1
|
Tian H, An L, Wang P, Zhang X, Gao W, Li X. Review of Astragalus membranaceus polysaccharides: Extraction process, structural features, bioactivities and applications. CHINESE HERBAL MEDICINES 2025; 17:56-69. [PMID: 39949812 PMCID: PMC11814244 DOI: 10.1016/j.chmed.2024.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/25/2024] [Accepted: 09/12/2024] [Indexed: 02/16/2025] Open
Abstract
Astragalus membranaceus possesses the function of enhancing immunity, protecting the liver, diuretic, anti-aging, anti-stress, anti-hypertensive, and more extensive antibacterial effects. Polysaccharides, one kind of the major active ingredients of A. membranaceus, are considered to be responsible for their versatile use. Now, a systematic summary of research progress and prospects of polysaccharides from A. membranaceus polysaccharides (AMPs) is necessary to facilitate their further study and application. In this review, the optimal extraction methods, structural features, biological activities, and applications of AMPs were emphasized. The structure-activity relationships are also analyzed and elucidated. Solvent, ultrasonic, microwave, enzyme-assisted, ultra-high pressure, and combined methods have been used to extract AMPs. Among them, solvent extraction is the most commonly used method because it is simple and easy to operate, but the efficiency needs to be improved further. The ultra-high pressure method is the most efficient but has a low economic return. AMPs exhibited various bioactivities, including immunomodulation, antitumor, and antidiabete. The structure-activity relationships revealed that different structure configurations, chain conformations, and physical properties would have different bioactivities. However, the new method for purification of certain polysaccharides, detailed structure-activity relationships (SAR), mechanisms of bioactivities, and quality control of AMPs need to be extensively investigated.
Collapse
Affiliation(s)
- Hongyue Tian
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China
| | - Lingzhuo An
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China
| | - Pengwang Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China
| | - Xuemin Zhang
- Key Laboratory of Modern Chinese Medicine Resources Research Enterprises, Tianjin 300402, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China
- College of Pharmacy, Qinghai Minzu University, Qinghai 810007, China
| | - Xia Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China
| |
Collapse
|
2
|
Chengzhi W, Yifan L, Xiaoqing Z, Peimin L, Dongdong L. Research progress of natural products targeting tumor-associated macrophages in antitumor immunity: A review. Medicine (Baltimore) 2024; 103:e40576. [PMID: 39560523 PMCID: PMC11575998 DOI: 10.1097/md.0000000000040576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 10/30/2024] [Indexed: 11/20/2024] Open
Abstract
As an important innate immune cell in the body, macrophages have a strong ability to phagocytic tumor cells and maintain the innate immune response. Tumor-associated macrophages play a more prominent role in regulating tumor immunity and are currently an important target of antitumor immunity. As a new type of antitumor therapy, tumor immunotherapy has great potential, combined chemotherapy, targeting and other therapeutic means can significantly enhance the antitumor therapy effect. At present, a number of natural products have been proved to have significant immunomodulatory and antitumor effects, and have become a hot field of antitumor immunity research. Studies have found that a variety of natural products, such as polysaccharides, flavonoids, saponins, lactones, and alkaloids, can induce the polarization of M1 macrophages, inhibit the polarization of M2 macrophages, and regulate the expression of immune-related cytokines by targeting specific signaling pathways to enhance the killing effect of macrophages on tumor cells and improve the tumor immune microenvironment, and finally better play the antitumor immune function. In this paper, by summarizing the research results of the specific mechanism of natural products targeting tumor-associated macrophages to exert antitumor immunity in recent years, we discussed the aspects of natural products targeting tumor-associated macrophages to enhance antitumor immunity, in order to provide a new research idea for tumor immunotherapy and further improve the effectiveness of clinical antitumor therapy.
Collapse
Affiliation(s)
- Wang Chengzhi
- Henan University of Chinese Medicine, Zhengzhou, China
- The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Liu Yifan
- Henan University of Chinese Medicine, Zhengzhou, China
- The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhang Xiaoqing
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liu Peimin
- The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Li Dongdong
- The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
3
|
Zhang Y, Chen Z, Chen L, Dong Q, Yang DH, Zhang Q, Zeng J, Wang Y, Liu X, Cui Y, Li M, Luo X, Zhou C, Ye M, Li L, He Y. Astragali radix (Huangqi): a time-honored nourishing herbal medicine. Chin Med 2024; 19:119. [PMID: 39215362 PMCID: PMC11363671 DOI: 10.1186/s13020-024-00977-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Astragali radix (AR, namded Huangqi in Chinese) is the dried root of Astragalus membranaceus (Fisch.) Bge. var. mongholicus (Bge.) Hsiao or Astragalus membranaceus (Fisch.) Bge. As a widely used ethnomedicine, the biological activities of AR include immunomodulatory, anti-hyperglycemic, anti-oxidant, anti-aging, anti-inflammatory, anti-viral, anti-tumor, cardioprotective, and anti-diabetic effects, with minimum side effects. Currently, it is known that polysaccharides, saponins, and flavonoids are the indispensable components of AR. In this review, we will elaborate the research advancements of AR on ethnobotany, ethnopharmacological practices, phytochemicals, pharmacological activities, clinical uses, quality control, production developments, and toxicology. The information is expected to assist clinicians and scientists in developing useful therapeutic medicines with minimal systemic side effects.
Collapse
Affiliation(s)
- Yuyu Zhang
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Zhejie Chen
- Institute of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Liping Chen
- School of Comprehensive Health Management, Xihua University, Chengdu, 610039, China
| | - Qin Dong
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Dong-Hua Yang
- New York College of Traditional Chinese Medicine, Mineola, NY, 11501, USA
| | - Qi Zhang
- Pengzhou Hospital of Traditional Chinese Medicine, Pengzhou, 611930, China
| | - Jing Zeng
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Yang Wang
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Xiao Liu
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Yuan Cui
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Minglong Li
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Xiao Luo
- Chengdu Institute for Drug Control, NMPA Key Laboratory for Quality Monitoring and Evaluation of Traditional Chinese Medicine, Chengdu, 610045, China
| | - Chongjian Zhou
- HuBei Guizhenyuan Chinese Herbal Medicine Co.Ltd., Hong'an, 438400, China
| | - Mingzhu Ye
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China
| | - Ling Li
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China.
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| | - Yuxin He
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, China.
| |
Collapse
|
4
|
Ye S, Gao Y, Hu X, Cai J, Sun S, Jiang J. Research progress and future development potential of Flammulina velutipes polysaccharides in the preparation process, structure analysis, biology, and pharmacology: A review. Int J Biol Macromol 2024; 267:131467. [PMID: 38599436 DOI: 10.1016/j.ijbiomac.2024.131467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 02/27/2024] [Accepted: 04/06/2024] [Indexed: 04/12/2024]
Abstract
In recent years, Flammulina velutipes (F. velutipes) has attracted consequential attention in various research fields due to its rich composition of proteins, vitamins, amino acids, polysaccharides, and polyphenols. F. velutipes polysaccharides (FVPs) are considered as key bioactive components of F. velutipes, demonstrating multiple physiological activities, including immunomodulatory, anti-inflammatory, and antibacterial properties. Moreover, they offer health benefits such as antioxidant and anti-aging properties, which have exceptionally valuable clinical applications. Polysaccharides derived from different sources exhibit a wide range of biomedical functions and distinct biological activities. The varied biological functions of polysaccharides, coupled with their extensive application in functional foods and clinical applications, have prompted a heightened focus on polysaccharide research. Additionally, the extraction, deproteinization, and purification of FVPs are fundamental to investigate the structure and biological activities of polysaccharides. Therefore, this review provides a comprehensive and systematic overview of the extraction, deproteinization, purification, characterization, and structural elucidation of FVPs. Furthermore, the biological activities and mechanisms of FVPs have been further explored through in vivo and in vitro experiments. This review aims to provide a theoretical foundation and guide future research and development of FVPs.
Collapse
Affiliation(s)
- Shiying Ye
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang medical school, University of South China, Hengyang, Hunan, China
| | - Yi Gao
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang medical school, University of South China, Hengyang, Hunan, China
| | - Xiangyan Hu
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang medical school, University of South China, Hengyang, Hunan, China
| | - Jiye Cai
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Shaowei Sun
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang medical school, University of South China, Hengyang, Hunan, China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang medical school, University of South China, Hengyang, Hunan, China
| | - Jinhuan Jiang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang medical school, University of South China, Hengyang, Hunan, China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang medical school, University of South China, Hengyang, Hunan, China
| |
Collapse
|
5
|
D’Avino D, Cerqua I, Ullah H, Spinelli M, Di Matteo R, Granato E, Capasso R, Maruccio L, Ialenti A, Daglia M, Roviezzo F, Rossi A. Beneficial Effects of Astragalus membranaceus (Fisch.) Bunge Extract in Controlling Inflammatory Response and Preventing Asthma Features. Int J Mol Sci 2023; 24:10954. [PMID: 37446131 PMCID: PMC10342042 DOI: 10.3390/ijms241310954] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Astragalus membranaceus (Fisch.) Bunge root is used as herbal medicine for its immunomodulating activities in Chinese medicine. Recently, beneficial properties of A. membranaceus on allergic diseases have been proposed. Here we investigated the role of a commercial extract of A. membranaceus, standardized to 16% polysaccharides, in regulating the immune-inflammatory response in vitro and in vivo and its therapeutic application in asthma. A. membranaceus extract inhibited prostaglandin E2 and leukotriene C4 production in stimulated J774 and peritoneal macrophages, respectively. The extract also reduced interlukin-1β, tumor necrosis factor-α, and nitrite production, affecting inducible nitric oxide synthase expression. In vivo experiments confirmed the anti-inflammatory properties of A. membranaceus, as evident by a reduction in zymosan-induced peritoneal cellular infiltration and pro-inflammatory mediator production. The efficacy of A. membranaceus extract in modulating the immune response was confirmed in a model of allergic airway inflammation. Extracts improve lung function by inhibiting airway hyperresponsiveness, airway remodeling, and fibrosis. Its anti-asthmatic effects were further sustained by inhibition of the sensitization process, as indicated by a reduction of ovalbumin-induced IgE levels and the mounting of a Th2 immune response. In conclusion, our data demonstrate the anti-inflammatory properties of the commercial extract of A. membranaceus and its beneficial effects on asthma feature development.
Collapse
Affiliation(s)
- Danilo D’Avino
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (D.D.); (I.C.); (H.U.); (R.D.M.); (A.I.); (M.D.)
| | - Ida Cerqua
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (D.D.); (I.C.); (H.U.); (R.D.M.); (A.I.); (M.D.)
| | - Hammad Ullah
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (D.D.); (I.C.); (H.U.); (R.D.M.); (A.I.); (M.D.)
| | - Michele Spinelli
- Department of Chemical Sciences, University of Naples Federico II, 80100 Naples, Italy;
| | - Rita Di Matteo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (D.D.); (I.C.); (H.U.); (R.D.M.); (A.I.); (M.D.)
| | - Elisabetta Granato
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (D.D.); (I.C.); (H.U.); (R.D.M.); (A.I.); (M.D.)
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| | - Lucianna Maruccio
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy;
| | - Armando Ialenti
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (D.D.); (I.C.); (H.U.); (R.D.M.); (A.I.); (M.D.)
| | - Maria Daglia
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (D.D.); (I.C.); (H.U.); (R.D.M.); (A.I.); (M.D.)
| | - Fiorentina Roviezzo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (D.D.); (I.C.); (H.U.); (R.D.M.); (A.I.); (M.D.)
| | - Antonietta Rossi
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (D.D.); (I.C.); (H.U.); (R.D.M.); (A.I.); (M.D.)
| |
Collapse
|
6
|
Tsai YC, Lin MK, Peng WH, Tseng CK, Lee MS, Yang BC, Chang WT. Comparison of the Immunomodulatory Effect of TCM Formulas Containing Either Astragali Radix or With This Replaced by Hedysari Radix. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221142797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Hedysari Radix (Hong Qi) is a commonly substituted material with similar functions to Astragali Radix (Huang Qi). However, it is still misused as Huang Qi, even though people know they are different species. This study aims to find evidence that Hong Qi can replace Huang Qi in traditional Chinese medicine (TCM) formulas used for immunomodulation. Therefore, we evaluated the immunomodulatory effects of both medicines on dendritic cells. The water extract of Hong Qi showed a more substantial immunomodulatory effect on dendritic cells in 500 μg/mL concentration compared to Huang Qi in the same dosage. Furthermore, we selected the 23 TCM formulas to investigate their immunomodulatory function when Huang Qi and Hong Qi alternated within a formula. Among them, 6 formulas containing Hong Qi demonstrated a better immunomodulatory effect on the dendritic cells than those containing Huang Qi. The other formulas containing Hong Qi showed an insignificantly different physiological impact from the original formulation. Therefore, based on the TCM theory and our experimental results, replacing Huang Qi with Hong Qi for a formula could be more suitable when the immunomodulatory effect or nourishing Qi is required.
Collapse
Affiliation(s)
- Yu-Chi Tsai
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Ming-Kuem Lin
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Wen-Huang Peng
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Chih-Kai Tseng
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Meng-Shiou Lee
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Bo-Cheng Yang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Wen-Te Chang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
7
|
Li CX, Liu Y, Zhang YZ, Li JC, Lai J. Astragalus polysaccharide: a review of its immunomodulatory effect. Arch Pharm Res 2022; 45:367-389. [PMID: 35713852 DOI: 10.1007/s12272-022-01393-3] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 06/12/2022] [Indexed: 12/27/2022]
Abstract
The Astragalus polysaccharide is an important bioactive component derived from the dry root of Astragalus membranaceus. This review aims to provide a comprehensive overview of the research progress on the immunomodulatory effect of Astragalus polysaccharide and provide valuable reference information. We review the immunomodulatory effect of Astragalus polysaccharide on central and peripheral immune organs, including bone marrow, thymus, lymph nodes, spleen, and mucosal tissues. Furthermore, the immunomodulatory effect of Astragalus polysaccharide on a variety of immune cells is summarized. Studies have shown that Astragalus polysaccharide can promote the activities of macrophages, natural killer cells, dendritic cells, T lymphocytes, B lymphocytes and microglia and induce the expression of a variety of cytokines and chemokines. The immunomodulatory effect of Astragalus polysaccharide makes it promising for the treatment of many diseases, including cancer, infection, type 1 diabetes, asthma, and autoimmune disease. Among them, the anticancer effect is the most prominent. In short, Astragalus polysaccharide is a valuable immunomodulatory medicine, but further high-quality studies are warranted to corroborate its clinical efficacy.
Collapse
Affiliation(s)
- Chun-Xiao Li
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Liu
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu-Zhen Zhang
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing-Chun Li
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Jiang Lai
- Department of Anorectal Surgery, Third People's Hospital of Chengdu, Chengdu, China.
| |
Collapse
|
8
|
Macrophage immunity promotion effect of polysaccharide LGP-1 from Guapian tea via PI3K/AKT and NF-κB signaling pathway. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.104946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
9
|
Cheng WJ, Chiang CC, Lin CY, Chen YL, Leu YL, Sie JY, Chen WL, Hsu CY, Kuo JJ, Hwang TL. Astragalus mongholicus Bunge Water Extract Exhibits Anti-inflammatory Effects in Human Neutrophils and Alleviates Imiquimod-Induced Psoriasis-Like Skin Inflammation in Mice. Front Pharmacol 2021; 12:762829. [PMID: 34955833 PMCID: PMC8707293 DOI: 10.3389/fphar.2021.762829] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/16/2021] [Indexed: 12/17/2022] Open
Abstract
Neutrophils are the primary immune cells in innate immunity, which are related to various inflammatory diseases. Astragalus mongholicus Bunge is a Chinese medicinal herb used to treat various oxidative stress-related inflammatory diseases. However, there are limited studies that elucidate the effects of Astragalus mongholicus Bunge in human neutrophils. In this study, we used isolated human neutrophils activated by various stimulants to investigate the anti-inflammatory effects of Astragalus mongholicus Bunge water extract (AWE). Cell-free assays were used to examine free radicals scavenging capabilities on superoxide anion, reactive oxygen species (ROS), and nitrogen-centered radicals. Imiquimod (IMQ) induced psoriasis-like skin inflammation mouse model was used for investigating anti-psoriatic effects. We found that AWE inhibited superoxide anion production, ROS generation, and elastase release in human neutrophils, which exhibiting a direct anti-neutrophil effect. Moreover, AWE exerted a ROS scavenging ability in the 2,2’-Azobis (2-amidinopropane) dihydrochloride assay, but not superoxide anion in the xanthine/xanthine oxidase assay, suggesting that AWE exhibited anti-oxidation and anti-inflammatory capabilities by both scavenging ROS and by directly inhibiting neutrophil activation. AWE also reduced CD11b expression and adhesion to endothelial cells in activated human neutrophils. Meanwhile, in mice with psoriasis-like skin inflammation, administration of topical AWE reduced both the affected area and the severity index score. It inhibited neutrophil infiltration, myeloperoxidase release, ROS-induced damage, and skin proliferation. In summary, AWE exhibited direct anti-inflammatory effects by inhibiting neutrophil activation and anti-psoriatic effects in mice with IMQ-induced psoriasis-like skin inflammation. Therefore, AWE could potentially be a pharmaceutical Chinese herbal medicine to inhibit neutrophilic inflammation for anti-psoriasis.
Collapse
Affiliation(s)
- Wei-Jen Cheng
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chih-Chao Chiang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Puxin Fengze Chinese Medicine Clinic, Taoyuan, Taiwan
| | - Cheng-Yu Lin
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Li Chen
- Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Yann-Lii Leu
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jia-Yu Sie
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wen-Ling Chen
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chung-Yuan Hsu
- Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jong-Jen Kuo
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Graduate Institute of Traditional Chinese Medicine, School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| |
Collapse
|
10
|
Kong F, Chen T, Li X, Jia Y. The Current Application and Future Prospects of Astragalus Polysaccharide Combined With Cancer Immunotherapy: A Review. Front Pharmacol 2021; 12:737674. [PMID: 34721026 PMCID: PMC8548714 DOI: 10.3389/fphar.2021.737674] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/09/2021] [Indexed: 12/30/2022] Open
Abstract
So far, immunotherapy has been shown to have impressive effects on different cancers in clinical trials. All those immunotherapies are generally derived from three main therapeutic approaches: immune checkpoint inhibitors, immune cell vaccination, and adoptive cellular immunotherapy. Our research systematically reviewed a wide range of clinical trials and laboratory studies of astragalus polysaccharide (APS) and elucidated the potential feasibility of using APS in activating adoptive immunotherapy. Apart from being effective in adaptive “passive” immunotherapy such as lymphokine-activated killer treatment and dendritic cell (DC)–cytokine–induced killer treatment, APS could also regulate the anti-programmed cell death protein 1 (PD-1)/PD-L1 on the surface of the immune cells, as a part in the immune checkpoint inhibitory signaling pathway by activating the immune-suppressed microenvironment by regulating cytokines, toll-like receptor 4 (TLR4), nuclear factor kappa B (NF-κB), and mitogen-activated protein kinase (MAPK) pathways, and immune cells, such as DCs, macrophages, NK cells, and so on. In view of the multiple functions of APS in immunotherapy and tumor microenvironment, a combination of APS and immunotherapy in cancer treatment has a promising prospect.
Collapse
Affiliation(s)
- Fanming Kong
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Tianqi Chen
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xiaojiang Li
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yingjie Jia
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
11
|
Li J, Chen J, Yang G, Tao L. Sublancin protects against methicillin-resistant Staphylococcus aureus infection by the combined modulation of innate immune response and microbiota. Peptides 2021; 141:170533. [PMID: 33775803 DOI: 10.1016/j.peptides.2021.170533] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/25/2021] [Accepted: 03/17/2021] [Indexed: 02/07/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a major pathogen responsible for community and hospital bacterial infections. In the present study, the protective role of sublancin, an antimicrobial peptides, was explored in MRSA infection model. We report that sublancin directly induce macrophage migration through the chemotactic receptors. We further show that sublancin exhibits protection in a mouse MRSA infection model. This protection involved an immunomodulatory activity, but was blocked by depletion of monocyte/macrophages or neutrophils. Sublancin selectively up-regulates the levels of chemokines (C-X-C motif chemokine ligand 1, CXCL1 and monocyte chemoattractant protein-1, MCP-1) while reducing the production of pro-inflammatory cytokine (tumor necrosis factor-α, TNF-α). Meanwhile, sublancin regulated the microbiota composition disrupted by MRSA injection, increasing the abundance of Lactobacillus and decreasing that of Staphylococcus and Pseudomonas. Also, sublancin restored to normal levels of metabolic functional pathways, especially amino acid biosynthesis (e.g., branched amino acid, histidine and tryptophan), disrupted after injection, and this restoration was significantly correlated with neutrophils. These results demonstrates that sublancin stimulates the innate response and modulates the microbiota community to protect against MRSA infection.
Collapse
Affiliation(s)
- Jiantao Li
- College of Animal Husbandry and Veterinary, Shenyang Agricultural University, Shenyang, Liaoning Province, 110866, China.
| | - Jing Chen
- College of Animal Husbandry and Veterinary, Shenyang Agricultural University, Shenyang, Liaoning Province, 110866, China
| | - Guiqin Yang
- College of Animal Husbandry and Veterinary, Shenyang Agricultural University, Shenyang, Liaoning Province, 110866, China
| | - Lijuan Tao
- College of Animal Husbandry and Veterinary, Shenyang Agricultural University, Shenyang, Liaoning Province, 110866, China
| |
Collapse
|
12
|
Chen C, Xie X, Li X. Immunomodulatory effects of four polysaccharides purified from Erythronium sibiricum bulb on macrophages. Glycoconj J 2021; 38:517-525. [PMID: 34117963 DOI: 10.1007/s10719-021-10005-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/21/2021] [Accepted: 06/02/2021] [Indexed: 01/08/2023]
Abstract
Four neutral polysaccharides (ESBP1-1, ESBP1-2, ESBP2-1 and ESBP3-1) were successfully purified from the water extracted crude polysaccharides of Erythronium sibiricum bulbs through the combination of DEAE Sepharose CL-6B and Sephadex G-100 chromatography; their average molecular weights were 1.3 × 104, 1.7 × 104, 9.4 × 105 and 4.1 × 105 Da, respectively. Monosaccharide component analysis indicated that ESBP1-1 and ESBP1-2 were mainly composed of glucose (Glc). ESBP2-1 was composed of Glc, galactose (Gal) and arabinose, with a molar ratio of 24.3:1.1:1, whereas ESBP3-1 comprised Glc and Gal at a molar ratio of 14.8:1. In-vitro study showed that all of the four polysaccharides were able to considerably promote the proliferation and neutral red phagocytosis of RAW 264.7 macrophage cell. They could also stimulate the production of the cell lines' secretory molecules [nitric oxide, tumour necrosis factor-α (TNF-α) and interleukin-1β (IL-1β)] in a dose-dependent manner. However, ESBP1-2 was not included in IL-1β. Overall, these results suggested that polysaccharides from E. sibiricum bulbs can be developed as immunomodulatory ingredients for complementary medicines or functional foods. However, further animal or clinical studies are required.
Collapse
Affiliation(s)
- Chunli Chen
- Pharmacy College, Xinjiang Medical University, 393 Xinyi Road, Urumqi, 830011, China.
| | - Xiangyun Xie
- Pharmacy College, Xinjiang Medical University, 393 Xinyi Road, Urumqi, 830011, China
| | - Xue Li
- Supervision and Testing Center for Quality and Safety of Agri-products of Xinjiang Uygur Autonomous Region, 157 Shengli Road, Urumqi, 830049, China
| |
Collapse
|
13
|
Huang L, Zhao J, Wei Y, Yu G, Li F, Li Q. Structural characterization and mechanisms of macrophage immunomodulatory activity of a pectic polysaccharide from Cucurbita moschata Duch. Carbohydr Polym 2021; 269:118288. [PMID: 34294314 DOI: 10.1016/j.carbpol.2021.118288] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/22/2021] [Accepted: 05/30/2021] [Indexed: 12/13/2022]
Abstract
A pectic polysaccharide (named CMDP-4b) with a molecular weight of 31.97 kDa was extracted from Cucurbita moschata Duch and purified by column chromatography. On the basis of methylation, Fourier-transform infrared, monosaccharide composition, and one- and two-dimensional nuclear magnetic resonance spectroscopy analyses, the structure of CMDP-4b was determined to be composed of an α-1,4-linked homogalacturonan backbone, which was slightly acetylated and highly methyl-esterified, and branched at the O-3 position of the →4)-α-D-GalpA-6-OMe-(1→. Immunomodulatory assays showed that CMDP-4b not only induced the secretion of nitrous oxide and cytokines (i.e. IL-1β, TNF-α, and IL-6) but also promoted pinocytic and phagocytic activities of macrophages, suggesting that CMDP-4b possessed immunomodulatory activity. Moreover, toll-like receptor 4 and complement receptor 3 may play a critical role in CMDP-4b-induced macrophage activation through the NF-κB and the MAPKs signaling pathways. Our study provides the molecular basis for the potential use of CMDP-4b as a natural immunostimulant.
Collapse
Affiliation(s)
- Linlin Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Jing Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Yunlu Wei
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Guoyong Yu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Fei Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Quanhong Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China.
| |
Collapse
|
14
|
Wang H, Xu X, Yin Z, Wang M, Wang B, Ma C, Wang J, Kang W. Activation of RAW264.7 cells by PCp-I, a polysaccharide from Psoralea corylifolia L, through NF- κB/MAPK signalling pathway. Int J Immunopathol Pharmacol 2021; 35:20587384211010058. [PMID: 33855900 PMCID: PMC8058790 DOI: 10.1177/20587384211010058] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
PCp-I is a polysaccharide isolated and identified from the Psoralea corylifolia L. by our research group. In this study, the immunomodulatory effects of PCp-I on RAW264.7 cells was evaluated. PCp-I could enhance the level of NO along with up-regulation of iNOS mRNA in RAW264.7 cells. The PCp-I could significantly up-regulate the mRNA expression of TNF-α and IL-6 in RAW264.7 cells, and then the expression of TNF-α, IL-6, ROS and the phagocytic activity were increased. Additionally, PCp-I could significantly up-regulate the phosphorylation level of p65, p38, ERK and JNK proteins, which proved that PCp-I could activate the macrophages by MAPKs and NF-κB signalling pathway and the TLR4 may be one of the receptors of PCp-I regulate the RAW264.7 cells.
Collapse
Affiliation(s)
- Honglin Wang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China.,Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng, China
| | - Xiaoqing Xu
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China.,Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng, China
| | - Zhenhua Yin
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China.,Zhengzhou City Key Laboratory of Medicinal Resources Research, Huanghe Science and Technology College, Zhengzhou, China
| | - Mengke Wang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China.,Kaifeng Key Laboratory of Functional Components in Health Food, Henan University, Kaifeng, China
| | - Baoguang Wang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China.,Kaifeng Key Laboratory of Functional Components in Health Food, Henan University, Kaifeng, China
| | - Changyang Ma
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China.,Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng, China
| | - Jinmei Wang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China.,Kaifeng Key Laboratory of Functional Components in Health Food, Henan University, Kaifeng, China
| | - Wenyi Kang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China.,Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng, China
| |
Collapse
|
15
|
Li Y, Wang X, Ma X, Liu C, Wu J, Sun C. Natural Polysaccharides and Their Derivates: A Promising Natural Adjuvant for Tumor Immunotherapy. Front Pharmacol 2021; 12:621813. [PMID: 33935714 PMCID: PMC8080043 DOI: 10.3389/fphar.2021.621813] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/15/2021] [Indexed: 12/30/2022] Open
Abstract
The treatment process of tumor is advanced with the development of immunotherapy. In clinical experience, immunotherapy has achieved very significant results. However, the application of immunotherapy is limited by a variety of immune microenvironment. For a long time in the past, polysaccharides such as lentinan and Ganoderma lucidum glycopeptide have been used in clinic as adjuvant drugs to widely improve the immunity of the body. However, their mechanism in tumor immunotherapy has not been deeply discussed. Studies have shown that natural polysaccharides can stimulate innate immunity by activating upstream immune cells so as to regulate adaptive immune pathways such as T cells and improve the effect of immunotherapy, suggesting that polysaccharides also have a promising future in cancer therapy. This review systematically discusses that polysaccharides can directly or indirectly activate macrophages, dendritic cells, natural killer cells etc., binding to their surface receptors, inducing PI3K/Akt, mitogen-activated protein kinase, Notch and other pathways, promote their proliferation and differentiation, increasing the secretion of cytokines, and improve the state of immune suppression. These results provide relevant basis for guiding polysaccharide to be used as adjuvants of cancer immunotherapy.
Collapse
Affiliation(s)
- Ye Li
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaomin Wang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoran Ma
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cun Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jibiao Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Changgang Sun
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China.,Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| |
Collapse
|
16
|
Lee HN, Choi JH, Park JY, Ahn JH, Jang DE, Shim JG, Park JH, Kim YM. Combination of vegetable soup and glucan demonstrates synergistic effects on macrophage-mediated immune responses. Food Sci Biotechnol 2021; 30:583-588. [PMID: 33936850 PMCID: PMC8050188 DOI: 10.1007/s10068-021-00888-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/26/2021] [Accepted: 02/05/2021] [Indexed: 11/26/2022] Open
Abstract
Vegetable soup (VS), a plant-based functional food, has been used as a traditional folk medicine and is attracting attention for its ability to enhance the immune response. β-Glucan, a well-established and effective immunomodulator, has synergistic effects when used in combination with some bioactive compounds. In the present study, we aimed to evaluate the synergistic immunomodulatory effects of the combination of VS and β-glucan on macrophage-mediated immune responses. β-Glucan was demonstrated to synergistically enhance the VS-stimulated immune response, including the production of interleukin-6, tumor necrosis factor-α, and nitric oxide, mainly through the mitogen-activated protein kinase pathway in macrophages. In addition, this combination has the potential for further development in functional foods with immune-enhancing activity. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10068-021-00888-x.
Collapse
Affiliation(s)
- Ha-Nul Lee
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Joo-Hee Choi
- Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186 Republic of Korea
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, 41061 Republic of Korea
| | - Ji-Yeon Park
- Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Jae-Hun Ahn
- Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Da Eun Jang
- Charmden Health Sciences Agricultural Co. 152, Nanosandan-ro, Jinwon-myeon, Jangseong-gun, Jeollanam-do Republic of Korea
| | - Jae Gun Shim
- Charmden Health Sciences Agricultural Co. 152, Nanosandan-ro, Jinwon-myeon, Jangseong-gun, Jeollanam-do Republic of Korea
| | - Jong-Hwan Park
- Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Young-Min Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186 Republic of Korea
| |
Collapse
|
17
|
Zhang X, Wang L, Xie F, Yaseen A, Chen B, Zhang GL, Wang MK, Shen XF, Li F. A polysaccharide TKP-2-1 from Tamarindus indica L: Purification, structural characterization and immunomodulating activity. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
18
|
Afshari AR, Mollazadeh H, Mohtashami E, Soltani A, Soukhtanloo M, Hosseini A, Jalili-Nik M, Vahedi MM, Roshan MK, Sahebkar A. Protective Role of Natural Products in Glioblastoma Multiforme: A Focus on Nitric Oxide Pathway. Curr Med Chem 2021; 28:377-400. [PMID: 32000638 DOI: 10.2174/0929867327666200130104757] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/07/2019] [Accepted: 11/14/2019] [Indexed: 11/22/2022]
Abstract
In spite of therapeutic modalities such as surgical resection, chemotherapy, and radiotherapy, Glioblastoma Multiforme (GBM) remains an incurable fatal disease. This necessitates further therapeutic options that could enhance the efficacy of existing modalities. Nitric Oxide (NO), a short-lived small molecule, has been revealed to play a crucial role in the pathophysiology of GBM. Several studies have demonstrated that NO is involved in apoptosis, metastasis, cellular proliferation, angiogenesis, invasion, and many other processes implicated in GBM pathobiology. Herein, we elaborate on the role of NO as a therapeutic target in GBM and discuss some natural products affecting the NO signaling pathway.
Collapse
Affiliation(s)
- Amir R Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hamid Mollazadeh
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Elmira Mohtashami
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Soltani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Soukhtanloo
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azar Hosseini
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Jalili-Nik
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Mahdi Vahedi
- Department of Pharmacology, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mostafa Karimi Roshan
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
19
|
Sulfaguanidine Hybrid with Some New Pyridine-2-One Derivatives: Design, Synthesis, and Antimicrobial Activity against Multidrug-Resistant Bacteria as Dual DNA Gyrase and DHFR Inhibitors. Antibiotics (Basel) 2021; 10:antibiotics10020162. [PMID: 33562582 PMCID: PMC7915026 DOI: 10.3390/antibiotics10020162] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/25/2021] [Accepted: 02/02/2021] [Indexed: 12/18/2022] Open
Abstract
Herein, a series of novel hybrid sulfaguanidine moieties, bearing 2-cyanoacrylamide 2a-d, pyridine-2-one 3-10, and 2-imino-2H-chromene-3-carboxamide 11, 12 derivatives, were synthesized, and their structure confirmed by spectral data and elemental analysis. All the synthesized compounds showed moderate to good antimicrobial activity against eight pathogens. The most promising six derivatives, 2a, 2b, 2d, 3a, 8, and 11, revealed to be best in inhibiting bacterial and fungal growth, thus showing bactericidal and fungicidal activity. These derivatives exhibited moderate to potent inhibition against DNA gyrase and DHFR enzymes, with three derivatives 2d, 3a, and 2a demonstrating inhibition of DNA gyrase, with IC50 values of 18.17-23.87 µM, and of DHFR, with IC50 values of 4.33-5.54 µM; their potency is near to that of the positive controls. Further, the six derivatives exhibited immunomodulatory potential and three derivatives, 2d, 8, and 11, were selected for further study and displayed an increase in spleen and thymus weight and enhanced the activation of CD4+ and CD8+ T lymphocytes. Finally, molecular docking and some AMED studies were performed.
Collapse
|
20
|
Xu X, Qiao Y, Peng Q, Shi B, Dia VP. Antioxidant and Immunomodulatory Properties of Partially purified Exopolysaccharide from Lactobacillus Casei Isolated from Chinese Northeast Sauerkraut. Immunol Invest 2021; 51:748-765. [PMID: 33416001 DOI: 10.1080/08820139.2020.1869777] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Background: Exopolysaccharides (EPS) from Lactobacillus spp. have been found to have biological activities. Our previous work demonstrated the antibiofilm activity of EPS from Lactobacillus casei NA-2 (L.casei NA-2) isolated from northeast Chinese sauerkraut (Suan Cai). The present study has focussed on the antioxidant and immunomodulatory activities of the EPS in vitro.Methods: Antioxidant properties of the EPS were evaluated by the radical-scavenging activities in vitro. The immunomodulatory effects of EPS were assayed by measuring nitric oxide (NO), interleukin 6 (IL-6), tumor necrosis factor-alpha (TNF-α), and reactive oxygen species (ROS) in RAW 264.7 macrophages, and the mechanism was investigated through NF-κB and JNK.Result: EPS contains 88% total sugar, with the molecular weights (Mw) of 1.3 × 106 Da, 6.4 × 105 Da, 2.0 × 105 Da, and 1.4 × 104 Da. EPS showed antioxidant activity by scavenging hydroxyl radicals (42% at 1.2 mg/mL), superoxide radicals (76% at 100 µg/mL), and DPPH (80% at 10 mg/mL); and did not affect the proliferation of unstimulated or lipopolysaccharide (LPS)-induced RAW 264.7 cells at the concentrations ranging from 31.25 to 500 µg/mL. Results showed EPS promoted the production of ROS and TNF-α involved in NF-κB p65 and JNK signaling pathways in unstimulated RAW 264.7 cells. On the other hand, the levels of NO and iNOS were reduced after EPS treatment in LPS-induced RAW 264.7 cells.Conclusion: Our results showed the protective effect against oxidative damage and potential immunomodulatory and anti-inflammatory properties of EPS from Lactobacillus casei NA-2.
Collapse
Affiliation(s)
- Xiaoqing Xu
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Department of Food Science, The University of Tennessee Institute of Agriculture, Knoxville, Tennessee, USA
| | - Yu Qiao
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qing Peng
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bo Shi
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Vermont P Dia
- Department of Food Science, The University of Tennessee Institute of Agriculture, Knoxville, Tennessee, USA
| |
Collapse
|
21
|
Qader M, Xu J, Yang Y, Wu X, Liu Y, Cao S. Chemistry Behind the Immunomodulatory Activity of Astragalus membranaceus. CHINESE MEDICINE AND CULTURE 2021. [DOI: 10.4103/cmac.cmac_40_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
22
|
Isolation of anti-VEGF monoclonal antibodies with neutralizing effects from an Astragalus-induced immune antibody library. Int Immunopharmacol 2020; 88:107007. [PMID: 33182041 DOI: 10.1016/j.intimp.2020.107007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/04/2020] [Accepted: 09/10/2020] [Indexed: 11/24/2022]
Abstract
The Astragalus membranaceus polysaccharides (APS) can improve immunity and enhance treatment reactions. This study analyzed the effects of effective antivascular endothelial growth factor (anti-VEGF) antibody production in mice treated with APS. After APS treatment, the serum of mice produced the antibody reactions that can cross-validate VEGF. The isolated single-chain fragment variable (scFv) antibodies could neutralize VEGF and inhibit in vivo tumor growth. Of the scFvs, scFv 4E can significantly compete the interaction of bevacizumab with VEGF. In cell experiments, scFv 4E effectively inhibited human umbilical vein endothelial cells induced by VEGF in vitro. In a matrix gel-assisted angiogenesis model, scFv 4E significantly inhibited angiogenesis reactions. In addition, in a xenograft model established in the colorectal cancer cell strain HCT116, scFv 4E treatment inhibited tumor growth by up to 52.7%. Finally, molecule docking was performed to simulate the complex interactions of scFv 4E and VEGF, the main driving forces of which involve the hydrophobic interactions and hydrogen bonds of Tyr108 and Tyr 109 of the complementarity-determining region H3 loop with VEGF. The results help in establishing antibody library with high diversity for selecting antibodies with specificity. In addition, this study indirectly expounded the correlations of APS enhancing immunity regulation in vivo.
Collapse
|
23
|
Di Sotto A, Vitalone A, Di Giacomo S. Plant-Derived Nutraceuticals and Immune System Modulation: An Evidence-Based Overview. Vaccines (Basel) 2020; 8:E468. [PMID: 32842641 PMCID: PMC7563161 DOI: 10.3390/vaccines8030468] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 12/15/2022] Open
Abstract
Immunomodulators are agents able to affect the immune system, by boosting the immune defences to improve the body reaction against infectious or exogenous injuries, or suppressing the abnormal immune response occurring in immune disorders. Moreover, immunoadjuvants can support immune system acting on nonimmune targets, thus improving the immune response. The modulation of inflammatory pathways and microbiome can also contribute to control the immune function. Some plant-based nutraceuticals have been studied as possible immunomodulating agents due to their multiple and pleiotropic effects. Being usually more tolerable than pharmacological treatments, their adjuvant contribution is approached as a desirable nutraceutical strategy. In the present review, the up to date knowledge about the immunomodulating properties of polysaccharides, fatty acids and labdane diterpenes have been analyzed, in order to give scientific basic and clinical evidence to support their practical use. Since promising evidence in preclinical studies, limited and sometimes confusing results have been highlighted in clinical trials, likely due to low methodological quality and lacking standardization. More investigations of high quality and specificity are required to describe in depth the usefulness of these plant-derived nutraceuticals in the immune system modulation, for health promoting and disease preventing purposes.
Collapse
Affiliation(s)
- Antonella Di Sotto
- Department of Physiology and Pharmacology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy;
| | - Annabella Vitalone
- Department of Physiology and Pharmacology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy;
| | | |
Collapse
|
24
|
Chen Z, Liu L, Gao C, Chen W, Vong CT, Yao P, Yang Y, Li X, Tang X, Wang S, Wang Y. Astragali Radix (Huangqi): A promising edible immunomodulatory herbal medicine. JOURNAL OF ETHNOPHARMACOLOGY 2020; 258:112895. [PMID: 32330511 DOI: 10.1016/j.jep.2020.112895] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/11/2020] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Astragali Radix (AR, Huangqi in Chinese), the dried root of Astragalus membranaceus (Fisch.) Bge. var. mongholicus (Bge.) Hsiao or A. membranaceus (Fisch.) Bge., possesses diverse therapeutic effects against fatigue, dyspepsia, diarrhea, heart diseases, hepatitis, and anemia. In recent years, increasing evidence has indicated the multiple immunomodulatory activities of AR in preclinical and clinical studies. AIM OF THE REVIEW This review attempts to elaborate the immunomodulatory effects of AR and its potential application in the treatment of immune related diseases. MATERIALS AND METHODS A comprehensive literature search AR was carried out using multiple internationally recognized databases (including Web of Science, Google Scholar, PubMed, ScienceDirect, Wiley, ACS, Springer, Taylor & Francis, and CNKI). RESULTS The immunomodulatory effects of AR are closely attributed to its active constituents such as polysaccharides, saponins, and flavonoids. We also demonstrate that AR can be used as a potential therapeutic intervention for immune related diseases through regulating immune organs, mucosal immune, and immune system (innate immunity and acquired immunity). CONCLUSION AR promotes the development of immune organs, enhances mucosal immune function, increases the quantity and phagocytic capacity of innate immunity, promotes the maturation and differentiation of acquired immunity cells, and improves the expression of antibodies in acquired immunity. We believe that AR has a broad research space in the adjuvant treatment of immune related diseases, which could be a breakthrough point to improve the application value of AR.
Collapse
Affiliation(s)
- Zhejie Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Lijuan Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China; PU-UM Innovative Institute of Chinese Medical Sciences, Guangdong-Macau Traditional Chinese Medicine Technology Industrial Park Development Co., Ltd, Hengqin New Area, Zhuhai, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Caifang Gao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Weijie Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Chi Teng Vong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Peifen Yao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yuhan Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Xiuzhu Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Xudong Tang
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| |
Collapse
|
25
|
Lee J, Choi MH, Jang ES, Shin HJ, Lee JH. Polysaccharide from Hizikia Fusiformis Enhances the Immunomodulatory Activity of Macrophages. JOURNAL OF RHINOLOGY 2020. [DOI: 10.18787/jr.2018.00277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Background and Objectives: <i>Hizikia fusiformis</i> is widely used in oriental health food in Japan, China, and Korea, and is known for its anti-oxidation properties.Materials and Method: In this study, we investigated the anti-inflammatory and immune-modulatory effects and mechanisms of <i>Hizikia fusiformis</i> (<i>H. fusiformis</i>) extracts in lipopolysaccharide (LPS)-treated RAW 264.7 cells. RAW 264.7 cells were incubated in the presence of different concentrations of the viscozyme component of <i>H. fusiformis</i> (1, 2, 5, and 10 μg/mL), and changes in expression of pro-inflammatory cytokines (GM-CSF, iNOS, VEGF, and COX-2) were evaluated by real-time PCR and immunoblotting. In addition, the associated signaling pathway including phospho (p)-pNF-κB 65, p-pIkBa, p-p38, and p-p44/42 was also evaluated.Results: The viscozyme component of <i>H. fusiformis</i> downregulated the expression of GM-CSF, iNOS, VEGF, and COX-2 mRNA. The augmented NO and ROS production was decreased by administration of <i>H. fusiformis</i>. The signal intensity of p-pNF-κB 65, p-pIkBa, p-p38, and p-p44/42 protein activated by LPS was ameliorated by administration of the viscozyme fraction in RAW 264.7 cells.Conclusion: These results suggest that <i>H. fusiformis</i> has potential as a therapeutic agent for inflammatory diseases.
Collapse
|
26
|
Zheng Y, Ren W, Zhang L, Zhang Y, Liu D, Liu Y. A Review of the Pharmacological Action of Astragalus Polysaccharide. Front Pharmacol 2020; 11:349. [PMID: 32265719 PMCID: PMC7105737 DOI: 10.3389/fphar.2020.00349] [Citation(s) in RCA: 237] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/09/2020] [Indexed: 12/24/2022] Open
Abstract
Astragalus membranaceus (A. membranaceus) is a type of traditional Chinese medicine with a long history of clinical application. It is used in the improvement and treatment of various diseases as medicine and food to invigorate the spleen and replenish qi. The main components of A. membranaceus are Astragalus polysaccharide (APS), flavonoids compounds, saponins compounds, alkaloids, etc. APS is the most important natural active component in A. membranaceus, and possesses multiple pharmacological properties. At present, APS possess the huge potential to develop a drug improving or treating different diseases. In this review, we reveal the potential approaches of pre-treating and preparation on APS as much as possible and the study on content of APS and its chemical composition including different monosaccharides. More importantly, this paper summarize pharmacological actions on immune regulation, such as enhancing the immune organ index, promoting the proliferation of immune cells, stimulating the release of cytokines, and affecting the secretion of immunoglobulin and conduction of immune signals; anti-aging; anti-tumor by enhancing immunity, inducing apoptosis of tumor cells and inhibiting the proliferation and transfer of tumor cells; antiviral effects; regulation of blood glucose such as type I diabetes mellitus, type II diabetes mellitus and diabetic complications; lipid-lowering; anti-fibrosis; antimicrobial activities and anti-radiation. It provided theoretical basis for the further research such as its structure and mechanism of action, and clinical application of APS.
Collapse
Affiliation(s)
- Yijun Zheng
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
| | - Weiyu Ren
- Pharmacy College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Lina Zhang
- School of Education, University of Leeds, Leeds, United Kingdom
| | - Yuemei Zhang
- Ophthalmology Department, First Hospital of Lanzhou University, Lanzhou, China
| | - Dongling Liu
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
- Pharmacy College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yongqi Liu
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
27
|
Sebastian R, Sravanthi M, Umapathi V, Krishnaswamy N, Priyanka M, Dechamma HJ, Ganesh K, Basagoudanavar SH, Sanyal A, Reddy GR. Foot and mouth disease virus undergoes non-progressive replication in mice peritoneal macrophages and induces M1 polarization. Virus Res 2020; 281:197906. [PMID: 32109526 PMCID: PMC7114663 DOI: 10.1016/j.virusres.2020.197906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/20/2020] [Accepted: 02/24/2020] [Indexed: 11/16/2022]
Abstract
Non-progressive replication of foot and mouth disease virus was observed in mice peritoneal macrophages. Macrophages turns to M1 type polarization in response to FMDV infection. Upregulation of pro-inflammatory cytokines was peak by 8 h FMDV infection. Type I IFN and viperin showed marked upregulation following FMDV infection in the macrophages.
Despite the fact that macrophages link the innate and adaptive arms of immunity, it’s role in the early infection of foot and mouth disease virus (FMDV) is largely unknown. Recently, depletion of macrophages in vivo after vaccination has shown to drastically diminish the protection against FMDV challenge in mouse model. Even the ability of macrophages to reduce or resist FMDV infection is not known hitherto. Therefore, we examined the replication ability of FMDV in mice peritoneal macrophages and the responsiveness in terms of macrophage polarization and cytokine production. Negative strand specific RT-PCR indicated replication of FMDV RNA in macrophages. Absolute quantitation of FMDV transcripts, immunofluorescence studies and titre of the infectious progeny virus revealed that replication peaked at 12 hpi and significantly declined by 18 hpi indicating non-progressive replication in the infected macrophages. Further, significant up regulation of inducible nitric oxide synthase by 8 –12 hpi and increase of M1 specific CD11c + cells by 42.6 % after infection showed that FMDV induce M1 polarization. A significant up regulation of TNFα and IL12 transcripts at 8 hpi supported that M1 macrophages were functional. Further, we studied the expression of Type I to III interferons (IFN) and other antiviral molecules. The results indicate a marked up regulation of Type I IFNα and β by 9.2 and 11.2 fold, respectively at 8 hpi. Of the four IFN stimulated genes (ISG), viperin showed a significant up regulation by 286-fold at 12 hpi in the mice macrophages. In conclusion, the results suggest that replication of FMDV in mice peritoneal macrophages is non-progressive with up regulation of Type I IFN and ISGs. Further, FMDV induces M1 polarization in murine peritoneal macrophages.
Collapse
Affiliation(s)
- Renjith Sebastian
- Indian Veterinary Research Institute, Hebbal, Bangalore 560024, India
| | - M Sravanthi
- Indian Veterinary Research Institute, Hebbal, Bangalore 560024, India
| | - V Umapathi
- Indian Veterinary Research Institute, Hebbal, Bangalore 560024, India
| | - N Krishnaswamy
- Indian Veterinary Research Institute, Hebbal, Bangalore 560024, India
| | - M Priyanka
- Indian Veterinary Research Institute, Hebbal, Bangalore 560024, India
| | - H J Dechamma
- Indian Veterinary Research Institute, Hebbal, Bangalore 560024, India
| | - K Ganesh
- Indian Veterinary Research Institute, Hebbal, Bangalore 560024, India
| | | | - A Sanyal
- Indian Veterinary Research Institute, Hebbal, Bangalore 560024, India
| | - G R Reddy
- Indian Veterinary Research Institute, Hebbal, Bangalore 560024, India.
| |
Collapse
|
28
|
Li LQ, Song AX, Yin JY, Siu KC, Wong WT, Wu JY. Anti-inflammation activity of exopolysaccharides produced by a medicinal fungus Cordyceps sinensis Cs-HK1 in cell and animal models. Int J Biol Macromol 2020; 149:1042-1050. [PMID: 32035153 DOI: 10.1016/j.ijbiomac.2020.02.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/28/2020] [Accepted: 02/03/2020] [Indexed: 02/07/2023]
Abstract
This study was to assess the anti-inflammatory potential of exopolysaccharide (EPS) produced by a medicinal fungus Cordyceps sinensis Cs-HK1. The EPS was isolated from the Cs-HK1 mycelial fermentation broth by ethanol precipitation and purified by deproteinization and dialysis. The EPS had a total sugar content of 74.8% and a maximum average molecular weight (MW) over 107 Da, and consisted mainly of glucose and mannose, and a small amount of galactose and ribose. In THP-1 and RAW264.7 cell cultures, EPS significantly inhibited lipopolysaccharide (LPS)-induced inflammatory responses of the cells including the release of NF-κB and several pro-inflammatory factors such as NO, TNF-α and IL-1β. In the murine model of LPS-induced acute intestinal injury, the oral administration of EPS to the animals effectively suppressed the expression of major inflammatory cytokines TNF-α, IL-1β, IL-10 and iNOS and alleviated the intestinal injury. The results suggest that the Cs-HK1 EPS has notable anti-inflammatory activity and can be a potential candidate for further development of new anti-septic therapeutics. To the best of our knowledge, this is the first report on the anti-inflammation of an EPS from C. sinensis fungal fermentation.
Collapse
Affiliation(s)
- Long-Qing Li
- Department of Applied Biology & Chemical Technology, State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) in Shenzhen, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Ang-Xin Song
- Department of Applied Biology & Chemical Technology, State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) in Shenzhen, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Jun-Yi Yin
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Ka-Chai Siu
- Department of Applied Biology & Chemical Technology, State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) in Shenzhen, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Wing-Tak Wong
- Department of Applied Biology & Chemical Technology, State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) in Shenzhen, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Jian-Yong Wu
- Department of Applied Biology & Chemical Technology, State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) in Shenzhen, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
29
|
Liu YT, Lv WL. Research Progress in Astragalus Membranaceus and Its Active Components on Immune Responses in Liver Fibrosis. Chin J Integr Med 2019; 26:794-800. [DOI: 10.1007/s11655-019-3039-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2018] [Indexed: 12/11/2022]
|
30
|
Enhancement of Macrophage Function by the Antimicrobial Peptide Sublancin Protects Mice from Methicillin-Resistant Staphylococcus aureus. J Immunol Res 2019; 2019:3979352. [PMID: 31583256 PMCID: PMC6754899 DOI: 10.1155/2019/3979352] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/02/2019] [Indexed: 01/12/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is the major pathogen responsible for community and hospital bacterial infections. Sublancin, a glucosylated antimicrobial peptide isolated from Bacillus subtilis 168, possesses antibacterial infective effects. In this study, we investigated the role and anti-infection mechanism of sublancin in a mouse model of MRSA-induced sublethal infection. Sublancin could modulate innate immunity by inducing the production of IL-1β, IL-6, TNF-α, and nitric oxide, enhancing phagocytosis and MRSA-killing activity in both RAW264.7 cells and mouse peritoneal macrophages. The enhanced macrophage function by the peptide in vitro correlated with stronger protective activity in vivo in the MRSA-invasive sublethal infection model. Macrophage activation by sublancin was found to be partly dependent on TLR4 and the NF-κB and MAPK signaling pathways. Moreover, oral administration of sublancin increased the frequencies of CD4+ and CD8+ T cells in mesenteric lymph nodes. The protective activity of sublancin was associated with in vivo augmenting phagocytic activity of peritoneal macrophages and partly improving T cell-mediated immunity. Macrophages thus represent a potentially pivotal and novel target for future development of innate defense regulator therapeutics against S. aureus infection.
Collapse
|
31
|
Zhai Q, Li J, Feng Y, Ge Q. Evaluation of combination effects of Astragalus polysaccharides and florfenicol against acute hepatopancreatic necrosis disease-causing strain of Vibrio parahaemolyticus in Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2019; 86:374-383. [PMID: 30502463 DOI: 10.1016/j.fsi.2018.11.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/22/2018] [Accepted: 11/27/2018] [Indexed: 06/09/2023]
Abstract
The effects of oral administration of Astragalus polysaccharides (APS) and florfenicol (FFC), singly or in combination, on the survival performance, disease resistance, and immunity of Litopenaeus vannamei were investigated. After challenge with an AHPND-causing strain of Vibrio parahaemolyticus (VPAHPND), shrimp were immediately fed a drug-free diet, diets containing only APS (200 mg·kg-1) or FFC (15 mg·kg-1), or diets containing low-dose (7.5 mg·kg-1 FFC + 100 mg·kg-1 APS), medium-dose (15 mg·kg-1 FFC + 200 mg·kg-1 APS), and high-dose (30 mg·kg-1 FFC+400 mg·kg-1 APS) drug combinations for 5 days. The cumulative shrimp mortality over 5 days after injection of VPAHPND in the APS + FFC combination groups was significantly lower than that in the APS or FFC alone groups (p < 0.05). Immune parameters, including the total hemocyte counts (THCs), hemocyanin (HEM) concentration, antibacterial activity, activity levels of lysozyme (LZM), and levels of acid phosphatase (ACP), alkaline phosphatase (AKP), and phenoloxidase (PO) in cell-free hemolymph, and the expression levels of the immune-related genes anti-lipopolysaccharide factor (ALF), cathepsin B (catB), crustin, lectin (Lec), lysozyme (LZM), and Toll-like receptor (TLR) in hemocytes and hepatopancreas were determined in the shrimp. The values for these immune parameters in the drug combination groups were higher than those in the APS or FFC group (p < 0.05). Finally, in the histological examinations, the histological structural alignment and integrity of the hepatopancreatic tubules in the drug combination groups was better than that in the APS and FFC groups. Under the experimental conditions, dietary APS and FFC had a synergistic effect on immunity and disease resistance among shrimp after VPAHPND infection.
Collapse
Affiliation(s)
- Qianqian Zhai
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China
| | - Jian Li
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China.
| | - Yanyan Feng
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China
| | - Qianqian Ge
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China
| |
Collapse
|
32
|
Hou Y, Wang M, Zhao D, Liu L, Ding X, Hou W. Effect on macrophage proliferation of a novel polysaccharide from Lactarius deliciosus (L. ex Fr.) Gray. Oncol Lett 2019; 17:2507-2515. [PMID: 30719119 PMCID: PMC6350191 DOI: 10.3892/ol.2018.9879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 12/04/2018] [Indexed: 11/06/2022] Open
Abstract
The fundamental mechanisms underlying the preventional and therapeutic effects of polysaccharides from fungi, including the immunostimulatory, antiviral and antitumor effects, are considered to occur through the modulation and stimulation of the macrophage and complement system. LDG-A, a novel polysaccharide from Lactarius deliciosus (L. ex Fr.) Gray exhibits marked antitumor activities in vivo. However, the underlying molecular mechanism of the antitumor activities of LDG-A remains unclear. In the present study, cell cycle analysis was performed in macrophages and B cells, and the transcriptomes of macrophages in the control group and LDG-A group were sequenced using Illumina sequencing technology to analyze the differentially expressed genes (DEGs), and elucidate the molecular mechanisms underlying the immunomodulatory and antitumor activities of LDG-A. The cell cycle analysis results indicated that LDG-A was able to promote the proliferation of B cells by promoting cell cycle progression in S phase and G2/M phase and eliminating cell cycle arrest in G0/G1, and promote the proliferation of macrophages by promoting cell cycle progression in G0/G1 phase and eliminating cell cycle arrest in G2/M phase. Of the total number of genes (8,140), ~77.00% were expressed [reads per kilobase per million reads (RPKM) ≥1] and 1,352 genes were highly expressed (RPKM >60) in the LDG-A group. Of 775 unigenes which were identified as DEGs, 469 were downregulated and 306 genes were upregulated. A protein chip method was also used to determine the cytokines secreted by macrophages. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis and GO enrichment analysis indicated that the Janus kinase/signal transducer and activator of transcription, mitogen-activated protein kinase, chemokine, vascular endothelial growth factor and transforming growth factor β signaling pathways are markedly enriched for DEGs.
Collapse
Affiliation(s)
- Yiling Hou
- Key Laboratory of Southwest China Wildlife Resources Conservation, College of Life Sciences, China West Normal University, Nanchong, Sichuan 637009, P.R. China
| | - Meng Wang
- Department of Emergency Medicine, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Daqun Zhao
- Key Laboratory of Southwest China Wildlife Resources Conservation, College of Life Sciences, China West Normal University, Nanchong, Sichuan 637009, P.R. China
| | - Lu Liu
- Key Laboratory of Southwest China Wildlife Resources Conservation, College of Life Sciences, China West Normal University, Nanchong, Sichuan 637009, P.R. China
| | - Xiang Ding
- Key Laboratory of Southwest China Wildlife Resources Conservation, College of Life Sciences, China West Normal University, Nanchong, Sichuan 637009, P.R. China
- College of Environmental Science and Engineering, China West Normal University, Nanchong, Sichuan 637009, P.R. China
| | - Wanru Hou
- Key Laboratory of Southwest China Wildlife Resources Conservation, College of Life Sciences, China West Normal University, Nanchong, Sichuan 637009, P.R. China
| |
Collapse
|
33
|
Anti-tumor potential of astragalus polysaccharides on breast cancer cell line mediated by macrophage activation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:685-695. [PMID: 30813073 DOI: 10.1016/j.msec.2019.01.025] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 10/30/2018] [Accepted: 01/07/2019] [Indexed: 02/07/2023]
Abstract
Adverse effects are pressing challenges produced by chemotherapy and radiotherapy for the treatment of breast cancer. Nontoxic herbal medicines are therefore considered as a favorable alternative. Astragalus membranaceus has attracted growing interest in the field of biomedicine thanks to its various biological activities, among which the anticancer activity is considered to be closely associated with its active component-astragalus polysaccharide (APS). Currently, direct anti-tumor activity and the activation of immune response of the host have been widely acknowledged as the mechanism by which APS exerts its anti-cancer activity. In this study, we aimed to investigate whether APS could inhibit the growth of MCF-7 cells and activate macrophages to further kill cancer cells. The results indicated that the obtained APS was a pyran-type polysaccharide, containing 89.75% total carbohydrate and a minor amount of uronic acid (9.3%). Although APS did not significantly inhibit the growth of MCF-7 cells growth, encouragingly, APS-activated RAW264.7 macrophages present anti-cancer activity as evidenced by (a) cell proliferation inhibition (with an inhibitory rate of 41%), (b) G1-phase cell cycle arrest, as well as (c) the regulation of apoptosis-related genes (Bax/Bcl-2, 13.26-fold increase than untreated cells). In addition, APS could upregulate the level of nitric oxide (NO) and tumor necrosis factor-α (TNF-α), which acted as inducers of tumor cell apoptosis. Collectively, our findings suggest that APS can activate macrophages to release NO and TNF-α, which directly blocks cancer cell growth. The anti-breast cancer effect of APS and the in vivo mechanism will be further elucidated with a review to provide a therapeutic strategy for breast cancer.
Collapse
|
34
|
Yin HM, Wang SN, Nie SP, Xie MY. Coix polysaccharides: Gut microbiota regulation and immunomodulatory. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.bcdf.2018.04.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
35
|
Lasiosan, a new exopolysaccharide from Lasiodiplodia sp. strain B2 (MTCC 6000): Structural characterization and biological evaluation. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.06.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
36
|
Chatterjee S, Mukhopadhyay SK, Gauri SS, Dey S. Sphingobactan, a new α-mannan exopolysaccharide from Arctic Sphingobacterium sp. IITKGP-BTPF3 capable of biological response modification. Int Immunopharmacol 2018; 60:84-95. [DOI: 10.1016/j.intimp.2018.04.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 04/21/2018] [Accepted: 04/23/2018] [Indexed: 01/17/2023]
|
37
|
Zhi X, Lv J, Wei Y, Du P, Chang Y, Zhang Y, Gao Y, Wu R, Guo H. Foot-and-mouth disease virus infection stimulates innate immune signaling in the mouse macrophage RAW 264.7 cells. Can J Microbiol 2017; 64:155-166. [PMID: 29253356 DOI: 10.1139/cjm-2017-0348] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The innate immune system acts as the first line of defense against invasion by bacterial and viral pathogens. The role of macrophages in innate immune responses to foot-and-mouth disease virus (FMDV) is poorly understood. To determine the mechanism underlying activation of innate immunity after FMDV infection in macrophages, we performed FMDV infection in mouse macrophage RAW 264.7 cells and found that FMDV serotype O infection induced a cytopathic effect. We then evaluated the gene expression profile in macrophage RAW 264.7 cells after FMDV infection using systematic microarray analysis. Gene ontology annotation and enrichment analysis revealed that FMDV promoted expression in a group of genes that are enriched in innate immune response and inflammatory response processes. Further research demonstrated that FMDV serotype O infection enhanced NF-κB, Toll-like, and RIG-I-like receptor signaling pathways and proteins expression and increased transcription and expression of a series of cytokines and interferons, as proved by qRT-PCR, Western blot, ELISA, and dual-luciferase reporter assay. Our study concluded that FMDV infection triggers the innate immune response in macrophages after activation of multiple innate immune pathway receptors and proteins by FMDV serotype O, resulting in activation and secretion of a series of cytokines and interferons.
Collapse
Affiliation(s)
- Xiaoying Zhi
- a College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070 Gansu, People's Republic of China.,b State Key Laboratory of Veterinary Etiological Biology and National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 Gansu, People's Republic of China
| | - Jianliang Lv
- b State Key Laboratory of Veterinary Etiological Biology and National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 Gansu, People's Republic of China
| | - Yanquan Wei
- b State Key Laboratory of Veterinary Etiological Biology and National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 Gansu, People's Republic of China
| | - Ping Du
- b State Key Laboratory of Veterinary Etiological Biology and National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 Gansu, People's Republic of China
| | - Yanyan Chang
- b State Key Laboratory of Veterinary Etiological Biology and National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 Gansu, People's Republic of China
| | - Yun Zhang
- b State Key Laboratory of Veterinary Etiological Biology and National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 Gansu, People's Republic of China
| | - Yuan Gao
- a College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070 Gansu, People's Republic of China.,b State Key Laboratory of Veterinary Etiological Biology and National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 Gansu, People's Republic of China.,c College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070 Gansu, People's Republic of China
| | - Run Wu
- a College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070 Gansu, People's Republic of China
| | | |
Collapse
|
38
|
Ayeka PA, Bian Y, Githaiga PM, Zhao Y. The immunomodulatory activities of licorice polysaccharides (Glycyrrhiza uralensis Fisch.) in CT 26 tumor-bearing mice. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:536. [PMID: 29246138 PMCID: PMC5732493 DOI: 10.1186/s12906-017-2030-7] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 11/28/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND The increasing use of complementary and alternative medicine (CAM) has kindled the need for scientific evaluation of the mechanism of action of CAMs. Although, licorice, a common ingredient in many Traditional Chinese medicine (TCM) has attracted great attention for its antitumor and immunomodulatory activities, the mechanism of action of its polysaccharides is still unclear. Here we report the immunomodulatory activity of licorice polysaccharides in vivo. METHODS The differential anticancer activities of licorice polysaccharides by tumorigenesis and immunomodulation was evaluated in vivo. Six weeks old, 120 CT-26 tumor bearing BALB/c mice, weighing 20 ± 2 g were used. They were randomly divided into six groups, three groups receiving high molecular weight (fraction A), low molecular weight (fraction B) polysaccharides and crude extract (fraction C); positive, negative and normal groups receiving cytoxin, saline and normal diet respectively. Weight of mice and tumors was determined and tumorigenicity assay calculated to determine the anticancer effects. Immunomodulatory potential was determined by immune organ indices, immune cell population and serum cytokine levels using immune organ weight and index, flow cytometry and cytokine/chemokine bead panel kit respectively. RESULTS Licorice polysaccharides exhibited immunomodulatory activities in CT 26 tumor bearing BALB/c mice. The polysaccharides significantly suppressed tumor growth and increased immune organ index. Furthermore, the immunomodulatory effect was evident with activation of CD4+ and CD8+ immune cells population. The polysaccharides also affected the production of various cytokines, by increasing IL 2, IL 6, IL 7 levels and a decreasing TNFα levels. CONCLUSION In summary, licorice polysaccharide especially of low molecular weight exhibit anticancer and immunomodulatory activities by suppressing tumor growth and improving general health of mice. They also augment the thymus/spleen index and population of T lymphocytes. Furthermore, the polysaccharides enhance the levels of serum antitumor cytokines, IL 2, IL 6 and IL 7 while decreasing pro-tumor cytokine TNFα.
Collapse
Affiliation(s)
- Peter Amwoga Ayeka
- International College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 88 Yuquan Road, 312 Anshan Western Road, Nankai District, Tianjin, 300193 People’s Republic of China
- Department of Biological Sciences, Faculty of Science, Egerton University, PO BOX 536-20115, Egerton, Kenya
| | - YuHong Bian
- International College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 88 Yuquan Road, 312 Anshan Western Road, Nankai District, Tianjin, 300193 People’s Republic of China
| | - Peter Mwitari Githaiga
- International College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 88 Yuquan Road, 312 Anshan Western Road, Nankai District, Tianjin, 300193 People’s Republic of China
- Center for Traditional Medicine and Drug Research, Kenya Medical Research Institute, P.O. Box 54840-00200, Nairobi, Kenya
| | - Ying Zhao
- International College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 88 Yuquan Road, 312 Anshan Western Road, Nankai District, Tianjin, 300193 People’s Republic of China
| |
Collapse
|
39
|
Li ZP, Li LF, Zhang QW, Wei W, Liu HB, Bao WR, Ma DL, Leung CH, Bian ZX, Lu AP, Han QB. Akt downstream of NFκB, MAPKs and IRF3 pathway involved in macrophage activation induced by Astragalus polysaccharide RAP. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
40
|
Liu P, Zhao H, Luo Y. Anti-Aging Implications of Astragalus Membranaceus (Huangqi): A Well-Known Chinese Tonic. Aging Dis 2017; 8:868-886. [PMID: 29344421 PMCID: PMC5758356 DOI: 10.14336/ad.2017.0816] [Citation(s) in RCA: 216] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 08/16/2017] [Indexed: 12/20/2022] Open
Abstract
Owing to a dramatic increase in average life expectancy and the Family Planning program of the 1970s - 1990s, China is rapidly becoming an aging society. Therefore, the investigation of healthspan-extending drugs becomes more urgent. Astragalus membranaceus (Huangqi) is a major medicinal herb that has been commonly used in many herbal formulations in the practice of traditional Chinese medicine (TCM) to treat a wide variety of diseases and body disorders, or marketed as life-prolonging extracts for human use in China, for more than 2000 years. The major components of Astragalus membranaceus are polysaccharides, flavonoids, and saponins. Pharmacological research indicates that the extract component of Astragalus membranaceus can increase telomerase activity, and has antioxidant, anti-inflammatory, immunoregulatory, anticancer, hypolipidemic, antihyperglycemic, hepatoprotective, expectorant, and diuretic effects. A proprietary extract of the dried root of Astragalus membranaceus, called TA-65, was associated with a significant age-reversal effect in the immune system. Our review focuses on the function and the underlying mechanisms of Astragalus membranaceus in lifespan extension, anti-vascular aging, anti-brain aging, and anti-cancer effects, based on experimental and clinical studies.
Collapse
Affiliation(s)
- Ping Liu
- 1Cerebrovascular Diseases Research Institute, and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Haiping Zhao
- 1Cerebrovascular Diseases Research Institute, and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yumin Luo
- 1Cerebrovascular Diseases Research Institute, and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,2Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,3Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| |
Collapse
|
41
|
Yang Y, Xing R, Liu S, Qin Y, Li K, Yu H, Li P. Immunostimulatory effects of sulfated chitosans on RAW 264.7 mouse macrophages via the activation of PI3K/Akt signaling pathway. Int J Biol Macromol 2017; 108:1310-1321. [PMID: 29129634 DOI: 10.1016/j.ijbiomac.2017.11.042] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/08/2017] [Accepted: 11/08/2017] [Indexed: 01/15/2023]
Abstract
To investigate the immunostimulatory effects of chitosan sulfates, we prepared α- and β-chitosan sulfates with different molecular weights and compared their immunostimulatory activities in RAW 264.7 macrophages. Results suggest that β-chitosan sulfates were more active than α-chitosan in promoting nitric oxide (NO) production. Further study show that β-chitosan sulfate significantly promoted the production of NO, prostaglandin E2, tumor necrosis factor (TNF)-α, interleukin-6 and interleukin-1β at the levels of transcription and translation. Moreover, Western blots revealed that it induced the phosphorylation of p85 and Akt, and the nuclear translocation of p50/p65 and c-Fos/c-Jun. The luciferase activity of cells pretreated with β-chitosan sulfate further confirmed the nuclear translocation of p50/p65 and c-Fos/c-Jun. Determination of Toll-like receptor (TLR) 4 expression suggested that β-chitosan sulfate at least partly bound to TLR4. In conclusion, β-chitosan sulfates activate RAW 264.7 cells through the PI3K-Akt pathway, which is dependent on activator protein-1 and nuclear factor-κB activation.
Collapse
Affiliation(s)
- Yue Yang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1, Wenhai Road, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ronge Xing
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1, Wenhai Road, Qingdao 266237, China.
| | - Song Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1, Wenhai Road, Qingdao 266237, China
| | - Yukun Qin
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1, Wenhai Road, Qingdao 266237, China
| | - Kecheng Li
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1, Wenhai Road, Qingdao 266237, China
| | - Huahua Yu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1, Wenhai Road, Qingdao 266237, China
| | - Pengcheng Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1, Wenhai Road, Qingdao 266237, China.
| |
Collapse
|
42
|
Are the Therapeutic Effects of Huangqi ( Astragalus membranaceus) on Diabetic Nephropathy Correlated with Its Regulation of Macrophage iNOS Activity? J Immunol Res 2017; 2017:3780572. [PMID: 29250558 PMCID: PMC5698796 DOI: 10.1155/2017/3780572] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/19/2017] [Accepted: 09/26/2017] [Indexed: 01/17/2023] Open
Abstract
Objective To investigate the correlation between the clinical effects of Huangqi (Astragalus membranaceus) on different stages of diabetic nephropathy (DN) and the pharmacological effect of Huangqi on the activity of inducible nitric oxide synthase (iNOS) in macrophages in different states. Methods The PubMed, China National Knowledge Infrastructure, and Wanfang databases were searched. Clinical data was sourced from papers on treatment of different stages of DN with Huangqi, and pharmacological data was from papers on the effects of Huangqi on the iNOS activity of macrophages in a resting or an activated state. Results Meta-analysis of Huangqi injections on stages III and III-IV DN and randomized controlled trials on other stages showed that Huangqi had therapeutic effects on different stages of DN and on macrophages in different states: inducing normal macrophages in a resting state to generate nitric oxide (NO), tumor necrosis factor-α, and so forth upon iNOS activation; inhibiting NO generation by normal lipopolysaccharide- (LPS-) activated macrophages; and enhancing NO generation by LPS-induced macrophages from patients with renal failure. Conclusions Huangqi can regulate iNOS activity of macrophages in different states in vitro. These biphasic or antagonistic effects may explain why Huangqi can be used to treat different stages of DN.
Collapse
|
43
|
Li ZP, Zhang QW, Wei W, Li LF, Ma DL, Leung CH, Lu AP, Bian ZX, Han QB. Luteolin exerted less inhibitory effect on macrophage activation induced by Astragalus polysaccharide than by lipopolysaccharide. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.08.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
44
|
Sulfated polysaccharide from Cyclocarya paliurus enhances the immunomodulatory activity of macrophages. Carbohydr Polym 2017; 174:669-676. [DOI: 10.1016/j.carbpol.2017.07.009] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/24/2017] [Accepted: 07/04/2017] [Indexed: 11/18/2022]
|
45
|
Liu L, Chen S, Xu X, Hou B, Mo F. Astragalus polysaccharides combined with ibuprofen exhibit a therapeutic effect on septic rats via an anti-inflammatory cholinergic pathway. Exp Ther Med 2017; 14:3127-3130. [PMID: 28912862 DOI: 10.3892/etm.2017.4865] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/06/2017] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to investigate the effects of Astragalus polysaccharides (APS) in combination with ibuprofen (IBU) in the treatment of sepsis and the underlying mechanism. The combined drug treatment was evaluated in a rat model of cecal ligation and puncture (CLP). The serum concentrations of tumor necrosis factor (TNF)-α, interleukin (IL)-6 and acetylcholine (ACh) were determined. Nicotinic acetylcholine (nAChR) α7 receptor expression and histopathological changes in the lung tissue were also observed. When compared with untreated rats and rats treated with either component alone, the combined treatment significantly decreased the production of TNF-α and IL-6 (P<0.05), and increased nAChR α7 receptor mRNA expression and the release of ACh in the serum (P<0.05). These results demonstrated that APS combined with IBU can effectively reduce the generation of inflammatory mediators in the serum of CLP-induced septic rats. These effects may be mediated via a cholinergic anti-inflammatory pathway involving nAChR α7.
Collapse
Affiliation(s)
- Li Liu
- School of Medicine, Graduate School, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Shibiao Chen
- Department of Anesthesia, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiaoyun Xu
- School of Medicine, Graduate School, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Benchao Hou
- Department of Anesthesia, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Fei Mo
- Department of Anesthesia, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
46
|
Ding X, Zhu H, Hou Y, Hou W, Zhang N, Fu L. Comparative Analysis of Transcriptomes of Macrophage Revealing the Mechanism of the Immunoregulatory Activities of a Novel Polysaccharide Isolated from Boletus speciosus Frost. Pharmacogn Mag 2017; 13:463-471. [PMID: 28839373 PMCID: PMC5551366 DOI: 10.4103/pm.pm_151_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/02/2016] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND The mechanism of the immunoregulatory activities of polysaccharide is still not clear. MATERIALS AND METHODS Here, we performed the B-cell, T-cell, and macrophage cell proliferation, the cell cycle analysis of macrophage cells, sequenced the transcriptomes of control group macrophages, and Boletus speciosus Frost polysaccharide (BSF-1) group macrophages using Illumina sequencing technology to identify differentially expressed genes (DEGs) to determine the molecular mechanisms of immunomodulatory activity of BSF-1 in macrophages. RESULTS These results suggested that BSF-1 could promote the proliferation of B-cell, T-cell, and macrophages, promote the proliferation of macrophage cells by abolishing cell cycle arrests in the G0/G1 phases, and promote cell cycle progression in S-phase and G2/M phase, which might induce cell division. A total of 12,498,414 and 11,840,624 bp paired-end reads were obtained for the control group and BSF-1 group, respectively, and they corresponded to a total size of 12.5 G bp and 11.8 G bp, respectively, after the low-quality reads and adapter sequences were removed. Approximately 81.83% of the total number of genes (8,257) were expressed reads per kilobase per million mapped reads (RPKM ≥1) and more than 1366 genes were highly expressed (RPKM >60) in the BSF-1 group. A gene ontology-enrichment analysis generated 13,042 assignments to cellular components, 13,094 assignments to biological processes, and 13,135 assignments to molecular functions. A Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed that the mitogen-activated protein kinase (MAPK) signaling pathways are significantly enriched for DEGs between the two cell groups. CONCLUSION An analysis of transcriptome resources enabled us to examine gene expression profiles, verify differential gene expression, and select candidate signaling pathways as the mechanisms of the immunomodulatory activity of BSF-1. Based on the experimental data, we believe that the significant antitumor activities of BSF-1 in vivo mainly involve the MAPK signaling pathways. SUMMARY Boletus speciosus Frost-1 (BSF-1) could promote the proliferation of B-cell, T-cell, and macrophages, promote the proliferation of macrophage cells by abolishing cell cycle arrests in the G0/G1 phases, and promote cell cycle progression in S-phase and G2/M phase, which might induce cell divisionApproximately 81.83% of the total number of genes (8257) were expressed (reads per kilobase per million mapped reads [RPKM] =1) and more than 1366 genes were highly expressed (RPKM >60) in the BSF-1 groupA gene ontology-enrichment analysis generated 13,042 assignments to cellular components, 13,094 assignments to biological processes, and 13,135 assignments to molecular functionsA Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed that the mitogen-activated protein kinase signaling pathways are significantly enriched for DEGs between the two cell groups. Abbreviations used: BSF-1: Boletus speciosus Frost polysaccharide.
Collapse
Affiliation(s)
- Xiang Ding
- College of Life Sciences, Key Laboratory of Southwest China Wildlife Resources Conservation, College of Life Sciences, China West Normal University, Nanchong, Sichuan Province 637009, China
- College of Environmental Science and Engineering, China West Normal University, Nanchong, Sichuan Province 637009, China
| | - Hongqing Zhu
- College of Life Sciences, Key Laboratory of Southwest China Wildlife Resources Conservation, College of Life Sciences, China West Normal University, Nanchong, Sichuan Province 637009, China
| | - Yiling Hou
- College of Life Sciences, Key Laboratory of Southwest China Wildlife Resources Conservation, College of Life Sciences, China West Normal University, Nanchong, Sichuan Province 637009, China
| | - Wanru Hou
- College of Life Sciences, Key Laboratory of Southwest China Wildlife Resources Conservation, College of Life Sciences, China West Normal University, Nanchong, Sichuan Province 637009, China
| | - Nan Zhang
- College of Life Sciences, Key Laboratory of Southwest China Wildlife Resources Conservation, College of Life Sciences, China West Normal University, Nanchong, Sichuan Province 637009, China
| | - Lei Fu
- College of Life Sciences, Key Laboratory of Southwest China Wildlife Resources Conservation, College of Life Sciences, China West Normal University, Nanchong, Sichuan Province 637009, China
| |
Collapse
|
47
|
Immunomodulatory effects of an acetylated Cyclocarya paliurus polysaccharide on murine macrophages RAW264.7. Int J Biol Macromol 2017; 98:576-581. [DOI: 10.1016/j.ijbiomac.2017.02.028] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 01/30/2017] [Accepted: 02/07/2017] [Indexed: 12/18/2022]
|
48
|
Li WJ, Tang XF, Shuai XX, Jiang CJ, Liu X, Wang LF, Yao YF, Nie SP, Xie MY. Mannose Receptor Mediates the Immune Response to Ganoderma atrum Polysaccharides in Macrophages. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:348-357. [PMID: 27931102 DOI: 10.1021/acs.jafc.6b04888] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The ability of mannose receptor (MR) to recognize the carbohydrate structures is well-established. Here, we reported that MR was crucial for the immune response to a Ganoderma atrum polysaccharide (PSG-1), as evidenced by elevation of MR in association with increase of phagocytosis and concentrations of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in normal macrophages. Elevation of MR triggered by PSG-1 also led to control lipopolysaccharide (LPS)-triggered inflammatory response via the increase of interleukin-10 (IL-10) and inhibition of phagocytosis and IL-1β. Anti-MR antibody partly attenuated PSG-1-mediated anti-inflammatory responses, while it could not affect TNF-α secretion, suggesting that another receptor was involved in PSG-1-triggered immunomodulatory effects. MR and toll-like receptor (TLR)4 coordinated the influences on the TLR4-mediated signaling cascade by the nuclear factor-κB (NF-κB) pathway in LPS-stimulated macrophages subjected to PSG-1. Collectively, immune response to PSG-1 required recognition by MR in macrophages. The NF-κB pathway served as a central role for the coordination of MR and TLR4 to elicit immune response to PSG-1.
Collapse
Affiliation(s)
- Wen-Juan Li
- State Key Laboratory of Food Science and Technology, Nanchang University , 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China
| | - Xiao-Fang Tang
- State Key Laboratory of Food Science and Technology, Nanchang University , 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China
| | - Xiao-Xue Shuai
- State Key Laboratory of Food Science and Technology, Nanchang University , 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China
| | - Cheng-Jia Jiang
- State Key Laboratory of Food Science and Technology, Nanchang University , 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China
| | - Xiang Liu
- School of Basic Medical Sciences, Nanchang University , 999 Xuefu Road, Nanchang, Jiangxi 330031, People's Republic of China
| | - Le-Feng Wang
- School of Basic Medical Sciences, Nanchang University , 999 Xuefu Road, Nanchang, Jiangxi 330031, People's Republic of China
| | - Yu-Fei Yao
- Chinese Liberation Army No. 94 Hospital , 1028 Jinggangshan Avenue, Nanchang, Jiangxi 330000, People's Republic of China
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Technology, Nanchang University , 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China
| | - Ming-Yong Xie
- State Key Laboratory of Food Science and Technology, Nanchang University , 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China
| |
Collapse
|
49
|
Kan X, Zhang W, You R, Niu Y, Guo J, Xue J. Scutellaria barbata D. Don extract inhibits the tumor growth through down-regulating of Treg cells and manipulating Th1/Th17 immune response in hepatoma H22-bearing mice. Altern Ther Health Med 2017; 17:41. [PMID: 28086772 PMCID: PMC5237169 DOI: 10.1186/s12906-016-1551-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 12/22/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Previous studies showed Scutellaria barbata D. Don extract (SBE) is a potent inhibitor in hepatoma and could improve immune function of hepatoma H22-bearing mice. However, the immunomodulatory function of SBE on the tumor growth of hepatoma remains unclear. This study aimed to investigate the anti-tumor effects of SBE on hepatoma H22-bearing mice and explore the underlying immunomodulatory function. METHODS The hepatoma H22-bearing mice were treated by SBE for 30 days. The effect of SBE on the proliferation of HepG2 cells in vitro, the growth of transplanted tumor, the cytotoxicity of natural killer (NK) cells in spleen, the amount of CD4+CD25+Foxp3+ Treg cells and Th17 cells in tumor tissue, and the levels of IL-10, TGF-β, IL-17A, IL-2, and IFN-γ in serum of the hepatoma H22-bearing mice was observered. IL-17A was injected to the SBE treated mice from day 9 post H22 inoculation to examine its effect on tumor growth. RESULTS SBE treatment inhibited the proliferation of HepG2 cells in vitro with a dose-dependent manner and significantly suppressed the tumor growth of hepatoma H22-bearing mice. Meanwhile, it increased NK cells' cytotoxicity in spleen, down-regulated the amount of CD4+CD25+Foxp3+ Treg cells and Th17 cells in tumor tissue, and decreased IL-10, TGF-β, and IL-17A levels (P < 0.01) whereas increased IL-2 and IFN-γ levels (P < 0.01) in the serum of hepatoma H22-bearing mice. Moreover, administration of recombinant mouse IL-17A reversed the anti-tumor effects of SBE. CONCLUSION SBE could inhibit the proliferation of HepG2 cells in vitro. Meanwhile, SBE also could inhibit the growth of H22 implanted tumor in hepatoma H22-bearing mice, and this function might be associated with immunomodulatory activity through down-regulating of Treg cells and manipulating Th1/Th17 immune response.
Collapse
|
50
|
Astragalus polysaccharides attenuate PCV2 infection by inhibiting endoplasmic reticulum stress in vivo and in vitro. Sci Rep 2017; 7:40440. [PMID: 28071725 PMCID: PMC5223157 DOI: 10.1038/srep40440] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 12/07/2016] [Indexed: 12/22/2022] Open
Abstract
This study explored the effects of Astragalus polysaccharide (APS) on porcine circovirus type 2 (PCV2) infections and its mechanism in vivo and vitro. First, fifty 2-week-old mice were randomly divided into five groups: a group without PCV2 infection and groups with PCV2 infections at 0, 100, 200 or 400 mg/kg APS treatments. The trial lasted for 28 days. The results showed that APS treatments at 200 and 400 mg/kg reduced the pathological injury of tissues, inhibited PCV2 infection and decreased glucose-regulated protein 78 (GRP78) and GADD153/CHOP gene mRNA and protein expression significantly (P < 0.05). Second, a study on endoplasmic reticulum stress mechanism was carried out in PK15 cells. APS treatments at 15 and 45 μg/mL significantly reduced PCV2 infection and GRP78 mRNA and protein expression (P < 0.05). Tunicamycin supplementation increased GRP78 mRNA and protein expression and significantly attenuated the APS-induced inhibition of PCV2 infection (P < 0.05). Tauroursodeoxycholic acid supplementation decreased GRP78 mRNA and protein expression and significantly inhibited PCV2 infection (P < 0.05). In addition, fifty 2-week-old mice were randomly divided into five groups: Con, PCV2, APS + PCV2, TM + PCV2 and TM + APS + PCV2. The results were similar to those in PK15 cells. Taken together, it could be concluded that APS suppresses PCV2 infection by inhibiting endoplasmic reticulum stress.
Collapse
|