1
|
Kreslavsky T. Thymflammation: The Role of a Constitutively Active Inflammatory Network and "Ectopic" Cell Types in the Thymus in the Induction of T Cell Tolerance and Beyond. Immunol Rev 2025; 332:e70037. [PMID: 40433806 PMCID: PMC12117520 DOI: 10.1111/imr.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/28/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025]
Abstract
The thymus exhibits constitutive activation of nearly all major inflammatory pathways, including sterile MyD88-dependent signaling and interferon production by mTECs, the presence of cellular and molecular components of type 1, type 2, and type 3 responses, as well as sustained B cell activation. The reasons for the existence of such a complex constitutively active inflammatory network at the site of T cell development-where the initial pathogen encounter is unlikely-have remained enigmatic. We propose that this inflammatory thymic 'ecosystem' has evolved to promote immunological tolerance to 'inflammatory self'-endogenous molecules absent from most peripheral tissues at steady state but upregulated during pathogen invasion. The spatial and temporal overlap with pathogen presence makes the discrimination of the inflammatory self from pathogen-derived molecules a unique challenge for the adaptive immune system. The frequent occurrence of diseases associated with autoantibodies against proinflammatory cytokines underscores the persistent risk of these molecules being misidentified as foreign. Their abundant representation in the thymus, therefore, is likely to be critical for maintaining tolerance. This review explores current insights into the thymic inflammatory network, its cellular and molecular constituents, and their role in the induction of T cell tolerance.
Collapse
Affiliation(s)
- Taras Kreslavsky
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna, Karolinska InstitutetKarolinska University HospitalStockholmSweden
- Center for Molecular MedicineKarolinska University HospitalStockholmSweden
| |
Collapse
|
2
|
Wiggins KJ, Williams ME, Hicks SL, Padilla-Quirarte HO, Akther J, Randall TD, Boss JM, Scharer CD. EZH2 coordinates memory B-cell programming and recall responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025; 214:947-957. [PMID: 40073167 PMCID: PMC12123212 DOI: 10.1093/jimmun/vkaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/23/2024] [Indexed: 03/14/2025]
Abstract
Antigen-experienced memory B-cells (MBC) are endowed with enhanced functional properties compared to naïve B cells and play an important role in the humoral response. However, the epigenetic enzymes and programs that govern their rapid differentiation are incompletely understood. Here, the role of the histone H3 lysine 27 methyltransferase EZH2 in the formation of MBC in response to an influenza infection was determined in Mus musculus. EZH2 was expressed in all postactivated B-cell subsets, including MBC and antibody-secreting cells (ASC), with maximal expression in germinal center (GC) B cells. Deletion of EZH2 resulted in a skewing of the MBC pool towards a non-GC, IgM+ MBC subset that failed to fully express CCR6 and CD73 at both early and late infection time points. Intriguingly, although EZH2 protein levels were reduced in knockout MBC, deletion was not fully efficient, indicating a strong selective pressure to maintain EZH2 methyltransferase activity. Single-cell RNA-seq of antigen-specific MBC identified a core set of upregulated genes that are likely EZH2 targets across MBC subsets. Finally, defects in the ability to form secondary ASC and GC cells in response to a lethal challenge were observed in EZH2-deficient mice, indicating significant functional impairment in the absence of EZH2. These data show that EZH2 is a critical epigenetic modulator of MBC differentiation and functional potential during reactivation.
Collapse
Affiliation(s)
- Keenan J Wiggins
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States
| | - Mark E Williams
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States
| | - Sakeenah L Hicks
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States
| | - Herbey O Padilla-Quirarte
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States
| | - Jobaida Akther
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Troy D Randall
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jeremy M Boss
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, United States
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
3
|
Chen D, Xu S, Li S, Wang Q, Li H, He D, Chen Y, Xu H. The multi-organ landscape of B cells highlights dysregulated memory B cell responses in Crohn's disease. Natl Sci Rev 2025; 12:nwaf009. [PMID: 40160682 PMCID: PMC11951101 DOI: 10.1093/nsr/nwaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 01/07/2025] [Indexed: 04/02/2025] Open
Abstract
Crohn's disease (CD) is a prevalent type of inflammatory bowel disease (IBD) with dysregulated antibody responses. However, there is a lack of comprehensive analysis of B cell responses in CD. Here, we collected B cells from the small intestine, colon and blood of CD patients and control subjects. Through the coupled analysis of transcriptome and immunoglobulin (Ig) gene in individual cells, we characterized the cellular composition, transcriptome and Ig clonotype in different B cell subtypes. We observed shared disruptions in plasma cell (PC) responses between different IBD subtypes. We revealed heterogeneity in memory B cells (MBCs) and showed a positive correlation between gut resident-like MBCs and disease severity. Furthermore, our clonotype analysis demonstrated an increased direct differentiation of MBCs into PCs in CD patients. Overall, this study demonstrates significantly altered B cell responses associated with chronic inflammation during CD and highlights the potential role of mucosal MBCs in CD pathogenesis.
Collapse
Affiliation(s)
- Dianyu Chen
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- Laboratory of Systems Immunology, School of Medicine, Westlake University, Hangzhou 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Song Xu
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Shuyan Li
- Department of Nursing, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Qiuying Wang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- Laboratory of Systems Immunology, School of Medicine, Westlake University, Hangzhou 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Hui Li
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- Laboratory of Systems Immunology, School of Medicine, Westlake University, Hangzhou 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Danyang He
- Laboratory of Systems Immunology, School of Medicine, Westlake University, Hangzhou 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Yan Chen
- Center for Inflammatory Bowel Diseases, Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Heping Xu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- Laboratory of Systems Immunology, School of Medicine, Westlake University, Hangzhou 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
| |
Collapse
|
4
|
Pérez-Pérez L, Laidlaw BJ. Polarization of the memory B-cell response. J Leukoc Biol 2025; 117:qiae228. [PMID: 39401326 PMCID: PMC11953070 DOI: 10.1093/jleuko/qiae228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/26/2024] [Accepted: 10/11/2024] [Indexed: 03/30/2025] Open
Abstract
Memory B cells are long-lived cells that are induced following infection or vaccination. Upon antigen re-encounter, memory B cells rapidly differentiate into antibody-secreting or germinal center B cells. While memory B cells are an important component of long-term protective immunity following vaccination, they also contribute to the progression of diseases such as autoimmunity and allergy. Numerous subsets of memory B cells have been identified in mice and humans that possess important phenotypic and functional differences. Here, we review the transcriptional circuitry governing memory B-cell differentiation and function. We then summarize emerging evidence that the inflammatory environment in which memory B cells develop has an important role in shaping their phenotype and examine the pathways regulating the development of memory B cells during a type 1-skewed and type 2-skewed immune response.
Collapse
Affiliation(s)
- Lizzette Pérez-Pérez
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, 425 S Euclid Ave, St. Louis, MO 63110, United States
| | - Brian J Laidlaw
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, 425 S Euclid Ave, St. Louis, MO 63110, United States
| |
Collapse
|
5
|
Iwasaki T, Yoshifuji H, Kitagori K, Sumitomo S, Akizuki S, Nakashima R, Tsuji H, Hiwa R, Shirakashi M, Murakami K, Onishi A, Onizawa H, Tanaka M, Matsuda F, Morinobu A, Ohmura K. Memory B cells and their transcriptomic profiles associated with belimumab resistance in systemic lupus erythematosus in the maintenance phase. Front Immunol 2025; 16:1506298. [PMID: 39975549 PMCID: PMC11835923 DOI: 10.3389/fimmu.2025.1506298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/16/2025] [Indexed: 02/21/2025] Open
Abstract
The factors contributing to the treatment efficacy of belimumab in patients with systemic lupus erythematosus (SLE) in the maintenance phase are unknown. Here, we collected blood samples from patients with SLE (n=44) treated with belimumab before and three and six months after treatment. RNA-Seq of whole blood was performed, and gene expression was quantified. Immune cell type enrichment analysis estimated immune cell subtype proportions and gene expression in each subtype. The Systemic Lupus Erythematosus Disease Activity Index 2000 (SLEDAI-2K) < 4 at six months was set as the primary efficacy criterion. Non-responders exhibited upregulated B cell proliferation signals before treatment, associated with an increased number of memory B cells. A higher proportion of memory B cells before treatment predicted poor response (p=5.1×10-4). This was also associated with changes in disease activity and glucocorticoid dose at six months compared with baseline. Belimumab did not affect memory B cell proportion during the treatment time course, in contrast to naïve B cells. Higher memory B cell proportion was associated with higher type-I interferon (IFN) scores and lower white blood cell and complement C4 levels. Transcriptomic analysis of memory B cells in non-responders revealed significant upregulation of immunoglobulin genes (Ig). Memory B cells and high Ig expression in them were identified as a treatment-resistant factor of belimumab in SLE patients. Lower C4 and white blood cell counts may serve as clinical markers of higher memory B cells.
Collapse
Affiliation(s)
- Takeshi Iwasaki
- Graduate School of Medicine, Kyoto University, Department of Rheumatology and Clinical Immunology, Kyoto, Japan
- Graduate School of Medicine, Kyoto University, Center for Genomic Medicine, Kyoto, Japan
| | - Hajime Yoshifuji
- Graduate School of Medicine, Kyoto University, Department of Rheumatology and Clinical Immunology, Kyoto, Japan
| | - Koji Kitagori
- Graduate School of Medicine, Kyoto University, Department of Rheumatology and Clinical Immunology, Kyoto, Japan
| | - Shuji Sumitomo
- Kobe City Medical Center General Hospital, Department of Rheumatology, Kobe, Japan
| | - Shuji Akizuki
- Graduate School of Medicine, Kyoto University, Department of Rheumatology and Clinical Immunology, Kyoto, Japan
| | - Ran Nakashima
- Graduate School of Medicine, Kyoto University, Department of Rheumatology and Clinical Immunology, Kyoto, Japan
| | - Hideaki Tsuji
- Graduate School of Medicine, Kyoto University, Department of Rheumatology and Clinical Immunology, Kyoto, Japan
| | - Ryosuke Hiwa
- Graduate School of Medicine, Kyoto University, Department of Rheumatology and Clinical Immunology, Kyoto, Japan
| | - Mirei Shirakashi
- Graduate School of Medicine, Kyoto University, Department of Rheumatology and Clinical Immunology, Kyoto, Japan
| | - Kosaku Murakami
- Division of Clinical Immunology and Cancer Immunotherapy, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akira Onishi
- Department of Advanced Medicine for Rheumatic Diseases, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hideo Onizawa
- Department of Advanced Medicine for Rheumatic Diseases, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masao Tanaka
- Department of Advanced Medicine for Rheumatic Diseases, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Fumihiko Matsuda
- Graduate School of Medicine, Kyoto University, Center for Genomic Medicine, Kyoto, Japan
| | - Akio Morinobu
- Graduate School of Medicine, Kyoto University, Department of Rheumatology and Clinical Immunology, Kyoto, Japan
| | - Koichiro Ohmura
- Graduate School of Medicine, Kyoto University, Department of Rheumatology and Clinical Immunology, Kyoto, Japan
- Kobe City Medical Center General Hospital, Department of Rheumatology, Kobe, Japan
| |
Collapse
|
6
|
Brandi R, Paganelli A, D’Amelio R, Giuliani P, Lista F, Salemi S, Paganelli R. mRNA Vaccines Against COVID-19 as Trailblazers for Other Human Infectious Diseases. Vaccines (Basel) 2024; 12:1418. [PMID: 39772079 PMCID: PMC11680146 DOI: 10.3390/vaccines12121418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/07/2024] [Accepted: 12/13/2024] [Indexed: 01/03/2025] Open
Abstract
mRNA vaccines represent a milestone in the history of vaccinology, because they are safe, very effective, quick and cost-effective to produce, easy to adapt should the antigen vary, and able to induce humoral and cellular immunity. METHODS To date, only two COVID-19 mRNA and one RSV vaccines have been approved. However, several mRNA vaccines are currently under development for the prevention of human viral (influenza, human immunodeficiency virus [HIV], Epstein-Barr virus, cytomegalovirus, Zika, respiratory syncytial virus, metapneumovirus/parainfluenza 3, Chikungunya, Nipah, rabies, varicella zoster virus, and herpes simplex virus 1 and 2), bacterial (tuberculosis), and parasitic (malaria) diseases. RESULTS RNA viruses, such as severe acute respiratory syndrome coronavirus (SARS-CoV)-2, HIV, and influenza, are characterized by high variability, thus creating the need to rapidly adapt the vaccines to the circulating viral strain, a task that mRNA vaccines can easily accomplish; however, the speed of variability may be higher than the time needed for a vaccine to be adapted. mRNA vaccines, using lipid nanoparticles as the delivery system, may act as adjuvants, thus powerfully stimulating innate as well as adaptive immunity, both humoral, which is rapidly waning, and cell-mediated, which is highly persistent. Safety profiles were satisfactory, considering that only a slight increase in prognostically favorable anaphylactic reactions in young females and myopericarditis in young males has been observed. CONCLUSIONS The COVID-19 pandemic determined a shift in the use of RNA: after having been used in medicine as micro-RNAs and tumor vaccines, the new era of anti-infectious mRNA vaccines has begun, which is currently in great development, to either improve already available, but unsatisfactory, vaccines or develop protective vaccines against infectious agents for which no preventative tools have been realized yet.
Collapse
Affiliation(s)
- Rossella Brandi
- Istituto di Science Biomediche della Difesa, Stato Maggiore Della Difesa, 00184 Rome, Italy; (R.B.); (F.L.)
| | | | | | - Paolo Giuliani
- Poliambulatorio Montezemolo, Ente Sanitario Militare del Ministero Della Difesa Presso la Corte dei Conti, 00195 Rome, Italy;
| | - Florigio Lista
- Istituto di Science Biomediche della Difesa, Stato Maggiore Della Difesa, 00184 Rome, Italy; (R.B.); (F.L.)
| | - Simonetta Salemi
- Division of Internal Medicine, Azienda Ospedaliero-Universitaria S. Andrea, 00189 Rome, Italy
| | - Roberto Paganelli
- Internal Medicine, Faculty of Medicine and Surgery, Unicamillus, International School of Medicine, 00131 Rome, Italy
| |
Collapse
|
7
|
Dvorscek AR, McKenzie CI, Stäheli VC, Ding Z, White J, Fabb SA, Lim L, O'Donnell K, Pitt C, Christ D, Hill DL, Pouton CW, Burnett DL, Brink R, Robinson MJ, Tarlinton DM, Quast I. Conversion of vaccines from low to high immunogenicity by antibodies with epitope complementarity. Immunity 2024; 57:2433-2452.e7. [PMID: 39305904 DOI: 10.1016/j.immuni.2024.08.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/06/2024] [Accepted: 08/27/2024] [Indexed: 10/11/2024]
Abstract
Existing antibodies (Abs) have varied effects on humoral immunity during subsequent infections. Here, we leveraged in vivo systems that allow precise control of antigen-specific Abs and B cells to examine the impact of Ab dose, affinity, and specificity in directing B cell activation and differentiation. Abs competing with the B cell receptor (BCR) epitope showed affinity-dependent suppression. By contrast, Abs targeting a complementary epitope, not overlapping with the BCR, shifted B cell differentiation toward Ab-secreting cells. Such Abs allowed for potent germinal center (GC) responses to otherwise poorly immunogenic sites by promoting antigen capture and presentation by low-affinity B cells. These mechanisms jointly diversified the B cell repertoire by facilitating the recruitment of high- and low-affinity B cells into Ab-secreting cell, GC, and memory B cell fates. Incorporation of small amounts of monoclonal Abs into protein- or mRNA-based vaccines enhanced immunogenicity and facilitated sustained immune responses, with implications for vaccine design and our understanding of protective immunity.
Collapse
Affiliation(s)
- Alexandra R Dvorscek
- Department of Immunology, Monash University, 89 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Craig I McKenzie
- Department of Immunology, Monash University, 89 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Vera C Stäheli
- Department of Immunology, Monash University, 89 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Zhoujie Ding
- Department of Immunology, Monash University, 89 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Jacqueline White
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
| | - Stewart A Fabb
- Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, VIC 3052, Australia
| | - Leonard Lim
- Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, VIC 3052, Australia
| | - Kristy O'Donnell
- Department of Immunology, Monash University, 89 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Catherine Pitt
- Department of Immunology, Monash University, 89 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Daniel Christ
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
| | - Danika L Hill
- Department of Immunology, Monash University, 89 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Colin W Pouton
- Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, VIC 3052, Australia
| | - Deborah L Burnett
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia; School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2010, Australia
| | - Robert Brink
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
| | - Marcus J Robinson
- Department of Immunology, Monash University, 89 Commercial Rd, Melbourne, VIC 3004, Australia
| | - David M Tarlinton
- Department of Immunology, Monash University, 89 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Isaak Quast
- Department of Immunology, Monash University, 89 Commercial Rd, Melbourne, VIC 3004, Australia.
| |
Collapse
|
8
|
Babadei O, Strobl B, Müller M, Decker T. Transcriptional control of interferon-stimulated genes. J Biol Chem 2024; 300:107771. [PMID: 39276937 PMCID: PMC11489399 DOI: 10.1016/j.jbc.2024.107771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/17/2024] Open
Abstract
Interferon-induced genes are among the best-studied groups of coregulated genes. Nevertheless, intense research into their regulation, supported by new technologies, is continuing to provide insights into their many layers of transcriptional regulation and to reveal how cellular transcriptomes change with pathogen-induced innate and adaptive immunity. This article gives an overview of recent findings on interferon-induced gene regulation, paying attention to contributions beyond the canonical JAK-STAT pathways.
Collapse
Affiliation(s)
- Olga Babadei
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria; University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, Vienna, Austria
| | - Birgit Strobl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Mathias Müller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Thomas Decker
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria; University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, Vienna, Austria.
| |
Collapse
|
9
|
Skinner OP, Asad S, Haque A. Advances and challenges in investigating B-cells via single-cell transcriptomics. Curr Opin Immunol 2024; 88:102443. [PMID: 38968762 DOI: 10.1016/j.coi.2024.102443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/07/2024]
Abstract
Single-cell RNA sequencing (scRNAseq) and Variable, Diversity, Joining (VDJ) profiling have improved our understanding of B-cells. Recent scRNAseq-based approaches have led to the discovery of intermediate B-cell states, including preplasma cells and pregerminal centre B-cells, as well as unveiling protective roles for B-cells within tertiary lymphoid structures in respiratory infections and cancers. These studies have improved our understanding of transcriptional and epigenetic control of B-cell development and of atypical and memory B-cell differentiation. Advancements in temporal profiling in parallel with transcriptomic and VDJ sequencing have consolidated our understanding of the trajectory of B-cell clones over the course of infection and vaccination. Challenges remain in studying B-cell states across tissues in humans, in relating spatial location with B-cell phenotype and function, in examining antibody isotype switching events, and in unequivocal determination of clonal relationships. Nevertheless, ongoing multiomic assessments and studies of cellular interactions within tissues promise new avenues for improving humoral immunity and combatting autoimmune conditions.
Collapse
Affiliation(s)
- Oliver P Skinner
- Department of Microbiology & Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Parkville, Melbourne, VIC 3000, Australia.
| | - Saba Asad
- Department of Microbiology & Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Parkville, Melbourne, VIC 3000, Australia
| | - Ashraful Haque
- Department of Microbiology & Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Parkville, Melbourne, VIC 3000, Australia.
| |
Collapse
|
10
|
Cooper L, Szeto C, Jayasinghe D, Taylor JJ, Gras S, Good-Jacobson KL. Detection of Lymphocytic Choriomeningitis Virus-Specific Memory B Cells Using Antigen Tetramers. Methods Mol Biol 2024; 2826:117-129. [PMID: 39017889 DOI: 10.1007/978-1-0716-3950-4_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Memory B cells are central to the establishment of immunological memory, providing long-term protection against specific pathogens and playing a vital role in the efficacy of vaccines. Understanding how memory B cell formation is disrupted during persistent infection is essential for new therapeutics. Lymphocytic choriomeningitis virus (LCMV) is an ideal model for investigating memory B cells in acute versus chronic infection. This protocol details techniques to isolate, enrich, and examine LCMV-specific memory B cells in both acute and chronic LCMV infection. Using an antigen tetramer enrichment system and flow cytometry, this method assesses low-frequency, polyclonal antigen-specific memory B cells.
Collapse
Affiliation(s)
- Lucy Cooper
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
- Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Christopher Szeto
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
- Department of Biochemistry and Chemistry La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | - Dhilshan Jayasinghe
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
- Department of Biochemistry and Chemistry La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | - Justin J Taylor
- Beirne B. Carter Immunology Center, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Diseases & International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Stephanie Gras
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
- Department of Biochemistry and Chemistry La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | - Kim L Good-Jacobson
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia.
- Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| |
Collapse
|