1
|
Kim CY, Kim CR, Kim E, Park K, Kim H, Ma L, Huang K, Liu Z, Park J, Jung M, Li S, Wen W, Kim S, Park S, Ryoo ZY, Yi J, Kim MO. Effects of PM2.5 Metal Components Derived From Porcine Farm Exposure on Sperm Function in Mice. J Biochem Mol Toxicol 2025; 39:e70279. [PMID: 40293820 PMCID: PMC12036746 DOI: 10.1002/jbt.70279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 02/05/2025] [Accepted: 04/16/2025] [Indexed: 04/30/2025]
Abstract
This study aimed to identify the effects of major metal components present in particulate matter (PM)2.5 on the reproductive system, sperm function, and embryo development. Through intratracheal instillation, male mice were exposed to various concentrations of metal components, including calcium oxide (Ca), iron oxide (Fe), aluminum oxide (Al), zinc oxide (Zn), lead oxide (Pb), and a mixture of these metals, in PM2.5 collected from the porcine farm. After 14 days, testicular inflammation and abnormal sperm morphology were observed in the exposed mice. These results indicate that such metal exposure enhances inflammatory cytokines in the testis and oxidative stress-induced apoptosis. Moreover, the exposure influenced sperm deformation, capacitation status, testosterone levels, and testosterone biosynthesis. Importantly, embryo development was also found to be impacted due to decreased sperm fertility. This study demonstrates that major metal components of PM2.5 derived from porcine farm pose adverse effects on the male reproductive system.
Collapse
Affiliation(s)
- Chae Yeon Kim
- Department of Animal Science and Biotechnology, Research Institute for Innovative Animal ScienceKyungpook National UniversitySangjuRepublic of Korea
| | - Chae Rim Kim
- Department of Animal Science and Biotechnology, Research Institute for Innovative Animal ScienceKyungpook National UniversitySangjuRepublic of Korea
| | - Eungyung Kim
- Department of Animal Science and Biotechnology, Research Institute for Innovative Animal ScienceKyungpook National UniversitySangjuRepublic of Korea
| | - Kanghyun Park
- Department of Animal Science and Biotechnology, Research Institute for Innovative Animal ScienceKyungpook National UniversitySangjuRepublic of Korea
| | - Hyeonjin Kim
- Department of Animal Science and Biotechnology, Research Institute for Innovative Animal ScienceKyungpook National UniversitySangjuRepublic of Korea
| | - Lei Ma
- Department of Animal Science and Biotechnology, Research Institute for Innovative Animal ScienceKyungpook National UniversitySangjuRepublic of Korea
| | - Ke Huang
- Department of Animal Science and Biotechnology, Research Institute for Innovative Animal ScienceKyungpook National UniversitySangjuRepublic of Korea
| | - Zhibin Liu
- Department of Animal Science and Biotechnology, Research Institute for Innovative Animal ScienceKyungpook National UniversitySangjuRepublic of Korea
| | - Junsu Park
- Animal Environment DivisionNational Institute of Animal ScienceWanjuRepublic of Korea
| | - Minwoong Jung
- Animal Environment DivisionNational Institute of Animal ScienceWanjuRepublic of Korea
| | - Shengqing Li
- Department of Pulmonary and Critical Care Medicine, Huashan HospitalFudan UniversityShanghaiChina
| | - Weihong Wen
- Institute of Medical ResearchNorthwestern Polytechnical UniversityXi'anChina
| | - Sangsik Kim
- Department of Energy Chemical EngineeringKyungpook National UniversitySangjuRepublic of Korea
| | - Sijun Park
- School of Life Science, BK21 FOUR KNU Creative BioResearch GroupKyungpook National UniversityDaeguRepublic of Korea
| | - Zae Young Ryoo
- School of Life Science, BK21 FOUR KNU Creative BioResearch GroupKyungpook National UniversityDaeguRepublic of Korea
| | - Junkoo Yi
- School of Animal Life Convergence ScienceHankyong National UniversityAnseongRepublic of Korea
- Gyeonggi Regional Research CenterHankyong National UniversityAnseongRepublic of Korea
| | - Myoung Ok Kim
- Department of Animal Science and Biotechnology, Research Institute for Innovative Animal ScienceKyungpook National UniversitySangjuRepublic of Korea
| |
Collapse
|
2
|
Zhou X, Liao J, Lei Z, Yao H, Zhao L, Yang C, Zu Y, Zhao Y. Nickel-based nanomaterials: a comprehensive analysis of risk assessment, toxicity mechanisms, and future strategies for health risk prevention. J Nanobiotechnology 2025; 23:211. [PMID: 40087769 PMCID: PMC11909927 DOI: 10.1186/s12951-025-03248-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 02/18/2025] [Indexed: 03/17/2025] Open
Abstract
Nickel-based nanomaterials (NBNs) have seen a surge in usage across a variety of applications. However, the widespread use of NBNs has led to increased human exposure, raising questions about their associated health risks, both in the short and long term. Additionally, the spread of NBNs in the environment has attracted considerable attention, emerging as a vital focus for research and development. This review aims to provide an in-depth assessment of the current understanding of NBNs toxicity, the mechanisms underlying their toxicological effects, and the strategies for mitigating associated health risks. We begin by examining the physicochemical properties of NBNs, such as particle size, composition and surface functionalization, which are key determinants of their biological interactions and toxicity. Then, through an extensive analysis of in vitro and in vivo studies, we highlight the adverse effects of NBNs exposure, including the generation of reactive oxygen species (ROS), oxidative stress, inflammation, cytotoxicity, genotoxicity, and immunotoxicity. To address the potential health risks associated with NBNs, we propose future strategies for risk prevention, including the development of safer nanomaterial designs, implementation of stringent regulatory guidelines, and advancement of novel toxicity testing approaches.
Collapse
Affiliation(s)
- Xiaoting Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- College of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - Jiaqi Liao
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Zipeng Lei
- Clinical College of the Third Medical Center of Chinese PLA General Hospital, The Fifth Clinical Medical College of Anhui Medical University, Hefei, 230032, Anhui, China
| | - Huiqin Yao
- College of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - Le Zhao
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Chun Yang
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China.
| | - Yan Zu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- National Center for Nanoscience and Technology, Beijing, 100190, China
| |
Collapse
|
3
|
Liu N, Zhang B, Lin N. Review on the role of autophagy in the toxicity of nanoparticles and the signaling pathways involved. Chem Biol Interact 2025; 406:111356. [PMID: 39701490 DOI: 10.1016/j.cbi.2024.111356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/09/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
As the development of nanotechnology, the application of nanoproducts and the advancement of nanomedicine, the contact of nanoparticles (NPs) with human body is becoming increasingly prevalent. This escalation elevates the risk of NPs exposure for workers, consumers, researchers, and both aquatic and terrestrial organisms throughout the production, usage, and disposal stages. Consequently, evaluating nanotoxicity remains critically important, though standardized assessment criteria are still lacking. The diverse and complex properties of NPs further complicate the understanding of their toxicological mechanisms. Autophagy, a fundamental cellular process, exhibits dual functions-both pro-survival and pro-death. This review offers an updated perspective on the dual roles of autophagy in nanotoxicity and examines the factors influencing autophagic responses. However, no definitive framework exists for predicting NPs-induced autophagy. Beyond the conventional autophagy pathways, the review highlights specific transcription factors activated by NPs and explores metabolic reprogramming. Particular attention is given to NPs-induced selective autophagy, including mitophagy, ER-phagy, ferritinophagy, lysophagy, and lipophagy. Additionally, the review investigates autophagy's involvement in NPs-mediated biological processes such as ferroptosis, inflammation, macrophage polarization, epithelial-mesenchymal transition, tumor cell proliferation and drug resistance, as well as liver and kidney injury, neurotoxicity, and other diseases. In summary, this review presents a novel update on selective autophagy-mediated nanotoxicity and elucidates the broader interactions of autophagy in NPs-induced biological processes. Collectively, these insights offer valuable strategies for mitigating nanotoxicity through autophagy modulation and advancing the development of NPs in biomedical applications.
Collapse
Affiliation(s)
- Na Liu
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Department of Clinical Pharmacology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China
| | - Bo Zhang
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Department of Clinical Pharmacology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China.
| | - Nengming Lin
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Department of Clinical Pharmacology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China.
| |
Collapse
|
4
|
Gautam R, Maan P, Jyoti A, Kumar A, Malhotra N, Arora T. The Role of Lifestyle Interventions in PCOS Management: A Systematic Review. Nutrients 2025; 17:310. [PMID: 39861440 PMCID: PMC11767734 DOI: 10.3390/nu17020310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Polycystic ovary syndrome (PCOS) is one of the most prevalent endocrine disorders among reproductive-aged women. It is characterized by hyperandrogenism, anovulation, and polycystic ovaries. Lifestyle changes are suggested as first-line interventions in managing PCOS. This systematic review aims to assess the scientific evidence regarding the role of lifestyle modifications (dietary changes, physical activity, and behavioral changes) in improving reproductive, anthropometric, metabolic, and psychological outcomes in women with PCOS. Dietary interventions such as foods with low glycemic index scores; caloric restrictions; high-fiber, omega three fatty acid-rich diets; ketogenic diets; Mediterranean diets; antioxidant-rich food; and anti-inflammatory diets improve insulin sensitivity and hormonal balance in women with PCOS. Physical activity, like aerobic and resistance exercise, enhances insulin sensitivity, helps weight loss, and improves metabolic and reproductive outcomes in women with PCOS. Further, behavioral and education modules can also be used to improve awareness, adherence, and the effectiveness of conventional treatment and to manage mental health issues related to PCOS. Collectively, lifestyle modifications not only improve the biochemical, hormonal, and anthropometric parameters in PCOS patients but also reduce the long-term risks of metabolic and cardiovascular diseases.
Collapse
Affiliation(s)
- Rohit Gautam
- Division of Reproductive Child Health and Nutrition, Indian Council of Medical Research (ICMR), New Delhi 110029, India; (R.G.); (P.M.)
| | - Pratibha Maan
- Division of Reproductive Child Health and Nutrition, Indian Council of Medical Research (ICMR), New Delhi 110029, India; (R.G.); (P.M.)
| | - Anshu Jyoti
- Department of Obstetrics and Gynecology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India; (A.J.); (A.K.)
| | - Anshu Kumar
- Department of Obstetrics and Gynecology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India; (A.J.); (A.K.)
| | - Neena Malhotra
- Department of Obstetrics and Gynecology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India; (A.J.); (A.K.)
| | - Taruna Arora
- Division of Reproductive Child Health and Nutrition, Indian Council of Medical Research (ICMR), New Delhi 110029, India; (R.G.); (P.M.)
| |
Collapse
|
5
|
Vinnikov D, Syurin S. Nickel and human sperm quality: a systematic review. BMC Public Health 2024; 24:3545. [PMID: 39702049 DOI: 10.1186/s12889-024-21119-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 12/17/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Reproductive effects of chronic exposure to nickel (Ni), including sperm quality, have been a matter of debate given that published studies yielded contrasting results. We have, therefore, planned to systematically search and analyze medical literature with the aim to ascertain the association of exposure to nickel with the sperm quality in humans. MATERIALS AND METHODS We systematically searched Pubmed, Scopus and Embase for studies reporting the association of Ni with the sperm quality in humans with no time or language limits and used PRISMA to report the findings. The risk of bias was assessed using JBI critical appraisal checklist and SIGN tool. Because the reported effects were no coherent, meta-analysis was not possible. RESULTS All included studies were observational and planned to test the effect of a group of trace elements, but not Ni alone. We identified and included 19 studies from 23 publications, published from 12 countries, which assessed sperm quality, sperm DNA damage and sperm metabolome. Ni was quantified in blood, semen plasma, spermatozoa and urine. Sixteen included cross-sectional studies were of acceptable quality, whereas three more case-control reports were of poor quality. Multivariate models were reported in only eight studies. Overall, studies were inconsistent in the direction of effect, when elevated Ni was not associated with the outcome (N = 8 studies), or some association was present (N = 11 studies). In the latter, 9 studies yielded elevated risk and 2 studies exhibited protective effect. Only one report was in an occupationally exposed population with some association with tail defects, but present in both welders and controls. CONCLUSIONS Existing evidence from the studies in humans is inconsistent and does not confirm a clear adverse effect of higher Ni concentrations in blood, urine or semen on the sperm quality. Robust methodology must be a key issue in the future studies. Studies with more powerful evidence, such as cohort or experimental reports are needed.
Collapse
Affiliation(s)
- Denis Vinnikov
- al-Farabi Kazakh National University, 71 al-Farabi avenue, Almaty, 050040, Kazakhstan.
- Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya street, Moscow, 117198, Russian Federation.
| | - Sergei Syurin
- Northwest Public Health Research Center, 4 2-Sovetskaya street, Saint-Petersburg, 191036, Russian Federation
| |
Collapse
|
6
|
Zhang R, Yang H, Guo M, Niu S, Xue Y. Mitophagy and its regulatory mechanisms in the biological effects of nanomaterials. J Appl Toxicol 2024; 44:1834-1853. [PMID: 38642013 DOI: 10.1002/jat.4609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/13/2024] [Accepted: 03/22/2024] [Indexed: 04/22/2024]
Abstract
Mitophagy is a selective cellular process critical for the removal of damaged mitochondria. It is essential in regulating mitochondrial number, ensuring mitochondrial functionality, and maintaining cellular equilibrium, ultimately influencing cell destiny. Numerous pathologies, such as neurodegenerative diseases, cardiovascular disorders, cancers, and various other conditions, are associated with mitochondrial dysfunctions. Thus, a detailed exploration of the regulatory mechanisms of mitophagy is pivotal for enhancing our understanding and for the discovery of novel preventive and therapeutic options for these diseases. Nanomaterials have become integral in biomedicine and various other sectors, offering advanced solutions for medical uses including biological imaging, drug delivery, and disease diagnostics and therapy. Mitophagy is vital in managing the cellular effects elicited by nanomaterials. This review provides a comprehensive analysis of the molecular mechanisms underpinning mitophagy, underscoring its significant influence on the biological responses of cells to nanomaterials. Nanoparticles can initiate mitophagy via various pathways, among which the PINK1-Parkin pathway is critical for cellular defense against nanomaterial-induced damage by promoting mitophagy. The role of mitophagy in biological effects was induced by nanomaterials, which are associated with alterations in Ca2+ levels, the production of reactive oxygen species, endoplasmic reticulum stress, and lysosomal damage.
Collapse
Affiliation(s)
- Rui Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Haitao Yang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Menghao Guo
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Shuyan Niu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Yuying Xue
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
7
|
Liu N, Liang Y, Wei T, Huang X, Zhang T, Tang M. ROS-mediated NRF2/p-ERK1/2 signaling-involved mitophagy contributes to macrophages activation induced by CdTe quantum dots. Toxicology 2024; 505:153825. [PMID: 38710382 DOI: 10.1016/j.tox.2024.153825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/08/2024]
Abstract
Cadmium telluride (CdTe) quantum dots (QDs) have garnered significant attention for tumor imaging due to their exceptional properties. However, there remains a need for further investigation into their potential toxicity mechanisms and corresponding enhancements. Herein, CdTe QDs were observed to accumulate in mouse liver, leading to a remarkable overproduction of IL-1β and IL-6. Additionally, there was evidence of macrophage infiltration and activation following exposure to 12.5 μmol/kg body weight of QDs. To elucidate the underlying mechanism of macrophage activation, CdTe QDs functionalized with 3-mercaptopropionic acid (MPA) were utilized. In vitro experiments revealed that 1.0 μM MPA-CdTe QDs activated PINK1-dependent mitophagy in RAW264.7 macrophages. Critically, the autophagic flux remained unimpeded, as demonstrated by the absence of p62 accumulation, LC3 turnover assay results, and successful fusion of autophagosomes with lysosomes. Mechanically, QDs increased reactive oxygen species (ROS) and mitoROS by damaging both mitochondria and lysosomes. ROS, in turn, inhibited NRF2, resulting in the phosphorylation of ERK1/2 and subsequent activation of mitophagy. Notably, 1.0 μM QDs disrupted lysosomes but autophagic flux was not impaired. Eventually, the involvement of the ROS-NRF2-ERK1/2 pathway-mediated mitophagy in the increase of IL-1β and IL-6 in macrophages was confirmed using Trolox, MitoTEMPO, ML385, specific siRNAs, and lentivirus-based interventions. This study innovatively revealed the pro-inflammatory rather than anti-inflammatory role of mitophagy in nanotoxicology, shedding new light on the mechanisms of mitochondrial disorders induced by QDs and identifying several molecular targets to comprehend the toxicological mechanisms of CdTe QDs.
Collapse
Affiliation(s)
- Na Liu
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310006, China
| | - Ying Liang
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Tingting Wei
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Xiaoquan Huang
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
8
|
Mo Y, Zhang Y, Zhang Q. The pulmonary effects of nickel-containing nanoparticles: Cytotoxicity, genotoxicity, carcinogenicity, and their underlying mechanisms. ENVIRONMENTAL SCIENCE. NANO 2024; 11:1817-1846. [PMID: 38984270 PMCID: PMC11230653 DOI: 10.1039/d3en00929g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
With the exponential growth of the nanotechnology field, the global nanotechnology market is on an upward track with fast-growing jobs. Nickel (Ni)-containing nanoparticles (NPs), an important class of transition metal nanoparticles, have been extensively used in industrial and biomedical fields due to their unique nanostructural, physical, and chemical properties. Millions of people have been/are going to be exposed to Ni-containing NPs in occupational and non-occupational settings. Therefore, there are increasing concerns over the hazardous effects of Ni-containing NPs on health and the environment. The respiratory tract is a major portal of entry for Ni-containing NPs; thus, the adverse effects of Ni-containing NPs on the respiratory system, especially the lungs, have been a focus of scientific study. This review summarized previous studies, published before December 1, 2023, on cytotoxic, genotoxic, and carcinogenic effects of Ni-containing NPs on humans, lung cells in vitro, and rodent lungs in vivo, and the potential underlying mechanisms were also included. In addition, whether these adverse effects were induced by NPs themselves or Ni ions released from the NPs was also discussed. The extra-pulmonary effects of Ni-containing NPs were briefly mentioned. This review will provide us with a comprehensive view of the pulmonary effects of Ni-containing NPs and their underlying mechanisms, which will shed light on our future studies, including the urgency and necessity to produce engineering Ni-containing NPs with controlled and reduced toxicity, and also provide the scientific basis for developing nanoparticle exposure limits and policies.
Collapse
Affiliation(s)
- Yiqun Mo
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| | - Yue Zhang
- Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Qunwei Zhang
- Department of Epidemiology and Population Health, School of Public Health and Information Sciences, University of Louisville, Louisville, KY, USA
| |
Collapse
|
9
|
Yao Y, Zhang T, Tang M. Toxicity mechanism of engineered nanomaterials: Focus on mitochondria. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123231. [PMID: 38154775 DOI: 10.1016/j.envpol.2023.123231] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 12/30/2023]
Abstract
With the rapid development of nanotechnology, engineered nanomaterials (ENMs) are widely used in various fields. This has exacerbated the environmental pollution and human exposure of ENMs. The study of toxicity of ENMs and its mechanism has become a hot research topic in recent years. Mitochondrial damage plays an important role in the toxicity of ENMs. This paper reviews the structural damage, dysfunction, and molecular level perturbations caused by different ENMs to mitochondria, including ZnO NPs, Ag NPs, TiO2 NPs, iron oxide NPs, cadmium-based quantum dots, CuO NPs, silica NPs, carbon-based nanomaterials. Among them, mitochondrial quality control plays an important role in mitochondrial damage. We further summarize the cellular level outcomes caused by mitochondrial damage, mainly including, apoptosis, ferroptosis, pyroptosis and inflammation response. In addition, we concluded that reducing mitochondrial damage at source as well as accelerating recovery from mitochondrial damage through ENMs modification and pharmacological intervention are two feasible strategies. This review further provides new insights into the mitochondrial toxicity mechanisms of ENMs and provides a new foothold for predicting human health and environmental risks of ENMs.
Collapse
Affiliation(s)
- Yongshuai Yao
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, PR China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, PR China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, PR China.
| |
Collapse
|
10
|
Zhou S, Li H, Wang H, Wang R, Song W, Li D, Wei C, Guo Y, He X, Deng Y. Nickel Nanoparticles Induced Hepatotoxicity in Mice via Lipid-Metabolism-Dysfunction-Regulated Inflammatory Injury. Molecules 2023; 28:5757. [PMID: 37570729 PMCID: PMC10421287 DOI: 10.3390/molecules28155757] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Nickel nanoparticles (NiNPs) have wide applications in industry and biomedicine due to their unique characteristics. The liver is the major organ responsible for nutrient metabolism, exogenous substance detoxification and biotransformation of medicines containing nanoparticles. Hence, it is urgent to further understand the principles and potential mechanisms of hepatic effects on NiNPs administration. In this study, we explored the liver impacts in male C57/BL6 mice through intraperitoneal injection with NiNPs at doses of 10, 20 and 40 mg/kg/day for 7 and 28 days. The results showed that NiNPs treatment increased serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and induced pathological changes in liver tissues. Moreover, hepatic triglyceride (TG) content and lipid droplet deposition identified via de novo lipogenesis (DNL) progression were enhanced after NiNPs injection. Additionally, sustained NiNPs exposure induced a remarkable hepatic inflammatory response, significantly promoted endoplasmic reticulum stress (ER stress) sensors Ire1α, Perk and Atf6, and activated the occurrence of liver cell apoptosis. Overall, the research indicated that NiNPs exposure induced liver injury and disturbance of lipid metabolism. These findings revealed the public hazard from extreme exposure to NiNPs and provided new information on biological toxicity and biosafety evaluation.
Collapse
Affiliation(s)
- Shuang Zhou
- Beijing Institute of Medical Device Testing, Beijing Center for Testing and Research of Medical Biological Protective Equipment, Beijing 101111, China; (S.Z.)
- Beijing Institute of Technology, School of Life Science, Beijing 100081, China
| | - Hua Li
- Beijing Institute of Medical Device Testing, Beijing Center for Testing and Research of Medical Biological Protective Equipment, Beijing 101111, China; (S.Z.)
| | - Hui Wang
- Beijing Institute of Medical Device Testing, Beijing Center for Testing and Research of Medical Biological Protective Equipment, Beijing 101111, China; (S.Z.)
| | - Rui Wang
- Beijing Institute of Medical Device Testing, Beijing Center for Testing and Research of Medical Biological Protective Equipment, Beijing 101111, China; (S.Z.)
| | - Wei Song
- Beijing Institute of Medical Device Testing, Beijing Center for Testing and Research of Medical Biological Protective Equipment, Beijing 101111, China; (S.Z.)
| | - Da Li
- Beijing Institute of Medical Device Testing, Beijing Center for Testing and Research of Medical Biological Protective Equipment, Beijing 101111, China; (S.Z.)
| | - Changlei Wei
- Beijing Institute of Medical Device Testing, Beijing Center for Testing and Research of Medical Biological Protective Equipment, Beijing 101111, China; (S.Z.)
| | - Yu Guo
- Beijing Institute of Medical Device Testing, Beijing Center for Testing and Research of Medical Biological Protective Equipment, Beijing 101111, China; (S.Z.)
| | - Xueying He
- Beijing Institute of Medical Device Testing, Beijing Center for Testing and Research of Medical Biological Protective Equipment, Beijing 101111, China; (S.Z.)
| | - Yulin Deng
- Beijing Institute of Technology, School of Life Science, Beijing 100081, China
| |
Collapse
|
11
|
Iftikhar M, Noureen A, Jabeen F, Uzair M, Rehman N, Sher EK, Katubi KM, Américo-Pinheiro JHP, Sher F. Bioinspired engineered nickel nanoparticles with multifunctional attributes for reproductive toxicity. CHEMOSPHERE 2023; 311:136927. [PMID: 36273609 DOI: 10.1016/j.chemosphere.2022.136927] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/09/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Nickel nanoparticles (Ni-NPs) have potential applications in high-tech sectors such as battery manufacturing, catalysis, nanotube printing and textile. Apart from their increasing utilisation in daily life, there are concerns about their hazardous nature as they are highly penetrable in biological systems. The carcinogenic and mutagenic ability of Ni-NPs is evident but the research gaps are still there concerning the safety evaluation of Ni-NPs regarding male reproductive ability. This controlled randomized research was planned to assess the male reproductive toxicity of Ni-NPs in Sprague Dawley rats. Ni-NPs of spherical shape and mean particle size of 56 nm were used in the study, characterized by SEM, EDS and XRD. The twenty-five healthy rats (200-220 g) were used for toxicity investigation of Ni-NPs and divided into five groups; negative control (0 Ni-NPs), placebo group (0.9% saline) and three Ni-NPs treated groups (@ 15, 30 and 45 mg/kg BW). The results of 14 days of intraperitoneal exposure to Ni-NPs revealed that a higher dose (45 mg/kg BW) of Ni-NPs caused a significant reduction in body weight, serum testosterone, daily sperm production while the testis index and Ni accumulation and histological changes (necrosis in basement membrane and seminiferous tubules, vacuole formation) in testicular tissues increased with increasing dose of Ni-NPs. It can be concluded from the study that Ni-NPs have potential reproductive toxicity. This study provided the baseline data of Ni-NPs toxicity for the male reproductive system and can be applied for risk assessment in Ni-NPs based products.
Collapse
Affiliation(s)
- Mehwish Iftikhar
- Department of Zoology, Government College University, Faisalabad, 38000, Pakistan
| | - Aasma Noureen
- Department of Biology, Virtual University of Pakistan, Faisalabad, 38000, Pakistan; Department of Zoology, Government College for Women University, Faisalabad, 38000, Pakistan
| | - Farhat Jabeen
- Department of Zoology, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Uzair
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Nagina Rehman
- Department of Zoology, Government College University, Faisalabad, 38000, Pakistan
| | - Emina Karahmet Sher
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom
| | - Khadijah Mohammedsaleh Katubi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Juliana Heloisa Pinê Américo-Pinheiro
- Department of Forest Science, Soils and Environment, School of Agronomic Sciences, São Paulo State University (UNESP), Ave. Universitária, 3780, Botucatu, SP, 18610-034, Brazil; Graduate Program in Environmental Sciences, Brazil University, Street Carolina Fonseca, 584, São Paulo, SP, 08230-030, Brazil
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom.
| |
Collapse
|
12
|
Li T, Li Z, Fu J, Tang C, Liu L, Xu J, Zhao J, Li Z. Nickel nanoparticles exert cytotoxic effects on trophoblast HTR-8/SVneo cells possibly via Nrf2/MAPK/caspase 3 pathway. ENVIRONMENTAL RESEARCH 2022; 215:114336. [PMID: 36103928 DOI: 10.1016/j.envres.2022.114336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/20/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Nickel nanoparticles are widely used in the industry and may affect the reproductive system. The potential molecular mechanism of exposing the first-trimester trophoblast cell line (HTR-8/SVneo) to nickel nanoparticles remains unclear. Hence, the aim of this study was to investigate the in vitro cytotoxicity of Ni NPs on HTR-8/SVneo cells. HTR-8/SVneo cells were subjected to various concentrations (0, 2.5, 5, 7.5, 10, and 12.5 μg/cm2) of Ni NPs. The toxicity of the Ni NPs was evaluated in HTR-8/SVneo cells by measuring cell viability. The underlying mechanism of nickel nanoparticles toxicity to HTR-8/SVneo cells was determined by measuring the content of intracellular reactive oxygen species, mitochondrial membrane potential, and the rate of cell apoptosis and cell cycle, by measuring adenosine triphosphate levels, intracellular lipid peroxidation malondialdehyde, total superoxide dismutase, and CuZn/Mn-SOD activities, and by determining proteins related to Nrf2, MAPK, and Cytochrome c. Our results showed that the nickel nanoparticles treatment reduced the viability of HTR-8/SVneo cells, while it increased their oxidative stress and lowered their mitochondrial respiratory capacity. Additionally, the nickel nanoparticles treatment induced cell S-phase arrest and apoptosis. These molecular events may be linked to the oxidative stress-Nrf2 pathway/MAPK/Caspase 3 cascade. Thus, nickel nanoparticles exert cytotoxic effects on HTR-8/SVneo cells, which could affect the function of the placenta in human.
Collapse
Affiliation(s)
- Ting Li
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province 315211, PR China
| | - Zhou Li
- Xiang Yang Center for Disease Control and Prevention, 172 Tanxi Road, Xiangyang, Hubei province 441022, PR China
| | - Jianfei Fu
- Department of Medical Records and Statistics, Ningbo First Hospital, Ningbo, Zhejiang Province 315010, PR China
| | - Chunlan Tang
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province 315211, PR China
| | - Liya Liu
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province 315211, PR China
| | - Jin Xu
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province 315211, PR China
| | - Jinshun Zhao
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province 315211, PR China
| | - Zhen Li
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province 315211, PR China.
| |
Collapse
|
13
|
Maciejewski R, Radzikowska-Büchner E, Flieger W, Kulczycka K, Baj J, Forma A, Flieger J. An Overview of Essential Microelements and Common Metallic Nanoparticles and Their Effects on Male Fertility. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191711066. [PMID: 36078782 PMCID: PMC9518444 DOI: 10.3390/ijerph191711066] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 05/17/2023]
Abstract
Numerous factors affect reproduction, including stress, diet, obesity, the use of stimulants, or exposure to toxins, along with heavy elements (lead, silver, cadmium, uranium, vanadium, mercury, arsenic). Metals, like other xenotoxins, can cause infertility through, e.g., impairment of endocrine function and gametogenesis or excess production of reactive oxygen species (ROS). The advancement of nanotechnology has created another hazard to human safety through exposure to metals in the form of nanomaterials (NMs). Nanoparticles (NPs) exhibit a specific ability to penetrate cell membranes and biological barriers in the human body. These ultra-fine particles (<100 nm) can enter the human body through the respiratory tract, food, skin, injection, or implantation. Once absorbed, NPs are transported to various organs through the blood or lymph. Absorbed NPs, thanks to ultrahigh reactivity compared to bulk materials in microscale size, disrupt the homeostasis of the body as a result of interaction with biological molecules such as DNA, lipids, and proteins; interfering with the functioning of cells, organs, and physiological systems; and leading to severe pathological dysfunctions. Over the past decades, much research has been performed on the reproductive effects of essential trace elements. The research hypothesis that disturbances in the metabolism of trace elements are one of the many causes of infertility has been unquestionably confirmed. This review examines the complex reproductive risks for men regarding the exposure to potentially harmless xenobiotics based on a series of 298 articles over the past 30 years. The research was conducted using PubMed, Web of Science, and Scopus databases searching for papers devoted to in vivo and in vitro studies related to the influence of essential elements (iron, selenium, manganese, cobalt, zinc, copper, and molybdenum) and widely used metallic NPs on male reproduction potential.
Collapse
Affiliation(s)
| | | | - Wojciech Flieger
- Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Kinga Kulczycka
- Institute of Health Sciences, John Paul II Catholic University of Lublin, 20-708 Lublin, Poland
| | - Jacek Baj
- Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Alicja Forma
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8B, 20-090 Lublin, Poland
| | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland
- Correspondence: ; Tel.: +48-81448-7182
| |
Collapse
|
14
|
Singh M, Verma Y, Rana SVS. Potential toxicity of nickel nano and microparticles on the reproductive system of female rats—a comparative time-dependent study. Toxicol Ind Health 2022; 38:234-247. [DOI: 10.1177/07482337221074762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Increased application of engineered nanoparticles in different sectors viz. agriculture, commerce, industry, and medicine has raised serious public health issues. Nanoparticles of nickel have been increasingly used as catalysts, conductive pastes, adhesives, nanowires, and nanofilters. Human and animal exposure to these particles may cause toxicity in different organs/systems. Studies made in the past had demonstrated their toxicity in liver, kidney, and lungs. However, their reproductive effects remain poorly understood. Therefore, the present study on reproductive toxicity of nickel nanoparticles (<30 nm) was executed in female Wistar rats. A comparison of results obtained in nickel microparticle-treated rats was also made. Rats were administered nano and microparticles through gavage at a dosage of 5 mg/kg body weight each for two exposure periods; that is, 15 and 30 days. Ovaries removed from these rats were analyzed to study the effects of nickel bioaccumulation on synthesis of steroid hormones, lipid peroxidation, apoptosis, and oxidative stress. Structural changes were monitored through histopathological and ultrastructural observations. The present study showed exposure time-dependent differences in the toxicity of nickel nano and microparticles in the ovary of rats. Nano nickel was cumulative in the ovaries. It affected steroidogenesis. Further, increased generation of reactive oxygen species and enhanced oxidative stress may have contributed to cytotoxicity. It was concluded that exposure to nano nickel might induce irreversible damage in the ovaries of rat.
Collapse
Affiliation(s)
- Meenu Singh
- Department of Toxicology, Chaudhary Charan Singh University, Meerut, India
| | - Yeshvandra Verma
- Department of Toxicology, Chaudhary Charan Singh University, Meerut, India
| | - Suresh VS Rana
- Department of Toxicology, Chaudhary Charan Singh University, Meerut, India
| |
Collapse
|