulatory factors, including IL-12 family cytokines and indoleamine 2,3-dioxygenase 1, by heGDH required p300-mediated histone acetylation, whereas the enzyme's catalytic activity suppressed the synthesis of type 2-promoting leukotrienes by macrophages via 2-hydroxyglutarate. By contrast, the induction of immunoregulatory factors involved the heGDH N terminus by potentially mediating interactions with cellular targets (CD64 and GPNMB) identified by proteomics. Type 2 cytokines counteracted suppressive effects of heGDH on host defense, indicating that type 2 immunity can limit helminth-driven immune evasion. Thus, helminths harness a ubiquitous metabolic enzyme to epigenetically target type 2 macrophage activation and establish chronicity.
Collapse
Affiliation(s)
- Sina Bohnacker
- Department of Immunobiology, Université de Lausanne, Epalinges, Switzerland
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
| | - Fiona D R Henkel
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
| | - Franziska Hartung
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
| | - Arie Geerlof
- Protein Expression and Purification Facility (PEPF), Institute of Structural Biology, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Sandra Riemer
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
| | - Ulrich F Prodjinotho
- Institute for Microbiology, Immunology and Hygiene, Technical University of Munich, Munich, Germany
- Center for Global Health, Technical University of Munich, Munich, Germany
- German Center for Infection Research (DZIF), Munich, Germany
| | - Eya Ben Salah
- Department of Immunobiology, Université de Lausanne, Epalinges, Switzerland
| | - André Santos Dias Mourão
- Protein Expression and Purification Facility (PEPF), Institute of Structural Biology, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Stefan Bohn
- Department of CryoEM Technology, Max Planck Institute of Biochemistry, Martinsried, Germany
- Cryo-Electron Microscopy Platform and Institute of Structural Biology, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Tarvi Teder
- Department of Medical Biochemistry and Biophysics, Division of Chemistry II, Karolinska Institutet, Stockholm, Sweden
| | - Dominique Thomas
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP) and Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Frankfurt am Main, Germany
| | - Robert Gurke
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP) and Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), Frankfurt am Main, Germany
| | - Christiane Boeckel
- Institute of Computational Biology, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Minhaz Ud-Dean
- Institute of Computational Biology, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Ann-Christine König
- Metabolomics and Proteomics Core, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Alessandro Quaranta
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Francesca Alessandrini
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
| | - Antonie Lechner
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
| | - Benedikt Spitzlberger
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
| | - Agnieszka M Kabat
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Edward Pearce
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Jesper Z Haeggström
- Department of Medical Biochemistry and Biophysics, Division of Chemistry II, Karolinska Institutet, Stockholm, Sweden
| | - Stefanie M Hauck
- Metabolomics and Proteomics Core, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Craig E Wheelock
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| | - Per-Johan Jakobsson
- Department of Medicine, Division of Rheumatology, Karolinska Institutet and Karolinska University Hospital at Solna, Stockholm, Sweden
| | - Michael Sattler
- Cryo-Electron Microscopy Platform and Institute of Structural Biology, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Bavarian NMR-Center, Department Chemie, Technische Universität München, Garching, Germany
| | - David Voehringer
- Infektionsbiologische Abteilung, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität, Erlangen-Nürnberg, Germany
| | - Matthias J Feige
- Center for Functional Protein Assemblies (CPA), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Clarissa Prazeres da Costa
- Institute for Microbiology, Immunology and Hygiene, Technical University of Munich, Munich, Germany
- Center for Global Health, Technical University of Munich, Munich, Germany
- German Center for Infection Research (DZIF), Munich, Germany
| | - Julia Esser-von Bieren
- Department of Immunobiology, Université de Lausanne, Epalinges, Switzerland
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Munich, German Research Center for Environmental Health, Munich, Germany
| |
Collapse
|
16
|
Silverman JB, Krystofiak EE, Caplan LR, Lau KS, Tyska MJ. Organization of a cytoskeletal superstructure in the apical domain of intestinal tuft cells. J Cell Biol 2024; 223:e202404070. [PMID: 39352498 PMCID: PMC11457492 DOI: 10.1083/jcb.202404070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 08/26/2024] [Accepted: 09/16/2024] [Indexed: 10/09/2024] Open
Abstract
Tuft cells are a rare epithelial cell type that play important roles in sensing and responding to luminal antigens. A defining morphological feature of this lineage is the actin-rich apical "tuft," which contains large fingerlike protrusions. However, details of the cytoskeletal ultrastructure underpinning the tuft, the molecules involved in building this structure, or how it supports tuft cell biology remain unclear. In the context of the small intestine, we found that tuft cell protrusions are supported by long-core bundles that consist of F-actin crosslinked in a parallel and polarized configuration; they also contain a tuft cell-specific complement of actin-binding proteins that exhibit regionalized localization along the bundle axis. Remarkably, in the sub-apical cytoplasm, the array of core actin bundles interdigitates and co-aligns with a highly ordered network of microtubules. The resulting cytoskeletal superstructure is well positioned to support subcellular transport and, in turn, the dynamic sensing functions of the tuft cell that are critical for intestinal homeostasis.
Collapse
Affiliation(s)
- Jennifer B. Silverman
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Evan E. Krystofiak
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Cell Imaging Shared Resource, Vanderbilt University, Nashville, TN, USA
| | - Leah R. Caplan
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Ken S. Lau
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Matthew J. Tyska
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
17
|
Kania AK, Kokkinou E, Pearce E, Pearce E. Metabolic adaptations of ILC2 and Th2 cells in type 2 immunity. Curr Opin Immunol 2024; 91:102503. [PMID: 39520759 DOI: 10.1016/j.coi.2024.102503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Type 2 immune responses play a crucial role in host defense against parasitic infections but can also promote the development of allergies and asthma. This response is orchestrated primarily by group 2 innate lymphoid cells (ILC2) and helper type 2 (Th2) cells, both of which undergo substantial metabolic reprogramming as they transition from resting to activated states. Understanding these metabolic adaptations not only provides insights into the fundamental biology of ILC2 and Th2 cells but also opens up potential therapeutic avenues for the identification of novel metabolic targets that can extend the current treatment regimens for diseases in which type 2 immune responses play pivotal roles. By integrating recent findings, this review underscores the significance of cellular metabolism in orchestrating immune functions and highlights future directions for research in this evolving field.
Collapse
Affiliation(s)
- Anna K Kania
- Bloomberg Kimmel Institute of Cancer Immunotherapy, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Efthymia Kokkinou
- Bloomberg Kimmel Institute of Cancer Immunotherapy, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Erika Pearce
- Bloomberg Kimmel Institute of Cancer Immunotherapy, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Edward Pearce
- Bloomberg Kimmel Institute of Cancer Immunotherapy, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
18
|
Feng X, Flüchter P, De Tenorio JC, Schneider C. Tuft cells in the intestine, immunity and beyond. Nat Rev Gastroenterol Hepatol 2024; 21:852-868. [PMID: 39327439 DOI: 10.1038/s41575-024-00978-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/02/2024] [Indexed: 09/28/2024]
Abstract
Tuft cells have gained substantial attention over the past 10 years due to numerous reports linking them with type 2 immunity and microorganism-sensing capacity in many mucosal tissues. This heightened interest is fuelled by their unique ability to produce an array of biological effector molecules, including IL-25, allergy-related eicosanoids, and the neurotransmitter acetylcholine, enabling downstream responses in diverse cell types. Operating through G protein-coupled receptor-mediated signalling pathways reminiscent of type II taste cells in oral taste buds, tuft cells emerge as chemosensory sentinels that integrate luminal conditions, eliciting appropriate responses in immune, epithelial and neuronal populations. How tuft cells promote tissue alterations and adaptation to the variety of stimuli at mucosal surfaces has been explored in multiple studies in the past few years. Since the initial recognition of the role of tuft cells, the discovery of diverse tuft cell effector functions and associated feedback loops have also revealed the complexity of tuft cell biology. Although earlier work largely focused on extraintestinal tissues, novel genetic tools and recent mechanistic studies on intestinal tuft cells established fundamental concepts of tuft cell activation and functions. This Review is an overview of intestinal tuft cells, providing insights into their development, signalling and interaction modules in immunity and other states.
Collapse
Affiliation(s)
- Xiaogang Feng
- Department of Physiology, University of Zurich, Zurich, Switzerland
| | - Pascal Flüchter
- Department of Physiology, University of Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
19
|
Mandanas MV, Barrett NA. Epithelial sensing in allergic disease. Curr Opin Immunol 2024; 91:102490. [PMID: 39326203 PMCID: PMC11609016 DOI: 10.1016/j.coi.2024.102490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/04/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024]
Abstract
Epithelial cells provide a first line of immune defense by maintaining barrier function, orchestrating mucociliary clearance, secreting antimicrobial molecules, and generating sentinel signals to both activate innate immune cells and shape adaptive immunity. Although epithelial alarmins play a particularly important role in the initiation of type 2 inflammation in response to allergens, the mechanisms by which epithelial cells sense the environment and regulate the generation and release of alarmins have been poorly understood. Recent studies have identified new sensors and signaling pathways used by barrier epithelial cells to elicit type 2 inflammation, including a novel pathway for the release of interleukin-33 from the nucleus that depends on apoptotic signaling. These recent findings have implications in the development of allergic diseases, from atopic eczema to food allergy, rhinitis, and asthma.
Collapse
Affiliation(s)
- Michael V Mandanas
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, MA, USA; Department of Immunology, Harvard Medical School, MA, USA
| | - Nora A Barrett
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women's Hospital, MA, USA; Department of Medicine, Harvard Medical School, MA, USA.
| |
Collapse
|
20
|
Lopez Espinoza A, Christopher T, Tait Wojno ED. Epithelial-immune interactions govern type 2 immunity at barrier surfaces. Curr Opin Immunol 2024; 91:102501. [PMID: 39522453 PMCID: PMC11734749 DOI: 10.1016/j.coi.2024.102501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
Allergic diseases are acute and chronic inflammatory conditions resulting from disproportionate responses to environmental stimuli. Affecting approximately 40% of the global population, these diseases significantly contribute to morbidity and increasing health care costs. Allergic reactions are triggered by pollen, house dust mites, animal dander, mold, food antigens, venoms, toxins, and drugs. This review explores the pivotal role of the epithelium in the skin, lungs, and gastrointestinal tract in regulating the allergic response and delves into the mechanisms of tissue-specific epithelial-immune interactions in this context, with recent advances highlighting their roles in the initiation, elicitation, and resolution phases of allergy. Understanding these intricate interactions at epithelial barriers is essential for developing targeted therapies to manage and treat allergic diseases.
Collapse
Affiliation(s)
| | - Tighe Christopher
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | - Elia D Tait Wojno
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
21
|
Vlajic K, Bie W, Gilic MB, Tyner AL. Impaired activation of succinate-induced type 2 immunity and secretory cell production in the small intestines of Ptk6-/- male mice. Cell Death Dis 2024; 15:777. [PMID: 39461944 PMCID: PMC11513114 DOI: 10.1038/s41419-024-07149-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024]
Abstract
Protein tyrosine kinase 6 (PTK6) is an intracellular tyrosine kinase that is distantly related to the SRC family of tyrosine kinases. It is expressed in epithelial linings and regulates regeneration and repair of the intestinal epithelium. Analysis of publicly available datasets showed Ptk6 is upregulated in tuft cells upon activation of type 2 immunity. We found that disruption of Ptk6 influences gene expression involved in intestinal immune responses. Administration of succinate, which mimics infection and activates tuft cells, revealed PTK6-dependent activation of innate immune responses in male but not female mice. In contrast to all wild type and Ptk6-/- female mice, Ptk6-/- male mice do not activate innate immunity or upregulate differentiation of the tuft and goblet secretory cell lineages following succinate treatment. Mechanistically, we found that PTK6 regulates Il25 and Irag2, genes that are required for tuft cell effector functions and activation of type 2 innate immunity, in organoids derived from intestines of male but not female mice. In patients with Crohn's disease, PTK6 is upregulated in tuft cells in noninflamed regions of intestine. These data highlight roles for PTK6 in contributing to sex differences in intestinal innate immunity and provide new insights into the regulation of IL-25.
Collapse
Affiliation(s)
- Katarina Vlajic
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, University of Illinois at Chicago, Chicago, IL, 60607, USA
- University of Washington, Seattle, WA, USA
| | - Wenjun Bie
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Milica B Gilic
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, University of Illinois at Chicago, Chicago, IL, 60607, USA
- St Jude Children's Hospital, Memphis, TN, USA
| | - Angela L Tyner
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| |
Collapse
|
22
|
Zheng C, Jiang L, Gong X, Zhang W, Pu R, Zhang Y, Zhao M, Jiang C, Wang H, Zhang P, Li Y. Cabozantinib-encapsulated and maytansine-conjugated high-density lipoprotein for immunotherapy in colorectal cancer. J Control Release 2024; 376:138-148. [PMID: 39362608 DOI: 10.1016/j.jconrel.2024.09.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024]
Abstract
Advanced colorectal cancer (CRC) responds poorly to current adjuvant therapies, partially due to its immunosuppressive intestinal microenvironment. We found that myeloid-derived suppressor cells (MDSCs) were enriched in orthotopic tumors due to treatment-induced succinate release, which activated tuft cells and upregulated interleukin 25 (IL-25) and interleukin 13 (IL-13). We engineered a cabozantinib (Cabo)-encapsulated and maytansine (DM1)-conjugated synthetic high-density lipoprotein (ECCD-sHDL) to modulate the tumor microenvironment. DM1 induced immunogenic cell death and promoted the maturation of dendritic cells. Meanwhile, Cabo alleviated DM1-induced succinate release, preventing tuft cell activation, downregulating IL-25 and IL-13 secretion, and reducing intratumoral MDSC infiltration. ECCD-sHDL increased the densities of active cytotoxic T lymphocytes (CTLs) and M1 macrophages in the tumors, effectively inhibiting tumor growth and metastasis, thereby prolonging survival in murine CRC models. Our study sheds light on the mechanism of treatment-induced immunosuppression in orthotopic CRC and demonstrates that this combinatorial therapy could be an effective treatment for CRC.
Collapse
Affiliation(s)
- Chao Zheng
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, China.; State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Linyang Jiang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang Gong
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Wen Zhang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Rong Pu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuan Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Mengmeng Zhao
- Department of Pulmonary and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Chen Jiang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, China..
| | - Hao Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, China.; National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai 201203, China.
| | - Pengcheng Zhang
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China; Shanghai Clinical Research and Trial Center, Shanghai 201203, China.
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; Nanjing University of Chinese Medicine, Nanjing 210023, China; Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China.
| |
Collapse
|
23
|
Huang L, Bernink JH, Giladi A, Krueger D, van Son GJF, Geurts MH, Busslinger G, Lin L, Begthel H, Zandvliet M, Buskens CJ, Bemelman WA, López-Iglesias C, Peters PJ, Clevers H. Tuft cells act as regenerative stem cells in the human intestine. Nature 2024; 634:929-935. [PMID: 39358509 PMCID: PMC11499303 DOI: 10.1038/s41586-024-07952-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/15/2024] [Indexed: 10/04/2024]
Abstract
In mice, intestinal tuft cells have been described as a long-lived, postmitotic cell type. Two distinct subsets have been identified: tuft-1 and tuft-2 (ref. 1). By combining analysis of primary human intestinal resection material and intestinal organoids, we identify four distinct human tuft cell states, two of which overlap with their murine counterparts. We show that tuft cell development depends on the presence of Wnt ligands, and that tuft cell numbers rapidly increase on interleukin-4 (IL-4) and IL-13 exposure, as reported previously in mice2-4. This occurs through proliferation of pre-existing tuft cells, rather than through increased de novo generation from stem cells. Indeed, proliferative tuft cells occur in vivo both in fetal and in adult human intestine. Single mature proliferating tuft cells can form organoids that contain all intestinal epithelial cell types. Unlike stem and progenitor cells, human tuft cells survive irradiation damage and retain the ability to generate all other epithelial cell types. Accordingly, organoids engineered to lack tuft cells fail to recover from radiation-induced damage. Thus, tuft cells represent a damage-induced reserve intestinal stem cell pool in humans.
Collapse
Affiliation(s)
- Lulu Huang
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
- Oncode Institute, Hubrecht Institute, Utrecht, the Netherlands
| | - Jochem H Bernink
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands.
- Amsterdam University Medical Center, University of Amsterdam, Department of Experimental Immunology, Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands.
| | - Amir Giladi
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
- Oncode Institute, Hubrecht Institute, Utrecht, the Netherlands
| | - Daniel Krueger
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Gijs J F van Son
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
- The Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Maarten H Geurts
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
- The Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Georg Busslinger
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Lin Lin
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
- The Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Harry Begthel
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Maurice Zandvliet
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Christianne J Buskens
- Amsterdam University Medical Center, University of Amsterdam, Department of Surgery, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Willem A Bemelman
- Amsterdam University Medical Center, University of Amsterdam, Department of Surgery, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Carmen López-Iglesias
- The Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, the Netherlands
| | - Peter J Peters
- The Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, the Netherlands
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands.
- Oncode Institute, Hubrecht Institute, Utrecht, the Netherlands.
- The Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands.
- Pharma, Research and Early Development of F. Hoffmann-La Roche Ltd, Basel, Switzerland.
| |
Collapse
|
24
|
Wathieu C, Lavergne A, Xu X, Rolot M, Nemazanyy I, Shostak K, El Hachem N, Maurizy C, Leemans C, Close P, Nguyen L, Desmet C, Tielens S, Dewals BG, Chariot A. Loss of Elp3 blocks intestinal tuft cell differentiation via an mTORC1-Atf4 axis. EMBO J 2024; 43:3916-3947. [PMID: 39085648 PMCID: PMC11405396 DOI: 10.1038/s44318-024-00184-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 06/25/2024] [Accepted: 07/12/2024] [Indexed: 08/02/2024] Open
Abstract
Intestinal tuft cells are critical for anti-helminth parasite immunity because they produce IL-25, which triggers IL-13 secretion by activated group 2 innate lymphoid cells (ILC2s) to expand both goblet and tuft cells. We show that epithelial Elp3, a tRNA-modifying enzyme, promotes tuft cell differentiation and is consequently critical for IL-25 production, ILC2 activation, goblet cell expansion and control of Nippostrongylus brasiliensis helminth infection in mice. Elp3 is essential for the generation of intestinal immature tuft cells and for the IL-13-dependent induction of glycolytic enzymes such as Hexokinase 1 and Aldolase A. Importantly, loss of epithelial Elp3 in the intestine blocks the codon-dependent translation of the Gator1 subunit Nprl2, an mTORC1 inhibitor, which consequently enhances mTORC1 activation and stabilizes Atf4 in progenitor cells. Likewise, Atf4 overexpression in mouse intestinal epithelium blocks tuft cell differentiation in response to intestinal helminth infection. Collectively, our data define Atf4 as a negative regulator of tuft cells and provide insights into promotion of intestinal type 2 immune response to parasites through tRNA modifications.
Collapse
Affiliation(s)
- Caroline Wathieu
- Interdisciplinary Cluster for Applied Genoproteomics, Liege, Belgium
- Laboratory of Cancer Biology, GIGA, University of Liege, Liege, Belgium
| | | | - Xinyi Xu
- Interdisciplinary Cluster for Applied Genoproteomics, Liege, Belgium
- Laboratory of Cancer Biology, GIGA, University of Liege, Liege, Belgium
| | - Marion Rolot
- Laboratory of Immunology-Vaccinology, Fundamental and Applied Research in Animals and Health (FARAH), University of Liege, Liege, Belgium
| | - Ivan Nemazanyy
- Platform for Metabolic Analyses, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS 3633, Paris, France
| | - Kateryna Shostak
- Interdisciplinary Cluster for Applied Genoproteomics, Liege, Belgium
- Laboratory of Cancer Biology, GIGA, University of Liege, Liege, Belgium
| | - Najla El Hachem
- Interdisciplinary Cluster for Applied Genoproteomics, Liege, Belgium
- Laboratory of Cancer Signaling, GIGA, University of Liege, Liege, Belgium
| | - Chloé Maurizy
- Interdisciplinary Cluster for Applied Genoproteomics, Liege, Belgium
- Laboratory of Cancer Biology, GIGA, University of Liege, Liege, Belgium
| | - Charlotte Leemans
- Interdisciplinary Cluster for Applied Genoproteomics, Liege, Belgium
- Laboratory of Cancer Signaling, GIGA, University of Liege, Liege, Belgium
| | - Pierre Close
- Interdisciplinary Cluster for Applied Genoproteomics, Liege, Belgium
- Laboratory of Cancer Signaling, GIGA, University of Liege, Liege, Belgium
- WELBIO department, WEL Research Institute, avenue Pasteur, 6, 1300, Wavre, Belgium
| | - Laurent Nguyen
- Interdisciplinary Cluster for Applied Genoproteomics, Liege, Belgium
- WELBIO department, WEL Research Institute, avenue Pasteur, 6, 1300, Wavre, Belgium
- Laboratory of Molecular Regulation of Neurogenesis, University of Liege, Liege, Belgium
| | - Christophe Desmet
- Interdisciplinary Cluster for Applied Genoproteomics, Liege, Belgium
- Laboratory of Cellular and Molecular Immunology, University of Liege, Liege, GIGA-I3, Belgium
| | - Sylvia Tielens
- Interdisciplinary Cluster for Applied Genoproteomics, Liege, Belgium
- Laboratory of Cancer Biology, GIGA, University of Liege, Liege, Belgium
| | - Benjamin G Dewals
- Laboratory of Immunology-Vaccinology, Fundamental and Applied Research in Animals and Health (FARAH), University of Liege, Liege, Belgium
| | - Alain Chariot
- Interdisciplinary Cluster for Applied Genoproteomics, Liege, Belgium.
- Laboratory of Cancer Biology, GIGA, University of Liege, Liege, Belgium.
- WELBIO department, WEL Research Institute, avenue Pasteur, 6, 1300, Wavre, Belgium.
| |
Collapse
|
25
|
Martinez-Blanco M, Mukhatayev Z, Chatila TA. Pathogenic mechanisms in the evolution of food allergy. Immunol Rev 2024; 326:219-226. [PMID: 39285835 PMCID: PMC11488529 DOI: 10.1111/imr.13398] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
The early development of the neonatal immune system is profoundly influenced by exposure to dietary and microbial antigens, which shapes mucosal tolerance. Successful oral tolerance induction is crucially dependent on microbially imprinted immune cells, most notably the RORγt+ regulatory T (Treg) and antigen presenting cells and is essential for preventing food allergy (FA). The development of FA can be envisioned to result from disruptions at key checkpoints (CKPTs) that govern oral tolerance induction. These include gut epithelial sensory and effector circuits that when dysregulated promote pro-allergic gut dysbiosis. They also include microbially imprinted immune regulatory circuits that are disrupted by dysbiosis and pro-allergic immune responses unleashed by the dysregulation of the aforementioned cascades. Understanding these checkpoints is essential for developing therapeutic strategies to restore immune homeostasis in FA.
Collapse
Affiliation(s)
- Monica Martinez-Blanco
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Zhussipbek Mukhatayev
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Talal A Chatila
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
26
|
Yuan T, Zhou Q, Tian Y, Ou Y, Long Y, Tan Y. Innate lymphoid cells and infectious diseases. Innate Immun 2024; 30:120-135. [PMID: 39363687 PMCID: PMC11556573 DOI: 10.1177/17534259241287311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 08/19/2024] [Accepted: 09/09/2024] [Indexed: 10/05/2024] Open
Abstract
Innate lymphoid cells (ILCs) are the main resident lymphocytes that mostly reside in tissues owing to the lack of adaptive antigen receptors. These cells are involved in early anti-infective immunity, antitumour immunity, regulation of tissue inflammation, and maintenance of homeostasis in the internal environment of tissues and have been referred to as the "first armies stationed in the human body". ILCs are widely distributed in the lungs, colon, lymph nodes, oral mucosa and even embryonic tissues. Due to the advantage of their distribution location, they are often among the first cells to come into contact with pathogens.Relevant studies have demonstrated that ILCs play an early role in the defence against a variety of pathogenic microorganisms, including bacteria, viruses, fungi and helminths, before they intervene in the adaptive immune system. ILCs can initiate a rapid, nonspecific response against pathogens prior to the initiation of an adaptive immune response and can generate a protective immune response against specific pathogens, secreting different effectors to play a role.There is growing evidence that ILCs play an important role in host control of infectious diseases. In this paper, we summarize and discuss the current known infectious diseases in which ILCs are involved and ILC contribution to the defence against infectious diseases. Further insights into the mechanisms of ILCs action in different infectious diseases will be useful in facilitating the development of therapeutic strategies for early control of infections.
Collapse
Affiliation(s)
- Ting Yuan
- Department of Infectious Diseases, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, China
| | - Qianhui Zhou
- Department of Respiratory and Critical Care Medicine, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, China
| | - Yuqiu Tian
- Department of Infectious Diseases, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, China
| | - Yangjing Ou
- Department of Infectious Diseases, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, China
| | - YunZhu Long
- Department of Infectious Diseases, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, China
| | - YingZheng Tan
- Department of Infectious Diseases, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, China
| |
Collapse
|
27
|
Castranova D, Kenton MI, Kraus A, Dell CW, Park JS, Galanternik MV, Park G, Lumbantobing DN, Dye L, Marvel M, Iben J, Taimatsu K, Pham V, Willms RJ, Blevens L, Robertson TF, Hou Y, Huttenlocher A, Foley E, Parenti LR, Frazer JK, Narayan K, Weinstein BM. The axillary lymphoid organ - an external, experimentally accessible immune organ in the zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.25.605139. [PMID: 39091802 PMCID: PMC11291151 DOI: 10.1101/2024.07.25.605139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Lymph nodes and other secondary lymphoid organs play critical roles in immune surveillance and immune activation in mammals, but the deep internal locations of these organs make it challenging to image and study them in living animals. Here, we describe a previously uncharacterized external immune organ in the zebrafish ideally suited for studying immune cell dynamics in vivo, the axillary lymphoid organ (ALO). This small, translucent organ has an outer cortex teeming with immune cells, an inner medulla with a mesh-like network of fibroblastic reticular cells along which immune cells migrate, and a network of lymphatic vessels draining to a large adjacent lymph sac. Noninvasive high-resolution imaging of transgenically marked immune cells can be carried out in the lobes of living animals, and the ALO is readily accessible to external treatment. This newly discovered tissue provides a superb model for dynamic live imaging of immune cells and their interaction with pathogens and surrounding tissues, including blood and lymphatic vessels.
Collapse
Affiliation(s)
- Daniel Castranova
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| | - Madeleine I. Kenton
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| | - Aurora Kraus
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| | - Christopher W. Dell
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA and Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Jong S. Park
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| | - Marina Venero Galanternik
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| | - Gilseung Park
- Section of Pediatric Hematology-Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Daniel N. Lumbantobing
- Division of Fishes, Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
| | - Louis Dye
- Microscopy and Imaging Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| | - Miranda Marvel
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| | - James Iben
- Molecular Genomics Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| | - Kiyohito Taimatsu
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| | - Van Pham
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| | - Reegan J. Willms
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Lucas Blevens
- Section of Pediatric Hematology-Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Tanner F. Robertson
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706
| | - Yiran Hou
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706
| | - Edan Foley
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Lynne R. Parenti
- Division of Fishes, Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
| | - J. Kimble Frazer
- Section of Pediatric Hematology-Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Kedar Narayan
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA and Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Brant M. Weinstein
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814, USA
| |
Collapse
|
28
|
Rajeev S, Li S, Leon-Coria A, Wang A, Kraemer L, Wang SJ, Boim A, Flannigan K, Shute A, Baggio CH, Callejas BE, MacNaughton WK, Finney CAM, McKay DM. Enteric tuft cells coordinate timely expulsion of the tapeworm Hymenolepis diminuta from the murine host by coordinating local but not systemic immunity. PLoS Pathog 2024; 20:e1012381. [PMID: 39083533 PMCID: PMC11290655 DOI: 10.1371/journal.ppat.1012381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 06/28/2024] [Indexed: 08/02/2024] Open
Abstract
Recognizing that enteric tuft cells can signal the presence of nematode parasites, we investigated whether tuft cells are required for the expulsion of the cestode, Hymenolepis diminuta, from the non-permissive mouse host, and in concomitant anti-helminthic responses. BALB/c and C57BL/6 mice infected with H. diminuta expelled the worms by 11 days post-infection (dpi) and displayed DCLK1+ (doublecortin-like kinase 1) tuft cell hyperplasia in the small intestine (not the colon) at 11 dpi. This tuft cell hyperplasia was dependent on IL-4Rα signalling and adaptive immunity, but not the microbiota. Expulsion of H. diminuta was slowed until at least 14 dpi, but not negated, in tuft cell-deficient Pou2f3-/- mice and was accompanied by delayed goblet cell hyperplasia and slowed small bowel transit. Worm antigen and mitogen evoked production of IL-4 and IL-10 by splenocytes from wild-type and Pou2f3-/- mice was not appreciably different, suggesting similar systemic immune reactivity to infection with H. diminuta. Wild-type and Pou2f3-/- mice infected with H. diminuta displayed partial protection against subsequent infection with the nematode Heligmosomoides bakeri. We speculate that, with respect to H. diminuta, enteric tuft cells are important for local immune events driving the rapidity of H. diminuta expulsion but are not critical in initiating or sustaining systemic Th2 responses that provide concomitant immunity against secondary infection with H. bakeri.
Collapse
Affiliation(s)
- Sruthi Rajeev
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions Program, University of Calgary, Calgary, Alberta, Canada
| | - ShuHua Li
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions Program, University of Calgary, Calgary, Alberta, Canada
| | - Aralia Leon-Coria
- Host-Parasite Interactions Program, University of Calgary, Calgary, Alberta, Canada
- Department of Biology, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Arthur Wang
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions Program, University of Calgary, Calgary, Alberta, Canada
| | - Lucas Kraemer
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions Program, University of Calgary, Calgary, Alberta, Canada
| | - Susan Joanne Wang
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions Program, University of Calgary, Calgary, Alberta, Canada
| | - Annaliese Boim
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions Program, University of Calgary, Calgary, Alberta, Canada
| | - Kyle Flannigan
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Adam Shute
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions Program, University of Calgary, Calgary, Alberta, Canada
| | - Cristiane H. Baggio
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Blanca E. Callejas
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Wallace K. MacNaughton
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Constance A. M. Finney
- Host-Parasite Interactions Program, University of Calgary, Calgary, Alberta, Canada
- Department of Biology, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Derek M. McKay
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Host-Parasite Interactions Program, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
29
|
Ishii Y, Matsunaga T, Yasui T, Rini DM, Inoue R, Yamamoto Y, Suzuki T. Supplemental Psyllium Fiber Increases Antimicrobial Proteins via the Tuft Cell-ILC2 Circuit and Type II Immune Response in the Mouse Small Intestine. NUTRACEUTICALS 2024; 4:307-322. [DOI: 10.3390/nutraceuticals4020019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
Dietary fibers regulate intestinal barrier function; however, the precise mechanisms remain unclear. This study investigated the effects of psyllium fibers on antimicrobial protein expression, focusing on the type II immunity and tuft cell-group 2 innate lymphoid cell (ILC2) circuit in the small intestine of the mouse. Supplemental psyllium fiber upregulated antimicrobial proteins, such as small proline-rich protein 2A (SPRR2A) and resistin-like beta (RELMβ), in mouse small intestine, evidently affecting cecal microbiota composition. The psyllium fibers also increased the RNA and protein expression of molecules related to ILC2 and tuft cells, such as IL-13, IL-25, DCLK1, Gfi-1b, SH2 domain-containing protein 3C, and Spi-B. In addition, ILC2 inhibitor (disulfiram) and bitter taste receptor blocker administration reduced psyllium-induced SPRR2A and RELMβ expression. Collectively, psyllium supplementation upregulates antimicrobial proteins such as SPRR2A and RELMß via the type II immune response and tuft cell-ILC2 circuit in the mouse small intestine.
Collapse
Affiliation(s)
- Yoshiki Ishii
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Japan
| | - Taiyo Matsunaga
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Japan
| | - Tomoki Yasui
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Japan
| | - Dina Mustika Rini
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Japan
- Department of Food Technology, Faculty of Engineering, Universitas Pembangunan Nasional “Veteran” Jawa Timur, Surabaya 60294, Indonesia
| | - Ryo Inoue
- Faculty of Agriculture, Setsunan University, 45-1 Nagaotoge-cho, Hirakata 573-0101, Japan
| | - Yoshinari Yamamoto
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Japan
| | - Takuya Suzuki
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Japan
| |
Collapse
|
30
|
Billipp TE, Fung C, Webeck LM, Sargent DB, Gologorsky MB, Chen Z, McDaniel MM, Kasal DN, McGinty JW, Barrow KA, Rich LM, Barilli A, Sabat M, Debley JS, Wu C, Myers R, Howitt MR, von Moltke J. Tuft cell-derived acetylcholine promotes epithelial chloride secretion and intestinal helminth clearance. Immunity 2024; 57:1243-1259.e8. [PMID: 38744291 PMCID: PMC11168877 DOI: 10.1016/j.immuni.2024.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 02/05/2024] [Accepted: 03/29/2024] [Indexed: 05/16/2024]
Abstract
Epithelial cells secrete chloride to regulate water release at mucosal barriers, supporting both homeostatic hydration and the "weep" response that is critical for type 2 immune defense against parasitic worms (helminths). Epithelial tuft cells in the small intestine sense helminths and release cytokines and lipids to activate type 2 immune cells, but whether they regulate epithelial secretion is unknown. Here, we found that tuft cell activation rapidly induced epithelial chloride secretion in the small intestine. This response required tuft cell sensory functions and tuft cell-derived acetylcholine (ACh), which acted directly on neighboring epithelial cells to stimulate chloride secretion, independent of neurons. Maximal tuft cell-induced chloride secretion coincided with immune restriction of helminths, and clearance was delayed in mice lacking tuft cell-derived ACh, despite normal type 2 inflammation. Thus, we have uncovered an epithelium-intrinsic response unit that uses ACh to couple tuft cell sensing to the secretory defenses of neighboring epithelial cells.
Collapse
Affiliation(s)
- Tyler E Billipp
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | - Connie Fung
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lily M Webeck
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | - Derek B Sargent
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | - Matthew B Gologorsky
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Zuojia Chen
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Margaret M McDaniel
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | - Darshan N Kasal
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | - John W McGinty
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | - Kaitlyn A Barrow
- Center for Respiratory Biology and Therapeutics, Seattle Children's Research Institute, Seattle, WA, USA
| | - Lucille M Rich
- Center for Respiratory Biology and Therapeutics, Seattle Children's Research Institute, Seattle, WA, USA
| | | | - Mark Sabat
- Takeda Pharmaceuticals, San Diego, CA, USA
| | - Jason S Debley
- Center for Respiratory Biology and Therapeutics, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, Division of Pulmonary and Sleep Medicine, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| | - Chuan Wu
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | | | - Michael R Howitt
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jakob von Moltke
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
31
|
Li YH, Yang YS, Xue YB, Lei H, Zhang SS, Qian J, Yao Y, Zhou R, Huang L. G protein subunit G γ13-mediated signaling pathway is critical to the inflammation resolution and functional recovery of severely injured lungs. eLife 2024; 12:RP92956. [PMID: 38836551 DOI: 10.7554/elife.92956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
Abstract
Tuft cells are a group of rare epithelial cells that can detect pathogenic microbes and parasites. Many of these cells express signaling proteins initially found in taste buds. It is, however, not well understood how these taste signaling proteins contribute to the response to the invading pathogens or to the recovery of injured tissues. In this study, we conditionally nullified the signaling G protein subunit Gγ13 and found that the number of ectopic tuft cells in the injured lung was reduced following the infection of the influenza virus H1N1. Furthermore, the infected mutant mice exhibited significantly larger areas of lung injury, increased macrophage infiltration, severer pulmonary epithelial leakage, augmented pyroptosis and cell death, greater bodyweight loss, slower recovery, worsened fibrosis and increased fatality. Our data demonstrate that the Gγ13-mediated signal transduction pathway is critical to tuft cells-mediated inflammation resolution and functional repair of the damaged lungs.To our best knowledge, it is the first report indicating subtype-specific contributions of tuft cells to the resolution and recovery.
Collapse
Affiliation(s)
- Yi-Hong Li
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yi-Sen Yang
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yan-Bo Xue
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Hao Lei
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Sai-Sai Zhang
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Junbin Qian
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Yushi Yao
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruhong Zhou
- College of Life Sciences, Zhejiang University, Hangzhou, China
- Zhejiang University Shanghai Institute for Advanced Study, Shanghai, Shanghai, China
| | - Liquan Huang
- College of Life Sciences, Zhejiang University, Hangzhou, China
- Zhejiang University Shanghai Institute for Advanced Study, Shanghai, Shanghai, China
- Monell Chemical Senses Center, Philadelphia, United States
| |
Collapse
|
32
|
Sipos F, Műzes G. Colonic Tuft Cells: The Less-Recognized Therapeutic Targets in Inflammatory Bowel Disease and Colorectal Cancer. Int J Mol Sci 2024; 25:6209. [PMID: 38892399 PMCID: PMC11172904 DOI: 10.3390/ijms25116209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Tuft cells are more than guardian chemosensory elements of the digestive tract. They produce a variety of immunological effector molecules in response to stimulation; moreover, they are essential for defense against protozoa and nematodes. Beyond the description of their characteristics, this review aims to elucidate the potential pathogenic and therapeutic roles of colonic tuft cells in inflammatory bowel disease and colorectal cancer, focusing on their primarily immunomodulatory action. Regarding inflammatory bowel disease, tuft cells are implicated in both maintaining the integrity of the intestinal epithelial barrier and in tissue repair and regeneration processes. In addition to maintaining intestinal homeostasis, they display complex immune-regulatory functions. During the development of colorectal cancer, tuft cells can promote the epithelial-to-mesenchymal transition, alter the gastrointestinal microenvironment, and modulate both the anti-tumor immune response and the tumor microenvironment. A wide variety of their biological functions can be targeted for anti-inflammatory or anti-tumor therapies; however, the adverse side effects of immunomodulatory actions must be strictly considered.
Collapse
Affiliation(s)
- Ferenc Sipos
- Immunology Division, Department of Internal Medicine and Hematology, Semmelweis University, 1088 Budapest, Hungary
| | - Györgyi Műzes
- Immunology Division, Department of Internal Medicine and Hematology, Semmelweis University, 1088 Budapest, Hungary
| |
Collapse
|
33
|
Zou J, Gao J, Sun L, Liu Y, Ma C, Chen S, Zheng Y, Wu S, Gao X. Perceived Taste and Olfactory Dysfunctions and Subsequent Stroke Risk. JACC. ASIA 2024; 4:483-492. [PMID: 39100703 PMCID: PMC11291397 DOI: 10.1016/j.jacasi.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 08/06/2024]
Abstract
Background Taste and olfactory dysfunction are commonly associated with neurodegenerative diseases and cardiovascular risk factors, but their specific associations with stroke risk remain uncertain. Objectives The purpose of this paper was to explore whether perceived taste and olfactory dysfunctions were associated with stroke risk. Methods Included were 85,656 participants (mean age 51.0 ± 15.3 years) of the Kailuan study. Perceived olfactory and taste dysfunctions were assessed via a questionnaire at baseline (in 2014-2016). Incident stroke cases were confirmed by review of medical records. Cox proportional hazards models were used to investigate associations of perceived olfactory and taste dysfunctions with stroke risk, and mediation analysis was used to estimate the mediating effect of chronic disease statuses. Results We documented 2,198 incident stroke cases during a mean of 5.6 years of follow-up. Perceived taste dysfunction was associated with a doubled risk of developing total stroke (adjusted HR: 2.03; 95% CI: 1.36-3.04; P < 0.001) even with adjustment of lifestyle factors, biomarkers (ie, blood lipids, blood glucose, blood pressure, and uric acid), and other potential confounders. However, perceived olfactory dysfunction (adjusted HR: 1.22; 95% CI: 0.79-1.90; P = 0.34) was not significantly associated with a high risk of total stroke. Similar results of both perceived taste and olfactory dysfunctions were observed for ischemic stroke. Presence of chronic diseases, including hypertension, diabetes, chronic kidney disease, and overweight/obesity, mediated 4% to 5% of the association of perceived taste dysfunction with both total stroke and ischemic stroke. Conclusions In this large cohort study, perceived taste dysfunction was associated with a high risk of developing stroke.
Collapse
Affiliation(s)
- Jiaojiao Zou
- Department of Nutrition and Food Hygiene, School of Public Health, Institute of Nutrition, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China
| | - Jingli Gao
- Department of Intensive Care Unit, Kailuan General Hospital, Tangshan, China
| | - Liang Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Institute of Nutrition, Fudan University, Shanghai, China
| | - Yesong Liu
- Department of Neurology, Kailuan General Hospital, Tangshan, China
| | - Chaoran Ma
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Shuohua Chen
- Department of Cardiology, Kailuan General Hospital, Tangshan, China
| | - Yan Zheng
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China
| | - Shouling Wu
- Department of Cardiology, Kailuan General Hospital, Tangshan, China
| | - Xiang Gao
- Department of Nutrition and Food Hygiene, School of Public Health, Institute of Nutrition, Fudan University, Shanghai, China
| |
Collapse
|
34
|
McKay DM, Defaye M, Rajeev S, MacNaughton WK, Nasser Y, Sharkey KA. Neuroimmunophysiology of the gastrointestinal tract. Am J Physiol Gastrointest Liver Physiol 2024; 326:G712-G725. [PMID: 38626403 PMCID: PMC11376980 DOI: 10.1152/ajpgi.00075.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/18/2024]
Abstract
Gut physiology is the epicenter of a web of internal communication systems (i.e., neural, immune, hormonal) mediated by cell-cell contacts, soluble factors, and external influences, such as the microbiome, diet, and the physical environment. Together these provide the signals that shape enteric homeostasis and, when they go awry, lead to disease. Faced with the seemingly paradoxical tasks of nutrient uptake (digestion) and retarding pathogen invasion (host defense), the gut integrates interactions between a variety of cells and signaling molecules to keep the host nourished and protected from pathogens. When the system fails, the outcome can be acute or chronic disease, often labeled as "idiopathic" in nature (e.g., irritable bowel syndrome, inflammatory bowel disease). Here we underscore the importance of a holistic approach to gut physiology, placing an emphasis on intercellular connectedness, using enteric neuroimmunophysiology as the paradigm. The goal of this opinion piece is to acknowledge the pace of change brought to our field via single-cell and -omic methodologies and other techniques such as cell lineage tracing, transgenic animal models, methods for culturing patient tissue, and advanced imaging. We identify gaps in the field and hope to inspire and challenge colleagues to take up the mantle and advance awareness of the subtleties, intricacies, and nuances of intestinal physiology in health and disease by defining communication pathways between gut resident cells, those recruited from the circulation, and "external" influences such as the central nervous system and the gut microbiota.
Collapse
Affiliation(s)
- Derek M McKay
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Gastrointestinal Research Group, University of Calgary, Calgary, Alberta, Canada
- Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Manon Defaye
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Gastrointestinal Research Group, University of Calgary, Calgary, Alberta, Canada
- Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sruthi Rajeev
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Gastrointestinal Research Group, University of Calgary, Calgary, Alberta, Canada
- Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Wallace K MacNaughton
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Gastrointestinal Research Group, University of Calgary, Calgary, Alberta, Canada
- Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Yasmin Nasser
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Gastrointestinal Research Group, University of Calgary, Calgary, Alberta, Canada
- Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Keith A Sharkey
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Gastrointestinal Research Group, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
35
|
Mosala P, Mpotje T, Abdel Aziz N, Ndlovu H, Musaigwa F, Nono JK, Brombacher F. Cysteinyl leukotriene receptor-1 as a potential target for host-directed therapy during chronic schistosomiasis in murine model. Front Immunol 2024; 15:1279043. [PMID: 38840916 PMCID: PMC11150569 DOI: 10.3389/fimmu.2024.1279043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 04/25/2024] [Indexed: 06/07/2024] Open
Abstract
Schistosomiasis remains the most devastating neglected tropical disease, affecting over 240 million people world-wide. The disease is caused by the eggs laid by mature female worms that are trapped in host's tissues, resulting in chronic Th2 driven fibrogranulmatous pathology. Although the disease can be treated with a relatively inexpensive drug, praziquantel (PZQ), re-infections remain a major problem in endemic areas. There is a need for new therapeutic drugs and alternative drug treatments for schistosomiasis. The current study hypothesized that cysteinyl leukotrienes (cysLTs) could mediate fibroproliferative pathology during schistosomiasis. Cysteinyl leukotrienes (cysLTs) are potent lipid mediators that are known to be key players in inflammatory diseases, such as asthma and allergic rhinitis. The present study aimed to investigate the role of cysLTR1 during experimental acute and chronic schistosomiasis using cysLTR1-/- mice, as well as the use of cysLTR1 inhibitor (Montelukast) to assess immune responses during chronic Schistosoma mansoni infection. Mice deficient of cysLTR1 and littermate control mice were infected with either high or low dose of Schistosoma mansoni to achieve chronic or acute schistosomiasis, respectively. Hepatic granulomatous inflammation, hepatic fibrosis and IL-4 production in the liver was significantly reduced in mice lacking cysLTR1 during chronic schistosomiasis, while reduced liver pathology was observed during acute schistosomiasis. Pharmacological blockade of cysLTR1 using montelukast in combination with PZQ reduced hepatic inflammation and parasite egg burden in chronically infected mice. Combination therapy led to the expansion of Tregs in chronically infected mice. We show that the disruption of cysLTR1 is dispensable for host survival during schistosomiasis, suggesting an important role cysLTR1 may play during early immunity against schistosomiasis. Our findings revealed that the combination of montelukast and PZQ could be a potential prophylactic treatment for chronic schistosomiasis by reducing fibrogranulomatous pathology in mice. In conclusion, the present study demonstrated that cysLTR1 is a potential target for host-directed therapy to ameliorate fibrogranulomatous pathology in the liver during chronic and acute schistosomiasis in mice.
Collapse
Affiliation(s)
- Paballo Mosala
- Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa
| | - Thabo Mpotje
- Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa
| | - Nada Abdel Aziz
- Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa
- Immuno-Biotechnology Lab, Biotechnology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Hlumani Ndlovu
- Division of Chemical and System Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Fungai Musaigwa
- Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa
| | - Justin Komguep Nono
- Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa
- Unit of Immunobiology and Helminth Infections, Laboratory of Molecular Biology and Biotechnology, Institute of Medical Research and Medicinal Plant Studies (IMPM), Ministry of Scientific Research and Innovation, Yaoundé, Cameroon
| | - Frank Brombacher
- Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa
- Welcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa) and Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
36
|
O'Carroll SM, Henkel FDR, O'Neill LAJ. Metabolic regulation of type I interferon production. Immunol Rev 2024; 323:276-287. [PMID: 38465724 DOI: 10.1111/imr.13318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Over the past decade, there has been a surge in discoveries of how metabolic pathways regulate immune cell function in health and disease, establishing the field of immunometabolism. Specifically, pathways such as glycolysis, the tricarboxylic acid (TCA) cycle, and those involving lipid metabolism have been implicated in regulating immune cell function. Viral infections cause immunometabolic changes which lead to antiviral immunity, but little is known about how metabolic changes regulate interferon responses. Interferons are critical cytokines in host defense, rapidly induced upon pathogen recognition, but are also involved in autoimmune diseases. This review summarizes how metabolic change impacts interferon production. We describe how glycolysis, lipid metabolism (specifically involving eicosanoids and cholesterol), and the TCA cycle-linked intermediates itaconate and fumarate impact type I interferons. Targeting these metabolic changes presents new therapeutic possibilities to modulate type I interferons during host defense or autoimmune disorders.
Collapse
Affiliation(s)
- Shane M O'Carroll
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Fiona D R Henkel
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
37
|
Salas-Escabillas DJ, Hoffman MT, Moore JS, Brender SM, Wen HJ, Benitz S, Davis ET, Long D, Wombwell AM, Steele NG, Sears RC, Matsumoto I, DelGiorno KE, Crawford HC. Tuft cells transdifferentiate to neural-like progenitor cells in the progression of pancreatic cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.12.579982. [PMID: 38405804 PMCID: PMC10888969 DOI: 10.1101/2024.02.12.579982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is partly initiated through the transdifferentiation of acinar cells to metaplastic ducts that act as precursors of neoplasia and cancer. Tuft cells are solitary chemosensory cells not found in the normal pancreas but arise in metaplasia and neoplasia, diminishing as neoplastic lesions progress to carcinoma. Metaplastic tuft cells (mTCs) function to suppress tumor progression through communication with the tumor microenvironment, but their fate during progression is unknown. To determine the fate of mTCs during PDA progression, we have created a lineage tracing model that uses a tamoxifen-inducible tuft-cell specific Pou2f3CreERT/+ driver to induce transgene expression, including the lineage tracer tdTomato or the oncogene Myc. mTC lineage trace models of pancreatic neoplasia and carcinoma were used to follow mTC fate. We found that mTCs, in the carcinoma model, transdifferentiate into neural-like progenitor cells (NRPs), a cell type associated with poor survival in PDA patients. Using conditional knock-out and overexpression systems, we found that Myc activity in mTCs is necessary and sufficient to induce this Tuft-to-Neuroendocrine-Transition (TNT).
Collapse
Affiliation(s)
- Daniel J. Salas-Escabillas
- Cancer Biology, University of Michigan, Ann Arbor, MI
- Department of Surgery, Henry Ford Health, Detroit, MI
| | - Megan T. Hoffman
- Department of Immunology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | | | | | - Hui-Ju Wen
- Department of Surgery, Henry Ford Health, Detroit, MI
| | - Simone Benitz
- Department of Surgery, Henry Ford Health, Detroit, MI
| | | | - Dan Long
- Department of Surgery, Henry Ford Health, Detroit, MI
| | | | | | - Rosalie C. Sears
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR
| | | | - Kathleen E. DelGiorno
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Howard C. Crawford
- Department of Surgery, Henry Ford Health, Detroit, MI
- Cancer Biology Program, Wayne State University, Detroit, MI
| |
Collapse
|
38
|
Zaiss DMW, Pearce EJ, Artis D, McKenzie ANJ, Klose CSN. Cooperation of ILC2s and T H2 cells in the expulsion of intestinal helminth parasites. Nat Rev Immunol 2024; 24:294-302. [PMID: 37798539 DOI: 10.1038/s41577-023-00942-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2023] [Indexed: 10/07/2023]
Abstract
Type 2 immune responses form a critical defence against enteric worm infections. In recent years, mouse models have revealed shared and unique functions for group 2 innate lymphoid cells and T helper 2 cells in type 2 immune response to intestinal helminths. Both cell types use similar innate effector functions at the site of infection, whereas each population has distinct roles during different stages of infection. In this Perspective, we review the underlying mechanisms used by group 2 innate lymphoid cells and T helper 2 cells to cooperate with each other and suggest an overarching model of the interplay between these cell types over the course of a helminth infection.
Collapse
Affiliation(s)
- Dietmar M W Zaiss
- Department of Immune Medicine, University Regensburg, Regensburg, Germany.
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany.
- Leibniz Institute for Immunotherapy (LIT), Regensburg, Germany.
| | - Edward J Pearce
- Bloomberg Kimmel Institute for Cancer Immunotherapy, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University School of Public Health, Baltimore, MD, USA
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | | | - Christoph S N Klose
- Department of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
39
|
Strine MS, Fagerberg E, Darcy PW, Barrón GM, Filler RB, Alfajaro MM, D'Angelo-Gavrish N, Wang F, Graziano VR, Menasché BL, Damo M, Wang YT, Howitt MR, Lee S, Joshi NS, Mucida D, Wilen CB. Intestinal tuft cell immune privilege enables norovirus persistence. Sci Immunol 2024; 9:eadi7038. [PMID: 38517952 PMCID: PMC11555782 DOI: 10.1126/sciimmunol.adi7038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 02/28/2024] [Indexed: 03/24/2024]
Abstract
The persistent murine norovirus strain MNVCR6 is a model for human norovirus and enteric viral persistence. MNVCR6 causes chronic infection by directly infecting intestinal tuft cells, rare chemosensory epithelial cells. Although MNVCR6 induces functional MNV-specific CD8+ T cells, these lymphocytes fail to clear infection. To examine how tuft cells promote immune escape, we interrogated tuft cell interactions with CD8+ T cells by adoptively transferring JEDI (just EGFP death inducing) CD8+ T cells into Gfi1b-GFP tuft cell reporter mice. Unexpectedly, some intestinal tuft cells partially resisted JEDI CD8+ T cell-mediated killing-unlike Lgr5+ intestinal stem cells and extraintestinal tuft cells-despite seemingly normal antigen presentation. When targeting intestinal tuft cells, JEDI CD8+ T cells predominantly adopted a T resident memory phenotype with decreased effector and cytotoxic capacity, enabling tuft cell survival. JEDI CD8+ T cells neither cleared nor prevented MNVCR6 infection in the colon, the site of viral persistence, despite targeting a virus-independent antigen. Ultimately, we show that intestinal tuft cells are relatively resistant to CD8+ T cells independent of norovirus infection, representing an immune-privileged niche that can be leveraged by enteric microbes.
Collapse
Affiliation(s)
- Madison S Strine
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Eric Fagerberg
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Patrick W Darcy
- Laboratory of Mucosal Immunology, Rockefeller University, New York, NY, USA
| | - Gabriel M Barrón
- Program in Immunology, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Renata B Filler
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Mia Madel Alfajaro
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| | | | - Fang Wang
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Vincent R Graziano
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, USA
| | - Bridget L Menasché
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Martina Damo
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Ya-Ting Wang
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Tsinghua University School of Medicine, Beijing, China
| | - Michael R Howitt
- Program in Immunology, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Sanghyun Lee
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Nikhil S Joshi
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Daniel Mucida
- Laboratory of Mucosal Immunology, Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, Rockefeller University, New York, NY, USA
| | - Craig B Wilen
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
40
|
Silverman JB, Krystofiak EE, Caplan LR, Lau KS, Tyska MJ. Intestinal tuft cells assemble a cytoskeletal superstructure composed of co-aligned actin bundles and microtubules. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.19.585757. [PMID: 38562898 PMCID: PMC10983963 DOI: 10.1101/2024.03.19.585757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background & Aims All tissues consist of a distinct set of cell types, which collectively support organ function and homeostasis. Tuft cells are a rare epithelial cell type found in diverse epithelia, where they play important roles in sensing antigens and stimulating downstream immune responses. Exhibiting a unique polarized morphology, tuft cells are defined by an array of giant actin filament bundles that support ∼2 μm of apical membrane protrusion and extend over 7 μm towards the cell's perinuclear region. Despite their established roles in maintaining intestinal epithelial homeostasis, tuft cells remain understudied due to their rarity (e.g. ∼ 1% in the small intestinal epithelium). Details regarding the ultrastructural organization of the tuft cell cytoskeleton, the molecular components involved in building the array of giant actin bundles, and how these cytoskeletal structures support tuft cell biology remain unclear. Methods To begin to answer these questions, we used advanced light and electron microscopy to perform quantitative morphometry of the small intestinal tuft cell cytoskeleton. Results We found that tuft cell core bundles consist of actin filaments that are crosslinked in a parallel "barbed-end out" configuration. These polarized structures are also supported by a unique group of tuft cell enriched actin-binding proteins that are differentially localized along the giant core bundles. Furthermore, we found that tuft cell actin bundles are co-aligned with a highly ordered network of microtubules. Conclusions Tuft cells assemble a cytoskeletal superstructure that is well positioned to serve as a track for subcellular transport along the apical-basolateral axis and in turn, support the dynamic sensing functions that are critical for intestinal epithelial homeostasis. SYNOPSIS This research leveraged advanced light and electron microscopy to perform quantitative morphometry of the intestinal tuft cell cytoskeleton. Three-dimensional reconstructions of segmented image data revealed a co-aligned actin-microtubule superstructure that may play a fundamental role in tuft cell function.
Collapse
|
41
|
Feng X, Andersson T, Gschwend J, Flüchter P, Berest I, Muff JL, Carchidi D, Lechner A, de Tenorio JC, Brander N, Boehm U, Klose CSN, Artis D, Leinders-Zufall T, Zufall F, Schneider C. Tuft cell IL-17RB restrains IL-25 bioavailability and reveals context-dependent ILC2 hypoproliferation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.04.583299. [PMID: 38496438 PMCID: PMC10942319 DOI: 10.1101/2024.03.04.583299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The tuft cell-ILC2 circuit orchestrates rapid type 2 responses upon detecting microbe-derived succinate and luminal helminths. Our findings delineate key mechanistic steps, involving IP3R2 engagement and Ca 2+ flux, governing IL-25 production by tuft cells triggered by succinate detection. While IL-17RB plays a pivotal intrinsic role in ILC2 activation, it exerts a regulatory function in tuft cells. Tuft cells exhibit constitutive Il25 expression, placing them in an anticipatory state that facilitates rapid production of IL-25 protein for ILC2 activation. Tuft cell IL-17RB is crucial for restraining IL-25 bioavailability, preventing excessive tonic ILC2 stimulation due to basal Il25 expression. Suboptimal ILC2 stimulation by IL-25 resulting from tuft cell Il17rb -deficiency or prolonged succinate exposure induces a state of hypoproliferation in ILC2s, also observed in chronic helminth infection. Our study offers critical insights into the regulatory dynamics of IL-25 in this circuit, highlighting the delicate tuning required for responses to diverse luminal states.
Collapse
|
42
|
Silverman JB, Vega PN, Tyska MJ, Lau KS. Intestinal Tuft Cells: Morphology, Function, and Implications for Human Health. Annu Rev Physiol 2024; 86:479-504. [PMID: 37863104 PMCID: PMC11193883 DOI: 10.1146/annurev-physiol-042022-030310] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Tuft cells are a rare and morphologically distinct chemosensory cell type found throughout many organs, including the gastrointestinal tract. These cells were identified by their unique morphologies distinguished by large apical protrusions. Ultrastructural data have begun to describe the molecular underpinnings of their cytoskeletal features, and tuft cell-enriched cytoskeletal proteins have been identified, although the connection of tuft cell morphology to tuft cell functionality has not yet been established. Furthermore, tuft cells display variations in function and identity between and within tissues, leading to the delineation of distinct tuft cell populations. As a chemosensory cell type, they display receptors that are responsive to ligands specific for their environment. While many studies have demonstrated the tuft cell response to protists and helminths in the intestine, recent research has highlighted other roles of tuft cells as well as implicated tuft cells in other disease processes including inflammation, cancer, and viral infections. Here, we review the literature on the cytoskeletal structure of tuft cells. Additionally, we focus on new research discussing tuft cell lineage, ligand-receptor interactions, tuft cell tropism, and the role of tuft cells in intestinal disease. Finally, we discuss the implication of tuft cell-targeted therapies in human health and how the morphology of tuft cells may contribute to their functionality.
Collapse
Affiliation(s)
- Jennifer B Silverman
- Epithelial Biology Center and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; ,
| | - Paige N Vega
- Epithelial Biology Center and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; ,
| | - Matthew J Tyska
- Epithelial Biology Center and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; ,
| | - Ken S Lau
- Epithelial Biology Center and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; ,
| |
Collapse
|
43
|
Lyu R, Wu J, He Y, You Q, Qian Y, Jiang N, Cai Y, Chen D, Wu Z. Folate supports IL-25-induced tuft cell expansion following enteroviral infections. FASEB J 2024; 38:e23430. [PMID: 38243751 DOI: 10.1096/fj.202301928r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/11/2023] [Accepted: 01/03/2024] [Indexed: 01/21/2024]
Abstract
Intestinal tuft cells, a kind of epithelial immune cells, rapidly expand in response to pathogenic infections, which is associated with infection-induced interleukin 25 (IL-25) upregulation. However, the metabolic mechanism of IL-25-induced tuft cell expansion is largely unknown. Folate metabolism provides essential purine and methyl substrates for cell proliferation and differentiation. Thus, we aim to investigate the roles of folate metabolism playing in IL-25-induced tuft cell expansion by enteroviral infection and recombinant murine IL-25 (rmIL-25) protein-stimulated mouse models. At present, enteroviruses, such as EV71, CVA16, CVB3, and CVB4, upregulated IL-25 expression and induced tuft cell expansion in the intestinal tissues of mice. However, EV71 did not induce intestinal tuft cell expansion in IL-25-/- mice. Interestingly, compared to the mock group, folate was enriched in the intestinal tissues of both the EV71-infected group and the rmIL-25 protein-stimulated group. Moreover, folate metabolism supported IL-25-induced tuft cell expansion since both folate-depletion and anti-folate MTX-treated mice had a disrupted tuft cell expansion in response to rmIL-25 protein stimulation. In summary, our data suggested that folate metabolism supported intestinal tuft cell expansion in response to enterovirus-induced IL-25 expression, which provided a new insight into the mechanisms of tuft cell expansion from the perspective of folate metabolism.
Collapse
Affiliation(s)
- Ruining Lyu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Jing Wu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Yating He
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Qiao You
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Yajie Qian
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Na Jiang
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Yurong Cai
- School of Life Science, Ningxia University, Yinchuan, China
| | - Deyan Chen
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Zhiwei Wu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
- School of Life Science, Ningxia University, Yinchuan, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
44
|
Yang H, Huang YX, Xiong PY, Li JQ, Chen JL, Liu X, Gong YJ, Ding WJ. Possible connection between intestinal tuft cells, ILC2s and obesity. Front Immunol 2024; 14:1266667. [PMID: 38283340 PMCID: PMC10811205 DOI: 10.3389/fimmu.2023.1266667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/21/2023] [Indexed: 01/30/2024] Open
Abstract
Intestinal tuft cells (TCs) are defined as chemosensory cells that can "taste" danger and induce immune responses. They play a critical role in gastrointestinal parasite invasion, inflammatory bowel diseases and high-fat diet-induced obesity. Intestinal IL-25, the unique product of TCs, is a key activator of type 2 immunity, especially to promote group 2 innate lymphoid cells (ILC2s) to secret IL-13. Then the IL-13 mainly promotes intestinal stem cell (ISCs) proliferation into TCs and goblet cells. This pathway formulates the circuit in the intestine. This paper focuses on the potential role of the intestinal TC, ILC2 and their circuit in obesity-induced intestinal damage, and discussion on further study and the potential therapeutic target in obesity.
Collapse
Affiliation(s)
- Hong Yang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu-Xing Huang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Pei-Yu Xiong
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jin-Qian Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ji-Lan Chen
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xia Liu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan-Ju Gong
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei-Jun Ding
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
45
|
Coutry N, Gasmi I, Herbert F, Jay P. Mechanisms of intestinal dysbiosis: new insights into tuft cell functions. Gut Microbes 2024; 16:2379624. [PMID: 39042424 PMCID: PMC11268228 DOI: 10.1080/19490976.2024.2379624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/08/2024] [Indexed: 07/24/2024] Open
Abstract
Symbiosis between the host and intestinal microbial communities is essential for human health. Disruption in this symbiosis is linked to gastrointestinal diseases, including inflammatory bowel diseases, as well as extra-gastrointestinal diseases. Unbalanced gut microbiome or gut dysbiosis contributes in multiple ways to disease frequency, severity and progression. Microbiome taxonomic profiling and metabolomics approaches greatly improved our understanding of gut dysbiosis features; however, the precise mechanisms involved in gut dysbiosis establishment still need to be clarified. The aim of this review is to present new actors and mechanisms underlying gut dysbiosis formation following parasitic infection or in a context of altered Paneth cells, revealing the existence of a critical crosstalk between Paneth and tuft cells to control microbiome composition.
Collapse
Affiliation(s)
- Nathalie Coutry
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, Inserm, Montpellier, France
| | - Imène Gasmi
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, Inserm, Montpellier, France
| | - Fabien Herbert
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, Inserm, Montpellier, France
| | - Philippe Jay
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, Inserm, Montpellier, France
| |
Collapse
|
46
|
Lekki-Jóźwiak J, Bąska P. The Roles of Various Immune Cell Populations in Immune Response against Helminths. Int J Mol Sci 2023; 25:420. [PMID: 38203591 PMCID: PMC10778651 DOI: 10.3390/ijms25010420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Helminths are multicellular parasites that are a substantial problem for both human and veterinary medicine. According to estimates, 1.5 billion people suffer from their infection, resulting in decreased life quality and burdens for healthcare systems. On the other hand, these infections may alleviate autoimmune diseases and allergy symptoms. The immune system is programmed to combat infections; nevertheless, its effector mechanisms may result in immunopathologies and exacerbate clinical symptoms. This review summarizes the role of the immune response against worms, with an emphasis on the Th2 response, which is a hallmark of helminth infections. We characterize non-immune cells (enteric tuft cells-ETCs) responsible for detecting parasites, as well as the role of hematopoietic-derived cells (macrophages, basophils, eosinophils, neutrophils, innate lymphoid cells group 2-ILC2s, mast cells, T cells, and B cells) in initiating and sustaining the immune response, as well as the functions they play in granulomas. The aim of this paper is to review the existing knowledge regarding the immune response against helminths, to attempt to decipher the interactions between cells engaged in the response, and to indicate the gaps in the current knowledge.
Collapse
Affiliation(s)
- Janina Lekki-Jóźwiak
- Division of Parasitology and Parasitic Diseases, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland;
| | - Piotr Bąska
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| |
Collapse
|
47
|
Bohusné Barta B, Sipos F, Műzes G. [Characteristics of intestinal tuft cells and their role in the pathomechanism of inflammatory bowel disease and colorectal carcinoma]. Orv Hetil 2023; 164:1727-1735. [PMID: 37930381 DOI: 10.1556/650.2023.32898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 08/20/2023] [Indexed: 11/07/2023]
Abstract
Given their fundamental physiological importance, their involvement in the immune system, and their close association with the development of intestinal diseases, the interest in intestinal epithelial cells has increased significantly over the past fifteen years. Their close association with intestinal worm and protozoan infections - a significant 2016 discovery - has further stimulated research into uncommon chemosensitive tuft epithelial cells. Although their numbers are relatively low, tuft cells are now recognized as an essential sentinel of the gastrointestinal tract, as their taste receptors for succinate, sweet, and bitter continuously monitor intestinal contents. When stimulated, tuft cells release a number of effector molecules, including immunomodulatory molecules like interleukin 25, prostaglandins E2 and D2, cysteinyl leukotriene C4, acetylcholine, thymic stromal lymphopoietin, and beta-endorphins. Tuft cells have been shown to be crucial for immunity against nematodes and protozoa. The majority of tuft cell research has used the doublecortin-like (microtubule-linked) kinase 1 protein marker on mice; however, the expression of the enzyme cyclooxygenase-1 may help identify human intestinal tuft cells. Few studies have examined the association between tuft cells and intestinal diseases in humans. This article provides an update on intestinal epithelial tuft cells, including their physiology, immunological nodal function, and role in human diseases. We conclude by discussing the potential clinical therapeutic value of tuft cells. Orv Hetil. 2023; 164(44): 1727-1735.
Collapse
Affiliation(s)
- Bettina Bohusné Barta
- 1 Semmelweis Egyetem, Általános Orvostudományi Kar, I. Sz. Patológiai és Rákkutató Intézet Budapest, Üllői út 26., 1085 Magyarország
| | - Ferenc Sipos
- 2 Semmelweis Egyetem, Általános Orvostudományi Kar, Belgyógyászati és Hematológiai Klinika Budapest Magyarország
| | - Györgyi Műzes
- 2 Semmelweis Egyetem, Általános Orvostudományi Kar, Belgyógyászati és Hematológiai Klinika Budapest Magyarország
| |
Collapse
|
48
|
Ding L, Weygant N, Ding C, Lai Y, Li H. DCLK1 and tuft cells: Immune-related functions and implications for cancer immunotherapy. Crit Rev Oncol Hematol 2023; 191:104118. [PMID: 37660932 DOI: 10.1016/j.critrevonc.2023.104118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023] Open
Abstract
DCLK1, a tuft cell marker, is widely expressed in various tumors. Its high expression levels are closely linked to malignant tumor progression, making it a potential tumor-related marker. Recent studies have shed light on the critical roles of DCLK1 and tuft cells in the immune response and the maintenance of epithelial homeostasis, as well as targeted immune escape mechanisms in the tumor microenvironment. This review aims to comprehensively examine the current understanding of immune-related functions mediated by DCLK1 and tuft cells in epithelial tissues, including the roles of relevant cells and important factors involved. Additionally, this review will discuss recent advances in anti-tumor immunity mediated by DCLK1/tuft cells and their potential as immunotherapeutic targets. Furthermore, we will consider the potential impact of DCLK1 targeted therapy in cancer immunotherapy, particularly DCLK1 kinase inhibitors as potential therapeutic drugs in anti-tumor immunity, providing a new perspective and reference for future research.
Collapse
Affiliation(s)
- Ling Ding
- Traditional Chinese Medicine Department, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Nathaniel Weygant
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Chenhuan Ding
- Traditional Chinese Medicine Department, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yi Lai
- Department of Head and Neck Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - He Li
- Traditional Chinese Medicine Department, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
49
|
O'Keefe RN, Carli ALE, Baloyan D, Chisanga D, Shi W, Afshar-Sterle S, Eissmann MF, Poh AR, Pal B, Seillet C, Locksley RM, Ernst M, Buchert M. A tuft cell - ILC2 signaling circuit provides therapeutic targets to inhibit gastric metaplasia and tumor development. Nat Commun 2023; 14:6872. [PMID: 37898600 PMCID: PMC10613282 DOI: 10.1038/s41467-023-42215-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 10/04/2023] [Indexed: 10/30/2023] Open
Abstract
Although gastric cancer is a leading cause of cancer-related deaths, systemic treatment strategies remain scarce. Here, we report the pro-tumorigenic properties of the crosstalk between intestinal tuft cells and type 2 innate lymphoid cells (ILC2) that is evolutionarily optimized for epithelial remodeling in response to helminth infection. We demonstrate that tuft cell-derived interleukin 25 (IL25) drives ILC2 activation, inducing the release of IL13 and promoting epithelial tuft cell hyperplasia. While the resulting tuft cell - ILC2 feed-forward circuit promotes gastric metaplasia and tumor formation, genetic depletion of tuft cells or ILC2s, or therapeutic targeting of IL13 or IL25 alleviates these pathologies in mice. In gastric cancer patients, tuft cell and ILC2 gene signatures predict worsening survival in intestinal-type gastric cancer where ~40% of the corresponding cancers show enriched co-existence of tuft cells and ILC2s. Our findings suggest a role for ILC2 and tuft cells, along with their associated cytokine IL13 and IL25 as gatekeepers and enablers of metaplastic transformation and gastric tumorigenesis, thereby providing an opportunity to therapeutically inhibit early-stage gastric cancer through repurposing antibody-mediated therapies.
Collapse
Affiliation(s)
- Ryan N O'Keefe
- Olivia Newton-John Cancer Research Institute, Heidelberg, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, Australia
| | - Annalisa L E Carli
- Olivia Newton-John Cancer Research Institute, Heidelberg, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, Australia
| | - David Baloyan
- Olivia Newton-John Cancer Research Institute, Heidelberg, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, Australia
| | - David Chisanga
- Olivia Newton-John Cancer Research Institute, Heidelberg, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, Australia
| | - Wei Shi
- Olivia Newton-John Cancer Research Institute, Heidelberg, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, Australia
| | - Shoukat Afshar-Sterle
- Olivia Newton-John Cancer Research Institute, Heidelberg, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, Australia
| | - Moritz F Eissmann
- Olivia Newton-John Cancer Research Institute, Heidelberg, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, Australia
| | - Ashleigh R Poh
- Olivia Newton-John Cancer Research Institute, Heidelberg, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, Australia
| | - Bhupinder Pal
- Olivia Newton-John Cancer Research Institute, Heidelberg, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, Australia
| | - Cyril Seillet
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Richard M Locksley
- Department of Medicine, University of California San Francisco, San Francisco, USA
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, USA
| | - Matthias Ernst
- Olivia Newton-John Cancer Research Institute, Heidelberg, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, Australia
| | - Michael Buchert
- Olivia Newton-John Cancer Research Institute, Heidelberg, Australia.
- School of Cancer Medicine, La Trobe University, Bundoora, Australia.
| |
Collapse
|
50
|
Lei H, Yu D, Xue YB, Li YH, Gong SM, Peng YY, Liu KF, Buratto D, Yang Y, Zhang SS, Wu M, Zhou R, Huang L. Tuft cells utilize taste signaling molecules to respond to the pathobiont microbe Ruminococcus gnavus in the proximal colon. Front Immunol 2023; 14:1259521. [PMID: 37954611 PMCID: PMC10634341 DOI: 10.3389/fimmu.2023.1259521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/12/2023] [Indexed: 11/14/2023] Open
Abstract
Tuft cells are a type of rare epithelial cells that have been recently found to utilize taste signal transduction pathways to detect and respond to various noxious stimuli and pathogens, including allergens, bacteria, protists and parasitic helminths. It is, however, not fully understood how many different types of pathogens they can sense or what exact molecular mechanisms they employ to initiate targeted responses. In this study, we found that an anaerobic pathobiont microbe, Ruminococcus gnavus (R. gnavus), can induce tuft cell proliferation in the proximal colon whereas the microbe's lysate can stimulate these proximal colonic tuft cells to release interleukin-25 (IL-25). Nullification of the Gng13 and Trpm5 genes that encode the G protein subunit Gγ13 and transient receptor potential ion channel Trpm5, respectively, or application of the Tas2r inhibitor allyl isothiocyanate (AITC), G protein Gβγ subunit inhibitor Gallein or the phospholipase Cβ2 (PLCβ2) inhibitor U73122 reduces R. gnavus-elicited tuft cell proliferation or IL-25 release or both. Furthermore, Gng13 conditional knockout or Trpm5 knockout diminishes the expression of gasdermins C2, C3 and C4, and concomitantly increases the activated forms of caspases 3, 8 and 9 as well as the number of TUNEL-positive apoptotic cells in the proximal colon. Together, our data suggest that taste signal transduction pathways are not only involved in the detection of R. gnavus infection, but also contribute to helping maintain gasdermin expression and prevent apoptotic cell death in the proximal colon, and these findings provide another strategy to combat R. gnavus infection and sheds light on new roles of taste signaling proteins along with gasdermins in protecting the integrity of the proximal colonic epithelium.
Collapse
Affiliation(s)
- Hao Lei
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Defu Yu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yan-Bo Xue
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yi-Hong Li
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shi-Meng Gong
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuan-Yuan Peng
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kai-Fang Liu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Damiano Buratto
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang University Shanghai Institute for Advanced Study, Shanghai, China
| | - Yisen Yang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Sai-Sai Zhang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Min Wu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ruhong Zhou
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang University Shanghai Institute for Advanced Study, Shanghai, China
| | - Liquan Huang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang University Shanghai Institute for Advanced Study, Shanghai, China
- Monell Chemical Senses Center, Philadelphia, PA, United States
| |
Collapse
|