1
|
Wang Y, Chen Y, Li B, Zhou Y, Guan J, Huang F, Wu J, Dong Y, Sun P, Tian X, Cai J, Ran F, Dai Q, Lv J. The antidepressant effect of Shexiang Baoxin Pills on myocardial infarction rats with depression may be achieved through the inhibition of the NLRP3 inflammasome pathway. Brain Behav 2024; 14:e3586. [PMID: 38970230 PMCID: PMC11226411 DOI: 10.1002/brb3.3586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/06/2023] [Accepted: 02/27/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Patients with myocardial infarction (MI) frequently experience a heightened incidence of depression, thereby increasing the risk of adverse cardiovascular events. Consequently, early detection and intervention in depressive symptoms among patients with MI are imperative. Shexiang Baoxin Pills (SBP), a Chinese patent medicine employed for the treatment of MI, exhibits diverse mechanisms targeting this condition. Nevertheless, its therapeutic efficacy on postmyocardial infarction depressive symptoms remains unclear. The aim of this study is to investigate the effectiveness and mechanism of SBP in managing depression during acute myocardial infarction (AMI). METHODS A rat model combining MI and depression was established, and the rats were randomly divided into four groups: the model (MOD) group, SBP group, Fluoxetine (FLX) group, and Sham group. After 28 days of drug intervention, cardiac function was assessed using echocardiography while behavior was evaluated through sucrose preference test (SPT), forced swimming test (FST), and open-field test (OFT). Additionally, levels of inflammatory factors in serum and hippocampus were measured along with NLRP3 inflammasome-related protein expression via Western blotting and immunofluorescence. RESULTS SBP can enhance cardiac function in rats with AMI and depression, while significantly ameliorating depressive-like behavior. Compared to the Sham group, levels of IL-1β, IL-18, TNF-α, and other inflammatory factors were markedly elevated in the MOD group. However, expressions of these inflammatory factors were reduced to varying degrees following treatment with SBP or FLX. Analysis of NLRP3 inflammasome-related proteins in the hippocampus revealed a significant upregulation of IL-1β, IL-18, NLRP3, ASC, caspase-1, and GSDMD in the MOD group; conversely, these measures were significantly attenuated after SBP intervention. CONCLUSION We have observed a significant amelioration in depression-like behavior upon SBP administration during the treatment of AMI, suggesting that this effect may be attributed to the inhibition of NLRP3-mediated pyroptosis. (The main findings are summarized in the graphical abstract in the supplementary file.).
Collapse
Affiliation(s)
- Yue Wang
- Department of Cardiovascular MedicineAffiliated Renhe Hospital of China Three Gorges UniversityYichangChina
| | - Yuwen Chen
- Department of Cardiovascular MedicineAffiliated Renhe Hospital of China Three Gorges UniversityYichangChina
| | - Bingqing Li
- Department of Cardiovascular MedicineAffiliated Renhe Hospital of China Three Gorges UniversityYichangChina
| | - Yilu Zhou
- Department of Cardiovascular MedicineAffiliated Renhe Hospital of China Three Gorges UniversityYichangChina
| | - Jing Guan
- Department of Cardiovascular MedicineAffiliated Renhe Hospital of China Three Gorges UniversityYichangChina
| | - Fanke Huang
- Department of Cardiovascular MedicineAffiliated Renhe Hospital of China Three Gorges UniversityYichangChina
| | - Jingjing Wu
- Department of Cardiovascular MedicineAffiliated Renhe Hospital of China Three Gorges UniversityYichangChina
| | - Yanyan Dong
- Department of Cardiovascular MedicineAffiliated Renhe Hospital of China Three Gorges UniversityYichangChina
- Institute of Cardiovascular and Cerebrovascular DiseasesChina Three Gorges University, Yichang, China
| | - Peiyuan Sun
- Department of Cardiovascular MedicineAffiliated Renhe Hospital of China Three Gorges UniversityYichangChina
- Institute of Cardiovascular and Cerebrovascular DiseasesChina Three Gorges University, Yichang, China
| | - Xue Tian
- Department of Cardiovascular MedicineAffiliated Renhe Hospital of China Three Gorges UniversityYichangChina
- Institute of Cardiovascular and Cerebrovascular DiseasesChina Three Gorges University, Yichang, China
| | - Jindan Cai
- Department of Cardiovascular MedicineAffiliated Renhe Hospital of China Three Gorges UniversityYichangChina
- Institute of Cardiovascular and Cerebrovascular DiseasesChina Three Gorges University, Yichang, China
| | - Feng Ran
- Department of Cardiovascular MedicineAffiliated Renhe Hospital of China Three Gorges UniversityYichangChina
- Institute of Cardiovascular and Cerebrovascular DiseasesChina Three Gorges University, Yichang, China
| | - Qiuting Dai
- Department of Cardiovascular MedicineAffiliated Renhe Hospital of China Three Gorges UniversityYichangChina
- Institute of Cardiovascular and Cerebrovascular DiseasesChina Three Gorges University, Yichang, China
| | - Jianfeng Lv
- Department of Cardiovascular MedicineAffiliated Renhe Hospital of China Three Gorges UniversityYichangChina
- Institute of Cardiovascular and Cerebrovascular DiseasesChina Three Gorges University, Yichang, China
| |
Collapse
|
2
|
Li W, Yang S, Zhao Y, Di Nunzio G, Ren L, Fan L, Zhao R, Zhao D, Wang J. Ginseng-derived nanoparticles alleviate alcohol-induced liver injury by activating the Nrf2/HO-1 signalling pathway and inhibiting the NF-κB signalling pathway in vitro and in vivo. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 127:155428. [PMID: 38458086 DOI: 10.1016/j.phymed.2024.155428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 03/10/2024]
Abstract
BACKGROUND Previous studies have confirmed the antioxidant and anti-inflammatory effects of active ginseng components that protect against liver injury. However, ginseng-derived nanoparticles (GDNPs), low-immunogenicity nanovesicles derived from ginseng, have not been reported to be hepatoprotective. PURPOSE In this study, we investigated whether GDNPs could attenuate alcohol-induced liver injury in LO2 cells and mice by modulating oxidative stress and inflammatory pathways, thereby advancing the theoretical basis for the development of novel pharmacological treatments. STUDY DESIGN Alcohol was used to construct in vitro and in vivo models of alcoholic liver injury. To explore the mechanisms by which GDNPs exert their protective effects against alcoholic liver injury, we examined the expression of oxidative stress-related genes and analysed inflammatory responses in vitro and in vivo. The experimental findings were verified using network pharmacology. METHODS The composition of the GDNPs was analysed using liquid chromatography-mass spectrometry. GDNPs were extracted and purified using differential ultracentrifugation and sucrose density gradient centrifugation. In vitro models of alcoholic liver injury were established using LO2 cells, whereas C57BL/6 J mice were used as in vivo models. Oxidative stress, inflammation, and liver injury indicators were measured using appropriate kits. Levels of proteins associated with oxidative stress and inflammation were measured via western blot, while nuclear factor erythroid2-related factor 2 (Nrf2) and NF-κB protein expression was tested using immunofluorescence, immunohistochemistry, and flow cytometry. The levels of relevant transcription factors were determined using qPCR. Experimental haematoxylin and eosin staining was used to characterise the liver histological appearance and damage in mice. Network pharmacological analysis of GDNP mRNA sequencing of GDNPs was used to predict drug targets and disease associations using TCMSP. RESULTS GDNPs primarily included 77 compounds, including organic acids and their derivatives, amino acids and their derivatives, sugars, terpenoids, and flavonoids. GDNPs have features that allow them to be taken up by LO2 cells and promote their proliferation. In vitro data indicated that GDNPs reduced the levels of alcohol-induced reactive oxygen species by activating the Nrf2/HO-1 signalling pathway, whilst inhibiting the NF-κB pathway and thereby reducing NO, tumour necrosis factor-α, and interleukin-1β levels to alleviate inflammation. An in vivo model showed that GDNPs improved the liver parameters and pathology in mice with alcoholic liver injury. GDNPs activate the Nrf2/HO-1/Keap1 signalling pathway in a p62-dependent manner to exert antioxidant effects. Furthermore, the TLR4/NF-κB signalling pathway was involved in the in vivo anti-inflammatory effect. Network pharmacology also confirmed that the effects of GDNPs on liver disease were associated with oxidative stress and inflammation-related targets and pathways. CONCLUSION This study showed for the first time that GDNPs can alleviate alcohol-induced liver damage by activating the Nrf2/HO1 signalling pathway and blocking the NF-κB signalling pathway, thus lowering oxidative stress and inflammatory responses. Hereby, we present the Nrf2/HO1 and NF-κB signalling pathways as potential targets and GDNPs as a novel therapeutic approach for the management of alcohol-induced liver damage.
Collapse
Affiliation(s)
- Wenjing Li
- Northeast Asia Institute of traditional Chinese Medicine, Changchun University of Chinese Medicine, Boshuo Road, Nanguan District, Changchun, Jilin, China
| | - Song Yang
- Northeast Asia Institute of traditional Chinese Medicine, Changchun University of Chinese Medicine, Boshuo Road, Nanguan District, Changchun, Jilin, China
| | - Yueming Zhao
- Northeast Asia Institute of traditional Chinese Medicine, Changchun University of Chinese Medicine, Boshuo Road, Nanguan District, Changchun, Jilin, China
| | - Giada Di Nunzio
- Division of Cardiovascular Medicine, Department of Medicine, Solna, Karolinska Institutet, Stockholm 171 76, Sweden
| | - Limei Ren
- Northeast Asia Institute of traditional Chinese Medicine, Changchun University of Chinese Medicine, Boshuo Road, Nanguan District, Changchun, Jilin, China
| | - Liangliang Fan
- Northeast Asia Institute of traditional Chinese Medicine, Changchun University of Chinese Medicine, Boshuo Road, Nanguan District, Changchun, Jilin, China
| | - Ronghua Zhao
- Northeast Asia Institute of traditional Chinese Medicine, Changchun University of Chinese Medicine, Boshuo Road, Nanguan District, Changchun, Jilin, China
| | - Daqing Zhao
- Northeast Asia Institute of traditional Chinese Medicine, Changchun University of Chinese Medicine, Boshuo Road, Nanguan District, Changchun, Jilin, China
| | - Jiawen Wang
- Northeast Asia Institute of traditional Chinese Medicine, Changchun University of Chinese Medicine, Boshuo Road, Nanguan District, Changchun, Jilin, China; Division of Cardiovascular Medicine, Department of Medicine, Solna, Karolinska Institutet, Stockholm 171 76, Sweden.
| |
Collapse
|
3
|
Kim KA, Jung JH, Choi YS, Kim ST. Ginsenoside Re protects rhinovirus-induced disruption of tight junction through inhibition of ROS-mediated phosphatases inactivation in human nasal epithelial cells. Heliyon 2024; 10:e27688. [PMID: 38495147 PMCID: PMC10940941 DOI: 10.1016/j.heliyon.2024.e27688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/19/2024] Open
Abstract
Maintaining tight junction integrity significantly contributes to epithelial barrier function. If the barrier function is destroyed, the permeability of the cells increases, and the movement of the pathogens is promoted, thereby further increasing the susceptibility to secondary infection. Ginsenoside components have multiple biological activities, including antiviral effects. In this study, we examined the protective effects of ginsenoside Re against rhinovirus-induced tight junction disruption in primary human nasal epithelial cells (HNE). Incubation with human rhinovirus resulted in marked disruption of tight junction proteins (ZO-1, E-cadherin, claudin-1, and occludin) in human nasal epithelial cells. Rhinovirus-induced disruption of tight junction proteins was strongly inhibited by the treatment of cells with ginsenoside Re. Indeed, significant amounts of reactive oxygen species (ROS) have been detected in human nasal epithelial cells co-incubated with rhinovirus. Moreover, rhinovirus-induced ROS generation was markedly reduced by the ginsenoside Re. However, ginsenosides Rb1 and Rc did not inhibit tight junction disruption or ROS generation in nasal epithelial cells following incubation with rhinovirus. Furthermore, incubation with rhinovirus resulted in a marked decrease in protein phosphatase activity and an increase in protein tyrosine phosphorylation levels in nasal epithelial cells. Treatment of cells with ginsenoside Re inhibited rhinovirus-induced inactivation of phosphatases and phosphorylation of tyrosine. Our results identified ginsenoside Re as an effective compound that prevented rhinovirus-induced tight junction disruption in human nasal epithelial cells.
Collapse
Affiliation(s)
- Kyeong Ah Kim
- Department of Otolaryngology-Head & Neck Surgery, Gachon University Gil Medical Center, Incheon, South Korea
| | - Joo Hyun Jung
- Department of Otolaryngology-Head & Neck Surgery, Gachon University Gil Medical Center, Incheon, South Korea
| | - Yun Sook Choi
- Department of Otolaryngology-Head & Neck Surgery, Gachon University Gil Medical Center, Incheon, South Korea
| | - Seon Tae Kim
- Department of Otolaryngology-Head & Neck Surgery, Gachon University Gil Medical Center, Incheon, South Korea
| |
Collapse
|
4
|
Choi W, Cho JH, Park SH, Kim DS, Lee HP, Kim D, Kim HS, Kim JH, Cho JY. Ginseng root-derived exosome-like nanoparticles protect skin from UV irradiation and oxidative stress by suppressing activator protein-1 signaling and limiting the generation of reactive oxygen species. J Ginseng Res 2024; 48:211-219. [PMID: 38465216 PMCID: PMC10920011 DOI: 10.1016/j.jgr.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 12/05/2023] [Accepted: 01/10/2024] [Indexed: 03/12/2024] Open
Abstract
Background Recently, plant-derived exosome-like nanoparticles (PDENs) have been isolated, and active research was focusing on understanding their properties and functions. In this study, the characteristics and molecular properties of ginseng root-derived exosome-like nanoparticles (GrDENs) were examined in terms of skin protection. Methods HPLC-MS protocols were used to analyze the ginsenoside contents in GrDENs. To investigate the beneficial effect of GrDENs on skin, HaCaT cells were pre-treated with GrDENs (0-2 × 109 particles/mL), and followed by UVB irradiation or H2O2 exposure. In addition, the antioxidant activity of GrDENs was measured using a fluorescence microscope or flow cytometry. Finally, molecular mechanisms were examined with immunoblotting analysis. Results GrDENs contained detectable levels of ginsenosides (Re, Rg1, Rb1, Rf, Rg2 (S), Gyp17, Rd, C-Mc1, C-O, and F2). In UVB-irradiated HaCaT cells, GrDENs protected cells from death and reduced ROS production. GrDENs downregulated the mRNA expression of proapoptotic genes, including BAX, caspase-1, -3, -6, -7, and -8 and the ratio of cleaved caspase-8, -9, and -3 in a dose-dependent manner. In addition, GrDENs reduced the mRNA levels of aging-related genes (MMP2 and 3), proinflammatory genes (COX-2 and IL-6), and cellular senescence biomarker p21, possibly by suppressing activator protein-1 signaling. Conclusions This study demonstrates the protective effects of GrDENs against skin damage caused by UV and oxidative stress, providing new insights into beneficial uses of ginseng. In particular, our results suggest GrDENs as a potential active ingredient in cosmeceuticals to promote skin health.
Collapse
Affiliation(s)
- Wooram Choi
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jeong Hun Cho
- Research and Innovation Center, AMOREPACIFIC, Yongin, Republic of Korea
| | - Sang Hee Park
- Department of Biocosmetics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Dong Seon Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hwa Pyoung Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Donghyun Kim
- Research and Innovation Center, AMOREPACIFIC, Yongin, Republic of Korea
| | - Hyun Soo Kim
- Research and Innovation Center, AMOREPACIFIC, Yongin, Republic of Korea
| | - Ji Hye Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
5
|
He H, Xie X, Kang X, Zhang J, Wang L, Hu N, Xie L, Peng C, You Z. Ginsenoside Rg1 ameliorates depressive-like behavior by inhibiting NLRP3 inflammasome activation in mice exposed to chronic stress. Eur J Pharmacol 2023; 960:176120. [PMID: 37863415 DOI: 10.1016/j.ejphar.2023.176120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/17/2023] [Accepted: 10/12/2023] [Indexed: 10/22/2023]
Abstract
Microglia-mediated inflammatory process is recognized as a target in the treatment of depression. Ginsenoside Rg1 (GRg1), the active ingredient of traditional ginseng, regulates microglial phenotypes to resist stress-induced inflammatory responses. Here we used a mouse model of stress-induced depression to investigate the involvement of microglial Nod-like receptor protein 3 (NLRP3) in the antidepressant effects of GRg1. Male C57BL/6J mice were exposed to chronic mild stress (CMS) for three weeks, followed by intraperitoneal injection of GRg1 (20 mg/kg) or the antidepressant imipramine (20 mg/kg) for another three weeks. Depressive-like behaviors were assessed by sucrose preference test, forced swimming test, and tail suspension test. Microglial phenotypes were assessed in terms of morphological features and cytokine profiles; inflammasome activity, in terms of levels of complexes containing NLRP3, apoptosis-associated speck-like protein containing CARD (ASC) and caspase-1; and neurogenesis, in terms of numbers of proliferating, differentiating, and mature neurons identified by immunostaining. GRg1 reduced abnormal animal behaviors caused by CMS, such as anhedonia and desperate behaviors, without affecting locomotor behaviors. GRg1 also reduced the number of ASC-specks, implying inhibition of inflammasome activation, which was associated with weaker activation of pro-inflammatory microglia. At the same time, GRg1 rescued impairment of hippocampal neurogenesis in vivo and in vitro, which correlated with modulation of microglial phenotypes. GRg1 exert antidepressant effects by preventing stress from activating the NLRP3 inflammasome in microglia, promoting a proneurogenic phenotype and allowing adult hippocampal neurogenesis.
Collapse
Affiliation(s)
- Hui He
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China; Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Xiaofang Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xixi Kang
- Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Jinqiang Zhang
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Lu Wang
- The Fourth People's Hospital of Chengdu, Mental Health Center of Chengdu, Chengdu, 610036, China
| | - Nan Hu
- Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Lei Xie
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China; Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Zili You
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China; Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| |
Collapse
|
6
|
Sun M, Ji Y, Zhou S, Chen R, Yao H, Du M. Ginsenoside Rb3 inhibits osteoclastogenesis via ERK/NF-κB signaling pathway in vitro and in vivo. Oral Dis 2023; 29:3460-3471. [PMID: 35976062 DOI: 10.1111/odi.14352] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/23/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The objective of the study was to determine the anti-osteoclastogenic potential of ginsenoside Rb3 for the treatment of periodontitis. METHODS The anti-osteoclastogenic effect was determined using RANKL-induced RAW264.7 cells and murine bone marrow-derived macrophages followed by TRAP and phalloidin staining. Expression of osteoclastogenesis-related genes and proteins were examined by qPCR and WB. Activation of signaling pathways was detected by WB and IHC techniques. Experimental periodontitis rat model was built up by gingival injections of P. gingivalis LPS. After 21 days of Rb3 treatment, rats were sacrificed for micro-CT, IHC, H&E, and TRAP staining analyses. RESULTS Rb3 dramatically inhibits RANKL-induced osteoclastogenesis. Nfatc1, Mmp9, Ctsk, Acp5 mRNA, and MMP9, CTSK proteins were dose-dependently downregulated by Rb3 pretreatment. WB results revealed that Rb3 suppressed activations of p38 MAPK, ERK, and p65 NF-κB, and the inhibition of ERK was most pronounced. Consistently, IHC analysis revealed that p-ERK was highly expressed in alveolar bone surface, blood vessels, odontoblasts, and gingival epithelia, which were notably suppressed by Rb3 treatment. H&E staining and micro-CT analyses showed that Rb3 significantly attenuated gingivitis and alveolar bone resorption in rats. CONCLUSION Rb3 inhibits RANKL-induced osteoclastogenesis and attenuates P. gingivalis LPS-induced gingivitis and alveolar bone resorption in rats via ERK/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Minmin Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Engineering Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- School of Stomatology, Weifang Medical University, Weifang, China
| | - Yaoting Ji
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Engineering Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shuhui Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Engineering Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Rourong Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Engineering Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hantao Yao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Engineering Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Minquan Du
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Engineering Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
7
|
Alam MZ. A review on plant-based remedies for the treatment of multiple sclerosis. ANNALES PHARMACEUTIQUES FRANÇAISES 2023; 81:775-789. [PMID: 36963654 DOI: 10.1016/j.pharma.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 03/26/2023]
Abstract
Multiple sclerosis (MS) is a complex autoimmune disease of central nervous system, which is degenerative in nature usually appears between 20-40years of age. The exact cause of MS is still not clearly known. Loss of myelin sheath and axonal damage are the main features of MS that causes induction of inflammatory process and blocks free conduction of impulses. Till date FDA has approved 18 drugs to treat or modify MS symptoms. These medicines are disease-modifying in nature directed to prevent relapses or slow down the progression of disease. The use of the synthetic drug over an extended period causes undesirable effects that prompt us to look at Mother Nature. Complementary and alternative medicine involves the use of medicinal plants as an alternative to the existing modern medical treatment. However, modern drugs cannot be replaced completely with medicinal plants, but the two types of drugs can be used harmoniously with later one can be added as an adjuvant to the existing treatment. These medicinal plants have the potential to prevent progression and improve the symptoms of MS. Various plants such like Nigella sativa, ginger, saffron, pomegranate, curcumin, resveratrol, ginsenoside have been tested as therapeutics for many neurodegenerative diseases. The purpose of this write-up is to make information available about medicinal plants in their potential to treat or modify the symptoms of MS. Chronically ill patients tend to seek medicinal plants as they are easily available and there is a general perception about these medicines of having fewer undesirable effects.
Collapse
Affiliation(s)
- Mohammad Zubair Alam
- Pre-Clinical Research Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
8
|
Chellappan DK, Chellian J, Rahmah NSN, Gan WJ, Banerjee P, Sanyal S, Banerjee P, Ghosh N, Guith T, Das A, Gupta G, Singh SK, Dua K, Kunnath AP, Norhashim NA, Ong KH, Palaniveloo K. Hypoglycaemic Molecules for the Management of Diabetes Mellitus from Marine Sources. Diabetes Metab Syndr Obes 2023; 16:2187-2223. [PMID: 37521747 PMCID: PMC10386840 DOI: 10.2147/dmso.s390741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/12/2023] [Indexed: 08/01/2023] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder recognized as a major health problem globally. A defective insulin activity contributes to the prevalence and expansion of DM. Treatment of DM is often hampered by limited options of conventional therapies and adverse effects associated with existing procedures. This has led to a spike in the exploration for potential therapeutic agents from various natural resources for clinical applications. The marine environment is a huge store of unexplored diversity of chemicals produced by a multitude of organisms. To date, marine microorganisms, microalgae, macroalgae, corals, sponges, and fishes have been evaluated for their anti-diabetic properties. The structural diversity of bioactive metabolites discovered has shown promising hypoglycaemic potential through in vitro and in vivo screenings via various mechanisms of action, such as PTP1B, α-glucosidase, α-amylase, β-glucosidase, and aldose reductase inhibition as well as PPAR alpha/gamma dual agonists activities. On the other hand, hypoglycaemic effect is also shown to be exerted through the balance of antioxidants and free radicals. This review highlights marine-derived chemicals with hypoglycaemic effects and their respective mechanisms of action in the management of DM in humans.
Collapse
Affiliation(s)
- Dinesh Kumar Chellappan
- Department of Life Sciences, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Jestin Chellian
- Department of Life Sciences, International Medical University, Kuala Lumpur, 57000, Malaysia
| | | | - Wee Jin Gan
- School of Pharmacy, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Priyanka Banerjee
- Department of Pharmaceutical Technology, School of Medical Sciences, Adamas University, Kolkata, West Bengal, India
| | - Saptarshi Sanyal
- Department of Pharmaceutical Technology, School of Medical Sciences, Adamas University, Kolkata, West Bengal, India
| | | | - Nandini Ghosh
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tanner Guith
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Amitava Das
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur, Rajasthan, 302017, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, Uttarakhand, 248007, India
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Science, Chennai, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Anil Philip Kunnath
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Nur Azeyanti Norhashim
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, Core Technology Facility, The University of Manchester, Manchester, M13 9NT, UK
- Institute of Ocean and Earth Sciences, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Kuan Hung Ong
- Institute of Ocean and Earth Sciences, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Kishneth Palaniveloo
- Institute of Ocean and Earth Sciences, University of Malaya, Kuala Lumpur, 50603, Malaysia
| |
Collapse
|
9
|
Tseng YH, Chen IC, Li WC, Hsu JH. Regulatory Cues in Pulmonary Fibrosis-With Emphasis on the AIM2 Inflammasome. Int J Mol Sci 2023; 24:10876. [PMID: 37446052 DOI: 10.3390/ijms241310876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Pulmonary fibrosis (PF) is a chronic lung disorder characterized by the presence of scarred and thickened lung tissues. Although the Food and Drug Administration approved two antifibrotic drugs, pirfenidone, and nintedanib, that are currently utilized for treating idiopathic PF (IPF), the clinical therapeutic efficacy remains unsatisfactory. It is crucial to develop new drugs or treatment schemes that combine pirfenidone or nintedanib to achieve more effective outcomes for PF patients. Understanding the complex mechanisms underlying PF could potentially facilitate drug discovery. Previous studies have found that the activation of inflammasomes, including nucleotide-binding and oligomerization domain (NOD)-like receptor protein (NLRP)1, NLRP3, NOD-like receptor C4, and absent in melanoma (AIM)2, contributes to lung inflammation and fibrosis. This article aims to summarize the cellular and molecular regulatory cues that contribute to PF with a particular emphasis on the role of AIM2 inflammasome in mediating pathophysiologic events during PF development. The insights gained from this research may pave the way for the development of more effective strategies for the prevention and treatment of PF.
Collapse
Affiliation(s)
- Yu-Hsin Tseng
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - I-Chen Chen
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Wan-Chun Li
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Jong-Hau Hsu
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
10
|
Valdés-González JA, Sánchez M, Moratilla-Rivera I, Iglesias I, Gómez-Serranillos MP. Immunomodulatory, Anti-Inflammatory, and Anti-Cancer Properties of Ginseng: A Pharmacological Update. Molecules 2023; 28:molecules28093863. [PMID: 37175273 PMCID: PMC10180039 DOI: 10.3390/molecules28093863] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
Ginseng, a medicinal plant of the genus Panax, boasts a rich historical record of usage that dates back to the Paleolithic period. This botanical is extensively acknowledged and consumed in Eastern countries for its therapeutic properties, and, in Western countries, it is becoming increasingly popular as a remedy for fatigue and asthenia. This review provides an update on current research pertaining to ginseng and its isolated compounds, namely, ginsenosides and polysaccharides. The primary focus is on three crucial pharmacological activities, namely, immunomodulation, anti-inflammatory, and anti-cancer effects. The review encompasses studies on both isolated compounds and various ginseng extracts obtained from the root, leaves, and berries.
Collapse
Affiliation(s)
- Jose Antonio Valdés-González
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain
| | - Marta Sánchez
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain
| | - Ignacio Moratilla-Rivera
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain
| | - Irene Iglesias
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain
| | - María Pilar Gómez-Serranillos
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain
| |
Collapse
|
11
|
Chen X, Xue W, Zhang J, Peng J, Huang W. Ginsenoside Rg1 attenuates the NASH phenotype by regulating the miR-375-3p/ATG2B/PTEN-AKT axis to mediate autophagy and pyroptosis. Lipids Health Dis 2023; 22:22. [PMID: 36759837 PMCID: PMC9912620 DOI: 10.1186/s12944-023-01787-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Nonalcoholic steatohepatitis (NASH) is one of the most frequent liver diseases at present, and there is no radical treatment. The consequences of a variety of ginsenoside compounds on this situation have before been reported, however, the specific effect on the monomeric ginsenoside Rg1 (Rg1) and its associated underlying molecular mechanism stay unknown. MATERIAL AND METHODS In vitro, the cell models were constructed by exposing free fatty acids (FFAs) to HepG2 cells. A methionine and choline deficiency (MCD)-induced NASH mouse model was also established over 5-6 weeks of treatment. Rg1 is a traditional Chinese medicine monomer. These NASH models were treated with Rg1 and analyzed by qRT-PCR, Western Blot, sequencing, Oil red O staining, immunofluorescence, enzyme activity, HE staining, ELISA, double luciferase reporter assay, and immunohistochemistry. RESULTS Overexpression of ATG2B, an autophagy-related protein, attenuated lipid droplet accumulation and reduces ALT, AST, inflammatory cytokines, hydrogen peroxide, and pyroptosis in established mouse and cellular models of NASH and increased levels of ATP and autophagy. The binding sites of miR-375-3p and ATG2B were verified by bioinformatic prediction and a dual-luciferase reporter gene. Knockdown of miR-375-3p promoted autophagy and inhibited pyroptosis. ATG2B knockdown substantially attenuated the impact of miR-375-3p on NASH. Rg1 appears to regulate the occurrence and development of NASH inflammation through miR-375-3p and ATG2B in vitro and in vivo, and is regulated by PTEN-AKT pathway. CONCLUSIONS This study showed that Rg1 participates in autophagy and pyroptosis through the miR-375-3p/ATG2B/PTEN-AKT pathway, thereby alleviating the occurrence and development of NASH, for that reason revealing Rg1 as a candidate drug for NASH.
Collapse
Affiliation(s)
- Xuanxin Chen
- grid.452206.70000 0004 1758 417XDepartment of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Wei Xue
- grid.452206.70000 0004 1758 417XDepartment of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Jia Zhang
- grid.452206.70000 0004 1758 417XDepartment of Geriatrics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Jiayi Peng
- grid.452206.70000 0004 1758 417XDepartment of Geriatrics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Wenxiang Huang
- Department of Geriatrics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
12
|
Lu R, Zhang L, Wang H, Li M, Feng W, Zheng X. Echinacoside exerts antidepressant-like effects through enhancing BDNF-CREB pathway and inhibiting neuroinflammation via regulating microglia M1/M2 polarization and JAK1/STAT3 pathway. Front Pharmacol 2023; 13:993483. [PMID: 36686689 PMCID: PMC9846169 DOI: 10.3389/fphar.2022.993483] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/15/2022] [Indexed: 01/05/2023] Open
Abstract
The present study was performed to investigate the antidepressant effect of echinacoside (ECH) using chronic unpredictable mild stress (CUMS) induced depression mice and lipopolysaccharide (LPS)-stimulated N9 microglial cells. CUMS treatment was performed on C57BL/6 mice for 28 days, followed by gavaging with different doses of echinacoside (15 and 60 mg/kg) for 21 consecutive days. Sucrose preference test (SPT), open field test (OFT), tail suspension test (TST), and forced swimming test (FST) were measured to assess the effects of echinacoside on CUMS-Induced Depressive-Like Behaviors. After that, the pathological changes of hippocampus were determined by Hematoxylin and eosin (HE) staining and Nissl staining; the neurotransmitters, pro-inflammatory cytokines and indoleamine 2,3-dioxygenase (IDO) levels, and the hypothalamic-pituitary-adrenal (HPA) axis activity were determined by enzyme linked immunosorbent assay (ELISA); Iba 1were evaluated by Immunofluorescence assay; Key protein expression levels of CREB/BDNF signal pathway were measured by western blotting. Subsequently, N9 cells were stimulated with 1 μg/ml LPS to induce N9 microglia activation, and were treated with 5-20 μM of echinacoside for 24 h. After that, the levels of NO, interleukin (IL)-1β, IL-6, tumor necrosis factor alpha (TNF-α), IL-4, IL-10, and transforming growth factor beta (TGF-β) in N9 cell culture supernatants were measured by enzyme-linked immunosorbent assay (ELISA) kits; morphology and Iba 1 expression level were observed by high-content screening assay; the M1 markers of CD11b, CD86 and M2 markers of CD206 were analyzed by imaging flow cytometry. Results show that treatment with echinacoside reversed CUMS-increased immobility time in OFT, TST, FST and reversed CUMS-reduced sucrose preference in SPT. In addition, echinacoside reduced the levels of pro-inflammatory cytokines and Iba 1. Moreover, echinacoside significantly increased p-CREB/CREB ratio and BDNF level in hippocampus. Furthermore, echinacoside reduced the secretion of inflammatory factors and inhibited microglia M1 polarization in N9 cells. In conclusion, echinacoside may be beneficial for the treatment of depression diseases through regulating the microglia balance by inhibiting the polarization of microglia to M1 phenotype, and improving hippocampal neurogenesis by the CREB-BDNF signaling pathway.
Collapse
Affiliation(s)
- Renrui Lu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Li Zhang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Huihui Wang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Meng Li
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Weisheng Feng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China,*Correspondence: Weisheng Feng, ; Xiaoke Zheng,
| | - Xiaoke Zheng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China,*Correspondence: Weisheng Feng, ; Xiaoke Zheng,
| |
Collapse
|
13
|
Herrera-Ruiz M, Jiménez-Ferrer E, González-Cortazar M, Zamilpa A, Cardoso-Taketa A, Arenas-Ocampo ML, Jiménez-Aparicio AR, Monterrosas-Brisson N. Potential Use of Agave Genus in Neuroinflammation Management. PLANTS 2022; 11:plants11172208. [PMID: 36079590 PMCID: PMC9460694 DOI: 10.3390/plants11172208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/12/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022]
Abstract
Agavaceae contains about 480 species, commonly used in the production of alcoholic beverages such as tequila and mezcal, making it a resource of economic and cultural importance. Uses of this plant rely mainly on the stem; other components such as the leaves are discarded, generating agro-industrial waste, despite being a source of bioactive and nutraceutical products. Reports show anti-inflammatory and anti-neuroinflammatory effects of these species, with flavonoids and saponins being mainly responsible. Neuroinflammation is a brain process that plays a key role in the pathogenesis of various neurodegenerative disorders and its effects contribute greatly to mortality and morbidity worldwide. This can be triggered by mechanisms such as glial reactions that lead to the release of inflammatory and oxidative molecules, causing damage to the CNS. Treatments do not cure chronic disease associated with inflammation; they only slow its progression, producing side effects that affect quality of life. Plant-based therapy is promising for treating these diseases. Pharmacological activities have been described for the Agavaceae family; however, their role in neuroinflammation has not been fully investigated, and represents an important target for study. This review synthesizes the existing literature on the biologically active compounds of Agave species that are related in some way to inflammation, which will allow us to propose a line of research with this genus on the forefront to orient experimental designs for treating neuroinflammation and associated diseases.
Collapse
Affiliation(s)
- Maribel Herrera-Ruiz
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social (IMSS), Xochitepec 62740, Mexico
| | - Enrique Jiménez-Ferrer
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social (IMSS), Xochitepec 62740, Mexico
| | - Manasés González-Cortazar
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social (IMSS), Xochitepec 62740, Mexico
| | - Alejandro Zamilpa
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social (IMSS), Xochitepec 62740, Mexico
| | - Alexandre Cardoso-Taketa
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos (UAEM), Cuernavaca 62209, Mexico
| | - Martha Lucía Arenas-Ocampo
- Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional (IPN), Yautepec 62739, Mexico
| | | | - Nayeli Monterrosas-Brisson
- Facultad de Ciencias Biológicas, Universidad Autónoma del Estado de Morelos (UAEM), Cuernavaca 62209, Mexico
- Correspondence:
| |
Collapse
|
14
|
Liu Y, Chen SY, Ma JJ, Jiang YQ, Gu F, Zheng HX. Improving Cognitive Function Through Inhibiting the Activation of Microglia by Jia Wei Kai Xin San on Alzheimer's Disease Rats. INT J PHARMACOL 2022. [DOI: 10.3923/ijp.2022.947.961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
15
|
Gao XY, Liu GC, Zhang JX, Wang LH, Xu C, Yan ZA, Wang A, Su YF, Lee JJ, Piao GC, Yuan HD. Pharmacological Properties of Ginsenoside Re. Front Pharmacol 2022; 13:754191. [PMID: 35462899 PMCID: PMC9019721 DOI: 10.3389/fphar.2022.754191] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 03/07/2022] [Indexed: 11/26/2022] Open
Abstract
Ginsenoside Re is a protopanaxatriol-type saponin extracted from the berry, leaf, stem, flower bud, and root of Panax ginseng. In recent years, ginsenoside Re (Re) has been attracting attention as a dietary phytochemical. In this review, studies on Re were compiled by searching a combination of keywords, namely “pharmacology,” “pharmacokinetics,” and “toxicology,” in the Google Scholar, NCBI, PubMed, and Web of Science databases. The aim of this review was to provide an exhaustive overview of the pharmacological activities, pharmacokinetics, and toxicity of Re, focusing on clinical evidence that has shown effectiveness in specific diseases, such as diabetes mellitus, nervous system diseases, inflammation, cardiovascular disease, and cancer. Re is also known to eliminate virus, enhance the immune response, improve osteoporosis, improve skin barrier function, enhance intracellular anti-oxidant actions, regulate cholesterol metabolism, alleviate allergic responses, increase sperm motility, reduce erectile dysfunction, promote cyclic growth of hair follicles, and reduce gastrointestinal motility dysfunction. Furthermore, this review provides data on pharmacokinetic parameters and toxicological factors to examine the safety profile of Re. Such data will provide a theoretical basis and reference for Re-related studies and future applications.
Collapse
Affiliation(s)
- Xiao-Yan Gao
- College of Pharmacy, Yanbian University, Jilin, China
| | | | | | - Ling-He Wang
- College of Integration Science, Yanbian University, Jilin, China
| | - Chang Xu
- College of Pharmacy, Yanbian University, Jilin, China
| | - Zi-An Yan
- College of Integration Science, Yanbian University, Jilin, China
| | - Ao Wang
- College of Pharmacy, Yanbian University, Jilin, China
| | - Yi-Fei Su
- College of Pharmacy, Yanbian University, Jilin, China
| | - Jung-Joon Lee
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Jilin, China
| | - Guang-Chun Piao
- College of Pharmacy, Yanbian University, Jilin, China
- College of Integration Science, Yanbian University, Jilin, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Jilin, China
- *Correspondence: Guang-Chun Piao, ; Hai-Dan Yuan,
| | - Hai-Dan Yuan
- College of Pharmacy, Yanbian University, Jilin, China
- College of Integration Science, Yanbian University, Jilin, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Jilin, China
- *Correspondence: Guang-Chun Piao, ; Hai-Dan Yuan,
| |
Collapse
|
16
|
Anti-neuroinflammatory of Chloroform Extract of Panax ginseng Root Culture on Lipopolysaccharide-stimulated BV2 Microglia Cells. Rep Biochem Mol Biol 2022; 11:125-137. [PMID: 35765526 PMCID: PMC9208560 DOI: 10.52547/rbmb.11.1.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 11/28/2021] [Indexed: 01/11/2023]
Abstract
Background It is believed that activation of microglia in the central nervous system upon detection of stimulus like lipopolysaccharides provokes neuroinflammation via the production of pro-inflammatory mediators and cytokines. The cytoprotective and anti-inflammatory properties of various folk medicine has been gaining attention as a strategy to combat various disease. This study aimed to assess the anti-neuroinflammatory properties of chloroform extract of in vitro Panax ginseng root culture based on nitric oxide and cytokines production. Methods The study was initiated with the determination of maximum non-toxic dose (MNTD) of P. ginseng root culture chloroform extract using the MTT assay. The lipopolysaccharides-stimulated BV2 microglia cells were treated with MNTD and ½MNTD of the extract and its anti-neuroinflammatory properties were assessed by measuring the production of nitric oxide (NO) via Griess assay, as well as TNF-α, IL-6 and IL-10 using Quantikine ELISA. Results It was found that the MNTD and ½MNTD of the extract did not play a significant role in the production of pro-inflammatory cytokines such as NO, TNF-α and IL-6. However, the MNTD and ½MNTD of chloroform extract significantly increased the anti-inflammatory IL-10 compared to the untreated cells. Conclusion With this, the chloroform extract of P. ginseng root culture potentially exerts anti-neuroinflammatory properties.
Collapse
|
17
|
Li MX, Wei QQ, Lu HJ. Progress on the Elucidation of the Antinociceptive Effect of Ginseng and Ginsenosides in Chronic Pain. Front Pharmacol 2022; 13:821940. [PMID: 35264958 PMCID: PMC8899510 DOI: 10.3389/fphar.2022.821940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/26/2022] [Indexed: 12/20/2022] Open
Abstract
Ginseng (Panax ginseng C.A. Meyer) is a traditional Oriental herbal drug widely used in East Asia. Its main active ingredients are ginsenosides whose constituents are known to have various pharmacological activities such as anticancer, antinociception, and neuroprotection. The analgesic effects of ginsenosides, such as Rg1, Rg2, and Rb1, as well as compound K, are well known and the analgesic mechanism of action in inflammatory pain models is thought to be the down regulation of pro-inflammatory cytokine expression (TNF-α IL-1β, and IL-6). Several studies have also demonstrated that ginsenosides regulate neuropathic pain through the modulation of estrogen receptors. Recently, an increasing number of pathways have emerged in relation to the antinociceptive effect of ginseng and ginsenosides. Therefore, this review presents our current understanding of the effectiveness of ginseng in chronic pain and how its active constituents regulate nociceptive responses and their mechanisms of action.
Collapse
Affiliation(s)
- Mei-Xian Li
- National and Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, Nantong University, Nantong, China
| | - Qian-Qi Wei
- Department of Infectious Diseases, General Hospital of Tibet Military Command, Xizang, China
| | - Huan-Jun Lu
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, China
| |
Collapse
|
18
|
Yao Y, Li C, Qian F, Zhao Y, Shi X, Hong D, Ai Q, Zhong L. Ginsenoside Rg1 Inhibits Microglia Pyroptosis Induced by Lipopolysaccharide Through Regulating STAT3 Signaling. J Inflamm Res 2021; 14:6619-6632. [PMID: 34908862 PMCID: PMC8665869 DOI: 10.2147/jir.s326888] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/02/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Neuroinflammation runs through the whole process of nervous system diseases and brain injury. Inflammasomes are thought to be especially relevant to immune homeostasis, and their dysregulation contributes to pyroptosis. The natural compound Ginsenoside Rg1 has been shown to possess anti-inflammatory effects; however, its underlying mechanisms are not entirely clear. Therefore, this study was undertaken to investigate the role and mechanisms of Rg1 in regulating the production of inflammasomes and pyroptosis of microglia in vivo and in vitro. Methods BV-2 microglial cells were pretreated with Rg1, stattic and interleukin-6 (IL-6), and then stimulated with lipopolysaccharide (LPS) (2μg/mL). Hoechst staining and Annexin V-FITC/PI assay were then carried out. The expression levels of cleaved-caspase-1, pro-caspase-1, interleukin-1β (IL-1β), mature-IL-1β, gasdermin D (GSDMD), activated NH(2)-terminal fragment of GSDMD (GSDMD-N), NOD-, LRR- and pyrin domain-containing 3 (NLRP3), apoptosis-associated speck-like protein containing a CARD (ASC), absent in melanoma 2 (AIM2), signal transducer and activator of transcription 3 (STAT3) and phosphorylated STAT3 in BV-2 were detected by Western blotting. Additionally, immunofluorescence staining was used to determine the expression of NLRP3 and p-STAT3 in postnatal rat brain and BV-2 microglia subjected to LPS stimulation and Rg1 pretreatment. The targets of transcription factor STAT3 were predicted by hTFtarget and chromatin immunoprecipitation (ChIP) was used to confirm the interaction between STAT3 and AIM2. Results We showed here that Rg1 effectively inhibited the expression of inflammasomes and microglia pyroptosis induced by LPS. The targets predicted data of Rg1 from Swiss target prediction database showed STAT3 had the highest thresholds of probability score. Rg1 can regulate the phosphorylation of STAT3, which binds to the promoter region of inflammasome AIM2. Conclusion It is suggested that STAT3 signaling can initiate the transcription activity of AIM2. Rg1 regulates microglia pyroptosis in neuroinflammation induced by LPS through targeting STAT3 signaling.
Collapse
Affiliation(s)
- Yueyi Yao
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, People's Republic of China
| | - Changyan Li
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, People's Republic of China
| | - Fusheng Qian
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, People's Republic of China
| | - Yu Zhao
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, People's Republic of China
| | - Xiaoyi Shi
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, People's Republic of China
| | - Dan Hong
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, People's Republic of China
| | - Qinglong Ai
- Department of Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, People's Republic of China
| | - Lianmei Zhong
- Department of Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, People's Republic of China
| |
Collapse
|
19
|
Qu B, Cao T, Wang M, Wang S, Li W, Li H. Ginsenosides Rd monomer inhibits proinflammatory cytokines production and alleviates DSS-colitis by NF-κB and P38MAPK pathways in mice. Immunopharmacol Immunotoxicol 2021; 44:110-118. [PMID: 34898349 DOI: 10.1080/08923973.2021.2012482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Ulcerative colitis (UC) is dramatically increasing worldwide, cannot be thoroughly cured, and reduces patients' quality of life. Excessive activation of macrophages and over-production of cytokines play an important role in the pathogenesis of UC. Therefore, for its treatment, inhibiting macrophages' hyperactivation would be effective to develop new treatment approaches. Ginsenosides, extracted from ginseng, show an anti-inflammatory effect on the immunologic process. Our study used ginsenosides Rd monomer (GRd) to intervene in DSS-induced colitis mouse models and tested the immunological effect of macrophages. METHOD We observed body weights, weights of colons, colonic lengths, and inflammatory scores, as well as histological changes of DSS/DSS-GRd mice. We also isolated intestinal and peritoneal macrophages, performed qRT-PCR and ELISA to detect cytokines production by macrophages, and screened possible involved pathways by Western blotting. RESULTS Administering 20 mg/Kg GRd to DSS mice for 7-14 days reduced colonic inflammation. Moreover, both in vivo and in vitro, levels of TNF-α, IFN-γ, IL-6, IL-12/23p40, and IL-17A were all inhibited by GRd at 14 days in intestinal macrophages, and 20 μmol/L GRd at 12 h in peritoneal macrophages, respectively, but longer time made no more benefit. Western blotting showed GRd could decrease expression of pJNK, p-p38, pIκBα, and P65 in nuclear. CONCLUSIONS Our data indicate that GRd could down-regulate cytokines production in macrophages and alleviate DSS-colitis in mice, which may be related to NF-κB and P38MAPK pathways. These results suggest that GRd has an anti-inflammatory effect on experimental colitis and may have potential efficacy in the treatment of UC alone or in combination.
Collapse
Affiliation(s)
- Bo Qu
- Digestive Department, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ting Cao
- Digestive Department, The 3rd Affiliated Hospital of Qiqihar Medical College, Qiqihar, China
| | - Miao Wang
- Digestive Department, Yiwu Central Hospital, Yiwu, China
| | - Shuang Wang
- Digestive Department, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wanying Li
- Digestive Department, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hui Li
- Digestive Department, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
20
|
Kim M, Mok H, Yeo WS, Ahn JH, Choi YK. Role of ginseng in the neurovascular unit of neuroinflammatory diseases focused on the blood-brain barrier. J Ginseng Res 2021; 45:599-609. [PMID: 34803430 PMCID: PMC8587512 DOI: 10.1016/j.jgr.2021.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/28/2020] [Accepted: 02/17/2021] [Indexed: 12/18/2022] Open
Abstract
Ginseng has long been considered as an herbal medicine. Recent data suggest that ginseng has anti-inflammatory properties and can improve learning- and memory-related function in the central nervous system (CNS) following the development of CNS neuroinflammatory diseases such as Alzheimer's disease, cerebral ischemia, and other neurological disorders. In this review, we discuss the role of ginseng in the neurovascular unit, which is composed of endothelial cells surrounded by astrocytes, pericytes, microglia, neural stem cells, oligodendrocytes, and neurons, especially their blood-brain barrier maintenance, anti-inflammatory effects and regenerative functions. In addition, cell-cell communication enhanced by ginseng may be attributed to regeneration via induction of neurogenesis and angiogenesis in CNS diseases. Thus, ginseng may have therapeutic potential to exert cognitive improvement in neuroinflammatory diseases such as stroke, traumatic brain injury, multiple sclerosis, Parkinson's disease, and Alzheimer's disease.
Collapse
Affiliation(s)
- Minsu Kim
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, Republic of Korea
| | - Hyejung Mok
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, Republic of Korea
| | - Woon-Seok Yeo
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, Republic of Korea
| | - Joong-Hoon Ahn
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, Republic of Korea
| | - Yoon Kyung Choi
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
21
|
Tanideh N, Borzooeian G, Lotfi M, Sani M, Irajie C, Ghaemmaghami P, Koohi-Hosseinabadi O, Tanideh R, Hashempour Sadeghian M, Borzooeian Z, Iraji A. Novel strategy of cartilage repairing via application of P. atlantica with stem cells and collagen. Artif Organs 2021; 45:1405-1421. [PMID: 34152615 DOI: 10.1111/aor.14026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 11/30/2022]
Abstract
Osteoarthritis (OA) is an inflammatory joint condition, still lacking effective treatments. Some factors consider as the main causes of OA, including biochemical, mechanical, and genetic factors. The growth of studies confirmed that modern medicine in combination with folk medicine regarding the arrival of reliable, efficient, and safe therapeutic products against OA. In the present study, the effects of various single and combinatorial treatments of knee articular cartilage, including stem cells, collagen, and P. atlantica hydroalcoholic leaves extract were investigated in a rat-induced OA model. On week 12 after OA confirmation, histopathology and radiography assessments were evaluated and the serum and synovial fluid levels of TAC, TNF-α, PEG2, MPO, MMP3, MMP13, and MDA were also measured. Combination therapy of OA-induced rats with hydroalcoholic extract of P. atlantic leaves, stem cells, and collagen considerably increased the efficacy of treatment as evidenced by increasing the TAC and lowering TNF-α, MPO, MMP3, and MMP13 compared to control group and even groups received single therapy. This is in agreement with a high amount of total phenolic compounds and antioxidant capacities of the hydroalcoholic extract of P. atlantic leaves. It is concluded that multifunctional agents targeting the pathophysiology of OA has exhibited significant therapeutic effects against OA.
Collapse
Affiliation(s)
- Nader Tanideh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology, Shiraz Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Giti Borzooeian
- Department of Biology, Payam Noor University of Isfahan, Isfahan, Iran
| | - Mehrzad Lotfi
- Department of Radiology, Namazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsa Sani
- Department of Tissue Engineering, School of Advanced Medical Science and Technology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Cambyz Irajie
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parvin Ghaemmaghami
- School of Nursing and Midwifery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Koohi-Hosseinabadi
- Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran
- Laparoscopy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Romina Tanideh
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Zahra Borzooeian
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, USA
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
22
|
Anti-Metastatic and Anti-Inflammatory Effects of Matrix Metalloproteinase Inhibition by Ginsenosides. Biomedicines 2021; 9:biomedicines9020198. [PMID: 33671187 PMCID: PMC7921986 DOI: 10.3390/biomedicines9020198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 12/12/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are proteolytic enzymes which cleave extracellular matrix (ECM) and other substrates. They are deeply involved in both cancer metastasis and human chronic inflammatory diseases such as osteoarthritis and Crohn’s disease. Regulation of MMPs is closely associated with signaling molecules, especially mitogen-activated protein kinases (MAPKs), including three representative kinases, extracellular signal regulated kinases (ERK), p38 and c-Jun N-terminal kinases (JNK). Ginseng (Panax sp.) is a plant which has been traditionally used for medicinal applications. Ginsenosides are major metabolites which have potentials to treat various human diseases. In this review, the pharmacological effects of ginsenosides have been rigorously investigated; these include anti-metastatic and anti-inflammatory activities of ginsenosides associated with suppression of MMPs via regulation of various signaling pathways. This will highlight the importance of MMPs as therapeutic targets for anti-metastatic and anti-inflammatory drug development based on ginsenosides.
Collapse
|
23
|
Zhao J, He B, Zhang S, Huang W, Li X. Ginsenoside Rg1 alleviates acute liver injury through the induction of autophagy and suppressing NF-κB/NLRP3 inflammasome signaling pathway. Int J Med Sci 2021; 18:1382-1389. [PMID: 33628094 PMCID: PMC7893561 DOI: 10.7150/ijms.50919] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/02/2020] [Indexed: 12/18/2022] Open
Abstract
Background: Severe hepatitis is a common cause of chronic or acute liver disease and autophagy might play an important role in cellular response to inflammation and injury. It has been reported that Ginsenoside-Rg1 (G-Rg1) has strong hepatoprotective effects for acute liver injury, but its protective mechanisms have not yet been elucidated. This study aims to explore the detailed molecular mechanisms of G-Rg1 on acute liver injury via autophagy. Methods: The role of G-Rg1 by autophagic induction was studied in the mouse model of acute liver injury which induced by carbon tetrachloride (CCl4). Liver function, inflammatory reaction and apoptosis were detected when autophagy has been inhibited by 3-MA or stimulated by RPA. MCC950 and ATP were applied to investigate the role of NLRP3 inflammasome in acute liver injury. The differential expression of NF-κB, NLRP3 inflammasome, caspase 1, caspase 3, IL-1β, IL-18, LC3-I, LC3-II, Beclin-1, PINK1 and Parkin have been detected by the quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. Results: G-Rg1 could decrease ALT, AST, TNF-α, IL-1β and IL-6 in mice with CCl4-induced acute liver injury. The change of autophagy and apoptosis after the treatment of 3-MA or RPA demonstrated that the autophagy played a key role in the protective effect of G-Rg1 in acute liver injury. The enhancement of G-Rg1 promoted-autophagy resulted in the significant decrease in NF-κB, NLRP3 inflammasome, caspase 1, caspase 3, IL-1β and IL-18, which suggesting that NF-κB/NLRP3 inflammasome signaling pathway was associated with the autophagy induced by G-Rg1 in acute liver injury. Conclusion: G-Rg1 ameliorated acute liver injury via the autophagy, which may be related to NF-κB/NLRP3 inflammasome signaling pathway.
Collapse
Affiliation(s)
- Jinqiu Zhao
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Bin He
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Shujun Zhang
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Wenxiang Huang
- Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiaosong Li
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
24
|
Liu L, Xu FR, Wang YZ. Traditional uses, chemical diversity and biological activities of Panax L. (Araliaceae): A review. JOURNAL OF ETHNOPHARMACOLOGY 2020; 263:112792. [PMID: 32311488 DOI: 10.1016/j.jep.2020.112792] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/22/2020] [Accepted: 03/22/2020] [Indexed: 05/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax L. (Araliaceae) is globally-recognized plant resource suitable for the globalization of traditional Chinese medicines. It has traditionally been used as tonic agents in various ethnomedicinal systems of East Asia, especially in China. It is often used to regulate bodily functions and considered as adjuvant therapy for tumor, resuscitation of traumatic hemorrhagic shock, etc. AIM OF THIS REVIEW: This review systematically summarized the information on distributions, botanical characteristics, traditional uses, chemical components and biological activities of the genus Panax, in order to explore and exploit the therapeutic potential of this plant. MATERIALS AND METHODS The available information about genus Panax was collected via the online search on Web of Science, Google Scholar, PubMed, Baidu Scholar, Science Direct, China National Knowledge Infrastructure and Springer search. The keywords used include Panax, saponin, secondary metabolites, chemical components, biological activity, pharmacology, traditional medicinal uses, safety and other related words. The Plant List (www.theplantlist.org) and Catalogue of Life: 2019 Annual Checklist (www.catalogueoflife.org/col/) databases were used to provide the scientific names, subspecies classification and distribution information of Panax. RESULTS Panax is widely assessed concerning its phytochemistry and biological activities. To date, at least 748 chemical compounds from genus Panax were isolated, including saponins, flavonoids, polysaccharides, steroids and phenols. Among them, triterpenoid saponins and polysaccharides were the representative active ingredients of Panax plants, which have been widely investigated. Modern pharmacological studies showed that these compounds exhibited a wide range of biological activities in vitro and in vivo including antineoplastic, anti-inflammatory, hepatorenal protective, neuroprotective, immunoregulatory, cardioprotective and antidiabetic activities. Many studies also confirmed that the mechanisms of organ-protective were closely related to molecular signaling pathways, the expression of related proteins and antioxidant reactions. To sum up, genus Panax has high medicinal and social value, deserving further investigation. CONCLUSIONS The genus Panax is very promising to be fully utilized in the development of nutraceutical and pharmaceutical products. However, there is a lack of in-depth studies on ethnomedicinal uses of Panax plants. In addition, further studies of single chemical component should be performed based on the diversity of chemical structure, significant biological activities and clinical application. If the bioactive molecules and multicomponent interactions are discovered, it will be of great significance to the clinical application of Panax plants. It is an urgent requirement to carry out detailed phytochemical, pharmacology and clinical research on Panax classical prescriptions for the establishment of modern medication guidelines. Exploring the molecular basis of herbal synergistic actions may provide a new understanding of the complex disease mechanisms and accelerate the process of pharmaceutical development.
Collapse
Affiliation(s)
- Lu Liu
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China; College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Fu-Rong Xu
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China.
| | - Yuan-Zhong Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China.
| |
Collapse
|
25
|
Ginsenoside ameliorated ventilator-induced lung injury in rats. J Intensive Care 2020; 8:89. [PMID: 33292607 PMCID: PMC7682776 DOI: 10.1186/s40560-020-00509-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/15/2020] [Indexed: 11/21/2022] Open
Abstract
Background Ginsenosides have antioxidant and anti-inflammatory features. This study aimed to evaluate the biologic effects of ginsenoside Rb2 pretreatment on ventilator-induced lung injury (VILI) in rats. Methods Rats were divided into four groups with 12 rats per group: control; low tidal volume (TV), TV of 6 mL/kg, VILI, TV of 20 mL/kg, positive end-expiratory pressure of 5 cm H2O, and respiratory rate of 60 breaths per minute for 3 h at an inspiratory oxygen fraction of 0.21; and ginsenosides, treated the same as the VILI group but with 20 mg/kg intraperitoneal ginsenoside pretreatment. Morphology was observed with a microscope to confirm the VILI model. Wet-to-dry weight ratios, protein concentrations, and pro-inflammatory cytokines in the bronchoalveolar lavage fluid were measured. RNA sequencing of the lung tissues was conducted to analyze gene expression. Results High TV histologically induced VILI with alveolar edema and infiltration of inflammatory cells. Ginsenosides pretreatment significantly reduced the histologic lung injury score compared to the VILI group. Wet-to-dry weight ratios, malondialdehyde, and TNF-α in bronchoalveolar lavage fluid were significantly higher in the VILI group and ginsenoside pretreatment mitigated these effects. In the immunohistochemistry assay, ginsenoside pretreatment attenuated the TNF-α upregulation induced by VILI. We identified 823 genes differentially presented in the VILI group compared to the control group. Of the 823 genes, only 13 genes (Arrdc2, Cygb, Exnef, Lcn2, Mroh7, Nsf, Rexo2, Srp9, Tead3, Ephb6, Mvd, Sytl4, and Ube2l6) recovered to control levels in the ginsenoside group. Conclusions Ginsenosides inhibited the inflammatory and oxidative stress response in VILI. Further studies are required on the 13 genes, including LCN2.
Collapse
|
26
|
Khadka B, Lee JY, Park DH, Kim KT, Bae JS. The Role of Natural Compounds and their Nanocarriers in the Treatment of CNS Inflammation. Biomolecules 2020; 10:E1401. [PMID: 33019651 PMCID: PMC7601486 DOI: 10.3390/biom10101401] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 12/16/2022] Open
Abstract
Neuroinflammation, which is involved in various inflammatory cascades in nervous tissues, can result in persistent and chronic apoptotic neuronal cell death and programmed cell death, triggering various degenerative disorders of the central nervous system (CNS). The neuroprotective effects of natural compounds against neuroinflammation are mainly mediated by their antioxidant, anti-inflammatory, and antiapoptotic properties that specifically promote or inhibit various molecular signal transduction pathways. However, natural compounds have several limitations, such as their pharmacokinetic properties and stability, which hinder their clinical development and use as medicines. This review discusses the molecular mechanisms of neuroinflammation and degenerative diseases of CNS. In addition, it emphasizes potential natural compounds and their promising nanocarriers for overcoming their limitations in the treatment of neuroinflammation. Moreover, recent promising CNS inflammation-targeted nanocarrier systems implementing lesion site-specific active targeting strategies for CNS inflammation are also discussed.
Collapse
Affiliation(s)
- Bikram Khadka
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Mokpo National University, Muan-gun, Jeonnam 58554, Korea;
| | - Jae-Young Lee
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea;
| | - Dong Ho Park
- Department of Ophthalmology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea;
| | - Ki-Taek Kim
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Mokpo National University, Muan-gun, Jeonnam 58554, Korea;
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-gun, Jeonnam 58554, Korea
| | - Jong-Sup Bae
- College of Pharmacy, CMR1, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
27
|
Hyun SH, Ahn HY, Kim HJ, Kim SW, So SH, In G, Park CK, Han CK. Immuno-enhancement effects of Korean Red Ginseng in healthy adults: a randomized, double-blind, placebo-controlled trial. J Ginseng Res 2020; 45:191-198. [PMID: 33437171 PMCID: PMC7790881 DOI: 10.1016/j.jgr.2020.08.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 01/02/2023] Open
Abstract
Background Most clinical studies of immune responses activated by Korean Red Ginseng (KRG) have been conducted exclusively in patients. However, there is still a lack of clinical research on immune-boosting benefits of KRG for healthy persons. This study aims to confirm how KRG boosts the immune system of healthy subjects. Methods A total of 100 healthy adult subjects were randomly divided into two groups that took either a 2 g KRG tablet or a placebo per day for 8 weeks. The primary efficacy evaluation variables included changes in T cells, B cells, and white blood cells (WBCs) before and after eight weeks of KRG ingestion. Cytokines (TNF-α, INF-γ, IL-2 and IL-4), WBC differential count, and incidence of colds were measured in the secondary efficacy evaluation variables. Safety evaluation variables were used to identify changes in laboratory test results that incorporated adverse reactions, vital signs, hematological tests, blood chemistry tests, and urinalysis. Results Compared to the placebo group, the KRG intake group showed a significant increase in the number of T cells (CD3) and its subtypes (CD4 and CD8), B cells, and the WBC count before and after eight weeks of the intake. There were no clinically significant adverse reactions or other notable results in the safety evaluation factors observed. Conclusion This study has proven through its eight-week intake test and subsequent analysis that KRG boosts the immune system through an increase in T cells, B cells, and WBCs, and that it is safe according to the study's safety evaluation.
Collapse
Affiliation(s)
- Sun Hee Hyun
- Laboratory of Efficacy Research, Korea Ginseng Corporation, 30, Gajeong-ro, Shinseong-dong, Yuseong-gu, Daejeon, Republic of Korea
| | - Ha-Young Ahn
- Department of Obstetrics and Gynecology, Oriental Medical Hospital, Se-Myung University, Chungcheongbuk-do, Republic of Korea
| | - Hyeong-Jun Kim
- Department of Obstetrics and Gynecology, Oriental Medical Hospital, Se-Myung University, Chungcheongbuk-do, Republic of Korea
| | - Sung Won Kim
- Laboratory of Efficacy Research, Korea Ginseng Corporation, 30, Gajeong-ro, Shinseong-dong, Yuseong-gu, Daejeon, Republic of Korea
| | - Seung-Ho So
- Laboratory of Efficacy Research, Korea Ginseng Corporation, 30, Gajeong-ro, Shinseong-dong, Yuseong-gu, Daejeon, Republic of Korea
| | - Gyo In
- Laboratory of Efficacy Research, Korea Ginseng Corporation, 30, Gajeong-ro, Shinseong-dong, Yuseong-gu, Daejeon, Republic of Korea
| | - Chae-Kyu Park
- Laboratory of Efficacy Research, Korea Ginseng Corporation, 30, Gajeong-ro, Shinseong-dong, Yuseong-gu, Daejeon, Republic of Korea
| | - Chang-Kyun Han
- Laboratory of Efficacy Research, Korea Ginseng Corporation, 30, Gajeong-ro, Shinseong-dong, Yuseong-gu, Daejeon, Republic of Korea
| |
Collapse
|
28
|
Network Pharmacology Analysis and Molecular Characterization of the Herbal Medicine Formulation Qi-Fu-Yin for the Inhibition of the Neuroinflammatory Biomarker iNOS in Microglial BV-2 Cells: Implication for the Treatment of Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5780703. [PMID: 32952851 PMCID: PMC7481926 DOI: 10.1155/2020/5780703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/12/2020] [Indexed: 12/23/2022]
Abstract
Aberrant microglial activation drives neuroinflammation and neurodegeneration in Alzheimer's disease (AD). The present study is aimed at investigating whether the herbal formula Qi-Fu-Yin (QFY) could inhibit the inflammatory activation of cultured BV-2 microglia. A network pharmacology approach was employed to predict the active compounds of QFY, protein targets, and affected pathways. The representative pathways and molecular functions of the targets were analyzed by Gene Ontology (GO) and pathway enrichment. A total of 145 active compounds were selected from seven herbal ingredients of QFY. Targets (e.g., MAPT, APP, ACHE, iNOS, and COX-2) were predicted for the selected active compounds based on the relevance to AD and inflammation. As a validation, fractions were sequentially prepared by aqueous extraction, ethanolic precipitation, and HPLC separation, and assayed for downregulating two key proinflammatory biomarkers iNOS and COX-2 in lipopolysaccharide- (LPS-) challenged BV-2 cells by the Western blotting technique. Moreover, the compounds of QFY in 90% ethanol downregulated iNOS in BV-2 cells but showed no activity against COX-2 induction. Among the herbal ingredients of QFY, Angelicae Sinensis Radix and Ginseng Radix et Rhizoma contributed to the selective inhibition of iNOS induction. Furthermore, chemical analysis identified ginsenosides, especially Rg3, as antineuroinflammatory compounds. The herbal formula QFY may ameliorate neuroinflammation via downregulating iNOS in microglia.
Collapse
|
29
|
Hu WH, Mak SH, Zheng ZY, Xia YJ, Xu ML, Duan R, Dong TTX, Li SP, Zhan CS, Shang XH, Tsim KWK. Shexiang Baoxin Pill, a Traditional Chinese Herbal Formula, Rescues the Cognitive Impairments in APP/PS1 Transgenic Mice. Front Pharmacol 2020; 11:1045. [PMID: 32765267 PMCID: PMC7381243 DOI: 10.3389/fphar.2020.01045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/26/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Shexiang Baoxin Pill (SBP), a formulated traditional Chinese medicine (TCM), has been widely used to treat cardiovascular diseases for years. This herbal mixture has been shown to promote differentiation of cultured neuronal cells. Here, we aimed to investigate the effects of SBP in attenuating cognitive impairment in APP/PS1 transgenic mice. METHODS Ethanol and water extracts of SBP, denoted as SBPEtOH and SBPwater, were standardized and applied onto cultured rat pheochromocytoma PC12 cells. The potential effect of SBPEtOH extract in attenuating the cognitive impairments in APP/PS1 transgenic mice was shown by following lines of evidence: (i) inhibition of Aβ fibril formation, (ii) suppression of secretions of cytokines, and (iii) improvement of behavioral tests by Morris water maze. RESULTS SBPwater and SBPEtOH inhibited the formation of β-amyloid fibrils and protected the Aβ-induced cytotoxicity in cultured PC12 cells. In APP/PS1 transgenic mice, the treatment of SBPEtOH inhibited expressions of NO, NOS, AChE, as well as aggregation of Aβ. Besides, the levels of pro-inflammatory cytokines were suppressed by SBP treatment in the transgenic mice. Importantly, the behavioral tests by Morris Water maze indicated that SBP attenuated cognitive impairments in APP/PS1 transgenic mice. CONCLUSION The current result has supported the notion that SPB might ameliorate the cognitive impairment through multiple targets, suggesting that SBP could be considered as a promising anti-AD agent.
Collapse
Affiliation(s)
- Wei-Hui Hu
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China
- Division of Life Science and Center for Chinese Medicine and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Shing-Hung Mak
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China
- Division of Life Science and Center for Chinese Medicine and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong
| | - Zhong-Yu Zheng
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China
- Division of Life Science and Center for Chinese Medicine and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong
| | - Ying-Jie Xia
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China
- Division of Life Science and Center for Chinese Medicine and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong
| | - Miranda Li Xu
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China
- Division of Life Science and Center for Chinese Medicine and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong
| | - Ran Duan
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China
- Division of Life Science and Center for Chinese Medicine and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Tina Ting-Xia Dong
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China
- Division of Life Science and Center for Chinese Medicine and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Shao-Ping Li
- Institute of Chinese Medical Sciences, University of Macau, Macau, Macau
| | - Chang-Sen Zhan
- Shanghai Engineering Research Center for Innovation of Solid Preparation of TCM, Shanghai, China
- Shanghai Hutchison Pharmaceuticals Ltd., Shanghai, China
| | - Xiao-Hui Shang
- Shanghai Engineering Research Center for Innovation of Solid Preparation of TCM, Shanghai, China
- Shanghai Hutchison Pharmaceuticals Ltd., Shanghai, China
| | - Karl Wah-Keung Tsim
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China
- Division of Life Science and Center for Chinese Medicine and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
30
|
Yao YY, Ling EA, Lu D. Microglia mediated neuroinflammation - signaling regulation and therapeutic considerations with special reference to some natural compounds. Histol Histopathol 2020; 35:1229-1250. [PMID: 32662061 DOI: 10.14670/hh-18-239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Neuroinflammation plays a central role in multiple neurodegenerative diseases and neurological disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), cerebral ischemic injury etc. In this connection, microglia, the key players in the central nervous system, mediate the inflammatory response process. In brain injuries, activated microglia can clear the cellular debris and invading pathogens and release neurotrophic factors; however, prolonged microglia activation may cause neuronal death through excessive release of inflammatory mediators. Therefore, it is of paramount importance to understand the underlying molecular mechanisms of microglia activation to design an effective therapeutic strategy to alleviate neuronal injury. Recent studies have shown that some natural compounds and herbal extracts possess anti-inflammatory properties that may suppress microglial activation and ameliorate neuroinflammation and hence are neuroprotective. In this review, we will update some of the common signaling pathways that regulate microglia activation. Among the various signaling pathways, the Notch-1, mitogen-activated protein kinases (MAPKs), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) have been reported to exacerbate microglia mediated neuroinflammation that is implicated in different neuropathological diseases. The search for natural compounds or agents, specifically those derived from natural herbal extracts such as Gastrodin, scutellarin, RG1 etc. has been the focus of many of our recent studies because they have been found to regulate microglia activation. The pharmacological effects of these agents and their potential mechanisms for regulating microglia activation are systematically reviewed here for a fuller understanding of their biochemical action and therapeutic potential for treatment of microglia mediated neuropathological diseases.
Collapse
Affiliation(s)
- Yue-Yi Yao
- Technology Transfer Center, Kunming Medical University, Kunming, China
| | - Eng-Ang Ling
- Department of Anatomy, Young Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Di Lu
- Technology Transfer Center, Kunming Medical University, Kunming, China.
| |
Collapse
|
31
|
Ginsenoside Rg1 attenuates chronic unpredictable mild stress-induced depressive-like effect via regulating NF-κB/NLRP3 pathway in rats. Neuroreport 2020; 30:893-900. [PMID: 31373969 DOI: 10.1097/wnr.0000000000001302] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ginsenoside (GS Rg1), which has neuroprotection and anti-inflammation activities, is the main active ingredient of Radix Ginseng. However, its antidepressant-like effect in rats remains unclear. Our study was conducted to investigate whether GS Rg1 confers an antidepressant effect in rats exposed to a chronic unpredictable mild stress model of depression and to explore its possible mechanisms. Our results revealed that GS Rg1 treatments for 3 weeks alleviated the depression-related behaviors of chronic unpredictable mild stress-exposed rats, as indicated by increasing sucrose preference, improving locomotor activity and shortening immobile time in both the forced swimming tests and tail suspension tests. And these ameliorative effects of GS Rg1 treatment were involved with regulating chronic unpredictable mild stress-induced pro-inflammatory cytokine interleukin beta (IL-1β) related neuro-inflammation. In addition, we further found that GS Rg1 reversed chronic unpredictable mild stress-induced IL-1β elevation, possibly by inhibiting nuclear factor kappa B pathway activation and regulating nucleotide binding and oligomerization domain-like receptor family pyrin domain-containing 3 inflammasome expression. In short, our results suggested that GS Rg1 exerted a potential antidepressant-like effect in chronic unpredictable mild stress rat model of depression, which may provide an insight into the potential of GS Rg1 in therapeutic implications for depression.
Collapse
|
32
|
Chen G, Xie Y, Zhou D, Yang Y, Liu J, Hou Y, Cheng M, Liu Y, Li N. Chemical constituents from shells of Xanthoceras sorbifolium. PHYTOCHEMISTRY 2020; 172:112288. [PMID: 32045741 DOI: 10.1016/j.phytochem.2020.112288] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 01/25/2020] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
Three undescribed triterpenes and four previously unreported saponins, along with two known ones, were isolated from shells of Xanthoceras sorbifolium (Sapindaceae). Their structures were elucidated by the interpretation of 1D and 2D NMR data. The nitric oxide (NO) assay revealed that 28-O-isobutyryl-21-O-angeloyl-R1-barrigenol and 3-O-β-D-6-O-methylglucuronopyranosyl-21,22-di-O-angeloyl-R1-barrigenol possessed stronger inhibitory effects on LPS-induced NO overproduction (IC50 = 18.5 ± 1.2 and 28.2 ± 1.8 μM, respectively) than the positive drug minocycline (IC50 = 30.1 ± 1.3 μM) in activated BV2 cells. Western blot, RT-qPCR, and docking experiments further validated that the regulation of iNOS and IL-1β expressions was involved in the anti-neuroinflammatory effects of these two compounds.
Collapse
Affiliation(s)
- Gang Chen
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Yumeng Xie
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Di Zhou
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Yanqiu Yang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, China
| | - Jingyu Liu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, China
| | - Yue Hou
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yang Liu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Ning Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China.
| |
Collapse
|
33
|
Du Y, Fu M, Wang YT, Dong Z. Neuroprotective Effects of Ginsenoside Rf on Amyloid-β-Induced Neurotoxicity in vitro and in vivo. J Alzheimers Dis 2019; 64:309-322. [PMID: 29865080 DOI: 10.3233/jad-180251] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by the deposition of amyloid-β peptides (Aβ). Aβ accumulation leads to the formation of neurofibrillary tangles, inflammation, axonal injury, synapse loss, and neuronal apoptosis. Thus, reducing Aβ levels should exert a neuroprotective effect against AD. Ginsenoside Rf, an extract from Panax notoginseng, has potent anti-fatigue, anti-nociception, anti-oxidation, and anti-inflammation properties. However, it is unclear whether ginsenoside Rf is effective in the treatment of AD. Here, we reported that ginsenoside Rf could significantly attenuate Aβ-induced apoptosis in N2A cells, as reflected by a dramatic increase in mitochondrial membrane potential and decrease in Ca2 + concentration, reactive oxygen species, and active caspase-3 expression. Meanwhile, ginsenoside Rf could alleviate the Aβ-induced inflammation reaction, such as the decrease of interferon-gamma (IFN-γ) and active caspase-1 expression and the increase of interleukin-13. Furthermore, we also found that Rf is able to accelerate Aβ clearance and subsequently reduces Aβ level in N2A cells stably transfected with human Swedish mutant APP695 (N2A-APP). More importantly, daily Rf treatment (20 mg/kg, i.p.) throughout the experiment dramatically improved spatial learning and memory in Aβ42-induced mouse model of AD. Taken together, these results indicate that ginsenoside Rf may decrease Aβ-induced neurotoxicity and memory decline via anti-inflammatory response during AD development, suggesting that Rf may be a potential therapeutic agent for treating AD.
Collapse
Affiliation(s)
- Yehong Du
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital ofChongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of TranslationalMedical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of ChongqingMedical University, Chongqing, China
| | - Min Fu
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital ofChongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of TranslationalMedical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of ChongqingMedical University, Chongqing, China
| | - Yu Tian Wang
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital ofChongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of TranslationalMedical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of ChongqingMedical University, Chongqing, China.,Brain Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Zhifang Dong
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital ofChongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of TranslationalMedical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of ChongqingMedical University, Chongqing, China
| |
Collapse
|
34
|
Zhou SS, Hu JW, Kong M, Xu JD, Shen H, Chen HB, Shen MQ, Xu J, Li SL. Less SO 2 residue may not indicate higher quality, better efficacy and weaker toxicity of sulfur-fumigated herbs: Ginseng, a pilot study. JOURNAL OF HAZARDOUS MATERIALS 2019; 364:376-387. [PMID: 30384248 DOI: 10.1016/j.jhazmat.2018.10.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 09/21/2018] [Accepted: 10/12/2018] [Indexed: 06/08/2023]
Abstract
Sulfur dioxide (SO2) is a hazardous residue in sulfur-fumigated herbs. Standards limiting SO2 content have been adopted worldwide for quality control of sulfur-fumigated herbs, and herbs with less SO2 are believed to be better. However, the standards are based only on the safe dose of SO2 and may not characterize changes in herbal quality, thereby the efficacy and toxicity, resulting from sulfur fumigation. To confirm this, here the correlation of residual SO2 content with the quality/efficacy/toxicity of sulfur-fumigated herb was investigated, and ginseng was selected as a pilot study object. Four sulfur-fumigated ginseng samples with different SO2 contents were systemically compared regarding their quality, anti-inflammatory, anti-shock and anti-stress efficacies, as well as acute and chronic toxicities. The results demonstrated that the SO2 content did not correlate with the quality, efficacy and toxicity changes of ginseng; more specifically, less SO2 residue did not indicate higher quality, better efficacy nor weaker toxicity. This fact suggests that SO2 content cannot characterize the variations in quality, efficacy and toxicity of sulfur-fumigated herbs. Therefore, the standard limiting SO2 content alone may be inadequate for quality control of sulfur-fumigated herbs, and new standards including other indicators that can exactly reflect herbal efficacy and safety are necessary.
Collapse
Affiliation(s)
- Shan-Shan Zhou
- Department of Pharmaceutical Analysis, Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, People's Republic of China
| | - Jia-Wei Hu
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical Sciences, Nanjing, Jiangsu, People's Republic of China
| | - Ming Kong
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical Sciences, Nanjing, Jiangsu, People's Republic of China
| | - Jin-Di Xu
- Department of Pharmaceutical Analysis, Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Hong Shen
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical Sciences, Nanjing, Jiangsu, People's Republic of China
| | - Hu-Biao Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, People's Republic of China
| | - Ming-Qin Shen
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical Sciences, Nanjing, Jiangsu, People's Republic of China.
| | - Jun Xu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, People's Republic of China.
| | - Song-Lin Li
- Department of Pharmaceutical Analysis, Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical Sciences, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
35
|
Dhami KS, Churchward MA, Baker GB, Todd KG. Fluoxetine and its metabolite norfluoxetine induce microglial apoptosis. J Neurochem 2019; 148:761-778. [DOI: 10.1111/jnc.14661] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 11/28/2022]
|
36
|
Ansari IA, Akhtar MS. Current Insights on the Role of Terpenoids as Anticancer Agents: A Perspective on Cancer Prevention and Treatment. NATURAL BIO-ACTIVE COMPOUNDS 2019:53-80. [DOI: 10.1007/978-981-13-7205-6_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
37
|
Zhang N, An X, Lang P, Wang F, Xie Y. Ginsenoside Rd contributes the attenuation of cardiac hypertrophy in vivo and in vitro. Biomed Pharmacother 2019; 109:1016-1023. [DOI: 10.1016/j.biopha.2018.10.081] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/28/2018] [Accepted: 10/14/2018] [Indexed: 12/18/2022] Open
|
38
|
Xu Y, Tan HY, Li S, Wang N, Feng Y. Panax notoginseng for Inflammation-Related Chronic Diseases: A Review on the Modulations of Multiple Pathways. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:971-996. [PMID: 29976083 DOI: 10.1142/s0192415x18500519] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Panax notoginseng (P. notoginseng) is a well-known and commonly used Chinese herbal medicine in Asian countries. As one of the major species in the Panax genus, it has a distinct chemical composition and medical application compared with other species. P. notoginseng attracts attention and interest due to its potential therapeutic effects not only on blood diseases, but also other kinds of human chronic disorders. This paper critically reviewed the latest advance of knowledge on the pharmacological effects of P. notoginseng on a variety of chronic diseases including inflammatory bowel disease, arthritis, ischemia, atherosclerosis, Alzheimer disease and trauma, as well as hyperlipidemia, diabetes, and so on. As inflammation is considered the fundamental factor involved in the pathogenesis of chronic diseases, our review therefore focuses on understanding the involvement of classical inflammatory pathways underlying the mechanism of action of P. notoginseng. Potential clinical application was also discussed. Furthermore, by combining with network pharmacology, we introduced the major bioactive components of P. notoginseng, analyzed their cellular targets and associated signaling pathways. In conclusion, this review identified inflammatory pathway as the key signaling for determining the efficacy of P. notoginseng on chronic diseases. It is speculated that P. notoginseng is a multi-targeted agent with an anti-inflammatory property in the adjuvant and alternative treatment of human chronic diseases.
Collapse
Affiliation(s)
- Yu Xu
- 1 School of Chinese Medicine, The University of Hong Kong, Hong Kong, P. R. China
| | - Hor-Yue Tan
- 1 School of Chinese Medicine, The University of Hong Kong, Hong Kong, P. R. China
| | - Sha Li
- 1 School of Chinese Medicine, The University of Hong Kong, Hong Kong, P. R. China
| | - Ning Wang
- 1 School of Chinese Medicine, The University of Hong Kong, Hong Kong, P. R. China
| | - Yibin Feng
- 1 School of Chinese Medicine, The University of Hong Kong, Hong Kong, P. R. China
| |
Collapse
|
39
|
Li J, Yang C, Zhang S, Liu S, Zhao L, Luo H, Chen Y, Huang W. Ginsenoside Rg1 inhibits inflammatory responses via modulation of the nuclear factor‑κB pathway and inhibition of inflammasome activation in alcoholic hepatitis. Int J Mol Med 2018; 41:899-907. [PMID: 29207044 PMCID: PMC5752168 DOI: 10.3892/ijmm.2017.3297] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 11/16/2017] [Indexed: 12/11/2022] Open
Abstract
Ginsenoside Rg1 (G‑Rg1) is an active ingredient of Panax ginseng, which has previously been reported to attenuate alcohol‑induced hepatic damage; however, the underlying mechanisms remain largely unknown. The present study aimed to investigate the protective effects of G‑Rg1 on alcohol‑induced cell injury in vitro and on a rat model of alcoholic hepatitis in vivo. For the in vitro model, L‑O2 cells were incubated with ethanol in the presence or absence of G‑Rg1. For the in vivo model, rats were administered ethanol by intragastric injection and were treated with G‑Rg1, or dexamethasone as a control. The results indicated that serum biochemical parameters, including alanine aminotransferase, aspartate aminotransferase and total bilirubin, as well as the expression of nuclear factor (NF)‑κB pathway‑associated inflammatory cytokines, including interleukin (IL)‑6, tumor necrosis factor‑α and IL‑1β, were elevated in response to alcohol; however, they were significantly decreased by G‑Rg1 treatment. Furthermore, NF‑κB pathway activation was reduced by treatment with G‑Rg1. G‑Rg1 also decreased oxidative stress by inhibiting cytochrome P450 2E1 expression and reactive oxygen species production, and promoting glutathione peroxidase expression. Furthermore, G‑Rg1 inhibited the expression levels of caspase‑3 and ‑8, which may be associated with decreased hepatocyte apoptosis. These data suggested that G‑Rg1 may protect hepatocytes against alcohol‑induced injury, through preventing excessive inflammation and hepatocellular apoptosis.
Collapse
Affiliation(s)
- Jiajun Li
- Department of Infectious Diseases and
| | | | - Shu Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Shu Liu
- Department of Infectious Diseases and
| | | | - Huan Luo
- Department of Infectious Diseases and
| | | | | |
Collapse
|
40
|
Choi JH, Shin KC, Oh DK. An L213A variant of β-glycosidase from Sulfolobus solfataricus with increased α-L-arabinofuranosidase activity converts ginsenoside Rc to compound K. PLoS One 2018; 13:e0191018. [PMID: 29324789 PMCID: PMC5764348 DOI: 10.1371/journal.pone.0191018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 12/27/2017] [Indexed: 01/08/2023] Open
Abstract
Compound K (C-K) is a crucial pharmaceutical and cosmetic component because of disease prevention and skin anti-aging effects. For industrial application of this active compound, the protopanaxadiol (PPD)-type ginsenosides should be transformed to C-K. β-Glycosidase from Sulfolobus solfataricus has been reported as an efficient C-K-producing enzyme, using glycosylated PPD-type ginsenosides as substrates. β-Glycosidase from S. solfataricus can hydrolyze β-d-glucopyranoside in ginsenosides Rc, C-Mc1, and C-Mc, but not α-l-arabinofuranoside in these ginsenosides. To determine candidate residues involved in α-l-arabinofuranosidase activity, compound Mc (C-Mc) was docking to β-glycosidase from S. solfataricus in homology model and sequence was aligned with β-glycosidase from Pyrococcus furiosus that has α-l-arabinofuranosidase activity. A L213A variant β-glycosidase with increased α-l-arabinofuranosidase activity was selected by substitution of other amino acids for candidate residues. The increased α-l-arabinofuranosidase activity of the L213A variant was confirmed through the determination of substrate specificity, change in binding energy, transformation pathway, and C-K production from ginsenosides Rc and C-Mc. The L213A variant β-glycosidase catalyzed the conversion of Rc to Rd by hydrolyzing α-l-arabinofuranoside linked to Rc, whereas the wild-type β-glycosidase did not. The variant enzyme converted ginsenosides Rc and C-Mc into C-K with molar conversions of 97%, which were 1.5- and 2-fold higher, respectively, than those of the wild-type enzyme. Therefore, protein engineering is a useful tool for enhancing the hydrolytic activity on specific glycoside linked to ginsenosides.
Collapse
Affiliation(s)
- Ji-Hyeon Choi
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Kyung-Chul Shin
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Deok-Kun Oh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
41
|
Zhu G, Wang H, Wang T, Shi F. Ginsenoside Rg1 attenuates the inflammatory response in DSS-induced mice colitis. Int Immunopharmacol 2017; 50:1-5. [PMID: 28605639 DOI: 10.1016/j.intimp.2017.06.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/25/2017] [Accepted: 06/05/2017] [Indexed: 12/11/2022]
Abstract
Ginsenoside Rg1 is a major active constituent of Panax ginseng and possesses anti-inflammatory effects. It has been reported to have therapeutic effects on various diseases. In the present study, we investigated the role of ginsenoside Rg1 in dextran sodium sulfate (DSS)-induced mouse colitis. Our results showed that ginsenoside Rg1 markedly reduces proinflammatory cytokines release upon DSS stimulation of mouse dendritic cells, that ginsenoside Rg1 suppresses IL-1β (Interleukin 1 beta) and TNF-α (Tumor necrosis factor alpha) release via up-regulation of NLRP12 (NACHT, LRR and PYD domains-containing protein 12) expression, and that ginsenoside Rg1 significantly decreases the inflammatory response to DSS-induced mouse colitis, as evidenced by increased body weight, reduced colonic damage scores and disease activity index (DAI), and lowered proinflammatory cytokines levels. These results highlight the potential therapeutic use of ginsenoside Rg1 as an anti-inflammatory agent in the treatment of colitis.
Collapse
Affiliation(s)
- Guo Zhu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huanan Wang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tiancheng Wang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fushan Shi
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
42
|
Cong F, Liu J, Wang C, Yuan Z, Bi L, Liang J, Su K, Qiu Y, Song T, Fan J, Chao G. Ginsenoside Rb2 inhibits osteoclast differentiation through nuclear factor-kappaB and signal transducer and activator of transcription protein 3 signaling pathway. Biomed Pharmacother 2017; 92:927-934. [PMID: 28605877 DOI: 10.1016/j.biopha.2017.05.115] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/19/2017] [Accepted: 05/24/2017] [Indexed: 11/19/2022] Open
Abstract
Ginsenoside-Rb2 (Rb2) is a 20(S)-protopanaxadiol glycoside extracted from ginseng possessing various bioactivities which has drawn considerable interest regarding the area of bone metabolism. However, the effect of Rb2 on osteoclast differentiation remains unknown. In this study, we aimed to investigate the potential role of Rb2 in regulating osteoclast differentiation and the underlying molecular mechanisms. Osteoclast differentiation was induced by receptor activator nuclear factor-kappaB (NF-κB) ligand (RANKL) and macrophage colony-stimulating factor (M-CSF) in mouse RAW 264.7 cells. The results showed that Rb2 dose-dependently inhibited the formation of the tartrate resistant acid phosphatase (TRAP)-positive multinucleated cells and TRAP expression. Furthermore, Rb2 promoted osteoprotegerin expression and bone resorption. The expression of osteoclast marker genes including nuclear factor of activated T cells c1 (NFATc1), c-Fos, OSCAR, and cathepsin K were also markedly inhibited by Rb2 treatment. Moreover, Rb2 significantly inhibited the RANKL-induced NF-κB activation. In addition, Rb2 also markedly suppressed the activation of signal transducer and activator of transcription protein 3 (STAT3) signaling pathway. Interestingly, the knockdown of STAT3 significantly strengthened the inhibitory effect of Rb2 on osteoclast differentiation. Taken together, our study suggests that Rb2 inhibits osteoclast differentiation associated with blocking NF-κB and STAT3 signaling pathways.
Collapse
Affiliation(s)
- Fei Cong
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China; Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Jian Liu
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Chunmei Wang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Zhi Yuan
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Long Bi
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Jidong Liang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Ke Su
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yucheng Qiu
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Tao Song
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Jinzhu Fan
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Gao Chao
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| |
Collapse
|
43
|
Qi HY, Li L, Ma H. Cellular stress response mechanisms as therapeutic targets of ginsenosides. Med Res Rev 2017; 38:625-654. [DOI: 10.1002/med.21450] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 03/28/2017] [Accepted: 04/14/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Hong-yi Qi
- College of Chinese Medicine; Southwest University; Chongqing P.R. China
| | - Li Li
- College of Chinese Medicine; Southwest University; Chongqing P.R. China
| | - Hui Ma
- College of Chinese Medicine; Southwest University; Chongqing P.R. China
| |
Collapse
|
44
|
Jin Y, Peng J, Wang X, Zhang D, Wang T. Ameliorative Effect of Ginsenoside Rg1 on Lipopolysaccharide-Induced Cognitive Impairment: Role of Cholinergic System. Neurochem Res 2017; 42:1299-1307. [DOI: 10.1007/s11064-016-2171-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 12/23/2016] [Accepted: 12/28/2016] [Indexed: 12/16/2022]
|
45
|
Zhang M, Qian F, Liu Q, Qian C, Thu PM, Wang Y, Zheng ZG, Yang H, Li P, Xu X. Evaluation of structure–activity relationships of ginsenosides against amyloid β induced pathological behaviours in transgenic Caenorhabditis elegans. RSC Adv 2017. [DOI: 10.1039/c7ra05717b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The systematic in vivo study comparing the effects of different ginsenosides on Aβ induced toxicity and cognitive impairment.
Collapse
Affiliation(s)
- Mu Zhang
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Fei Qian
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Qingling Liu
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Cheng Qian
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Pyone Myat Thu
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Yanyan Wang
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Zu-Guo Zheng
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Hua Yang
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Ping Li
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Xiaojun Xu
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- China
| |
Collapse
|
46
|
Cai M, Yang EJ. Ginsenoside Re Attenuates Neuroinflammation in a Symptomatic ALS Animal Model. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:401-13. [PMID: 27080948 DOI: 10.1142/s0192415x16500233] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the progressive loss of upper and lower motor neurons, which cause paralysis and respiratory dysfunction. There is currently no permanently effective drug for patients with ALS. Ginsenoside Re (G-Re), one of the most active ingredients of ginseng, has pharmacological activities that affect a number of targets. To investigate the effects of G-Re on neuroinflammation, we used G-Re (2.5[Formula: see text][Formula: see text]g/g) at the Joksamni acupressure point (ST36) once every other day for one week. To evaluate G-Re function in symptomatic human-superoxide dismutase 1 (hSOD1[Formula: see text] transgenic mice, immunohistochemistry and Western blot analysis were performed with the spinal cord of symptomatic hSOD1(G93A) transgenic mice. Here, we report that G-Re exhibits potent neuroprotective effects against neuroinflammation in a murine model of ALS. G-Re treatment reduced the loss of motor neurons and active-microglia-related expression of Iba-1 in the spinal cord of symptomatic hSOD1(G93A) transgenic mice. In addition, compared with age-matched hSOD1(G93A) mice, G-Re-treated hSOD1(G93A) mice showed a significant reduction in expression of pro-inflammatory proteins such as CD14 and TNF-[Formula: see text] protein related to TLR4 signaling pathway. G-Re administration also led to a decrease in cell death-related phospho-p38 protein levels, and had an antioxidative effect by reducing HO1 expression. Together, our data suggest that G-Re could have potent anti-neuroinflammatory effects on ALS by inhibiting the TLR4 pathway.
Collapse
Affiliation(s)
- Mudan Cai
- 1 Department of Clinical Research, Korea Institute of Oriental Medicine, 483 Expo-ro Daejeon, Yuseong-gu 305-811, Republic of Korea
| | - Eun Jin Yang
- 1 Department of Clinical Research, Korea Institute of Oriental Medicine, 483 Expo-ro Daejeon, Yuseong-gu 305-811, Republic of Korea
| |
Collapse
|
47
|
Wang ZY, Liu JG, Li H, Yang HM. Pharmacological Effects of Active Components of Chinese Herbal Medicine in the Treatment of Alzheimer's Disease: A Review. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:1525-1541. [PMID: 27848250 DOI: 10.1142/s0192415x16500853] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD), the most common neurodegenerative disorder associated with dementia, not only severely decreases the quality of life for its victims, but also brings a heavy economic burden to the family and society. Unfortunately, few chemical drugs designed for clinical applications have reached the expected preventive or therapeutic effect so far, and combined with their significant side-effects, there is therefore an urgent need for new strategies to be developed for AD treatment. Traditional Chinese Medicine has accumulated many experiences in the treatment of dementia during thousands of years of practice; modern pharmacological studies have confirmed the therapeutic effects of many active components derived from Chinese herbal medicines (CHM). Ginsenoside Rg1, extracted from Radix Ginseng, exerts a [Formula: see text]-secretase inhibitor effect so as to decrease A[Formula: see text] aggregation. It can also inhibit the apoptosis of neuron cells. Tanshinone IIA, extracted from Radix Salviae miltiorrhizae, and baicalin, extracted from Radix Scutellariae[Formula: see text] can inhibit the oxidative stress injury in neuronal cells. Icariin, extracted from Epimedium brevicornum, can decrease A[Formula: see text] levels and the hyperphosphorylation of tau protein, and can also inhibit oxidative stress and apoptosis. Huperzine A, extracted from Huperzia serrata, exerts a cholinesterase inhibitor effect. Evodiamine, extracted from Fructus Evodiae, and curcumin, extracted from Rhizoma Curcumae Longae, exert anti-inflammatory actions. Curcumin can act on A[Formula: see text] and tau too. Due to the advantages of multi-target effects and fewer side effects, Chinese medicine is more appropriate for long-term use. In this present review, the pharmacological effects of commonly used active components derived from Chinese herbal medicines in the treatment of AD are discussed.
Collapse
Affiliation(s)
- Zhi-Yong Wang
- * Geriatric Department, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, P.R. China.,† Graduate School, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Jian-Gang Liu
- * Geriatric Department, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, P.R. China
| | - Hao Li
- * Geriatric Department, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, P.R. China
| | - Hui-Ming Yang
- ‡ Geriatric Department, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, P.R. China
| |
Collapse
|
48
|
Anti-diabetic activity of Holothuria thomasi saponin. Biomed Pharmacother 2016; 84:1472-1487. [PMID: 27810340 DOI: 10.1016/j.biopha.2016.10.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 09/21/2016] [Accepted: 10/01/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Diabetes mellitus represents a global health problem. It characterized by hyperglycemia that induces oxidative stress leading to a generation of free radicals. A wide variety of natural products in plants and other marine animals represent antioxidant activity and other health benefits like those of sea cucumber. Therefore, this study aimed to investigate the antidiabetic activity of glycosidic compound - saponin - derived from the Egyptian sea cucumber, Holothuria thomasi. MATERIALS AND METHODS Saponin has been extracted from the Egyptian sea cucumber and confirmed by hemolysis, Salkowski tests, FT/IR, UV and GC-MS analysis. Eighty white female albino rats were divided into four equal groups. The first two groups of rats; control normal and control normal saponin-treated groups. The last two groups which were made diabetic by intraperitoneal injection of streptozotocin had one diabetic control and the other diabetic group that got 300mg/kg B.wt. of saponin extract after Thirty-five days after diabetes induction and lasted for six weeks. RESULTS The functional group of saponin extract which established with FT/IR spectroscopy demonstrated the presence of saponin in the extracted materials as shown in the peak of the functional group in relevance to the standard one. The UV spectra revealed that λmax of saponin extract was 282nm which in accordance to the standard saponin. Also, GC-MS analysis indicated that the aglycone part of saponin was methyl esters of octadecanoic acid. Saponin extract significantly decreased serum glucose, α-amylase activity, adiponectin, IL-6, TNF-α concentrations and liver L-MDA. However, serum insulin and liver glycogen levels were significantly increased as compared with the diabetic non-treated groups. The histopathological results supported that saponin extract markedly reduced the degenerative change in β-cells. CONCLUSIONS This study, therefore, depicts that the Egyptian Holothuria thomasi, sea cucumber saponin as a hypoglycemic agent with the potential to normalize aberrant biochemical parameters and preserved the normal histological architecture of the islets cells of pancreatic tissues.
Collapse
|
49
|
Han BC, Ahn H, Lee J, Jeon E, Seo S, Jang KH, Lee SH, Kim CH, Lee GS. Nonsaponin fractions of Korean Red Ginseng extracts prime activation of NLRP3 inflammasome. J Ginseng Res 2016; 41:513-523. [PMID: 29021698 PMCID: PMC5628333 DOI: 10.1016/j.jgr.2016.10.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/28/2016] [Accepted: 10/03/2016] [Indexed: 12/24/2022] Open
Abstract
Background Korean Red Ginseng extracts (RGE) have been suggested as effective immune modulators, and we reported that ginsenosides possess anti-inflammasome properties. However, the properties of nonsaponin components of RGE have not been well studied. Methods To assess the roles of nonsaponin fractions (NS) in NLRP3 inflammasome activation, we treated murine macrophages with or without first or second inflammasome activation signals with RGE, NS, or saponin fractions (SF). The first signal was nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)-mediated transcription of pro-interleukin (IL)-1β and NLRP3 while the second signal triggered assembly of inflammasome components, leading to IL-1β maturation. In addition, we examined the role of NS in IL-6 production and IL-1β maturation in mice. Results NS induced IL-1β and NLRP3 transcription via toll-like receptor 4 signaling, whereas SF blocked expression. During the second signal, SF attenuated NLRP3 inflammasome activation while NS did not. Further, NS-injected mice presented increased IL-1β maturation and IL-6 production. Conclusion SF and NS of RGE play differential roles in the NLRP3 inflammasome activation. Hence, RGE can be suggested as an NLRP3 inflammasome modulator.
Collapse
Affiliation(s)
- Byung-Cheol Han
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Republic of Korea.,Korea Ginseng Research Institute, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Huijeong Ahn
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Jiseon Lee
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Eunsaem Jeon
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Sanghoon Seo
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Kyoung Hwa Jang
- Korea Ginseng Research Institute, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Seung-Ho Lee
- Korea Ginseng Research Institute, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Cheon Ho Kim
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Geun-Shik Lee
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
50
|
Ahn S, Singh P, Castro-Aceituno V, Yesmin Simu S, Kim YJ, Mathiyalagan R, Yang DC. Gold nanoparticles synthesized using Panax ginseng leaves suppress inflammatory - mediators production via blockade of NF-κB activation in macrophages. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:270-276. [DOI: 10.1080/21691401.2016.1228661] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Sungeun Ahn
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Republic of Korea
- Graduate School of Biotechnology and Ginseng Bank, College of Life Sciences, Kyung Hee University, Yongin, Republic of Korea
| | - Priyanka Singh
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Republic of Korea
| | - Verónica Castro-Aceituno
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Republic of Korea
| | - Shakina Yesmin Simu
- Graduate School of Biotechnology and Ginseng Bank, College of Life Sciences, Kyung Hee University, Yongin, Republic of Korea
| | - Yu-Jin Kim
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Republic of Korea
| | - Ramya Mathiyalagan
- Graduate School of Biotechnology and Ginseng Bank, College of Life Sciences, Kyung Hee University, Yongin, Republic of Korea
| | - Deok-Chun Yang
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, Republic of Korea
- Graduate School of Biotechnology and Ginseng Bank, College of Life Sciences, Kyung Hee University, Yongin, Republic of Korea
| |
Collapse
|