1
|
Ballesteros-Pla C, Sevillano J, Sánchez-Alonso MG, Limones M, Pita J, Zapatería B, Sanz-Cuadrado MI, Pizarro-Delgado J, Izquierdo-Lahuerta A, Medina-Gómez G, Herradón G, Ramos-Álvarez MDP. Constitutive Pleiotrophin Deletion Results in a Phenotype with an Altered Pancreatic Morphology and Function in Old Mice. Int J Mol Sci 2024; 25:10960. [PMID: 39456743 PMCID: PMC11507919 DOI: 10.3390/ijms252010960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Pleiotrophin (PTN) is crucial for embryonic development and pancreas organogenesis as it regulates metainflammation, metabolic homeostasis, thermogenesis, and glucose tolerance. Pleiotrophin deletion is associated with a lipodystrophic phenotype in which adipose tissue plasticity is altered in late life. This study explored the impact of pleiotrophin deletion on pancreatic morphology and function in later life. We analyzed glucose tolerance and circulating parameters on female wild-type (Ptn+/+) and knock-out (Ptn-/-) mice. At 9 and 15 months, we conducted morphometric analyses of pancreatic islets and evaluated the levels of insulin, glucagon, somatostatin, glucose transporter 2 (GLUT2), vesicle-associated membrane protein 2 (VAMP2), and synaptosome-associated protein 25 (SNAP25) via immunofluorescence. The effect of PTN on glucose-stimulated insulin secretion (GSIS) was evaluated in INS1E cells and isolated islets. Ptn-/- mice showed hyperinsulinemia, impaired glucose tolerance, and increased homeostatic model assessment for insulin resistance (HOMA-IR) with age. While Ptn+/+ islets enlarge with age, in Ptn-/- mice, the median size decreased, and insulin content increased. Vesicle transport and exocytosis proteins were significantly increased in 9-month-old Ptn-/- islets. Islets from Ptn-/- mice showed impaired GSIS and decreased cell membrane localization of GLUT2 whereas, PTN increased GSIS in INS1E cells. Ptn deletion accelerated age-related changes in the endocrine pancreas, affecting islet number and size, and altering VAMP2 and SNAP25 levels and GLUT2 localization leading to impaired GSIS and insulin accumulation in islets.
Collapse
Affiliation(s)
- Cristina Ballesteros-Pla
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain; (C.B.-P.); (J.S.); (M.G.S.-A.); (M.L.); (J.P.); (B.Z.); (M.I.S.-C.); (J.P.-D.)
| | - Julio Sevillano
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain; (C.B.-P.); (J.S.); (M.G.S.-A.); (M.L.); (J.P.); (B.Z.); (M.I.S.-C.); (J.P.-D.)
| | - María Gracia Sánchez-Alonso
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain; (C.B.-P.); (J.S.); (M.G.S.-A.); (M.L.); (J.P.); (B.Z.); (M.I.S.-C.); (J.P.-D.)
| | - María Limones
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain; (C.B.-P.); (J.S.); (M.G.S.-A.); (M.L.); (J.P.); (B.Z.); (M.I.S.-C.); (J.P.-D.)
| | - Jimena Pita
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain; (C.B.-P.); (J.S.); (M.G.S.-A.); (M.L.); (J.P.); (B.Z.); (M.I.S.-C.); (J.P.-D.)
| | - Begoña Zapatería
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain; (C.B.-P.); (J.S.); (M.G.S.-A.); (M.L.); (J.P.); (B.Z.); (M.I.S.-C.); (J.P.-D.)
- Department of Medicine, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Marta Inmaculada Sanz-Cuadrado
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain; (C.B.-P.); (J.S.); (M.G.S.-A.); (M.L.); (J.P.); (B.Z.); (M.I.S.-C.); (J.P.-D.)
| | - Javier Pizarro-Delgado
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain; (C.B.-P.); (J.S.); (M.G.S.-A.); (M.L.); (J.P.); (B.Z.); (M.I.S.-C.); (J.P.-D.)
| | - Adriana Izquierdo-Lahuerta
- Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, Alcorcón, 28922 Madrid, Spain; (A.I.-L.); (G.M.-G.)
| | - Gema Medina-Gómez
- Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, Alcorcón, 28922 Madrid, Spain; (A.I.-L.); (G.M.-G.)
| | - Gonzalo Herradón
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte Urbanización Montepríncipe, 28660 Madrid, Spain;
| | - María del Pilar Ramos-Álvarez
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain; (C.B.-P.); (J.S.); (M.G.S.-A.); (M.L.); (J.P.); (B.Z.); (M.I.S.-C.); (J.P.-D.)
| |
Collapse
|
2
|
Li Z, Liu Y, Huang Y, Tan Q, Mei H, Zhu G, Liu K, Yang G. Circ_0000888 regulates osteogenic differentiation of periosteal mesenchymal stem cells in congenital pseudarthrosis of the tibia. iScience 2023; 26:107923. [PMID: 37810257 PMCID: PMC10551655 DOI: 10.1016/j.isci.2023.107923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 06/02/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023] Open
Abstract
Congenital pseudarthrosis of the tibia (CPT) is a refractory condition characterized by the decreased osteogenic ability in tibial pseudarthrosis repair. Periosteal mesenchymal stem cells (PMSCs) are multipotent cells involved in bone formation regulation. However, the mechanisms underlying its role in CPT remain unclear. In this study, we observed downregulation of circ_0000888 and pleiotrophin (PTN), as well as upregulation of miR-338-3p in CPT derived PMSCs (CPT-dPMSCs). Our results demonstrated that circ_0000888 and PTN likely enhanced the viability, proliferation, and osteogenic ability of PMSCs, while miR-338-3p had the opposite effect. Further analysis confirmed the regulatory relationship circ_0000888 suppressed the activity of miR-338-3p and upregulated the expression of its downstream target PTN by binding to miR-338-3p, consequently promoting the viability and osteogenic differentiation ability of CPT-dPMSCs. Our findings unveil an unexpected link between circ_0000888/miR-338-3p/PTN in promoting osteogenic ability and indicate the potential pathogenic mechanisms of CPT.
Collapse
Affiliation(s)
- Zhuoyang Li
- Department of Orthopedics, Hunan Provincial Key Laboratory of Pediatric Orthopedics, Hunan Children’s Hospital, Changsha, Hunan, China
- Department of Orthopedics, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yaoxi Liu
- Department of Orthopedics, Hunan Provincial Key Laboratory of Pediatric Orthopedics, Hunan Children’s Hospital, Changsha, Hunan, China
| | - Yiyong Huang
- Department of Orthopedics, Hunan Provincial Key Laboratory of Pediatric Orthopedics, Hunan Children’s Hospital, Changsha, Hunan, China
| | - Qian Tan
- Department of Orthopedics, Hunan Provincial Key Laboratory of Pediatric Orthopedics, Hunan Children’s Hospital, Changsha, Hunan, China
| | - Haibo Mei
- Department of Orthopedics, Hunan Provincial Key Laboratory of Pediatric Orthopedics, Hunan Children’s Hospital, Changsha, Hunan, China
| | - Guanghui Zhu
- Department of Orthopedics, Hunan Provincial Key Laboratory of Pediatric Orthopedics, Hunan Children’s Hospital, Changsha, Hunan, China
| | - Kun Liu
- Department of Orthopedics, Hunan Provincial Key Laboratory of Pediatric Orthopedics, Hunan Children’s Hospital, Changsha, Hunan, China
| | - Ge Yang
- Department of Orthopedics, Hunan Provincial Key Laboratory of Pediatric Orthopedics, Hunan Children’s Hospital, Changsha, Hunan, China
| |
Collapse
|
3
|
Ballesteros-Pla C, Sánchez-Alonso MG, Pizarro-Delgado J, Zuccaro A, Sevillano J, Ramos-Álvarez MP. Pleiotrophin and metabolic disorders: insights into its role in metabolism. Front Endocrinol (Lausanne) 2023; 14:1225150. [PMID: 37484951 PMCID: PMC10360176 DOI: 10.3389/fendo.2023.1225150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/26/2023] [Indexed: 07/25/2023] Open
Abstract
Pleiotrophin (PTN) is a cytokine which has been for long studied at the level of the central nervous system, however few studies focus on its role in the peripheral organs. The main aim of this review is to summarize the state of the art of what is known up to date about pleiotrophin and its implications in the main metabolic organs. In summary, pleiotrophin promotes the proliferation of preadipocytes, pancreatic β cells, as well as cells during the mammary gland development. Moreover, this cytokine is important for the structural integrity of the liver and the neuromuscular junction in the skeletal muscle. From a metabolic point of view, pleiotrophin plays a key role in the maintenance of glucose and lipid as well as whole-body insulin homeostasis and favors oxidative metabolism in the skeletal muscle. All in all, this review proposes pleiotrophin as a druggable target to prevent from the development of insulin-resistance-related pathologies.
Collapse
|
4
|
Pleiotrophin-Loaded Mesoporous Silica Nanoparticles as a Possible Treatment for Osteoporosis. Pharmaceutics 2023; 15:pharmaceutics15020658. [PMID: 36839981 PMCID: PMC9966378 DOI: 10.3390/pharmaceutics15020658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/19/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Osteoporosis is the most common type of bone disease. Conventional treatments are based on the use of antiresorptive drugs and/or anabolic agents. However, these treatments have certain limitations, such as a lack of bioavailability or toxicity in non-specific tissues. In this regard, pleiotrophin (PTN) is a protein with potent mitogenic, angiogenic, and chemotactic activity, with implications in tissue repair. On the other hand, mesoporous silica nanoparticles (MSNs) have proven to be an effective inorganic drug-delivery system for biomedical applications. In addition, the surface anchoring of cationic polymers, such as polyethylenimine (PEI), allows for greater cell internalization, increasing treatment efficacy. In order to load and release the PTN to improve its effectiveness, MSNs were successfully internalized in MC3T3-E1 mouse pre-osteoblastic cells and human mesenchymal stem cells. PTN-loaded MSNs significantly increased the viability, mineralization, and gene expression of alkaline phosphatase and Runx2 in comparison with the PTN alone in both cell lines, evidencing its positive effect on osteogenesis and osteoblast differentiation. This proof of concept demonstrates that MSN can take up and release PTN, developing a potent osteogenic and differentiating action in vitro in the absence of an osteogenic differentiation-promoting medium, presenting itself as a possible treatment to improve bone-regeneration and osteoporosis scenarios.
Collapse
|
5
|
Casanova R, Anderson AM, Barnard RT, Justice JN, Kucharska-Newton A, Windham BG, Palta P, Gottesman RF, Mosley TH, Hughes TM, Wagenknecht LE, Kritchevsky SB. Is an MRI-derived anatomical measure of dementia risk also a measure of brain aging? GeroScience 2023; 45:439-450. [PMID: 36050589 PMCID: PMC9886771 DOI: 10.1007/s11357-022-00650-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/22/2022] [Indexed: 02/03/2023] Open
Abstract
Machine learning methods have been applied to estimate measures of brain aging from neuroimages. However, only rarely have these measures been examined in the context of biologic age. Here, we investigated associations of an MRI-based measure of dementia risk, the Alzheimer's disease pattern similarity (AD-PS) scores, with measures used to calculate biological age. Participants were those from visit 5 of the Atherosclerosis Risk in Communities Study with cognitive status adjudication, proteomic data, and AD-PS scores available. The AD-PS score estimation is based on previously reported machine learning methods. We evaluated associations of the AD-PS score with all-cause mortality. Sensitivity analyses using only cognitively normal (CN) individuals were performed treating CNS-related causes of death as competing risk. AD-PS score was examined in association with 32 proteins measured, using a Somalogic platform, previously reported to be associated with age. Finally, associations with a deficit accumulation index (DAI) based on a count of 38 health conditions were investigated. All analyses were adjusted for age, race, sex, education, smoking, hypertension, and diabetes. The AD-PS score was significantly associated with all-cause mortality and with levels of 9 of the 32 proteins. Growth/differentiation factor 15 (GDF-15) and pleiotrophin remained significant after accounting for multiple-testing and when restricting the analysis to CN participants. A linear regression model showed a significant association between DAI and AD-PS scores overall. While the AD-PS scores were created as a measure of dementia risk, our analyses suggest that they could also be capturing brain aging.
Collapse
Affiliation(s)
- Ramon Casanova
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| | - Andrea M Anderson
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Ryan T Barnard
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jamie N Justice
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | | | - Priya Palta
- School of Public Health, Columbia University, New York, NY, USA
| | | | | | - Timothy M Hughes
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Lynne E Wagenknecht
- Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Stephen B Kritchevsky
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
6
|
Nobakht S, Milne TJ, Duncan WJ, Ram A, Tkatchenko T, Dong Z, Coates DE. Expression of the pleiotrophin-midkine axis in a sheep tooth socket model of bone healing. J Periodontal Res 2023; 58:109-121. [PMID: 36411509 PMCID: PMC10099163 DOI: 10.1111/jre.13073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/24/2022] [Accepted: 11/05/2022] [Indexed: 11/23/2022]
Abstract
OBJECTIVE AND BACKGROUND Resorption of alveolar bone after tooth extraction is a common problem often requiring bone grafting. The success of the grafting procedures is dependent on multiple factors including the presence of growth factors. This is the first in vivo study to investigate the role of the pleiotrophin family of cytokines in alveolar bone regeneration. This research investigated the role of the pleiotrophin-midkine (PTN-MDK) axis during osteogenesis, with and without a grafting material, after tooth extraction in a sheep model. METHODS Thirty Romney-cross ewes were anesthetized, and all premolar teeth on the right side were extracted. The sockets were randomized to controls sites with no treatment and test sites with Bio-Oss® graft material and Bio-Gide® membrane. Samples were harvested after sacrificing animals 4, 8, and 16 weeks post-grafting (n = 10 per time-point). Tissue for qRT2 -PCR gene analysis was recovered from the socket next to the first molar using a trephine (Ø = 2 mm). Each socket was fixed, decalcified, paraffin-embedded, and sectioned. Immunohistochemistry was conducted to localize both PTN and MDK along with their receptors, protein tyrosine phosphatase receptor type Z1 (PTPRZ1), ALK receptor tyrosine kinase (ALK), and notch receptor 2 (NOTCH2). RESULTS Within the healing sockets, high expression of genes for PTN, MDK, NOTCH2, and ALK was found at all time-points and in both grafted and non-grafted sites, while PTPRZ1 was only expressed at low levels. The relative gene expression of the PTN family of cytokines was not statistically different at the three time-points between test and control groups (p > .05). Immunohistochemistry found PTN and MDK in association with new bone, NOTCH2 in the connective tissue, and PTPRZ1 and ALK in association with cuboidal osteoblasts involved in bone formation. CONCLUSIONS The PTN-MDK axis was highly expressed in both non-grafted and grafted sockets during osteogenesis in a sheep model of alveolar bone regeneration with no evidence that grafting significantly affected expression. The activation of NOTCH2 and PTPRZ1 receptors may be important during bone regeneration in vivo. The discovery of the PTN-MDK axis as important during alveolar bone regeneration is novel and opens up new avenues of research into these stably expressed highly active cytokines. Growth factor supplementation with PTN and/or MDK during healing may be an approach for enhanced regeneration or to initiate healing where delayed.
Collapse
Affiliation(s)
- Saeideh Nobakht
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Trudy J Milne
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Warwick J Duncan
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Anumala Ram
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Tatiana Tkatchenko
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Zhen Dong
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Dawn E Coates
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
7
|
Akova Ölken E, Aszodi A, Taipaleenmäki H, Saito H, Schönitzer V, Chaloupka M, Apfelbeck M, Böcker W, Saller MM. SFRP2 Overexpression Induces an Osteoblast-like Phenotype in Prostate Cancer Cells. Cells 2022; 11:cells11244081. [PMID: 36552843 PMCID: PMC9777425 DOI: 10.3390/cells11244081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Prostate cancer bone metastasis is still one of the most fatal cancer diagnoses for men. Survival of the circulating prostate tumor cells and their adaptation strategy to survive in the bone niche is the key point to determining metastasis in early cancer stages. The promoter of SFRP2 gene, encoding a WNT signaling modulator, is hypermethylated in many cancer types including prostate cancer. Moreover, SFRP2 can positively regulate osteogenic differentiation in vitro and in vivo. Here, we showed SFRP2 overexpression in the prostate cancer cell line PC3 induces an epithelial mesenchymal transition (EMT), increases the attachment, and modifies the transcriptome towards an osteoblast-like phenotype (osteomimicry) in a collagen 1-dependent manner. Our data reflect a novel molecular mechanism concerning how metastasizing prostate cancer cells might increase their chance to survive within bone tissue.
Collapse
Affiliation(s)
- Elif Akova Ölken
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), Ludwig-Maximilians-University (LMU) Hospital, Fraunhoferstraße 20, 82152 Planegg-Martinsried, Germany
| | - Attila Aszodi
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), Ludwig-Maximilians-University (LMU) Hospital, Fraunhoferstraße 20, 82152 Planegg-Martinsried, Germany
| | - Hanna Taipaleenmäki
- Institute of Musculoskeletal Medicine (IMM), Musculoskeletal University Center Munich (MUM), LMU Hospital, Fraunhoferstraße 20, 82152 Planegg-Martinsried, Germany
| | - Hiroaki Saito
- Institute of Musculoskeletal Medicine (IMM), Musculoskeletal University Center Munich (MUM), LMU Hospital, Fraunhoferstraße 20, 82152 Planegg-Martinsried, Germany
| | - Veronika Schönitzer
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), Ludwig-Maximilians-University (LMU) Hospital, Fraunhoferstraße 20, 82152 Planegg-Martinsried, Germany
| | - Michael Chaloupka
- Urologischen Klinik und Poliklinik, LMU Hospital, Marchioninistr 15, 81377 München, Germany
| | - Maria Apfelbeck
- Urologischen Klinik und Poliklinik, LMU Hospital, Marchioninistr 15, 81377 München, Germany
| | - Wolfgang Böcker
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), Ludwig-Maximilians-University (LMU) Hospital, Fraunhoferstraße 20, 82152 Planegg-Martinsried, Germany
| | - Maximilian Michael Saller
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), Ludwig-Maximilians-University (LMU) Hospital, Fraunhoferstraße 20, 82152 Planegg-Martinsried, Germany
- Correspondence: ; Tel.: +49-89-4400-55486
| |
Collapse
|
8
|
Liu X, Pan S, Xanthakis V, Vasan RS, Psaty BM, Austin TR, Newman AB, Sanders JL, Wu C, Tracy RP, Gerszten RE, Odden MC. Plasma proteomic signature of decline in gait speed and grip strength. Aging Cell 2022; 21:e13736. [PMID: 36333824 PMCID: PMC9741503 DOI: 10.1111/acel.13736] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/27/2022] [Accepted: 10/21/2022] [Indexed: 11/08/2022] Open
Abstract
The biological mechanisms underlying decline in physical function with age remain unclear. We examined the plasma proteomic profile associated with longitudinal changes in physical function measured by gait speed and grip strength in community-dwelling adults. We applied an aptamer-based platform to assay 1154 plasma proteins on 2854 participants (60% women, aged 76 years) in the Cardiovascular Health Study (CHS) in 1992-1993 and 1130 participants (55% women, aged 54 years) in the Framingham Offspring Study (FOS) in 1991-1995. Gait speed and grip strength were measured annually for 7 years in CHS and at cycles 7 (1998-2001) and 8 (2005-2008) in FOS. The associations of individual protein levels (log-transformed and standardized) with longitudinal changes in gait speed and grip strength in two populations were examined separately by linear mixed-effects models. Meta-analyses were implemented using random-effects models and corrected for multiple testing. We found that plasma levels of 14 and 18 proteins were associated with changes in gait speed and grip strength, respectively (corrected p < 0.05). The proteins most strongly associated with gait speed decline were GDF-15 (Meta-analytic p = 1.58 × 10-15 ), pleiotrophin (1.23 × 10-9 ), and TIMP-1 (5.97 × 10-8 ). For grip strength decline, the strongest associations were for carbonic anhydrase III (1.09 × 10-7 ), CDON (2.38 × 10-7 ), and SMOC1 (7.47 × 10-7 ). Several statistically significant proteins are involved in the inflammatory responses or antagonism of activin by follistatin pathway. These novel proteomic biomarkers and pathways should be further explored as future mechanisms and targets for age-related functional decline.
Collapse
Affiliation(s)
- Xiaojuan Liu
- Department of Epidemiology and Population HealthStanford University School of MedicineStanfordCaliforniaUSA
| | - Stephanie Pan
- Framingham Heart Study and Section of Preventive Medicine and EpidemiologyBoston University School of MedicineBostonMassachusettsUSA
- Department of BiostatisticsBoston University School of Public HealthBostonMassachusettsUSA
| | - Vanessa Xanthakis
- Framingham Heart Study and Section of Preventive Medicine and EpidemiologyBoston University School of MedicineBostonMassachusettsUSA
- Department of BiostatisticsBoston University School of Public HealthBostonMassachusettsUSA
| | - Ramachandran S. Vasan
- Framingham Heart Study and Section of Preventive Medicine and EpidemiologyBoston University School of MedicineBostonMassachusettsUSA
- Department of EpidemiologyBoston University School of Public HealthBostonMassachusettsUSA
- Section of Cardiovascular Medicine, Department of MedicineBoston University School of MedicineBostonMassachusettsUSA
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health Systems and Population HealthUniversity of WashingtonSeattleWashingtonUSA
| | - Thomas R. Austin
- Department of EpidemiologyUniversity of WashingtonSeattleWashingtonUSA
| | - Anne B. Newman
- Department of EpidemiologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | | | - Chenkai Wu
- Global Health Research CenterDuke Kunshan UniversityKunshanChina
| | - Russell P. Tracy
- Department of Pathology and Laboratory Medicine, The Robert Larner M.D. College of MedicineUniversity of VermontBurlingtonVermontUSA
- Department of Biochemistry, The Robert Larner M.D. College of MedicineUniversity of VermontBurlingtonVermontUSA
| | - Robert E. Gerszten
- Division of Cardiovascular MedicineBeth Israel Deaconess Medical CenterBostonMassachusettsUSA
| | - Michelle C. Odden
- Department of Epidemiology and Population HealthStanford University School of MedicineStanfordCaliforniaUSA
| |
Collapse
|
9
|
Moreau T, Gautron J, Hincke MT, Monget P, Réhault-Godbert S, Guyot N. Antimicrobial Proteins and Peptides in Avian Eggshell: Structural Diversity and Potential Roles in Biomineralization. Front Immunol 2022; 13:946428. [PMID: 35967448 PMCID: PMC9363672 DOI: 10.3389/fimmu.2022.946428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/22/2022] [Indexed: 11/21/2022] Open
Abstract
The calcitic avian eggshell provides physical protection for the embryo during its development, but also regulates water and gaseous exchange, and is a calcium source for bone mineralization. The calcified eggshell has been extensively investigated in the chicken. It is characterized by an inventory of more than 900 matrix proteins. In addition to proteins involved in shell mineralization and regulation of its microstructure, the shell also contains numerous antimicrobial proteins and peptides (AMPPs) including lectin-like proteins, Bacterial Permeability Increasing/Lipopolysaccharide Binding Protein/PLUNC family proteins, defensins, antiproteases, and chelators, which contribute to the innate immune protection of the egg. In parallel, some of these proteins are thought to be crucial determinants of the eggshell texture and its resulting mechanical properties. During the progressive solubilization of the inner mineralized eggshell during embryonic development (to provide calcium to the embryo), some antimicrobials may be released simultaneously to reinforce egg defense and protect the egg from contamination by external pathogens, through a weakened eggshell. This review provides a comprehensive overview of the diversity of avian eggshell AMPPs, their three-dimensional structures and their mechanism of antimicrobial activity. The published chicken eggshell proteome databases are integrated for a comprehensive inventory of its AMPPs. Their biochemical features, potential dual function as antimicrobials and as regulators of eggshell biomineralization, and their phylogenetic evolution will be described and discussed with regard to their three-dimensional structural characteristics. Finally, the repertoire of chicken eggshell AMPPs are compared to orthologs identified in other avian and non-avian eggshells. This approach sheds light on the similarities and differences exhibited by AMPPs, depending on bird species, and leads to a better understanding of their sequential or dual role in biomineralization and innate immunity.
Collapse
Affiliation(s)
- Thierry Moreau
- INRAE, Université de Tours, BOA, Nouzilly, France
- *Correspondence: Nicolas Guyot, ; Thierry Moreau,
| | - Joël Gautron
- INRAE, Université de Tours, BOA, Nouzilly, France
| | - Maxwell T. Hincke
- Department of Innovation in Medical Education, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Philippe Monget
- INRAE, CNRS, IFCE, Université de Tours, PRC, Nouzilly, France
| | | | - Nicolas Guyot
- INRAE, Université de Tours, BOA, Nouzilly, France
- *Correspondence: Nicolas Guyot, ; Thierry Moreau,
| |
Collapse
|
10
|
Kimura T, Panaroni C, Rankin EB, Purton LE, Wu JY. Loss of Parathyroid Hormone Receptor Signaling in Osteoprogenitors Is Associated With Accumulation of Multiple Hematopoietic Lineages in the Bone Marrow. J Bone Miner Res 2022; 37:1321-1334. [PMID: 35490308 PMCID: PMC11479576 DOI: 10.1002/jbmr.4568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 11/10/2022]
Abstract
Osteoblasts and their progenitors play an important role in the support of hematopoiesis within the bone marrow (BM) microenvironment. We have previously reported that parathyroid hormone receptor (PTH1R) signaling in osteoprogenitors is required for normal B cell precursor differentiation, and for trafficking of maturing B cells out of the BM. Cells of the osteoblast lineage have been implicated in the regulation of several other hematopoietic cell populations, but the effects of PTH1R signaling in osteoprogenitors on other maturing hematopoietic populations have not been investigated. Here we report that numbers of maturing myeloid, T cell, and erythroid populations were increased in the BM of mice lacking PTH1R in Osx-expressing osteoprogenitors (PTH1R-OsxKO mice; knockout [KO]). This increase in maturing hematopoietic populations was not associated with an increase in progenitor populations or proliferation. The spleens of PTH1R-OsxKO mice were small with decreased numbers of all hematopoietic populations, suggesting that trafficking of mature hematopoietic populations between BM and spleen is impaired in the absence of PTH1R in osteoprogenitors. RNA sequencing (RNAseq) of osteoprogenitors and their descendants in bone and BM revealed increased expression of vascular cell adhesion protein 1 (VCAM-1) and C-X-C motif chemokine ligand 12 (CXCL12), factors that are involved in trafficking of several hematopoietic populations. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Takaharu Kimura
- Department of Medicine (Endocrinology), Stanford University School of Medicine, Stanford, CA, USA
| | - Cristina Panaroni
- Department of Medicine (Endocrinology), Stanford University School of Medicine, Stanford, CA, USA
| | - Erinn B Rankin
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Louise E Purton
- St Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
- The University of Melbourne, Department of Medicine at St Vincent's Hospital, Fitzroy, VIC, Australia
| | - Joy Y Wu
- Department of Medicine (Endocrinology), Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
11
|
Salerno E, Orlandi G, Ongaro C, d’Adamo A, Ruffini A, Carnevale G, Zardin B, Bertacchini J, Angeli D. Liquid flow in scaffold derived from natural source: experimental observations and biological outcome. Regen Biomater 2022; 9:rbac034. [PMID: 35747746 PMCID: PMC9211004 DOI: 10.1093/rb/rbac034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/12/2022] [Accepted: 05/22/2022] [Indexed: 11/25/2022] Open
Abstract
This study investigates the biological effects on a 3D scaffold based on hydroxyapatite cultured with MC3T3 osteoblasts in response to flow-induced shear stress (FSS). The scaffold adopted here (B-HA) derives from the biomorphic transformation of natural wood and its peculiar channel geometry mimics the porous structure of the bone. From the point of view of fluid dynamics, B-HA can be considered a network of micro-channels, intrinsically offering the advantages of a microfluidic system. This work, for the first time, offers a description of the fluid dynamic properties of the B-HA scaffold, which are strongly connected to its morphology. These features are necessary to determine the FSS ranges to be applied during in vitro studies to get physiologically relevant conditions. The selected ranges of FSS promoted the elongation of the attached cells along the flow direction and early osteogenic cell differentiation. These data confirmed the ability of B-HA to promote the differentiation process along osteogenic lineage. Hence, such a bioactive and naturally derived scaffold can be considered as a promising tool for bone regeneration applications.
Collapse
Affiliation(s)
- Elisabetta Salerno
- CNR-NANO S3 Research Center on nanoStructures and bioSystems at Surfaces , via Campi 213/A, Modena, I-41125, Italy
- University of Modena and Reggio Emilia Department of Sciences and Methods for Engineering, , Via Amendola 2, Reggio Emilia, 42122, Italy
| | - Giulia Orlandi
- University of Modena and Reggio Emilia Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, , Via del Pozzo 71, Modena, 41125, Italy
| | - Claudio Ongaro
- DIEF-Engineering Department “Enzo Ferrari” , Via Pietro Vivarelli 10, Modena, 41125, Italy
| | - Alessandro d’Adamo
- DIEF-Engineering Department “Enzo Ferrari” , Via Pietro Vivarelli 10, Modena, 41125, Italy
| | - Andrea Ruffini
- National Research Council (CNR) Institute of Science and Technology for Ceramics (ISTEC), , Via Granarolo 64, Faenza, 48018, Italy
| | - Gianluca Carnevale
- University of Modena and Reggio Emilia Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, , Via del Pozzo 71, Modena, 41125, Italy
| | - Barbara Zardin
- DIEF-Engineering Department “Enzo Ferrari” , Via Pietro Vivarelli 10, Modena, 41125, Italy
| | - Jessika Bertacchini
- University of Modena and Reggio Emilia Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, , Via del Pozzo 71, Modena, 41125, Italy
| | - Diego Angeli
- University of Modena and Reggio Emilia Department of Sciences and Methods for Engineering, , Via Amendola 2, Reggio Emilia, 42122, Italy
| |
Collapse
|
12
|
Integrated analysis of miRNA and mRNA transcriptomic reveals antler growth regulatory network. Mol Genet Genomics 2021; 296:689-703. [PMID: 33770271 DOI: 10.1007/s00438-021-01776-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/15/2021] [Indexed: 01/26/2023]
Abstract
The growth of antler is driven by endochondral ossification in the growth center of the apical region. Antler grows faster than cancer tissues, but it can be stably regulated and regenerated periodically. To elucidate the molecular mechanisms of how antler grows rapidly without carcinogenesis, in this study, we used RNA-seq technology to evaluate the changes of miRNA and mRNA profiles in antler at four different developmental stages, including 15, 60, 90, and 110 days. We identified a total of 55004 unigenes and 246 miRNAs of which, 10182, 13258, 10740 differentially expressed (DE) unigenes and 35, 53, 27 DE miRNAs were identified in 60-day vs. 15-day, 90-day vs. 60-day, and 110-day vs. 90-day. GO and KEGG pathway analysis indicated that DE unigenes and DE miRNA were mainly associated with chondrogenesis, osteogenesis and inhibition of oncogenesis, that were closely related to antler growth. The interaction networks of mRNA-mRNA and miRNA-mRNA related to chondrogenesis, osteogenesis and inhibition of oncogenesis of antler were constructed. The results indicated that mRNAs (COL2A1, SOX9, WWP2, FGFR1, SPARC, LOX, etc.) and miRNAs (miR-145, miR-199a-3p, miR-140, miR-199a-5p, etc.) might have key roles in chondrogenesis and osteogenesis of antler. As well as mRNA (TP53, Tpm3 and ATP1A1, etc.) and miRNA (miR-106a, miR-145, miR-1260b and miR-2898, etc.) might play important roles in inhibiting the carcinogenesis of antler. In summary, we constructed the mRNA-mRNA and miRNA-mRNA regulatory networks related to chondrogenesis, osteogenesis and inhibition of oncogenesis of antler, and identified key candidate mRNAs and miRNAs among them. Further developments and validations may provide a reference for in-depth analysis of the molecular mechanism of antler growth without carcinogenesis.
Collapse
|
13
|
Chen M, Li Y, Huang X, Gu Y, Li S, Yin P, Zhang L, Tang P. Skeleton-vasculature chain reaction: a novel insight into the mystery of homeostasis. Bone Res 2021; 9:21. [PMID: 33753717 PMCID: PMC7985324 DOI: 10.1038/s41413-021-00138-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/18/2020] [Accepted: 12/16/2020] [Indexed: 02/01/2023] Open
Abstract
Angiogenesis and osteogenesis are coupled. However, the cellular and molecular regulation of these processes remains to be further investigated. Both tissues have recently been recognized as endocrine organs, which has stimulated research interest in the screening and functional identification of novel paracrine factors from both tissues. This review aims to elaborate on the novelty and significance of endocrine regulatory loops between bone and the vasculature. In addition, research progress related to the bone vasculature, vessel-related skeletal diseases, pathological conditions, and angiogenesis-targeted therapeutic strategies are also summarized. With respect to future perspectives, new techniques such as single-cell sequencing, which can be used to show the cellular diversity and plasticity of both tissues, are facilitating progress in this field. Moreover, extracellular vesicle-mediated nuclear acid communication deserves further investigation. In conclusion, a deeper understanding of the cellular and molecular regulation of angiogenesis and osteogenesis coupling may offer an opportunity to identify new therapeutic targets.
Collapse
Affiliation(s)
- Ming Chen
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Yi Li
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Xiang Huang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Ya Gu
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Shang Li
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Pengbin Yin
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China.
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China.
| | - Licheng Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China.
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China.
| | - Peifu Tang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China.
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China.
| |
Collapse
|
14
|
Ryan E, Shen D, Wang X. Pleiotrophin interacts with glycosaminoglycans in a highly flexible and adaptable manner. FEBS Lett 2021; 595:925-941. [PMID: 33529353 DOI: 10.1002/1873-3468.14052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/14/2022]
Abstract
Pleiotrophin (PTN) is a potent mitogenic cytokine whose activities are controlled by its interactions with glycosaminoglycan (GAG). We examined the specificity of PTN for several types of GAG oligosaccharides. Our data indicate that the interaction of PTN with GAGs is dependent on the sulfation density of GAGs. Surprisingly, an acidic peptide also had similar interactions with PTN as GAGs. This shows that the interaction of PTN with anionic polymers is flexible and adaptable and that the charge density is the main determinant of the interaction. In addition, we show that PTN can compensate for the loss of its termini in interactions with heparin oligosaccharides, allowing it to maintain its affinity for GAGs in the absence of the termini. Taken together, these data provide valuable insight into the interactions of PTN with its proteoglycan receptors.
Collapse
Affiliation(s)
- Eathen Ryan
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| | - Di Shen
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| | - Xu Wang
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
15
|
Zhu Z, Xie J, Manandhar U, Yao X, Bian Y, Zhang B. RNA binding protein GNL3 up-regulates IL24 and PTN to promote the development of osteoarthritis. Life Sci 2021; 267:118926. [DOI: 10.1016/j.lfs.2020.118926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/26/2020] [Accepted: 12/13/2020] [Indexed: 12/17/2022]
|
16
|
Sathyan S, Ayers E, Gao T, Weiss EF, Milman S, Verghese J, Barzilai N. Plasma proteomic profile of age, health span, and all-cause mortality in older adults. Aging Cell 2020; 19:e13250. [PMID: 33089916 PMCID: PMC7681045 DOI: 10.1111/acel.13250] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/19/2020] [Accepted: 09/14/2020] [Indexed: 12/21/2022] Open
Abstract
Aging is a complex trait characterized by a diverse spectrum of endophenotypes. By utilizing the SomaScan® proteomic platform in 1,025 participants of the LonGenity cohort (age range: 65–95, 55.7% females), we found that 754 of 4,265 proteins were associated with chronological age. Pleiotrophin (PTN; β[SE] = 0.0262 [0.0012]; p = 3.21 × 10−86), WNT1‐inducible‐signaling pathway protein 2 (WISP‐2; β[SE] = 0.0189 [0.0009]; p = 4.60 × 10−82), chordin‐like protein 1 (CRDL1; β[SE] = 0.0203[0.0010]; p = 1.45 × 10−77), transgelin (TAGL; β[SE] = 0.0215 [0.0011]; p = 9.70 × 10−71), and R‐spondin‐1(RSPO1; β[SE] = 0.0208 [0.0011]; p = 1.09 × 10−70), were the proteins most significantly associated with age. Weighted gene co‐expression network analysis identified two of nine modules (clusters of highly correlated proteins) to be significantly associated with chronological age and demonstrated that the biology of aging overlapped with complex age‐associated diseases and other age‐related traits. The correlation between proteomic age prediction based on elastic net regression and chronological age was 0.8 (p < 2.2E−16). Pathway analysis showed that inflammatory response, organismal injury and abnormalities, cell and organismal survival, and death pathways were associated with aging. The present study made novel associations between a number of proteins and aging, constructed a proteomic age model that predicted mortality, and suggested possible proteomic signatures possessed by a cohort enriched for familial exceptional longevity.
Collapse
Affiliation(s)
- Sanish Sathyan
- Department of Neurology Albert Einstein College of Medicine Bronx NY USA
| | - Emmeline Ayers
- Department of Neurology Albert Einstein College of Medicine Bronx NY USA
| | - Tina Gao
- Institute for Aging Research, Department of Medicine Albert Einstein College of Medicine Bronx NY USA
| | - Erica F. Weiss
- Department of Neurology Albert Einstein College of Medicine Bronx NY USA
| | - Sofiya Milman
- Institute for Aging Research, Department of Medicine Albert Einstein College of Medicine Bronx NY USA
- Department of Genetics Albert Einstein College of Medicine Bronx NY USA
| | - Joe Verghese
- Department of Neurology Albert Einstein College of Medicine Bronx NY USA
- Institute for Aging Research, Department of Medicine Albert Einstein College of Medicine Bronx NY USA
| | - Nir Barzilai
- Institute for Aging Research, Department of Medicine Albert Einstein College of Medicine Bronx NY USA
- Department of Genetics Albert Einstein College of Medicine Bronx NY USA
| |
Collapse
|
17
|
Dong Z, Li C, Coates D. PTN-PTPRZ signalling is involved in deer antler stem cell regulation during tissue regeneration. J Cell Physiol 2020; 236:3752-3769. [PMID: 33111346 DOI: 10.1002/jcp.30115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 12/22/2022]
Abstract
A growing deer antler contains a stem cell niche that can drive endochondral bone regeneration at up to 2 cm/day. Pleiotrophin (PTN), as a multifunctional growth factor, is found highly expressed at the messenger RNA level within the active antler stem cell tissues. This study aims to map the expression patterns of PTN protein and its receptors in a growing antler and investigate the effects of PTN on antler stem cells in vitro. Immunohistochemistry was employed to localise PTN/midkine (MDK) and their functional receptors, protein tyrosine phosphatase receptor type Z (PTPRZ), anaplastic lymphoma kinase (ALK), NOTCH2, and integrin αV β3, on serial slides of the antler growth centre. PTN was found to be the dominantly expressed growth factor in the PTN/MDK family. High expression of PTPRZ and ALK co-localised with PTN was found suggesting a potential interaction. The high levels of PTN and PTPRZ reflected the antler stem cell activation status during the regenerative process. When antler stem cells were cultured in vitro under the normoxic condition, no PTN protein was detected and exogenous PTN did not induce differentiation or proliferation but rather stem cell maintenance. Collectively, the antler stem cell niche appears to upregulate PTN and PTPRZ in vivo, and PTN-PTPRZ signalling may be involved in regulating antler stem cell behaviour during rapid antler regeneration.
Collapse
Affiliation(s)
- Zhen Dong
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand
| | - Chunyi Li
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, China
| | - Dawn Coates
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand
| |
Collapse
|
18
|
Cuthbert RJ, Jones E, Sanjurjo-Rodríguez C, Lotfy A, Ganguly P, Churchman SM, Kastana P, Tan HB, McGonagle D, Papadimitriou E, Giannoudis PV. Regulation of Angiogenesis Discriminates Tissue Resident MSCs from Effective and Defective Osteogenic Environments. J Clin Med 2020; 9:jcm9061628. [PMID: 32481579 PMCID: PMC7355658 DOI: 10.3390/jcm9061628] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022] Open
Abstract
Background: The biological mechanisms that contribute to atrophic long bone non-union are poorly understood. Multipotential mesenchymal stromal cells (MSCs) are key contributors to bone formation and are recognised as important mediators of blood vessel formation. This study examines the role of MSCs in tissue formation at the site of atrophic non-union. Materials and Methods: Tissue and MSCs from non-union sites (n = 20) and induced periosteal (IP) membrane formed following the Masquelet bone reconstruction technique (n = 15) or bone marrow (n = 8) were compared. MSC content, differentiation, and influence on angiogenesis were measured in vitro. Cell content and vasculature measurements were performed by flow cytometry and histology, and gene expression was measured by quantitative polymerase chain reaction (qPCR). Results: MSCs from non-union sites had comparable differentiation potential to bone marrow MSCs. Compared with induced periosteum, non-union tissue contained similar proportion of colony-forming cells, but a greater proportion of pericytes (p = 0.036), and endothelial cells (p = 0.016) and blood vessels were more numerous (p = 0.001) with smaller luminal diameter (p = 0.046). MSCs showed marked differences in angiogenic transcripts depending on the source, and those from induced periosteum, but not non-union tissue, inhibited early stages of in vitro angiogenesis. Conclusions: In vitro, non-union site derived MSCs have no impairment of differentiation capacity, but they differ from IP-derived MSCs in mediating angiogenesis. Local MSCs may thus be strongly implicated in the formation of the immature vascular network at the non-union site. Attention should be given to their angiogenic support profile when selecting MSCs for regenerative therapy.
Collapse
Affiliation(s)
- R. J. Cuthbert
- Leeds Institute of Rheumatic and Musculoskeletal Disease, University of Leeds, Leeds LS16 7PS, UK; (R.J.C.); (E.J.); (C.S.-R.); (P.G.); (S.M.C.); (H.B.T.); (D.M.)
| | - E. Jones
- Leeds Institute of Rheumatic and Musculoskeletal Disease, University of Leeds, Leeds LS16 7PS, UK; (R.J.C.); (E.J.); (C.S.-R.); (P.G.); (S.M.C.); (H.B.T.); (D.M.)
| | - C. Sanjurjo-Rodríguez
- Leeds Institute of Rheumatic and Musculoskeletal Disease, University of Leeds, Leeds LS16 7PS, UK; (R.J.C.); (E.J.); (C.S.-R.); (P.G.); (S.M.C.); (H.B.T.); (D.M.)
- Department of Biomedical Sciences, Medicine and Physiotherapy, University of A Coruña, CIBER-BBN-Institute of Biomedical Research of A Coruña (INIBIC), A Coruña 15001, Spain
| | - A. Lotfy
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef 62511, Egypt;
| | - P. Ganguly
- Leeds Institute of Rheumatic and Musculoskeletal Disease, University of Leeds, Leeds LS16 7PS, UK; (R.J.C.); (E.J.); (C.S.-R.); (P.G.); (S.M.C.); (H.B.T.); (D.M.)
| | - S. M. Churchman
- Leeds Institute of Rheumatic and Musculoskeletal Disease, University of Leeds, Leeds LS16 7PS, UK; (R.J.C.); (E.J.); (C.S.-R.); (P.G.); (S.M.C.); (H.B.T.); (D.M.)
| | - P. Kastana
- Department of Pharmacy, School of Health Sciences, University of Patras, Patras 265 04, Greece; (P.K.); (E.P.)
| | - H. B. Tan
- Leeds Institute of Rheumatic and Musculoskeletal Disease, University of Leeds, Leeds LS16 7PS, UK; (R.J.C.); (E.J.); (C.S.-R.); (P.G.); (S.M.C.); (H.B.T.); (D.M.)
| | - D. McGonagle
- Leeds Institute of Rheumatic and Musculoskeletal Disease, University of Leeds, Leeds LS16 7PS, UK; (R.J.C.); (E.J.); (C.S.-R.); (P.G.); (S.M.C.); (H.B.T.); (D.M.)
| | - E. Papadimitriou
- Department of Pharmacy, School of Health Sciences, University of Patras, Patras 265 04, Greece; (P.K.); (E.P.)
| | - P. V. Giannoudis
- Leeds Institute of Rheumatic and Musculoskeletal Disease, University of Leeds, Leeds LS16 7PS, UK; (R.J.C.); (E.J.); (C.S.-R.); (P.G.); (S.M.C.); (H.B.T.); (D.M.)
- NIHR Leeds Biomedical Research Center, Chapel Allerton Hospital, Leeds LS7 4SA, UK
- Correspondence: ; Tel.: +44-113-392-2750; Fax: +44-113-392-3290
| |
Collapse
|
19
|
Xi G, Demambro VE, D’Costa S, Xia SK, Cox ZC, Rosen CJ, Clemmons DR. Estrogen Stimulation of Pleiotrophin Enhances Osteoblast Differentiation and Maintains Bone Mass in IGFBP-2 Null Mice. Endocrinology 2020; 161:5805123. [PMID: 32168373 PMCID: PMC7069688 DOI: 10.1210/endocr/bqz007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 03/12/2020] [Indexed: 12/22/2022]
Abstract
Insulin-like growth factor binding protein-2 (IGFBP-2) stimulates osteoblast differentiation but only male Igfbp2 null mice have a skeletal phenotype. The trophic actions of IGFBP-2 in bone are mediated through its binding to receptor tyrosine phosphatase beta (RPTPβ). Another important ligand for RPTPβ is pleiotrophin (PTN), which also stimulates osteoblast differentiation. We determined the change in PTN and RPTPβ in Igfbp2-/- mice. Analysis of whole bone mRNA in wild-type and knockout mice revealed increased expression of Ptn. Rptpβ increased in gene-deleted animals with females having greater expression than males. Knockdown of PTN expression in osteoblasts in vitro inhibited differentiation, and addition of PTN to the incubation medium rescued the response. Estradiol stimulated PTN secretion and PTN knockdown blocked estradiol-stimulated differentiation. PTN addition to IGFBP-2 silenced osteoblast stimulated differentiation, and an anti-fibronectin-3 antibody, which inhibits PTN binding to RPTPβ, inhibited this response. Estrogen stimulated PTN secretion and downstream signaling in the IGFBP-2 silenced osteoblasts and these effects were inhibited with anti-fibronectin-3. Administration of estrogen to wild-type and Igfbp2-/- male mice stimulated an increase in both areal bone mineral density and trabecular bone volume fraction but the increase was significantly greater in the Igfbp2-/- animals. Estrogen also stimulated RPTPβ expression in the null mice. We conclude that loss of IGFBP-2 expression is accompanied by upregulation of PTN and RPTPβ expression in osteoblasts, that the degree of increase is greater in females due to estrogen secretion, and that this compensatory change may account for some component of the maintenance of normal bone mass in female mice.
Collapse
Affiliation(s)
- Gang Xi
- Department of Medicine UNC School of Medicine Chapel Hill, North Carolina
| | | | - Susan D’Costa
- Department of Medicine UNC School of Medicine Chapel Hill, North Carolina
| | - Shalier K Xia
- Department of Medicine UNC School of Medicine Chapel Hill, North Carolina
| | - Zach C Cox
- Department of Medicine UNC School of Medicine Chapel Hill, North Carolina
| | | | - David R Clemmons
- Department of Medicine UNC School of Medicine Chapel Hill, North Carolina
- Correspondence: David R. Clemmons, MD, CB#7170, 8024 Burnett-Womack, Division of Endocrinology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7170. E-mail:
| |
Collapse
|
20
|
Abstract
Pleiotrophin (PTN) is a potent mitogenic cytokine with a high affinity for the polysaccharide glycosaminoglycan (GAG). Although it is most strongly associated with neural development during embryogenesis and the neonatal period, its expression has also been linked to a plethora of other physiological events including cancer metastasis, angiogenesis, bone development, and inflammation. A considerable amount of research has been carried out to understand the mechanisms by which PTN regulates these events. In particular, PTN has now been shown to bind a diverse collection of receptors including many GAG-containing proteoglycans. These interactions lead to the activation of many intracellular kinases and, ultimately, activation and transformation of cells. Structural studies of PTN in complex with both GAG and domains from its non-proteoglycan receptors reveal a binding mechanism that relies on electrostatic interactions and points to PTN-induced receptor oligomerization as one of the possible ways PTN uses to control cellular functions.
Collapse
|
21
|
Herradon G, Ramos-Alvarez MP, Gramage E. Connecting Metainflammation and Neuroinflammation Through the PTN-MK-RPTPβ/ζ Axis: Relevance in Therapeutic Development. Front Pharmacol 2019; 10:377. [PMID: 31031625 PMCID: PMC6474308 DOI: 10.3389/fphar.2019.00377] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/26/2019] [Indexed: 12/15/2022] Open
Abstract
Inflammation is a common factor of pathologies such as obesity, type 2 diabetes or neurodegenerative diseases. Chronic inflammation is considered part of the pathogenic mechanisms of different disorders associated with aging. Interestingly, peripheral inflammation and the associated metabolic alterations not only facilitate insulin resistance and diabetes but also neurodegenerative disorders. Therefore, the identification of novel pathways, common to the development of these diseases, which modulate the immune response and signaling is key. It will provide highly relevant information to advance our knowledge of the multifactorial process of aging, and to establish new biomarkers and/or therapeutic targets to counteract the underlying chronic inflammatory processes. One novel pathway that regulates peripheral and central immune responses is triggered by the cytokines pleiotrophin (PTN) and midkine (MK), which bind its receptor, Receptor Protein Tyrosine Phosphatase (RPTP) β/ζ, and inactivate its phosphatase activity. In this review, we compile a growing body of knowledge suggesting that PTN and MK modulate the immune response and/or inflammation in different pathologies characterized by peripheral inflammation associated with insulin resistance, such as aging, and in central disorders characterized by overt neuroinflammation, such as neurodegenerative diseases and endotoxemia. Evidence strongly suggests that regulation of the PTN and MK signaling pathways may provide new therapeutic opportunities particularly in those neurological disorders characterized by increased PTN and/or MK cerebral levels and neuroinflammation. Importantly, we discuss existing therapeutics, and others being developed, that modulate these signaling pathways, and their potential use in pathologies characterized by overt neuroinflammation.
Collapse
Affiliation(s)
- Gonzalo Herradon
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - M Pilar Ramos-Alvarez
- Departmento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Esther Gramage
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| |
Collapse
|
22
|
Banala RR, Vemuri SK, Penkulinti M, AV GR, GPV S. Development of Novel Animal Model for Studying Scoliosis Using a Noninvasive Method and Its Validation through Gene-Expression Analysis. Asian Spine J 2019; 13:126-134. [PMID: 30326691 PMCID: PMC6365791 DOI: 10.31616/asj.2018.0108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/18/2018] [Accepted: 06/27/2018] [Indexed: 11/23/2022] Open
Abstract
STUDY DESIGN To induce scoliosis in young female Wistar rats using a noninvasive method and to validate this model. PURPOSE To induce scoliosis in a rat model noninvasively by bracing and to study the corresponding gene-expression profile in the spine and different organs. OVERVIEW OF LITERATURE Scoliosis involves abnormal lateral curvature of the spine, the causes of which remain unclear. In the literature, it is suggested that scoliosis is genetically heterogeneous, as there are multiple factors involved directly or indirectly in its pathogenesis. Clinical and experimental studies were conducted to understand the etiology of anatomical alterations in the spine and internal organs, as the findings could help clinicians to establish new treatment approaches. METHODS Twelve female Wistar rats aged 21 days were chosen for this study. Customized braces and real-time polymerase chain reaction (RT-PCR) primers for rats were designed using Primer 3 software. Radiological analysis (X-rays), histopathological studies, SYBR green, and RT-PCR analysis were performed. RESULTS The spines of six rats were braced in a deformed position, which resulted in a permanent structural deformity as confirmed by X-ray studies. The remaining rats were used as controls. Quantitative studies of the expression of various genes (osteocalcin, pleiotrophins, matrix metalloproteinase-2 [MMP2] and MMP9, TIMP, interleukins 1 and 6, tumor necrosis factor-α) showed their differential expression and significant upregulation (p<0.05) in different organs of scoliotic rats in comparison to those in control rats. Histopathological findings showed tissue necrosis and fibrosis in the brain, retina, pancreas, kidney, liver, and disc of scoliotic rats. CONCLUSIONS Bracing is a noninvasive method for inducing scoliosis in an animal model with 100% reliability and with corresponding changes in gene expression. Scoliosis does not just involve a spine deformity, but can be referred to as a systemic disease on the basis of the pathological changes observed in various internal organs.
Collapse
Affiliation(s)
- Rajkiran Reddy Banala
- Sunshine Medical Academy of Research and Training, Sunshine Hospitals, Hyderabad, India
| | - Satish Kumar Vemuri
- Sunshine Medical Academy of Research and Training, Sunshine Hospitals, Hyderabad, India
| | | | - Gurava Reddy AV
- Sunshine Medical Academy of Research and Training, Sunshine Hospitals, Hyderabad, India
| | - Subbaiah GPV
- Sunshine Medical Academy of Research and Training, Sunshine Hospitals, Hyderabad, India
- Department of Spine, Star Hospitals, Hyderabad, India
| |
Collapse
|
23
|
Huang YW, Chiang MF, Ho CS, Hung PL, Hsu MH, Lee TH, Chu LJ, Liu H, Tang P, Victor Ng W, Lin DS. A Transcriptome Study of Progeroid Neurocutaneous Syndrome Reveals POSTN As a New Element in Proline Metabolic Disorder. Aging Dis 2018; 9:1043-1057. [PMID: 30574417 PMCID: PMC6284769 DOI: 10.14336/ad.2018.0222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/22/2018] [Indexed: 12/27/2022] Open
Abstract
Aging is a complex biological process. A study of pyrroline-5-carboxylate reductase 1 (PYCR1) deficiency, which causes a progeroid syndrome, may not only shed light on its genetic contribution to autosomal recessive cutis laxa (ARCL) but also help elucidate the functional mechanisms associated with aging. In this study, we used RNA-Seq technology to examine gene expression changes in primary skin fibroblasts from healthy controls and patients with PYCR1 mutations. Approximately 22 and 32 candidate genes were found to be up- and downregulated, respectively, in fibroblasts from patients. Among the downregulated candidates in fibroblasts with PYCR1 mutations, a strong reduction in the expression of 17 genes (53.1%) which protein products are localized in the extracellular space was detected. These proteins included several important ECM components, periostin (POSTN), elastin (ELN), and decorin (DCN); genetic mutations in these proteins are associated with different phenotypes of aging, such as cutis laxa and joint and dermal manifestations. The differential expression of ten selected extracellular space genes was further validated using quantitative RT-PCR. Ingenuity Pathway Analysis revealed that some of the affected genes may be associated with cardiovascular system development and function, dermatological diseases and conditions, and cardiovascular disease. POSTN, one of the most downregulated gene candidates in affected individuals, is a matricellular protein with pivotal functions in heart valvulogenesis, skin wound healing, and brain development. Perturbation of PYCR1 expression revealed that it is positively correlated with the POSTN levels. Taken together, POSTN might be one of the key molecules that deserves further investigation for its role in this progeroid neurocutaneous syndrome.
Collapse
Affiliation(s)
- Yu-Wen Huang
- Institute of Biotechnology in Medicine and Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming University, Taipei, Taiwan.
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan.
| | - Ming-Fu Chiang
- Department of Neurosurgery, Mackay Memorial Hospital, Taipei, Taiwan.
- Mackay Junior College of Medicine, Nursing and Management, Taipei, Taiwan.
- Graduate Institute of Injury Prevention and Control, Taipei Medical University, Taipei, Taiwan.
| | - Che-Sheng Ho
- Department of Pediatrics, Mackay Memorial Hospital, Taipei, Taiwan.
| | - Pi-Lien Hung
- Department of Pediatric Neurology, Kaohsiung Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| | - Mei-Hsin Hsu
- Department of Pediatric Neurology, Kaohsiung Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| | - Tsung-Han Lee
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan.
| | - Lichieh Julie Chu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.
| | - Hsuan Liu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Petrus Tang
- Molecular Regulation and Bioinformatics Laboratory and Department of Parasitology, Chang Gung University, Taoyuan, Taiwan.
| | - Wailap Victor Ng
- Institute of Biotechnology in Medicine and Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming University, Taipei, Taiwan.
- Institute of Biomedical Informatics and Center for Systems and Synthetic Biology, National Yang Ming University, Taipei, Taiwan.
- Department of Biochemistry, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Dar-Shong Lin
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan.
- Department of Pediatrics, Mackay Memorial Hospital, Taipei, Taiwan.
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| |
Collapse
|
24
|
Therapeutic silence of pleiotrophin by targeted delivery of siRNA and its effect on the inhibition of tumor growth and metastasis. PLoS One 2017; 12:e0177964. [PMID: 28562667 PMCID: PMC5451024 DOI: 10.1371/journal.pone.0177964] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/05/2017] [Indexed: 12/20/2022] Open
Abstract
Pleiotrophin (PTN) is a secreted cytokine that is expressed in various cancer cell lines and human tumor such as colon cancer, lung cancer, gastric cancer and melanoma. It plays significant roles in angiogenesis, metastasis, differentiation and cell growth. The expression of PTN in the adult is limited to the hippocampus in an activity-dependent manner, making it a very attractive target for cancer therapy. RNA interference (RNAi) offers great potential as a new powerful therapeutic strategy based on its highly specific and efficient silencing of a target gene. However, efficient delivery of small interfering RNA (siRNA) in vivo remains a significant hurdle for its successful therapeutic application. In this study, we first identified, on a cell-based experiment, applying a 1:1 mixture of two PTN specific siRNA engenders a higher silencing efficiency on both mRNA and protein level than using any of them discretely at the same dose. As a consequence, slower melanoma cells growth was also observed for using two specific siRNA combinatorially. To establish a robust way for siRNA delivery in vivo and further investigate how silence of PTN affects tumor growth, we tested three different methods to deliver siRNA in vivo: first non-targeted in-vivo delivery of siRNA via jetPEI; second lung targeted delivery of siRNA via microbubble coated jetPEI; third tumor cell targeted delivery of siRNA via transferrin-polyethylenimine (Tf-PEI). As a result, we found that all three in-vivo siRNAs delivery methods led to an evident inhibition of melanoma growth in non-immune deficiency C57BL/6 mice without a measureable change of ALT and AST activities. Both targeted delivery methods showed more significant curative effect than jetPEI. The lung targeted delivery by microbubble coated jetPEI revealed a comparable therapeutic effect with Tf-PEI, indicating its potential application for target delivery of siRNA in vivo.
Collapse
|
25
|
Yang A, Huiyu Z, Junfeng G, Xin L, Yang Y, Gang Z, Yinghui T. [Effect of calcitonin gene-related peptide on MC3T3-E1 osteoblast apoptosis and autophagy induced by serum starvation]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2017; 35:133-138. [PMID: 28682541 DOI: 10.7518/hxkq.2017.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To study the effect of calcitonin gene-related peptide (CGRP) on apoptosis and autophagy of mouse MC3T3-E1 osteoblast and their interaction and to further clarify protective mechanism of CGRP on osteoblasts. METHODS MC3T3-E1 osteoblasts of mouse were cultured in vitro. Western blot and flow cytometry were used to detect expressions of microtubule-associated protein 1 light chain 3 (LC3) and P62 protein of MC3T3-E1 osteoblasts cultured with serum culture and serum-free (serum starvation) culture. Western blot was also used to detect expressions of LC3 and P62 protein of MC3T3-E1 osteoblast cultured at different concentrations (10⁻¹⁰, 10⁻⁹, 10⁻⁸, and 10⁻⁷ mol·L⁻¹) or without added CGRP. MC3T3-E1 osteoblasts were treated with 10⁻⁸ mol·L⁻¹ CGRP at different times (2, 6, 12, 24, 48, and 72 h), protein expression levels of LC3 were assessed by Western blot and flow cytometry, and changes in autophagosome in cells were detected by monodansylcadaverin staining. Autophagy inhibitor 3-methyladenine (3-MA) was used to pretreat MC3T3-E1 osteoblasts. Cells were then treated with or without CGRP for 24 h. Flow cytometry was used to detect apoptosis level. RESULTS Under serum starvation conditions, LC3Ⅱ expression and apoptosis of osteoblasts increased compared with that of serum culture. Under 3-MA pretreatment and serum starvation conditions, LC3Ⅱ expression of osteoblasts increased compared with that of serum culture (P<0.01). Compared with serum culture, serum starvation culture with or without CGRP significantly increased expression level of LC3 and reduced expression level of P62. LC3Ⅱ/Ⅰ of osteoblasts was the highest under serum starvation and 10⁻⁸ mol·L⁻¹ CGRP conditions. Serum starvation and 10⁻⁸ mol·L⁻¹ CGRP culture inhibited apoptosis of osteoblasts and promoted synthesis of autophagosome. Apoptosis of osteoblasts increased after 3-MA pretreatment, and CGRP reversed inhibitory effects of 3-MA CGRP on apoptosis. CONCLUSIONS CGRP can increase autophagy of MC3T3-E1 osteoblasts under serum starvation conditions. CGRP may also inhibit apoptosis of MC3T3-E1 osteoblasts by promoting autophagy.
.
Collapse
Affiliation(s)
- An Yang
- Dept. of Oral and Maxillofacial Surgery, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, China
| | - Zhang Huiyu
- Dept. of Oral and Maxillofacial Surgery, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, China
| | - Guo Junfeng
- Dept. of Oral and Maxillofacial Surgery, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, China
| | - Li Xin
- Dept. of Oral and Maxillofacial Surgery, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, China
| | - Yang Yang
- Dept. of Oral and Maxillofacial Surgery, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, China
| | - Zhang Gang
- Dept. of Oral and Maxillofacial Surgery, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, China
| | - Tan Yinghui
- Dept. of Oral and Maxillofacial Surgery, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, China
| |
Collapse
|
26
|
Faour O, Gilloteaux J. Calcitonin: Survey of new anatomy data to pathology and therapeutic aspects. TRANSLATIONAL RESEARCH IN ANATOMY 2017. [DOI: 10.1016/j.tria.2017.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
27
|
Abd Rahman F, Mohd Ali J, Abdullah M, Abu Kasim NH, Musa S. Aspirin Enhances Osteogenic Potential of Periodontal Ligament Stem Cells (PDLSCs) and Modulates the Expression Profile of Growth Factor–Associated Genes in PDLSCs. J Periodontol 2016; 87:837-47. [DOI: 10.1902/jop.2016.150610] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
28
|
Guyot N, Labas V, Harichaux G, Chessé M, Poirier JC, Nys Y, Réhault-Godbert S. Proteomic analysis of egg white heparin-binding proteins: towards the identification of natural antibacterial molecules. Sci Rep 2016; 6:27974. [PMID: 27294500 PMCID: PMC4904793 DOI: 10.1038/srep27974] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 05/26/2016] [Indexed: 12/25/2022] Open
Abstract
The chicken egg resists most environmental microbes suggesting that it potentially contains efficient antimicrobial molecules. Considering that some heparin-binding proteins in mammals are antibacterial, we investigated the presence and the antimicrobial activity of heparin-binding proteins from chicken egg white. Mass spectrometry analysis of the proteins recovered after heparin-affinity chromatography, revealed 20 proteins, including known antimicrobial proteins (avidin, lysozyme, TENP, ovalbumin-related protein X and avian bêta-defensin 11). The antibacterial activity of three new egg candidates (vitelline membrane outer layer protein 1, beta-microseminoprotein-like (LOC101750704) and pleiotrophin) was demonstrated against Listeria monocytogenes and/or Salmonella enterica Enteritidis. We showed that all these molecules share the property to inhibit bacterial growth through their heparin-binding domains. However, vitelline membrane outer layer 1 has additional specific structural features that can contribute to its antimicrobial potential. Moreover, we identified potential supplementary effectors of innate immunity including mucin 5B, E-selectin ligand 1, whey acidic protein 3, peptidyl prolyl isomerase B and retinoic acid receptor responder protein 2. These data support the concept of using heparin affinity combined to mass spectrometry to obtain an overview of the various effectors of innate immunity composing biological milieus, and to identify novel antimicrobial candidates of interest in the race for alternatives to antibiotics.
Collapse
Affiliation(s)
- Nicolas Guyot
- INRA, UR83 Recherches Avicoles, Fonction et Régulation des Protéines de l’Oeuf, F-37380 Nouzilly, France
| | - Valérie Labas
- INRA, UMR85 Physiologie de la Reproduction et des Comportements-CNRS UMR 7247-Université François Rabelais-Institut Français du Cheval et de l’Equitation, Plate-forme d’Analyse Intégrative des Biomolécules (PAIB), Laboratoire de Spectrométrie de Masse, F-37380 Nouzilly, France
| | - Grégoire Harichaux
- INRA, UMR85 Physiologie de la Reproduction et des Comportements-CNRS UMR 7247-Université François Rabelais-Institut Français du Cheval et de l’Equitation, Plate-forme d’Analyse Intégrative des Biomolécules (PAIB), Laboratoire de Spectrométrie de Masse, F-37380 Nouzilly, France
| | - Magali Chessé
- INRA, UR83 Recherches Avicoles, Fonction et Régulation des Protéines de l’Oeuf, F-37380 Nouzilly, France
| | - Jean-Claude Poirier
- INRA, UR83 Recherches Avicoles, Fonction et Régulation des Protéines de l’Oeuf, F-37380 Nouzilly, France
| | - Yves Nys
- INRA, UR83 Recherches Avicoles, Fonction et Régulation des Protéines de l’Oeuf, F-37380 Nouzilly, France
| | - Sophie Réhault-Godbert
- INRA, UR83 Recherches Avicoles, Fonction et Régulation des Protéines de l’Oeuf, F-37380 Nouzilly, France
| |
Collapse
|
29
|
Abstract
Heparin has been recognized as a valuable anticoagulant and antithrombotic for several decades and is still widely used in clinical practice for a variety of indications. The anticoagulant activity of heparin is mainly attributable to the action of a specific pentasaccharide sequence that acts in concert with antithrombin, a plasma coagulation factor inhibitor. This observation has led to the development of synthetic heparin mimetics for clinical use. However, it is increasingly recognized that heparin has many other pharmacological properties, including but not limited to antiviral, anti-inflammatory, and antimetastatic actions. Many of these activities are independent of its anticoagulant activity, although the mechanisms of these other activities are currently less well defined. Nonetheless, heparin is being exploited for clinical uses beyond anticoagulation and developed for a wide range of clinical disorders. This article provides a "state of the art" review of our current understanding of the pharmacology of heparin and related drugs and an overview of the status of development of such drugs.
Collapse
Affiliation(s)
- Barbara Mulloy
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| | - John Hogwood
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| | - Elaine Gray
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| | - Rebecca Lever
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| | - Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (B.M., C.P.P.); National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom (J.H., E.G.); and University College London School of Pharmacy, London, United Kingdom (R.L.)
| |
Collapse
|
30
|
Abstract
Selection of appropriate bone graft or bone graft substitute requires careful recognition of the bone healing needs of the patient's specific clinical problem and a thorough understanding of the different properties possessed by the available bone grafts and substitutes. Although autogenous iliac crest bone graft remains the gold standard of treatment for delayed unions, nonunions, and bone defects, there are a number of promising alternatives available, and emerging evidence suggests that they can be very effective when used in the proper setting. Among these, reamer-irrigator-aspirator bone graft, bone marrow concentrate, bone morphogenetic proteins, and calcium phosphate cements have received a great deal of attention in the literature. This review describes these grafts in detail along with the evidence for their use. In addition, a framework is provided for selecting the appropriate graft or substitute based on their provided properties.
Collapse
|
31
|
Kaspiris A, Chronopoulos E, Grivas TB, Vasiliadis E, Khaldi L, Lamprou M, Lelovas PP, Papaioannou N, Dontas IA, Papadimitriou E. Effects of mechanical loading on the expression of pleiotrophin and its receptor protein tyrosine phosphatase beta/zeta in a rat spinal deformity model. Cytokine 2015; 78:7-15. [PMID: 26615567 DOI: 10.1016/j.cyto.2015.11.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 11/09/2015] [Accepted: 11/14/2015] [Indexed: 11/16/2022]
Abstract
Mechanical loading of the spine is a major causative factor of degenerative changes and causes molecular and structural changes in the intervertebral disc (IVD) and the vertebrae end plate (EP). Pleiotrophin (PTN) is a growth factor with a putative role in bone remodeling through its receptor protein tyrosine phosphatase beta/zeta (RPTPβ/ζ). The present study investigates the effects of strain on PTN and RPTPβ/ζ protein expression in vivo. Tails of eight weeks old Sprague-Dawley rats were subjected to mechanical loading using a mini Ilizarov external apparatus. Rat tails untreated (control) or after 0 degrees of compression and 10°, 30° and 50° of angulation (groups 0, I, II and III respectively) were studied. PTN and RPTPβ/ζ expression were evaluated using immunohistochemistry and Western blot analysis. In the control group, PTN was mostly expressed by the EP hypertrophic chondrocytes. In groups 0 to II, PTN expression was increased in the chondrocytes of hypertrophic and proliferating zones, as well as in osteocytes and osteoblast-like cells of the ossification zone. In group III, only limited PTN expression was observed in osteocytes. RPTPβ/ζ expression was increased mainly in group 0, but also in group I, in all types of cells. Low intensity RPTPβ/ζ immunostaining was observed in groups II and III. Collectively, PTN and RPTPβ/ζ are expressed in spinal deformities caused by mechanical loading, and their expression depends on the type and severity of the applied strain.
Collapse
Affiliation(s)
- Angelos Kaspiris
- Laboratory of Molecular Pharmacology, School of Health Sciences, University of Patras, Patras 26504, Greece; Laboratory for Research of the Musculoskeletal System, School of Medicine, University of Athens, Athens 14561, Greece
| | - Efstathios Chronopoulos
- Laboratory for Research of the Musculoskeletal System, School of Medicine, University of Athens, Athens 14561, Greece; Second Department of Orthopaedic Surgery, Konstantopoulio General Hospital and Medical School, University of Athens, Athens 14233, Greece
| | - Theodoros B Grivas
- Department of Orthopaedics, Tzanio General Hospital of Piraeus-NHS, Piraeus 18536, Greece
| | - Elias Vasiliadis
- Third Department of Orthopaedics, KAT General Hospital, School of Medicine, University of Athens, Athens 14561, Greece
| | - Lubna Khaldi
- Laboratory for Research of the Musculoskeletal System, School of Medicine, University of Athens, Athens 14561, Greece
| | - Margarita Lamprou
- Laboratory of Molecular Pharmacology, School of Health Sciences, University of Patras, Patras 26504, Greece
| | - Pavlos P Lelovas
- Laboratory for Research of the Musculoskeletal System, School of Medicine, University of Athens, Athens 14561, Greece
| | - Nikolaos Papaioannou
- Laboratory for Research of the Musculoskeletal System, School of Medicine, University of Athens, Athens 14561, Greece
| | - Ismene A Dontas
- Laboratory for Research of the Musculoskeletal System, School of Medicine, University of Athens, Athens 14561, Greece
| | - Evangelia Papadimitriou
- Laboratory of Molecular Pharmacology, School of Health Sciences, University of Patras, Patras 26504, Greece.
| |
Collapse
|