1
|
Fang Y, Meng H, Wang J. Mechanisms of LPS-Induced Toxicity in Endothelial Cells and the Protective Role of Geniposidic Acid. Food Chem Toxicol 2025:115488. [PMID: 40288513 DOI: 10.1016/j.fct.2025.115488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/19/2025] [Accepted: 04/25/2025] [Indexed: 04/29/2025]
Abstract
Vascular inflammation and oxidative stress are critical pathogenic factors in cardiovascular diseases. Lipopolysaccharide (LPS)-induced endothelial cytotoxicity, driven by oxidative stress and inflammation, remains incompletely understood. This study highlights the molecular mechanisms underlying LPS toxicity, focusing on the ROS/JNK/NLRP3 signaling axis. LPS disrupts mitochondrial function, increases ROS accumulation, activates JNK phosphorylation, and induces NLRP3 inflammasome activation, culminating in pyroptosis through caspase-1-mediated GSDMD cleavage. Mechanistic studies with the JNK inhibitor SP600125 confirmed the critical role of the ROS/JNK/NLRP3 pathway in LPS-induced endothelial damage. Additionally, PGC-1α, a key regulator of mitochondrial homeostasis, was identified as a protective factor suppressed by LPS, exacerbating ROS overproduction and inflammasome activation. To validate these findings, geniposidic acid (GPA), a natural antioxidant and anti-inflammatory compound, was employed. GPA effectively reduced ROS levels, inhibited JNK activation, and suppressed pyroptosis, supporting its utility as a chemical tool to confirm the pivotal role of ROS/JNK/NLRP3 signaling. This study elucidates the intricate interplay between oxidative stress, mitochondrial dysfunction, and pyroptosis, providing a comprehensive framework for addressing inflammation-driven vascular damage.
Collapse
Affiliation(s)
- Yan Fang
- University of Science and Technology of China, Hefei 230026, China; Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - He Meng
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Jun Wang
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
| |
Collapse
|
2
|
Tian L, Piao S, Li X, Guo L, Huang L, Gao W. Functional Materials Targeted Regulation of Gasdermins: From Fundamentals to Functionalities and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2500873. [PMID: 40273335 PMCID: PMC12021126 DOI: 10.1002/advs.202500873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/19/2025] [Indexed: 04/26/2025]
Abstract
Targeted regulation of pyroptosis to modulate the immune landscape has emerged as a novel design strategy for cancer immunotherapy and anti-inflammatory therapy. However, pyroptosis acts as a double-edged sword, making it important to optimize the design strategies of functional materials to appropriately activate pyroptosis for effective disease treatment. This paper summarizes and discusses the structure, pore formation, and molecular mechanisms of "executor" Gasdermins, as well as the events preceding and following these processes. Subsequently, the focus is on reviewing functional materials that directly regulate Gasdermin pore formation to target pyroptosis and those that indirectly regulate the events before and after Gasdermin pore formation to control pyroptosis activity. Finally, the advantages, disadvantages, and future prospects of designing such functional materials are provided, aiming to facilitate the precise design, pharmacological investigation, and clinical translation of pyroptosis-related functional materials.
Collapse
Affiliation(s)
- Luyao Tian
- School of Pharmaceutical Science and TechnologyTianjin UniversityTianjin300072P. R. China
| | - Shuo Piao
- School of Pharmaceutical Science and TechnologyTianjin UniversityTianjin300072P. R. China
| | - Xia Li
- School of Pharmaceutical Science and TechnologyTianjin UniversityTianjin300072P. R. China
| | - Lanping Guo
- National Resource Center for Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijing100700P. R. China
| | - Luqi Huang
- National Resource Center for Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijing100700P. R. China
| | - Wenyuan Gao
- Key Laboratory of Pharmacology School of Pharmaceutical Science and TechnologyTianjin UniversityTianjin300072P. R. China
| |
Collapse
|
3
|
Wen X, Fan J, Duan X, Zhu X, Bai J, Zhang T. Mitochondrial DNA in Exercise-Mediated Innate Immune Responses. Int J Mol Sci 2025; 26:3069. [PMID: 40243714 PMCID: PMC11988935 DOI: 10.3390/ijms26073069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
Mitochondria are considered as "the plant of power" with cells for a long time. However, recent researches suggest that mitochondria also take part in innate immune response to a great extent. Remarkably, mtDNA was reported to have immunnostimulatory potential in 2004. Since then, there has been rapid growth in understanding the role of mtDNA in innate immune. The mtDNA is released into cytosol, extracellular environment, or circulating blood through BAK/BAX pore, mPTP, and GSDMD pore upon mitochondrial damage, where it is recognized by PRRs including TLR9, cGAS, and NLRP3, thereby triggering innate immune response. On the other hand, regular exercise has been recognized as an effective intervention strategy for innate immune response. Some studies show that chronic moderate-intensity endurance exercise, resistance training, HIIT, and moderate-intensity acute exercise enhance mitochondrial function by promoting mtDNA transcription and replication, thus blunting the abnormal release of mtDNA and excessive innate immune response. On the contrary, high-intensity acute exercise elicits the opposite effect. Nevertheless, only a very small body of research by far has been performed to illustrate the impact of exercise on mtDNA-driven innate immune response, and an overall review is lacking. In light of these, we summarize the current knowledge on the mechanism mediating the release of mtDNA, the role of mtDNA in innate immune response and the influence of exercise on mtDNA leakage, hoping to pave the way to investigate new diagnostic and therapeutic approaches for immunopathies.
Collapse
Affiliation(s)
| | | | | | | | | | - Tan Zhang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| |
Collapse
|
4
|
Zhang W, Wu H, Liao Y, Zhu C, Zou Z. Caspase family in autoimmune diseases. Autoimmun Rev 2025; 24:103714. [PMID: 39638102 DOI: 10.1016/j.autrev.2024.103714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/28/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Programmed cell death (PCD) plays a crucial role in maintaining tissue homeostasis, with its primary forms including apoptosis, pyroptosis, and necroptosis. The caspase family is central to these processes, and its complex functions across different cell death pathways and other non-cell death roles have been closely linked to the pathogenesis of autoimmune diseases. This article provides a comprehensive review of the role of the caspase family in autoimmune diseases such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), type 1 diabetes (T1D), and multiple sclerosis (MS). It particularly emphasizes the intricate functions of caspases within various cell death pathways and their potential as therapeutic targets, thereby offering innovative insights and a thorough discussion in this field. In terms of therapy, strategies targeting caspases hold significant promise. We emphasize the importance of a holistic understanding of caspases in the overall concept of cell death, exploring their unique functions and interrelationships across multiple cell death pathways, including apoptosis, pyroptosis, necroptosis, and PANoptosis. This approach transcends the limitations of previous studies that focused on singular cell death pathways. Additionally, caspases play a key role in non-cell death functions, such as immune cell activation, cytokine processing, inflammation regulation, and tissue repair, thereby opening new avenues for the treatment of autoimmune diseases. Regulating caspase activity holds the potential to restore immune balance in autoimmune diseases. Potential therapeutic approaches include small molecule inhibitors (both reversible and irreversible), biological agents (such as monoclonal antibodies), and gene therapies. However, achieving specific modulation of caspases to avoid interference with normal physiological functions remains a major challenge. Future research must delve deeper into the regulatory mechanisms of caspases and their associated complexes linked to PANoptosis to facilitate precision medicine. In summary, this article offers a comprehensive and in-depth analysis, providing a novel perspective on the complex roles of caspases in autoimmune diseases, with the potential to catalyze breakthroughs in understanding disease mechanisms and developing therapeutic strategies.
Collapse
Affiliation(s)
- Wangzheqi Zhang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai 200433, China; School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Huang Wu
- Basic Medical University, Naval Medical University, Shanghai 200433, China
| | - Yan Liao
- School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Chenglong Zhu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai 200433, China; School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China.
| | - Zui Zou
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai 200433, China; School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China.
| |
Collapse
|
5
|
Yao M, Wang X, Lin H, Shu H, Xu Z, Tang L, Guo W, Xu P. LncRNA Tug1 Regulates Post-Stroke Microglial Pyroptosis via PINK1/Parkin-Mediated Mitophagy. Inflammation 2024:10.1007/s10753-024-02219-8. [PMID: 39739230 DOI: 10.1007/s10753-024-02219-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/27/2024] [Accepted: 12/10/2024] [Indexed: 01/02/2025]
Abstract
Microglia, the central nervous system's primary immune cells, play a key role in the progression of cerebral ischemic stroke, particularly through their involvement in pyroptosis. The long non-coding RNA taurine up-regulated gene 1 (Tug1) is elevated during ischemic stroke and is critical in driving post-stroke neuroinflammation. However, the underlying molecular mechanisms remain unclear. This study explores the biological role of Tug1 and its potential mechanisms in regulating pyroptosis in microglia. We utilized an in vivo photothrombosis (PT) mice model and an in vitro oxygen-glucose deprivation and reperfusion (OGD/R) BV2 cell model to explore the mechanisms underlying ischemic stroke. Initially, we assessed the expression levels of Tug1 in the OGD/R model in vitro and the PT model in vivo. Subsequently, we investigated the impact of Tug1 on microglial pyroptosis by knocking down Tug1, silencing the PTEN-induced putative kinase 1 (Pink1) expression, and employing the mitophagy inhibitor mdivi-1. Tug1 exacerbated microglial pyroptosis by inhibiting mitophagy in both in vivo and in vitro models. The increase in mitophagy observed following Tug1 knockdown was reversed by either silencing Pink1 expression or using the mitophagy inhibitor mdivi-1. This reversal resulted in exacerbated pyroptosis and worsened neurological damage. Further mechanistic studies revealed that Tug1 knockdown significantly reduced microglial pyroptosis and alleviated neuronal damage by enhancing PINK1/Parkin-mediated mitophagy. For the first time, this study reveals that Tug1 promotes hypoxia-induced microglial pyroptosis by inhibiting PINK1/Parkin-mediated mitophagy, potentially providing a promising therapeutic target for ischemic inflammatory injury.
Collapse
Affiliation(s)
- Meiling Yao
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Xiaobei Wang
- Department of Neurology, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, China
| | - Hao Lin
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Hui Shu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Zongtang Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Ling Tang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Wenyuan Guo
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| |
Collapse
|
6
|
Han X, Fu X, Guo W, Liu Y, Sun J, Wang T, Yang W. Ghrelin Inhibits Inflammasomes Activation in Astrocytes, Alleviates Pyroptosis, and Prevents Lipopolysaccharide-induced Depression-like Behavior in Mice. Inflammation 2024:10.1007/s10753-024-02190-4. [PMID: 39702621 DOI: 10.1007/s10753-024-02190-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 12/21/2024]
Abstract
Depression is the leading cause of disability worldwide and places a significant burden on society. Neuroinflammation is closely associated with the pathophysiology of depression. Increasing evidence suggests that astrocytes, as the most abundant glial cells in the brain, are involved in the occurrence and development of depression due to morphological abnormalities and dysfunction. Astrocytes express the NOD-like receptor protein 2 (NLRP2) and NLRP3 inflammasomes, and the activation of inflammasomes induces pyroptosis. Ghrelin, a gastrointestinal peptide, plays vital role in regulating inflammation and alleviating stress. Therefore, we proposed a hypothesis that ghrelin inhibits the activation of inflammasomes on astrocytes, reduces pyroptosis, and consequently prevents depression. We used lipopolysaccharide (LPS)-induced mouse depression model and cultured primary astrocytes in vitro to explore the mechanism of the antidepressant effect of ghrelin. Our results showed that ghrelin effectively inhibited acute inflammatory responses and damage in the hippocampus and prefrontal cortex. The activation of NLRP2 and NLRP3 in astrocytes induced by LPS was significantly inhibited by ghrelin. Pretreatment with ghrelin effectively suppressed LPS-induced upregulation of pyroptosis-related proteins and mRNA. Ghrelin alleviated cell membrane pore formation and cell swelling, ultimately improved LPS-induced depression-like behavior. In vitro, ghrelin prevented the LPS-induced upregulation of pyroptosis-related proteins and mRNA expression in astrocytes, and inhibited the initiation and assembly of NLRP2 and NLRP3. Ghrelin exhibits antidepressant effects, inhibits inflammasomes activation in astrocytes, and prevents pyroptosis, suggesting a novel strategy for treating depression. This groundbreaking study reveals new avenues for targeting potential therapeutic interventions to alleviate depression.
Collapse
Affiliation(s)
- Xiaoou Han
- The Second Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China.
| | - Xiying Fu
- The Second Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Wanxu Guo
- The Second Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Yaqi Liu
- The Second Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Jiangjin Sun
- The Second Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Tian Wang
- The Second Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Wei Yang
- The Second Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China.
| |
Collapse
|
7
|
Ding J, Cheng X, Zeng C, Zhao Q, Xing C, Zhang C, Cao H, Guo X, Hu G, Zhuang Y. Aflatoxin B1 Promotes Pyroptosis in IPEC-J2 Cells by Disrupting Mitochondrial Dynamics through the AMPK/NLRP3 Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:28093-28108. [PMID: 39630575 DOI: 10.1021/acs.jafc.4c05876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Aflatoxin B1 (AFB1) is one of the most toxic mycotoxins in food and feed, seriously jeopardizing the intestinal health, while the effects of AFB1 on intestinal damage remain to be well understood. This study aims to evaluate the effect of AFB1 on intestinal injury by regulating AMP-activated protein kinase (AMPK)-mediated pyroptosis in vitro. The present study showed that AFB1 led to the formation of large number of bubble-like protrusions on the cell membrane, releasing lactate dehydrogenase (LDH) and interleukin-1β (IL-1β). Stimulation with AFB1 resulted in the activation of the NOD-like receptor protein 3 (NLRP3) pathway, as indicated by the increased expression of pyroptosis-associated factor mRNAs and proteins, which ultimately led to a significant upregulation of the pyroptosis rate. Meanwhile, AFB1 caused dysfunction of mitochondrial dynamics by activating the AMPK signaling pathway as mainly evidenced by upregulating dynamin-1-like protein 1 (Drp1) mRNA and protein expression. Moreover, inhibition of NLRP3 and AMPK pathways by MCC950 and compound C, respectively, significantly alleviated AFB1-induced damage in IPEC-J2 cells, evidenced by suppressed NLRP3-mediated pyroptosis, and ameliorated AMPK-mediated mitochondrial dynamics imbalance. In conclusion, these results demonstrated that AFB1 promoted pyroptosis of IPEC-J2 cells by interfering with mitochondrial dynamics by activating the AMPK/NRLP3 pathway.
Collapse
Affiliation(s)
- Jiayi Ding
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, P. R. China
| | - Xinyi Cheng
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, P. R. China
| | - Chun Zeng
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, P. R. China
| | - Qintao Zhao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, P. R. China
| | - Chenghong Xing
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, P. R. China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, P. R. China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, P. R. China
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, P. R. China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, P. R. China
| | - Yu Zhuang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, P. R. China
| |
Collapse
|
8
|
Liu AB, Tan B, Yang P, Tian N, Li JK, Wang SC, Yang LS, Ma L, Zhang JF. The role of inflammatory response and metabolic reprogramming in sepsis-associated acute kidney injury: mechanistic insights and therapeutic potential. Front Immunol 2024; 15:1487576. [PMID: 39544947 PMCID: PMC11560457 DOI: 10.3389/fimmu.2024.1487576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/11/2024] [Indexed: 11/17/2024] Open
Abstract
Sepsis represents a severe condition characterized by organ dysfunction resulting from a dysregulated host response to infection. Among the organs affected, the kidneys are particularly vulnerable, with significant functional impairment that markedly elevates mortality rates. Previous researches have highlighted that both inflammatory response dysregulation and metabolic reprogramming are crucial in the onset and progression of sepsis associated acute kidney injury (SA-AKI), making these processes potential targets for innovative therapies. This study aims to elucidate the pathophysiological mechanisms of renal injury in sepsis by perspective of inflammatory response dysregulation, with particular emphasis on pyroptosis, necroptosis, autophagy, and ferroptosis. Furthermore, it will incorporate insights into metabolic reprogramming to provide a detailed analysis of the mechanisms driving SA-AKI and explore potential targeted therapeutic strategies, providing solid theoretical framework for the development of targeted therapies for SA-AKI.
Collapse
Affiliation(s)
- An-Bu Liu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Bin Tan
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Ping Yang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Na Tian
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jin-Kui Li
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Si-Cong Wang
- Department of Emergency Medical, Yanchi County People’s Hospital, Wuzhong, Ningxia, China
| | - Li-Shan Yang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Lei Ma
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jun-Fei Zhang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
9
|
Zhang W, Zhu C, Liao Y, Zhou M, Xu W, Zou Z. Caspase-8 in inflammatory diseases: a potential therapeutic target. Cell Mol Biol Lett 2024; 29:130. [PMID: 39379817 PMCID: PMC11463096 DOI: 10.1186/s11658-024-00646-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/23/2024] [Indexed: 10/10/2024] Open
Abstract
Caspase-8, a renowned cysteine-aspartic protease within its enzyme family, initially garnered attention for its regulatory role in extrinsic apoptosis. With advancing research, a growing body of evidence has substantiated its involvement in other cell death processes, such as pyroptosis and necroptosis, as well as its modulatory effects on inflammasomes and proinflammatory cytokines. PANoptosis, an emerging concept of cell death, encompasses pyroptosis, apoptosis, and necroptosis, providing insight into the often overlapping cellular mortality observed during disease progression. The activation or deficiency of caspase-8 enzymatic activity is closely linked to PANoptosis, positioning caspase-8 as a key regulator of cell survival or death across various physiological and pathological processes. Aberrant expression of caspase-8 is closely associated with the development and progression of a range of inflammatory diseases, including immune system disorders, neurodegenerative diseases (NDDs), sepsis, and cancer. This paper delves into the regulatory role and impact of caspase-8 in these conditions, aiming to elucidate potential therapeutic strategies for the future intervention.
Collapse
Affiliation(s)
- Wangzheqi Zhang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Chenglong Zhu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yan Liao
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Miao Zhou
- Department of Anesthesiology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University, Nanjing, 210009, Jiangsu, China.
| | - Wenyun Xu
- Department of Anesthesiology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
| | - Zui Zou
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
10
|
Xu K, Saaoud F, Shao Y, Lu Y, Yang Q, Jiang X, Wang H, Yang X. A new paradigm in intracellular immunology: Mitochondria emerging as leading immune organelles. Redox Biol 2024; 76:103331. [PMID: 39216270 PMCID: PMC11402145 DOI: 10.1016/j.redox.2024.103331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
Mitochondria, traditionally recognized as cellular 'powerhouses' due to their pivotal role in energy production, have emerged as multifunctional organelles at the intersection of bioenergetics, metabolic signaling, and immunity. However, the understanding of their exact contributions to immunity and inflammation is still developing. This review first introduces the innovative concept of intracellular immunity, emphasizing how mitochondria serve as critical immune signaling hubs. They are instrumental in recognizing and responding to pathogen and danger signals, and in modulating immune responses. We also propose mitochondria as the leading immune organelles, drawing parallels with the broader immune system in their functions of antigen presentation, immune regulation, and immune response. Our comprehensive review explores mitochondrial immune signaling pathways, their therapeutic potential in managing inflammation and chronic diseases, and discusses cutting-edge methodologies for mitochondrial research. Targeting a broad readership of both experts in mitochondrial functions and newcomers to the field, this review sets forth new directions that could transform our understanding of intracellular immunity and the integrated immune functions of intracellular organelles.
Collapse
Affiliation(s)
- Keman Xu
- Lemole Center for Integrated Lymphatics and Vascular Research, USA
| | - Fatma Saaoud
- Lemole Center for Integrated Lymphatics and Vascular Research, USA
| | - Ying Shao
- Lemole Center for Integrated Lymphatics and Vascular Research, USA
| | - Yifan Lu
- Lemole Center for Integrated Lymphatics and Vascular Research, USA
| | | | - Xiaohua Jiang
- Lemole Center for Integrated Lymphatics and Vascular Research, USA; Metabolic Disease Research and Thrombosis Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Hong Wang
- Metabolic Disease Research and Thrombosis Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Xiaofeng Yang
- Lemole Center for Integrated Lymphatics and Vascular Research, USA; Metabolic Disease Research and Thrombosis Research Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
11
|
Long Y, Jia X, Chu L. Insight into the structure, function and the tumor suppression effect of gasdermin E. Biochem Pharmacol 2024; 226:116348. [PMID: 38852642 DOI: 10.1016/j.bcp.2024.116348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/20/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Gasdermin E (GSDME), which is also known as DFNA5, was first identified as a deafness-related gene that is expressed in cochlear hair cells, and mutation of this gene causes autosomal dominant neurogenic hearing loss. Later studies revealed that GSDME is mostly expressed in the kidney, placenta, muscle and brain cells, but it is expressed at low levels in tumor cells. The GSDME gene encodes the GSDME protein, which is a member of the gasdermin (GSDM) family and has been shown to participate in the induction of apoptosis and pyroptosis. The current literature suggests that Caspase-3 and Granzyme B (Gzm B) can cleave GSDME to generate the active N-terminal fragment (GSDME-NT), which integrates with the cell membrane and forms pores in this membrane to induce pyroptosis. Furthermore, GSDME also forms pores in mitochondrial membranes to release apoptosis factors, such as cytochrome c (Cyt c) and high-temperature requirement protein A2 (HtrA2/Omi), and subsequently activates the intrinsic apoptosis pathway. In recent years, GSDME has been shown to exert tumor-suppressive effects, suggesting that it has potential therapeutic effects on tumors. In this review, we introduce the structure and function of GSDME and the mechanism by which it induces cell death, and we discuss its tumor suppressive effect.
Collapse
Affiliation(s)
- Yuge Long
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Xiaoyuan Jia
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Liang Chu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| |
Collapse
|
12
|
Li SJ, Liu AB, Yu YY, Ma JH. The role and mechanism of pyroptosis and potential therapeutic targets in non-alcoholic fatty liver disease (NAFLD). Front Cell Dev Biol 2024; 12:1407738. [PMID: 39022762 PMCID: PMC11251954 DOI: 10.3389/fcell.2024.1407738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a clinical pathological syndrome characterized by the excessive accumulation of fat within liver cells, which can progress to end-stage liver disease in severe cases, posing a threat to life. Pyroptosis is a distinct, pro-inflammatory form of cell death, differing from traditional apoptosis. In recent years, there has been growing research interest in the association between pyroptosis and NAFLD, encompassing the mechanisms and functions of pyroptosis in the progression of NAFLD, as well as potential therapeutic targets. Controlled pyroptosis can activate immune cells, eliciting host immune responses to shield the body from harm. However, undue activation of pyroptosis may worsen inflammatory responses, induce cellular or tissue damage, disrupt immune responses, and potentially impact liver function. This review elucidates the involvement of pyroptosis and key molecular players, including NOD-like receptor thermal protein domain associated protein 3(NLRP3) inflammasome, gasdermin D (GSDMD), and the caspase family, in the pathogenesis and progression of NAFLD. It emphasizes the promising prospects of targeting pyroptosis as a therapeutic approach for NAFLD and offers valuable insights into future directions in the field of NAFLD treatment.
Collapse
Affiliation(s)
- Shu-Jing Li
- Department of Pediatrics Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - An-Bu Liu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yuan-Yuan Yu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jin-Hai Ma
- Department of Pediatrics Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
13
|
Wei J, Zheng W, Teng C, An X, Li L, Zhong P, Peng C, Zhuge S, Akoto Ampadu J, Yu C, Cai X. Exogenous NADPH could mitigate pyroptosis-induced brain injury in fetal mice exposed to gestational intermittent hypoxia. Int Immunopharmacol 2024; 135:112311. [PMID: 38781607 DOI: 10.1016/j.intimp.2024.112311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
OBJECTIVE Obstructive Sleep Apnea (OSA) during pregnancy is characterized by intermittent hypoxia (IH) during sleep and will lead to the rise of oxidative stress in the fetal body. Pyroptosis, a type of inflammatory and programmable cell death mediated by Gasdermin D (GSDMD), plays a substantial role in oxygen deprivation's contribution to neural system damage. Existing research shows that Nicotinamide Adenine Dinucleotide Phosphate (NADPH) plays a protective role in alleviating brain tissue pyroptosis. We speculate that exogenous NADPH may play a protective role in OSA during pregnancy. METHODS A model of GIH group was established to simulate the pathophysiological mechanisms of OSA during pregnant and AIR group was established by giving the same frequency. Sham group was established by injecting NS and the NADPH group was established and given exogenous NADPH. We utilized the Morris Water Maze to assess cognitive function impairment, Luxol Fast Blue (LBF) staining to confirm myelin sheath formation, TUNEL staining to examine cell death in fetal mice brain tissue, and Western blotting to detect pertinent protein expressions. RESULTS The GIH group offspring exhibited decreases in spatial learning and memory abilities, reduced numbers of oligodendrocytes and formed myelin, as well as increased expression of pyroptosis-related proteins. The NADPH group offspring showed restoration in spatial learning and memory abilities increased counts of oligodendrocytes and formed myelin sheaths, in addition to decreased expression of pyroptosis-related. CONCLUSIONS This study demonstrates that early injection of exogenous NADPH can alleviate the damage to fetal brain development caused by gestational intermittent hypoxia (GIH).
Collapse
Affiliation(s)
- Jiayun Wei
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang 325027, PR China; The second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Weikun Zheng
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang 325027, PR China; The second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Chenjiong Teng
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang 325027, PR China; The second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Xueqian An
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang 325027, PR China; The second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Lingling Li
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang 325027, PR China; The second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Peipei Zhong
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang 325027, PR China; The second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Chenlei Peng
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang 325027, PR China; The second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Shurui Zhuge
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang 325027, PR China; The second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Janet Akoto Ampadu
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang 325027, PR China; The second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Chenyi Yu
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang 325027, PR China; The second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, PR China.
| | - Xiaohong Cai
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, Zhejiang 325027, PR China; The second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, PR China.
| |
Collapse
|
14
|
Cao Y, Chen X, Zhu Z, Luo Z, Hao Y, Yang X, Feng J, Zhang Z, Hu J, Jian Y, Zhu J, Liang W, Chen Z. STING contributes to lipopolysaccharide-induced tubular cell inflammation and pyroptosis by activating endoplasmic reticulum stress in acute kidney injury. Cell Death Dis 2024; 15:217. [PMID: 38485717 PMCID: PMC10940292 DOI: 10.1038/s41419-024-06600-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/18/2024]
Abstract
Recently, innate immunity and inflammation were recognized as the key factors for acute kidney injury (AKI) caused by sepsis, which is closely related to high mortality. Stimulator of interferon genes (STING) has emerged as a critical component of innate immune and inflammatory responses. However, the role of STING in the pathogenesis of septic AKI remains unclear. This study demonstrated that the STING was significantly activated in tubular cells induced by lipopolysaccharide (LPS) in vivo and in vitro. Tubule-specific STING knockout attenuated LPS-induced renal dysfunction and pathological changes. Mechanistically, the STING pathway promotes NOD-like receptor protein 3 (NLRP3) activation. STING triggers endoplasmic reticulum (ER) stress to induce mitochondrial reactive oxygen species (mtROS) overproduction, enhancing thioredoxin-interacting protein activation and association with NLRP3. Eventually, the NLRP3 inflammasome leads to tubular cell inflammation and pyroptosis. This study revealed the STING-regulated network and further identified the STING/ER stress/mtROS/NLRP3 inflammasome axis as an emerging pathway contributing to tubular damage in LPS-induced AKI. Hence, targeting STING may be a promising therapeutic strategy for preventing septic AKI.
Collapse
Affiliation(s)
- Yun Cao
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Nephrology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical College), Haikou, China
| | - Xinghua Chen
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zijing Zhu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zilv Luo
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yiqun Hao
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xueyan Yang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jun Feng
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zongwei Zhang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jijia Hu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yonghong Jian
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiefu Zhu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Liang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Zhaowei Chen
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
15
|
He S, Zhang T, Wang YY, Yuan W, Li L, Li J, Yang YY, Wu DM, Xu Y. Isofraxidin attenuates dextran sulfate sodium-induced ulcerative colitis through inhibiting pyroptosis by upregulating Nrf2 and reducing reactive oxidative species. Int Immunopharmacol 2024; 128:111570. [PMID: 38280336 DOI: 10.1016/j.intimp.2024.111570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/29/2024]
Abstract
BACKGROUND Ulcerative colitis (UC), a non-specific gastrointestinal disease, is commonly managed with aminosalicylic acids and immunosuppressive agents to control inflammation and relieve symptoms, despite frequent relapses. Isofraxidin is a coumarin compound extracted from traditional Chinese medicine, exhibiting anti-inflammatory and antioxidant properties; however, its alleviating effect on UC remains unclear. Therefore, we investigated the mechanism of isofraxidin in lipopolysaccharide (LPS)-induced cell inflammation in human intestinal epithelial cell (HIEC) and human colorectal adenocarcinoma cells (Caco-2), as well as in dextran sulfate sodium (DSS)-induced UC in mice. METHODS We established colitis models in HIEC and Caco-2 cells and mice with LPS and DSS, respectively. Additionally, NLRP3 knockout mice and HIEC cells transfected with NLRP3 silencing gene and ML385 illustrated the role of isofraxidin in pyroptosis and oxidative stress. Data from cells and mice analyses were subjected to one-way analysis of variance or a paired t-test. RESULTS Isofraxidin significantly alleviated LPS-induced cell inflammation and reduced lactic dehydrogenase release. Isofraxidin also reversed DSS- or LPS-induced pyroptosis in vivo and in vitro, increasing the expression of pyroptosis-related proteins. Moreover, isofraxidin alleviated oxidative stress induced by DSS or LPS, reducing reactive oxidative species (ROS), upregulation nuclear factor erythroid 2-related factor 2 (Nrf2), and promoting its entry into the nucleus. Mechanistically, ML385 reversed the inhibitory effect of isofraxidin on ROS and increased pyroptosis. CONCLUSION Isofraxidin can inhibit pyroptosis through upregulating Nrf2, promoting its entry into the nucleus, and reducing ROS, thereby alleviating DSS-induced UC. Our results suggest isofraxidin as a promising therapeutic strategy for UC treatment.
Collapse
Affiliation(s)
- Shuang He
- School of Clinical Medicine & The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China.
| | - Ting Zhang
- School of Clinical Medicine & The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China.
| | - Yuan-Yi Wang
- School of Clinical Medicine & The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China.
| | - Wei Yuan
- School of Clinical Medicine & The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China.
| | - Li Li
- Laboratory Medical College of Chengdu Medical College, Chengdu 610500, China.
| | - Jin Li
- Laboratory Medical College of Chengdu Medical College, Chengdu 610500, China.
| | - Yue-Yan Yang
- Laboratory Medical College of Chengdu Medical College, Chengdu 610500, China.
| | - Dong-Ming Wu
- School of Clinical Medicine & The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China.
| | - Ying Xu
- School of Clinical Medicine & The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China.
| |
Collapse
|
16
|
Chen Y, Zeng D, Wei G, Liao Z, Liang R, Huang X, Lu WW, Chen Y. Pyroptosis in Osteoarthritis: Molecular Mechanisms and Therapeutic Implications. J Inflamm Res 2024; 17:791-803. [PMID: 38348279 PMCID: PMC10860821 DOI: 10.2147/jir.s445573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/20/2024] [Indexed: 02/15/2024] Open
Abstract
Osteoarthritis (OA) is a chronic disease that causes pain and functional impairment by affecting joint tissue. Its global impact is noteworthy, causing significant economic losses and property damage. Despite extensive research, the underlying pathogenesis of OA remain an area of ongoing investigation. It has recently been discovered that the OA progression is significantly influenced by pyroptosis. Pyroptosis is a complex process that involves three pathways culminating in the assembly of Gasdermin-D (GSDMD)-N-terminal (GSDMD-NT) into pores through aggregation on the plasma membrane. The aggregation of GSDMD-NT proteins stimulates the release of inflammatory mediators, such as Interleukin-1β (IL-1β), Interleukin-18 (IL-18), and Matrix Metallopeptidase 13 (MMP13), ultimately leading to cellular lysis. The pyroptosis process in specific cells, including synovial macrophages, fibroblast-like synoviocytes (FLS), chondrocytes, and subchondral osteoblasts, contributs factor to the development of OA. Currently, the specific cells that undergo pyroptosis first are not yet fully understood, and it remains unknown whether pyroptosis in one cell can trigger the same process in other cells. Therefore, targeting pyroptosis could potentially offer a novel treatment approach for OA patients. We present a comprehensive analysis of the molecular mechanisms and key features of pyroptosis. We also outline the current research progress on various aspects, including synovial tissue, articular cartilage, extracellular matrix (ECM), and subchondral bone, with a focus on pyroptosis. The aim is to provide theoretical references for the effective management of OA.
Collapse
Affiliation(s)
- Yeping Chen
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Daofu Zeng
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Guizheng Wei
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Zhidong Liao
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Rongyuan Liang
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Xiajie Huang
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - William W Lu
- Department of Orthopedics and Traumatology, the University of Hong Kong, Hong Kong, People’s Republic of China
| | - Yan Chen
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| |
Collapse
|
17
|
Wang W, He Z. Gasdermins in sepsis. Front Immunol 2023; 14:1203687. [PMID: 38022612 PMCID: PMC10655013 DOI: 10.3389/fimmu.2023.1203687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Sepsis is a hyper-heterogeneous syndrome in which the systemic inflammatory response persists throughout the course of the disease and the inflammatory and immune responses are dynamically altered at different pathogenic stages. Gasdermins (GSDMs) proteins are pore-forming executors in the membrane, subsequently mediating the release of pro-inflammatory mediators and inflammatory cell death. With the increasing research on GSDMs proteins and sepsis, it is believed that GSDMs protein are one of the most promising therapeutic targets in sepsis in the future. A more comprehensive and in-depth understanding of the functions of GSDMs proteins in sepsis is important to alleviate the multi-organ dysfunction and reduce sepsis-induced mortality. In this review, we focus on the function of GSDMs proteins, the molecular mechanism of GSDMs involved in sepsis, and the regulatory mechanism of GSDMs-mediated signaling pathways, aiming to provide novel ideas and therapeutic strategies for the diagnosis and treatment of sepsis.
Collapse
Affiliation(s)
- Wenhua Wang
- Department of Intensive Care Unit, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhihui He
- Department of Intensive Care Unit, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Sepsis Translational Medicine Key Laboratory of Hunan Province, Central South University, Changsha, Hunan, China
| |
Collapse
|
18
|
Liu W, Peng J, Xiao M, Cai Y, Peng B, Zhang W, Li J, Kang F, Hong Q, Liang Q, Yan Y, Xu Z. The implication of pyroptosis in cancer immunology: Current advances and prospects. Genes Dis 2023; 10:2339-2350. [PMID: 37554215 PMCID: PMC10404888 DOI: 10.1016/j.gendis.2022.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/18/2022] [Accepted: 04/25/2022] [Indexed: 11/18/2022] Open
Abstract
Pyroptosis is a regulated cell death pathway involved in numerous human diseases, especially malignant tumors. Recent studies have identified multiple pyroptosis-associated signaling molecules, like caspases, gasdermin family and inflammasomes. In addition, increasing in vitro and in vivo studies have shown the significant linkage between pyroptosis and immune regulation of cancers. Pyroptosis-associated biomarkers regulate the infiltration of tumor immune cells, such as CD4+ and CD8+ T cells, thus strengthening the sensitivity to therapeutic strategies. In this review, we explained the relationship between pyroptosis and cancer immunology and focused on the significance of pyroptosis in immune regulation. We also proposed the future application of pyroptosis-associated biomarkers in basic research and clinical practices to address malignant behaviors. Exploration of the underlying mechanisms and biological functions of pyroptosis is critical for immune response and cancer immunotherapy.
Collapse
Affiliation(s)
- Wei Liu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Orthopedic Surgery, The Second Hospital University of South China, Hengyang, Hunan 421001, China
| | - Jinwu Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Pathology, Xiangya Changde Hospital, Changde, Hunan 415000, China
| | - Muzhang Xiao
- Department of Burn and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yuan Cai
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Bi Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Wenqin Zhang
- Department of Pathology, Xiangya Changde Hospital, Changde, Hunan 415000, China
| | - Jianbo Li
- Department of Pathology, Xiangya Changde Hospital, Changde, Hunan 415000, China
| | - Fanhua Kang
- Department of Pathology, Xiangya Changde Hospital, Changde, Hunan 415000, China
| | - Qianhui Hong
- Department of Pathology, Xiangya Changde Hospital, Changde, Hunan 415000, China
| | - Qiuju Liang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Pathology, Xiangya Changde Hospital, Changde, Hunan 415000, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
19
|
Sun R, Zheng W, Yang S, Zeng J, Tuo Y, Tan L, Zhang H, Bai H. In Silico Identification and Validation of Pyroptosis-Related Genes in Chlamydia Respiratory Infection. Int J Mol Sci 2023; 24:13570. [PMID: 37686375 PMCID: PMC10488104 DOI: 10.3390/ijms241713570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/22/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
The incidence of Chlamydia trachomatis respiratory infection is increasing, and its pathogenesis is still unclear. Pyroptosis, as a mode of inflammatory cell death, plays a vital role in the occurrence and development of Chlamydia trachomatis respiratory infection. In this study, the potential pyroptosis-related genes involved in Chlamydia trachomatis respiratory infection were identified by constructing a mouse model of C. muridarum infection combined with bioinformatics analysis. Through in-depth analysis of the RNA sequencing data, 13 differentially expressed pyroptosis-related genes were screened, including 1 downregulated gene and 12 upregulated genes. Gene ontology (GO) analysis showed that these genes mainly regulate inflammatory responses and produce IL-1β. Protein-protein interaction network analysis identified eight hub genes of interest: Tnf, Tlr2, Il1b, Nlrp3, Tlr9, Mefv, Zbp1 and Tnfaip3. Through quantitative real-time PCR (qPCR) analysis, we found that the expression of these genes in the lungs of C. muridarum-infected mice was significantly reduced, consistent with the bioinformatics results. At the same time, we detected elevated levels of caspase-3, gasdermin D and gasdermin E proteins in the lungs of C. muridarum-infected mice, demonstrating that Chlamydia trachomatis infection does induce pyroptosis. We then predicted nine miRNAs targeting these hub genes and constructed a key competitive endogenous RNA (ceRNA) network. In summary, we identified six key pyroptosis-related genes involved in Chlamydia trachomatis respiratory infection and constructed a ceRNA network associated with these genes. These findings will improve understanding of the molecular mechanisms underlying pyroptosis in Chlamydia trachomatis respiratory infections.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hong Bai
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; (R.S.); (W.Z.); (S.Y.); (J.Z.); (Y.T.); (L.T.); (H.Z.)
| |
Collapse
|
20
|
Zhu B, Niu Y, Guo H, Jin X, Liu F. Pyroptosis and inflammation‑mediated endothelial dysfunction may act as key factors in the development of erectile dysfunction (Review). Mol Med Rep 2023; 28:165. [PMID: 37449500 PMCID: PMC10407613 DOI: 10.3892/mmr.2023.13052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/12/2023] [Indexed: 07/18/2023] Open
Abstract
Erectile dysfunction (ED) is a prevalent disease that causes sexual dysfunction in males. Inflammation‑induced endothelial dysfunction is a fundamental pathophysiological symptom of ED, which is impacted by cell death. Pyroptosis is a type of programmed cell death mediated by the inflammasome that was discovered in inflammatory disorders. The activation of nucleotide‑binding oligomerization domain‑like receptors, particularly downstream inflammatory factors, such as IL‑1β and IL‑18, is indicative of caspase‑dependent pyroptosis. Although the underlying mechanisms of pyroptosis have been investigated in several disorders, the role of pyroptosis in ED remains to be fully elucidated. At present, studies on pyroptosis have focused on improving the understanding of ED pathogenesis and promoting the development of novel therapeutic options. The present review article aimed to discuss the literature surrounding the mechanisms underlying pyroptosis, and summarize the role of pyroptosis in the development and progression of inflammation‑mediated ED.
Collapse
Affiliation(s)
- Bingbing Zhu
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830011, P.R. China
- Xinjiang Key Laboratory of Molecular Biology of Endemic Diseases, Urumqi, Xinjiang Uygur Autonomous Region 830011, P.R. China
| | - Yangjiu Niu
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830011, P.R. China
- Xinjiang Key Laboratory of Molecular Biology of Endemic Diseases, Urumqi, Xinjiang Uygur Autonomous Region 830011, P.R. China
| | - Haoqiang Guo
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830011, P.R. China
- Xinjiang Key Laboratory of Molecular Biology of Endemic Diseases, Urumqi, Xinjiang Uygur Autonomous Region 830011, P.R. China
| | - Xiufang Jin
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830011, P.R. China
- Xinjiang Key Laboratory of Molecular Biology of Endemic Diseases, Urumqi, Xinjiang Uygur Autonomous Region 830011, P.R. China
| | - Fengxia Liu
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830011, P.R. China
- Xinjiang Key Laboratory of Molecular Biology of Endemic Diseases, Urumqi, Xinjiang Uygur Autonomous Region 830011, P.R. China
| |
Collapse
|
21
|
Tan J, Zhuo Z, Si Y. Application of pyroptosis in tumor research (Review). Oncol Lett 2023; 26:376. [PMID: 37559585 PMCID: PMC10407856 DOI: 10.3892/ol.2023.13962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/27/2023] [Indexed: 08/11/2023] Open
Abstract
As a potent clinical strategy, cancer therapy has sparked an academic boom over the past few years. Immune checkpoint inhibitors (ICIs) have been demonstrated to be highly successful. These achievements have progressed cancer treatment and have made an indelible mark on cancer. However, the inherent complexity of cancer means that only part of the population can benefit from this treatment. Pyroptosis is a new suicidal cellular mechanism that induces inflammation by releasing immunogenic cellular components. Inflammatory signaling cascades mediated by pyroptosis commonly inspire numerous cell lysis in immune diseases. Contrariwise, this consequence may be a promising target in cancer research. Therefore, the present study briefly described programmed cell death processes and their potential roles in cancer. Because of the rapid development of bioengineering in cancer, the present study also examined the associated scaffolding available for cancer, highlighting advances in tumor engineering approaches. Ultimately, an improved understanding of pyroptosis and tumor scaffolding might shed light on a combination that can be manipulated for therapeutic purposes.
Collapse
Affiliation(s)
- Jianing Tan
- Department of Neurology, Changshu No. 2 People's Hospital, Affiliated Changshu Hospital of Nantong University, Suzhou, Jiangsu 215500, P.R. China
| | - Ziliang Zhuo
- Department of Neurology, Changshu No. 2 People's Hospital, Affiliated Changshu Hospital of Nantong University, Suzhou, Jiangsu 215500, P.R. China
| | - Yu Si
- Basic Research Laboratory, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| |
Collapse
|
22
|
Tang R, Ren Y, Zhang Y, Yin M, Ren X, Zhu Q, Gao C, Zhang W, Liu G, Liu B. Glucose-driven transformable complex eliminates biofilm and alleviates inflamm-aging for diabetic periodontitis therapy. Mater Today Bio 2023; 20:100678. [PMID: 37293313 PMCID: PMC10244695 DOI: 10.1016/j.mtbio.2023.100678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 06/10/2023] Open
Abstract
Diabetic periodontitis is a major complication of diabetes, which has a deep involvement in teeth loss and more serious systematic diseases, including Alzheimer's disease, atherosclerosis and cancers. Diabetic periodontitis is difficult to treat because of recalcitrant infection and hyperglycemia-induced tissue dysfunction. Current treatments fail to completely eliminate infection due to the diffusion-reaction inhibition of biofilm, and ignore the tissue dysfunction. Here, we design a glucose-driven transformable complex, composed of calcium alginate (CaAlg) hydrogel shell and Zeolitic imidazolate framework-8 (ZIF-8) core encapsulating Glucose oxidase (GOx)/Catalase (CAT) and Minocycline (MINO), named as CaAlg@MINO/GOx/CAT/ZIF-8 (CMGCZ). The reaction product of glucose-scavenging, gluconic acid, could dissolve ZIF-8 core and transform CMGCZ from inflexible to flexible, facilitating the complex to overcome the diffusion-reaction inhibition of biofilm. Meanwhile, reduced glucose concentration could ameliorate the pyroptosis of macrophages to decrease the secretion of pro-inflammatory factors, thereby reducing inflamm-aging to alleviate periodontal dysfunction.
Collapse
|
23
|
Liu M, Liu D, Yu C, Fan HH, Zhao X, Wang H, Zhang C, Zhang M, Bo R, He S, Wang X, Jiang H, Guo Y, Li J, Xu X, Liu Q. Caffeic acid, but not ferulic acid, inhibits macrophage pyroptosis by directly blocking gasdermin D activation. MedComm (Beijing) 2023; 4:e255. [PMID: 37090118 PMCID: PMC10119582 DOI: 10.1002/mco2.255] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 02/28/2023] [Accepted: 03/17/2023] [Indexed: 04/25/2023] Open
Abstract
Regulated pyroptosis is critical for pathogen elimination by inducing infected cell rupture and pro-inflammatory cytokines secretion, while overwhelmed pyroptosis contributes to organ dysfunction and pathological inflammatory response. Caffeic acid (CA) and ferulic acid (FA) are both well-known antioxidant and anti-inflammatory phenolic acids, which resemble in chemical structure. Here we found that CA, but not FA, protects macrophages from both Nigericin-induced canonical and cytosolic lipopolysaccharide (LPS)-induced non-canonical pyroptosis and alleviates LPS-induced mice sepsis. It significantly improved the survival of pyroptotic cells and LPS-challenged mice and blocked proinflammatory cytokine secretion. The anti-pyroptotic effect of CA is independent of its regulations in cellular lipid peroxidation, mitochondrial function, or pyroptosis-associated gene transcription. Instead, CA arrests pyroptosis by directly associating with gasdermin D (GSDMD) and blocking its processing, resulting in reduced N-GSDMD pore construction and less cellular content release. In LPS-induced septic mice, CA inhibits GSDMD activation in peritoneal macrophages and reduces the serum levels of interleukin-1β and tumor necrosis factor-α as the known pyroptosis inhibitors, disulfiram and dimethyl fumarate. Collectively, these findings suggest that CA inhibits pyroptosis by targeting GSDMD and is a potential candidate for curbing the pyroptosis-associated disease.
Collapse
Affiliation(s)
- Mingjiang Liu
- Beijing Key Laboratory of Basic Research With Traditional Chinese Medicine on Infectious DiseasesBeijing Hospital of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
- College of Veterinary MedicineYangzhou UniversityYangzhouChina
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhouChina
| | - Dandan Liu
- College of Veterinary MedicineYangzhou UniversityYangzhouChina
| | - Chenglong Yu
- College of Veterinary MedicineYangzhou UniversityYangzhouChina
| | - Hua hao Fan
- Beijing University of Chemical TechnologyBeijingChina
| | - Xin Zhao
- College of Veterinary MedicineYangzhou UniversityYangzhouChina
| | - Huiwen Wang
- College of Veterinary MedicineYangzhou UniversityYangzhouChina
| | - Chi Zhang
- College of Veterinary MedicineYangzhou UniversityYangzhouChina
| | - Minxia Zhang
- College of Veterinary MedicineYangzhou UniversityYangzhouChina
| | - Ruonan Bo
- College of Veterinary MedicineYangzhou UniversityYangzhouChina
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhouChina
| | - Shasha He
- Beijing Key Laboratory of Basic Research With Traditional Chinese Medicine on Infectious DiseasesBeijing Hospital of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
| | - Xuerui Wang
- Beijing Key Laboratory of Basic Research With Traditional Chinese Medicine on Infectious DiseasesBeijing Hospital of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
| | - Hui Jiang
- Beijing Chest HospitalCapital Medical UniversityBeijingChina
| | - Yuhong Guo
- Beijing Key Laboratory of Basic Research With Traditional Chinese Medicine on Infectious DiseasesBeijing Hospital of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
| | - Jingui Li
- College of Veterinary MedicineYangzhou UniversityYangzhouChina
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhouChina
| | - Xiaolong Xu
- Beijing Key Laboratory of Basic Research With Traditional Chinese Medicine on Infectious DiseasesBeijing Hospital of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
| | - Qingquan Liu
- Beijing Key Laboratory of Basic Research With Traditional Chinese Medicine on Infectious DiseasesBeijing Hospital of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
| |
Collapse
|
24
|
Tan Y, Liu Q, Li Z, Yang S, Cui L. Pyroptosis-triggered pathogenesis: New insights on antiphospholipid syndrome. Front Immunol 2023; 14:1155222. [PMID: 37063905 PMCID: PMC10102483 DOI: 10.3389/fimmu.2023.1155222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/13/2023] [Indexed: 04/03/2023] Open
Abstract
APS (antiphospholipid syndrome) is a systematic autoimmune disease presenting with the high levels of aPLs (antiphospholipid antibodies). These autoantibodies are involved in various clinical manifestations, mainly including arterial or venous thrombosis formation, proinflammatory response, and recurrent pregnant loss. Pyroptosis is a form of lytic programmed cell death, and it aggravates autoimmune diseases progression via activating NOD-like receptors, especially the NLRP3 inflammasome and its downstream inflammatory factors IL (interleukin)-1β and IL-18. However, the underlying mechanisms of pyroptosis-induced APS progression remain to be elucidated. ECs (endothelial cells), monocytes, platelets, trophoblasts, and neutrophils are prominent participants in APS development. Of significance, pyroptosis of APS-related cells leads to the excessive release of proinflammatory and prothrombotic factors, which are the primary contributors to APOs (adverse pregnancy outcomes), thrombosis formation, and autoimmune dysfunction in APS. Furthermore, pyroptosis-associated medicines have made encouraging advancements in attenuating inflammation and thrombosis. Given the potential of pyroptosis in regulating APS development, this review would systematically expound the molecular mechanisms of pyroptosis, and elaborate the role of pyroptosis-mediated cellular effects in APS progression. Lastly, the prospective therapeutic approaches for APS would be proposed based on the regulation of pyroptosis.
Collapse
Affiliation(s)
- Yuan Tan
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Peking University Third Hospital, Beijing, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Qi Liu
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Peking University Third Hospital, Beijing, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Zhongxin Li
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Peking University Third Hospital, Beijing, China
| | - Shuo Yang
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Peking University Third Hospital, Beijing, China
| | - Liyan Cui
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Peking University Third Hospital, Beijing, China
- *Correspondence: Liyan Cui,
| |
Collapse
|
25
|
Xian H, Karin M. Oxidized mitochondrial DNA: a protective signal gone awry. Trends Immunol 2023; 44:188-200. [PMID: 36739208 DOI: 10.1016/j.it.2023.01.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 02/05/2023]
Abstract
Despite the emergence of mitochondria as key regulators of innate immunity, the mechanisms underlying the generation and release of immunostimulatory alarmins by stressed mitochondria remains nebulous. We propose that the major mitochondrial alarmin in myeloid cells is oxidized mitochondrial DNA (Ox-mtDNA). Fragmented Ox-mtDNA enters the cytosol where it activates the NLRP3 inflammasome and generates IL-1β, IL-18, and cGAS-STING to induce type I interferons and interferon-stimulated genes. Inflammasome activation further enables the circulatory release of Ox-mtDNA by opening gasdermin D pores. We summarize new data showing that, in addition to being an autoimmune disease biomarker, Ox-mtDNA converts beneficial transient inflammation into long-lasting immunopathology. We discuss how Ox-mtDNA induces short- and long-term immune activation, and highlight its homeostatic and immunopathogenic functions.
Collapse
Affiliation(s)
- Hongxu Xian
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego (UCSD), La Jolla, CA 92093, USA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego (UCSD), La Jolla, CA 92093, USA.
| |
Collapse
|
26
|
Guo J, Zhou M, Zhao M, Li S, Fang Z, Li A, Zhang M. TIGAR deficiency induces caspase-1-dependent trophoblasts pyroptosis through NLRP3-ASC inflammasome. Front Immunol 2023; 14:1114620. [PMID: 37122710 PMCID: PMC10140348 DOI: 10.3389/fimmu.2023.1114620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/06/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction Gestational diabetes mellitus (GDM), a common complication of pregnancy, is risky for both mother and fetus. Previous studies about TP53-induced glycolysis and apoptosis regulator (TIGAR) focused on the occurrence and development of cancer, cardiovascular disease, and neurological disease, however, it is still unclear whether TIGAR plays a regulatory role in gestational diabetes mellitus (GDM). Methods Utilizing HG exposure, we explored the role of TIGAR in oxidative stress limitation, excessive inflammatory toxicity defense, and pyroptosis prevention. Results TIGAR was up-regulated in vivo and in vitro under HG condition, and loss of TIGAR increased ROS in trophoblast cells which drove a phenotypic switch and hindered the capacity of migration, invasion, and tube formation. This switch depended on the increased activation of NLRP3-ASC-caspase-1 signaling, which caused a distinctive characteristic of pyroptosis, and these findings could finally be reverted by antioxidant treatment (NAC) and receptor block (MCC950). Collectively, trophoblast pyroptosis is an upstream event of TIGAR deficiency-induced inflammation, which is promoted by ROS accumulation through NLRP3-ASC inflammasome. Conclusion Taken together, our results uncovered that, as the upstream event of TIGAR deficiency-induced inflammation, pyroptosis is stimulated by ROS accumulation through NLRP3-ASC inflammasome.
Collapse
Affiliation(s)
| | | | | | | | | | - Anna Li
- *Correspondence: Anna Li, ; Meihua Zhang,
| | | |
Collapse
|
27
|
Wang F, Huang M, Wang Y, Hong Y, Zang D, Yang C, Wu C, Zhu Q. Membrane Attack Complex C5b-9 Promotes Renal Tubular Epithelial Cell Pyroptosis in Trichloroethylene-Sensitized Mice. Front Pharmacol 2022; 13:877988. [PMID: 35656289 PMCID: PMC9152256 DOI: 10.3389/fphar.2022.877988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Trichloroethylene (TCE), a commonly used organic solvent, is known to cause trichloroethylene hypersensitivity syndrome (THS), also called occupational medicamentosa-like dermatitis due to TCE (OMDT) in China. OMDT patients presented with severe inflammatory kidney damage, and we have previously shown that the renal damage is related to the terminal complement complex C5b-9. Here, we sought to determine whether C5b-9 participated in TCE-induced immune kidney injury by promoting pyroptosis, a new form of programed cell death linked to inflammatory response, with underlying molecular mechanisms involving the NLRP3 inflammasome. A BALB/c mouse-based model of OMDT was established by dermal TCE sensitization in the presence or absence of C5b-9 inhibitor (sCD59-Cys, 25μg/mouse) and NLRP3 antagonist (MCC950, 10 mg/kg). Kidney histopathology, renal function, expression of inflammatory mediators and the pyroptosis executive protein gasdermin D (GSDMD), and the activation of pyroptosis canonical NLRP3/caspase-1 pathway were examined in the mouse model. Renal tubular damage was observed in TCE-sensitized mice. GSDMD was mainly expressed on renal tubular epithelial cells (RTECs). The caspase-1-dependent canonical pathway of pyroptosis was activated in TCE-induced renal damage. Pharmacological inhibition of C5b-9 could restrain the caspase-1-dependent canonical pathway and rescued the renal tubular damage. Taken together, our results demonstrated that complement C5b-9 plays a central role in TCE-induced immune kidney damage, and the underlying mechanisms involve NLRP3-mediated pyroptosis.
Collapse
Affiliation(s)
- Feng Wang
- Department of Dermatology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Meng Huang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Yican Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Yiting Hong
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Dandan Zang
- Center for Scientific Research and Experiment, Anhui Medical University, Hefei, China
| | - Chunjun Yang
- Department of Dermatology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Changhao Wu
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Qixing Zhu
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology, Ministry of Education, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
28
|
Song D, Li M, Yu X, Wang Y, Fan J, Yang W, Yang L, Li H. The Molecular Pathways of Pyroptosis in Atherosclerosis. Front Cell Dev Biol 2022; 10:824165. [PMID: 35237603 PMCID: PMC8884404 DOI: 10.3389/fcell.2022.824165] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/28/2022] [Indexed: 12/11/2022] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease seriously endangering human health, whose occurrence and development is related to many factors. Pyroptosis is a recently identified novel programmed cell death associated with an inflammatory response and involved in the formation and progression of AS by activating different signaling pathways. Protein modifications of the sirtuin family and microRNAs (miRNAs) can directly or indirectly affect pyroptosis-related molecules. It is important to link atherosclerosis, thermogenesis and molecular modifications. This article will systematically review the molecular pathways of pyroptosis in AS, which can provide a new perspective for AS prevention and treatment.
Collapse
Affiliation(s)
- Dan Song
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Manman Li
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Xue Yu
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Yuqin Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Jiaying Fan
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Wei Yang
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Liming Yang
- Department of Pathophysiology, Harbin Medical University-Daqing, Daqing, China
- *Correspondence: Hong Li, ; Liming Yang,
| | - Hong Li
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
- *Correspondence: Hong Li, ; Liming Yang,
| |
Collapse
|
29
|
Focus on the Mechanisms and Functions of Pyroptosis, Inflammasomes, and Inflammatory Caspases in Infectious Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2501279. [PMID: 35132346 PMCID: PMC8817853 DOI: 10.1155/2022/2501279] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/28/2021] [Indexed: 12/17/2022]
Abstract
Eukaryotic cells can initiate several distinct self-destruction mechanisms to display essential roles for the homeostasis maintenance, development, and survival of an organism. Pyroptosis, a key response mode in innate immunity, also referred to as caspase-1-dependent proinflammatory programmed necrotic cell death activated by human caspase-1/4/5, or mouse caspase-1/11, plays indispensable roles in response to cytoplasmic insults and immune defense against infectious diseases. These inflammatory caspases are employed by the host to eliminate pathogen infections such as bacteria, viruses, protozoans, and fungi. Gasdermin D requires to be cleaved and activated by these inflammatory caspases to trigger the pyroptosis process. Physiological rupture of cells results in the release of proinflammatory cytokines, the alarmins IL-1β and IL-18, symbolizing the inflammatory potential of pyroptosis. Moreover, long noncoding RNAs play direct or indirect roles in the upstream of the pyroptosis trigger pathway. Here, we review in detail recently acquired insights into the central roles of inflammatory caspases, inflammasomes, and pyroptosis, as well as the crosstalk between pyroptosis and long noncoding RNAs in mediating infection immunity and pathogen clearance.
Collapse
|
30
|
Li S, Sun Y, Song M, Song Y, Fang Y, Zhang Q, Li X, Song N, Ding J, Lu M, Hu G. NLRP3/caspase-1/GSDMD-mediated pyroptosis exerts a crucial role in astrocyte pathological injury in mouse model of depression. JCI Insight 2021; 6:146852. [PMID: 34877938 PMCID: PMC8675200 DOI: 10.1172/jci.insight.146852] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 10/20/2021] [Indexed: 02/06/2023] Open
Abstract
Emerging evidence suggests that astrocyte loss is one of the most important pathological features in the hippocampus of patients with major depressive disorder (MDD) and depressive mice. Pyroptosis is a recently discovered form of programmed cell death depending on Caspase-gasdermin D (Casp-GSDMD), which is involved in multiple neuropsychiatric diseases. However, the involvement of pyroptosis in the onset of MDD and glial pathological injury remains obscure. Here, we observed that depressive mice showed astrocytic pyroptosis, which was responsible for astrocyte loss, and selective serotonin reuptake inhibitor (SSRI) treatment could attenuate the pyroptosis induced by the chronic mild stress (CMS) model. Genetic KO of GSDMD, Casp-1, and astrocytic NOD-like receptor protein 3 (NLRP3) inflammasome in mice alleviated depression-like behaviors and inhibited the pyroptosis-associated protein expression. In contrast, overexpression of astrocytic GSDMD-N-terminal domain (GSDMD-N) in the hippocampus could abolish the improvement of behavioral alterations in GSDMD-deficient mice. This work illustrates that targeting the NLRP3/Casp-1/GSDMD-mediated pyroptosis may provide potential therapeutic benefits to stress-related astrocyte loss in the pathogenesis of depression.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yiming Sun
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Mengmeng Song
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yuting Song
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yinquan Fang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, and
| | - Qingyu Zhang
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xueting Li
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Nanshan Song
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, and
| | - Jianhua Ding
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, and
| | - Ming Lu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, and.,Neuroprotective Drug Discovery Key Laboratory, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Gang Hu
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, and
| |
Collapse
|