1
|
Pan A, Bailey CC, Ou T, Xu J, Aristotelous T, Liu X, Hu B, Crynen G, Skamangas N, Bronkema N, Tran MH, Mou H, Zhang X, Alpert MD, Yin Y, Farzan M, He W. In vivo affinity maturation of the CD4 domains of an HIV-1-entry inhibitor. Nat Biomed Eng 2024; 8:1715-1729. [PMID: 39638875 PMCID: PMC12067531 DOI: 10.1038/s41551-024-01289-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 09/27/2024] [Indexed: 12/07/2024]
Abstract
Human proteins repurposed as biologics for clinical use have been engineered through in vitro techniques that improve the affinity of the biologics for their ligands. However, the techniques do not select against properties, such as protease sensitivity or self-reactivity, that impair the biologics' clinical efficacy. Here we show that the B-cell receptors of primary murine B cells can be engineered to affinity mature in vivo the human CD4 domains of the HIV-1-entry inhibitor CD4 immunoadhesin (CD4-Ig). Specifically, we introduced genes encoding the CD4 domains 1 and 2 (D1D2) of a half-life-enhanced form of CD4-Ig (CD4-Ig-v0) into the heavy-chain loci of murine B cells and adoptively transferred these cells into wild-type mice. After immunization, the B cells proliferated, class switched, affinity matured and produced D1D2-presenting antibodies. Somatic hypermutations in the D1D2-encoding region of the engrafted cells improved the binding affinity of CD4-Ig-v0 for the HIV-1 envelope glycoprotein and the inhibitor's ability to neutralize a panel of HIV-1 isolates without impairing its pharmacokinetic properties. In vivo affinity maturation of non-antibody protein biologics may guide the development of more effective therapeutics.
Collapse
Affiliation(s)
- Andi Pan
- Skaggs Graduate School, Scripps Research, La Jolla, CA, USA
- The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Charles C Bailey
- The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Tianling Ou
- The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Jinge Xu
- The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Tonia Aristotelous
- Center for the Development of Therapeutics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Xin Liu
- The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Baodan Hu
- The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Gogce Crynen
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, USA
| | - Nickolas Skamangas
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Naomi Bronkema
- Skaggs Graduate School, Scripps Research, La Jolla, CA, USA
- The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Mai H Tran
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Huihui Mou
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Xia Zhang
- The Scripps Research Institute, Jupiter, FL, USA
| | | | - Yiming Yin
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Michael Farzan
- Skaggs Graduate School, Scripps Research, La Jolla, CA, USA.
- The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| | - Wenhui He
- The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Division of Infectious Disease, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
- Institute for Molecular and Cellular Therapy, Chinese Institutes for Medical Research, and School of Basic Medical Sciences, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
George CA, Sahu SU, de Oñate L, Souza BSDF, Wilson RC. Genome Editing Therapy for the Blood: Ex Vivo Success and In Vivo Prospects. CRISPR J 2024; 7:231-248. [PMID: 39324895 DOI: 10.1089/crispr.2024.0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024] Open
Abstract
Hematopoietic stem cells (HSCs) provide the body with a continuous supply of healthy, functional blood cells. In patients with hematopoietic malignancies, immunodeficiencies, lysosomal storage disorders, and hemoglobinopathies, therapeutic genome editing offers hope for corrective intervention, with even modest editing efficiencies likely to provide clinical benefit. Engineered white blood cells, such as T cells, can be applied therapeutically to address monogenic disorders of the immune system, HIV infection, or cancer. The versatility of CRISPR-based tools allows countless new medical interventions for diseases of the blood, and rapid ex vivo success has been demonstrated in hemoglobinopathies via transplantation of the patient's HSCs following genome editing in a laboratory setting. Here we review recent advances in therapeutic genome editing of HSCs and T cells, focusing on the progress in ex vivo contexts, the promise of improved access via in vivo delivery, as well as the ongoing preclinical efforts that may enable the transition from ex vivo to in vivo administration. We discuss the challenges, limitations, and future prospects of this rapidly developing field, which may one day establish CRISPR as the standard of care for some diseases affecting the blood.
Collapse
Affiliation(s)
- Christy A George
- Innovative Genomics Institute, University of California Berkeley, Berkeley, California, USA
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, USA
| | - Srishti U Sahu
- Innovative Genomics Institute, University of California Berkeley, Berkeley, California, USA
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, USA
| | - Lorena de Oñate
- Innovative Genomics Institute, University of California Berkeley, Berkeley, California, USA
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, USA
| | - Bruno Solano de Freitas Souza
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- Pioneer Science Initiative, D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Ross C Wilson
- Innovative Genomics Institute, University of California Berkeley, Berkeley, California, USA
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, USA
- California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, California, USA
| |
Collapse
|
3
|
Ueda N, Cahen M, Leonard J, Deleurme L, Dreano S, Sirac C, Galy A, Moreaux J, Danger Y, Cogné M. Single-hit genome editing optimized for maturation in B cells redirects their specificity toward tumor antigens. Sci Rep 2024; 14:22432. [PMID: 39342013 PMCID: PMC11438885 DOI: 10.1038/s41598-024-74005-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024] Open
Abstract
T-cell-based adoptive immunotherapy is a new pillar of cancer care. Tumor-redirected B cells could also contribute to therapy if their manipulation to rewire immunoglobulin (Ig) genes is mastered. We designed a single-chain Ig-encoding cassette ("scFull-Ig") that redirects antigen specificity when inserted at a single position of the IgH locus. This design, which places combined IgH and IgL variable genes downstream of a pVH promoter, nevertheless preserves all Ig functional domains and the intrinsic mechanisms that regulate expression from the IgM B cell receptor (BCR) expression to Ig secretion, somatic hypermutation and class switching. This single-locus editing provides an efficient and safe strategy to both disrupt endogenous Ig expression and encode a new Ig paratope. As a proof of concept, the functionality of scFull BCR and/or secreted Ig was validated against two different classical human tumor antigens, HER2 and hCD20. Once validated in cell lines, the strategy was extended to primary B cells, confirming the successful engineering of BCR and Ig expression and the ability of scFull-Ig to undergo further class switching. These results further pave the way for future B cell-based adoptive immunotherapy and strategies to express a therapeutic mAb with a variety of switched H-chains that provide complementary functions.
Collapse
MESH Headings
- Humans
- B-Lymphocytes/immunology
- Gene Editing/methods
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/genetics
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/metabolism
- Receptor, ErbB-2/immunology
- Receptor, ErbB-2/genetics
- Immunotherapy, Adoptive/methods
- Immunoglobulin Class Switching/genetics
Collapse
Affiliation(s)
- Natsuko Ueda
- INSERM U 1236, University of Rennes 1, Etablissement Français du Sang, 35000, Rennes, France
| | - Marine Cahen
- INSERM U 1236, University of Rennes 1, Etablissement Français du Sang, 35000, Rennes, France
- Control of the B-cell Response & Lymphoproliferation, INSERM U1262, CNRS UMR 7276, Limoges University, 87025, Limoges, France
| | - Jenny Leonard
- INSERM U 1236, University of Rennes 1, Etablissement Français du Sang, 35000, Rennes, France
| | - Laurent Deleurme
- INSERM U 1236, University of Rennes 1, Etablissement Français du Sang, 35000, Rennes, France
| | - Stéphane Dreano
- CNRS-UMR 6290, Institute of Genetics and Development, 35000, Rennes, France
| | - Christophe Sirac
- Control of the B-cell Response & Lymphoproliferation, INSERM U1262, CNRS UMR 7276, Limoges University, 87025, Limoges, France
| | - Anne Galy
- Integrare Research Unit UMR_S951, Inserm, Genethon, Université Paris-Saclay, University of Evry, 91000, Evry, France
| | - Jérôme Moreaux
- CNRS-UM UMR 9002, Institute of Human Genetics, 34090, Montpellier, France
| | - Yannic Danger
- INSERM U 1236, University of Rennes 1, Etablissement Français du Sang, 35000, Rennes, France
| | - Michel Cogné
- INSERM U 1236, University of Rennes 1, Etablissement Français du Sang, 35000, Rennes, France.
| |
Collapse
|
4
|
Yin Y, Guo Y, Jiang Y, Quinlan B, Peng H, Crynen G, He W, Zhang L, Ou T, Bailey CC, Farzan M. In vivo affinity maturation of mouse B cells reprogrammed to express human antibodies. Nat Biomed Eng 2024; 8:361-379. [PMID: 38486104 DOI: 10.1038/s41551-024-01179-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 02/02/2024] [Indexed: 03/21/2024]
Abstract
Mice adoptively transferred with mouse B cells edited via CRISPR to express human antibody variable chains could help evaluate candidate vaccines and develop better antibody therapies. However, current editing strategies disrupt the heavy-chain locus, resulting in inefficient somatic hypermutation without functional affinity maturation. Here we show that these key B-cell functions can be preserved by directly and simultaneously replacing recombined mouse heavy and kappa chains with those of human antibodies, using a single Cas12a-mediated cut at each locus and 5' homology arms complementary to distal V segments. Cells edited in this way to express the human immunodeficiency virus type 1 (HIV-1) broadly neutralizing antibody 10-1074 or VRC26.25-y robustly hypermutated and generated potent neutralizing plasma in vaccinated mice. The 10-1074 variants isolated from the mice neutralized a global panel of HIV-1 isolates more efficiently than wild-type 10-1074 while maintaining its low polyreactivity and long half-life. We also used the approach to improve the potency of anti-SARS-CoV-2 antibodies against recent Omicron strains. In vivo affinity maturation of B cells edited at their native loci may facilitate the development of broad, potent and bioavailable antibodies.
Collapse
Affiliation(s)
- Yiming Yin
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- The Center for Integrated Solutions to Infectious Diseases (CISID), The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Yan Guo
- Department of Immunology and Microbiology, Scripps Biomedical Research, University of Florida, Jupiter, FL, USA
| | - Yuxuan Jiang
- Institute of Biomechanics and Medical Engineering, AML, Department of Engineering Mechanics, Tsinghua University, Beijing, People's Republic of China
| | - Brian Quinlan
- Department of Immunology and Microbiology, Scripps Biomedical Research, University of Florida, Jupiter, FL, USA
| | - Haiyong Peng
- Department of Immunology and Microbiology, Scripps Biomedical Research, University of Florida, Jupiter, FL, USA
| | - Gogce Crynen
- Department of Immunology and Microbiology, Scripps Biomedical Research, University of Florida, Jupiter, FL, USA
| | - Wenhui He
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- The Center for Integrated Solutions to Infectious Diseases (CISID), The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Lizhou Zhang
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tianling Ou
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- The Center for Integrated Solutions to Infectious Diseases (CISID), The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Charles C Bailey
- The Center for Integrated Solutions to Infectious Diseases (CISID), The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michael Farzan
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- The Center for Integrated Solutions to Infectious Diseases (CISID), The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
5
|
Affinity maturation of CRISPR-engineered B cell receptors in vivo. Nat Biomed Eng 2024; 8:341-342. [PMID: 38509393 DOI: 10.1038/s41551-024-01184-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
|
6
|
Pan A, Bailey CC, Ou T, Xu J, Liu X, Hu B, Crynen G, Skamangas N, Bronkema N, Tran M, Mu H, Zhang X, Yin Y, Alpert MD, He W, Farzan M. In vivo affinity maturation of the HIV-1 Env-binding domain of CD4. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.03.578630. [PMID: 38370774 PMCID: PMC10871246 DOI: 10.1101/2024.02.03.578630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Many human proteins have been repurposed as biologics for clinical use. These proteins have been engineered with in vitro techniques that improve affinity for their ligands. However, these approaches do not select against properties that impair efficacy such as protease sensitivity or self-reactivity. Here we engineer the B-cell receptor of primary murine B cells to express a human protein biologic without disrupting their ability to affinity mature. Specifically, CD4 domains 1 and 2 (D1D2) of a half-life enhanced-HIV-1 entry inhibitor CD4-Ig (CD4-Ig-v0) were introduced into the heavy-chain loci of murine B cells, which were then adoptively transferred to wild-type mice. After immunization, transferred B cells proliferated, class switched, affinity matured, and efficiently produced D1D2-presenting antibodies. Somatic hypermutations found in the D1D2-encoding region of engrafted B cells improved binding affinity of CD4-Ig-v0 for the HIV-1 envelope glycoprotein (Env) and the neutralization potency of CD4-Ig-v0 by more than ten-fold across a global panel of HIV-1 isolates, without impairing its pharmacokinetic properties. Thus, affinity maturation of non-antibody protein biologics in vivo can guide development of more effective therapeutics.
Collapse
Affiliation(s)
- Andi Pan
- Skaggs Graduate School, Scripps Research, La Jolla, CA 92037, USA
- The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Division of Infectious Disease, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA
| | - Charles C. Bailey
- The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tianling Ou
- The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Division of Infectious Disease, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Jinge Xu
- The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Division of Infectious Disease, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Xin Liu
- The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Division of Infectious Disease, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Baodan Hu
- The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Gogce Crynen
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA
| | - Nickolas Skamangas
- Division of Infectious Disease, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Naomi Bronkema
- Skaggs Graduate School, Scripps Research, La Jolla, CA 92037, USA
- The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Division of Infectious Disease, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Mai Tran
- Division of Infectious Disease, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Huihui Mu
- Division of Infectious Disease, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Xia Zhang
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA
| | - Yiming Yin
- Division of Infectious Disease, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | | | - Wenhui He
- The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Division of Infectious Disease, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Michael Farzan
- Skaggs Graduate School, Scripps Research, La Jolla, CA 92037, USA
- The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Division of Infectious Disease, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|