1
|
Scauro A, Rocchetti MT, Soccio M, la Gatta B, Liberatore MT, De Simone N, Spano G, Fiocco D, Russo P. Postbiotic Potential of Newly Isolated Riboflavin-Overproducing Lactiplantibacillus plantarum Strains. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10538-x. [PMID: 40268810 DOI: 10.1007/s12602-025-10538-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2025] [Indexed: 04/25/2025]
Abstract
Lactic acid bacteria (LAB) are food-grade microorganisms able to produce and release bioactive compounds of interest to human health. Some LAB strains can synthesize vitamin B2, i.e., riboflavin, a micronutrient essential for cellular metabolism. In this work, six Lactiplantibacillus plantarum isolated from fruits of the Mediterranean area were exposed to the selective pressure of roseoflavin in order to select spontaneous riboflavin-overproducing phenotypes. The best strains, as determined by the level of riboflavin produced, were characterized for some basic probiotic features, including antibacterial activity, production of organic acids, antibiotic resistance, and survival under digestive stresses using an in vitro gut model. The strain L. plantarum Lp 187_B2, which produced the highest riboflavin level (6 mg/L), exhibited good resistance to gastro-intestinal stress and a relevant capacity to antagonize undesired bacteria, was selected for additional investigations to assess its capacity to protect intestinal homeostasis. When used as a postbiotic, Lp 187_B2 significantly increased trans-epithelial electrical resistance (TEER) in Caco-2 cell monolayers, an in vitro model of the intestinal barrier. Moreover, in a Caco-2/THP-1 co-culture system, mimicking the inflamed bowel, Lp 187_B2 postbiotics significantly inhibited the release of TNF-α by macrophages, thus pointing to gut-barrier strengthening and potential anti-inflammatory properties. Though a validation in vivo is required, our preliminary results indicate that L. plantarum Lp 187_B2 could be successfully applied as both probiotic and postbiotic formulations for improving human health.
Collapse
Affiliation(s)
- Angela Scauro
- Department of Sciences of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Foggia, Italy.
| | | | - Mario Soccio
- Department of Sciences of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Foggia, Italy
| | - Barbara la Gatta
- Department of Sciences of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Foggia, Italy
| | - Maria Teresa Liberatore
- Department of Sciences of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Foggia, Italy
| | - Nicola De Simone
- Institute of Sciences of Food Production, National Research Council (CNR) of Italy, C/O CS-DAT, Foggia, Italy
| | - Giuseppe Spano
- Department of Sciences of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Foggia, Italy
| | - Daniela Fiocco
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy.
| | - Pasquale Russo
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| |
Collapse
|
2
|
Fazal U, Zada A, Hanif M, Lee SY, Faisal M, Alatar AA, Sultana T, Sohail. Green Myco-Synthesis of Zinc Oxide Nanoparticles Using Cortinarius sp.: Hepatoprotective, Antimicrobial, and Antioxidant Potential for Biomedical Applications. Microorganisms 2025; 13:956. [PMID: 40431129 PMCID: PMC12114609 DOI: 10.3390/microorganisms13050956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 05/29/2025] Open
Abstract
The transformative effect of nanotechnology is revolutionizing medicine by introducing new therapeutic approaches. This study explores the utilization of aqueous extract from mushroom (Cortinarius sp.) used as a reducing agent to prepare zinc oxide myco-nanoparticles (ZnO-MNPs) in an eco-friendly manner. The synthesis of ZnO-MNPs has been confirmed by various characterization studies, including UV-vis spectroscopy, which revealed an absorption peak at 378 nm; X-ray diffraction (XRD) analysis, which revealed a wurtzite hexagonal structure; and Fourier transform infrared spectra (FTIR), which showed stabilizing agents around the ZnO-MNPs. The effectiveness of ZnO-MNPs as an anti-cancer agent was evaluated by monitoring liver biochemical parameters against hepatotoxicity caused by carbon tetrachloride (CCl4) in Balb C mice. The results showed that the levels of catalase, glutathione (GSH), and total protein were significantly lower, while alanine aminotransferase (ALT), aspartate aminotransferase (ASAT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), melanin dialdehyde (MDA), and total bilirubin (TB) were significantly higher in each of the CCl4 treatment groups. ZnO-MNP treatment significantly reduced the toxicological effects of CCl4 but did not completely restore the accumulation. The antimicrobial efficacy of ZnO-MNPs was investigated and showed potential results against common pathogens, including Bacillus subtilis (29.05 ± 0.76), Bacillus meurellus (27.05 ± 0.5), Acetobacter rhizospherensis (23.36 ± 0.5), and Escherichia coli (25.86 ± 0.80), while antifungal activity was relatively lower. Moreover, the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay showed that ZnO-MNPs are strong antioxidant agents. Overall, these findings highlight the effectiveness of myco-synthesized ZnO-NPs in combating pathogenic diseases, their promising role in cancer therapy, and their potential as a biomaterial option for future therapeutic applications.
Collapse
Affiliation(s)
- Uzma Fazal
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (U.F.); (S.)
- Department of Botany, Government College University, Lahore 54000, Pakistan
| | - Ahmad Zada
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (U.F.); (S.)
| | - Muhammad Hanif
- Department of Botany, Government College University, Lahore 54000, Pakistan
| | - Shiou Yih Lee
- Faculty of Health and Life Sciences, INTI International University, Nilai 71800, Negeri Sembilan, Malaysia;
| | - Mohammad Faisal
- Department of Botany & Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.F.); (A.A.A.)
| | - Abdulrahman A. Alatar
- Department of Botany & Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.F.); (A.A.A.)
| | - Tahira Sultana
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi 46300, Pakistan;
| | - Sohail
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (U.F.); (S.)
| |
Collapse
|
3
|
Tang ZM, Yuan P, Gao N, Lei JG, Ahmed M, Hua YX, Yang ZR, Li QY, Li HY. C-reactive protein attenuates CCl 4-induced acute liver injury by regulating complement system activation. Mol Immunol 2025; 180:44-54. [PMID: 40010008 DOI: 10.1016/j.molimm.2025.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/02/2025] [Accepted: 02/09/2025] [Indexed: 02/28/2025]
Abstract
Acute liver injury is liver dysfunction caused by multiple factors without any pre-existing liver disease. C-reactive protein (CRP) is an acute-phase protein produced by hepatocytes, serving as a marker of inflammation and tissue damage. However, its role in CCl4-induced acute liver injury has not been elucidated. Here, we report that CRP protects against CCl4-induced acute liver injury by regulating complement activation. CRP knockout exacerbates CCl4-induced acute liver injury in mice and rats, markedly enhances tissue damage, and reduces survival. Administration of exogenous CRP to CRP-knockout mice rescues the CCl4-induced liver injury phenotype. The protective effect of CRP is independent of its cellular receptor FcγR2b and early metabolic pathways. Instead, CRP suppresses the late-phase amplification of inflammation by inhibiting terminal complement pathway overactivation in injured hepatocytes via factor H recruitment. In complement C3 knockout (C3-/-) mice, the protective effect of CRP against CCl4-induced acute liver injury is lost. These results suggest that CRP can alleviate CCl4-induced acute liver injury by regulating the complement pathway, providing a theoretical basis for CRP's potential involvement and regulation of disease severity.
Collapse
Affiliation(s)
- Zhao-Ming Tang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Department of Nephrology, Nephrology & Critical Care Medicine of Xi'an International Science and Technology Cooperation Base, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Ping Yuan
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Ning Gao
- Department of Infectious Disease, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jia-Geng Lei
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Mustafa Ahmed
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Department of Nephrology, Nephrology & Critical Care Medicine of Xi'an International Science and Technology Cooperation Base, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yu-Xin Hua
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Ze-Rui Yang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Department of Nephrology, Nephrology & Critical Care Medicine of Xi'an International Science and Technology Cooperation Base, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Qiu-Yu Li
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China.
| | - Hai-Yun Li
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Department of Nephrology, Nephrology & Critical Care Medicine of Xi'an International Science and Technology Cooperation Base, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China..
| |
Collapse
|
4
|
Ezz El-Arab RF, Waly HSA, Al-Salahy MB, Saleh MA, Saleh SMM. Role of gallic acid against hepatic functional and histological deteriorations in tartrazine-intoxicated rats. Food Chem Toxicol 2025; 197:115303. [PMID: 39894384 DOI: 10.1016/j.fct.2025.115303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/25/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
Tartrazine (Tz) is one of the most commonly used artificial food colorants in the food industry, found in a wide array of products. This study investigates the protective role of gallic acid (GA), a powerful antioxidant, against the adverse effects of Tz on the liver. Over a 30-day period, 40 rats were divided into two groups: Group 1 (control group, 10 rats) received a daily administration of a vehicle, while Group 2 (30 rats) received Tz (30 mg/kg body weight). Group 2 was further subdivided into three subgroups of 10 rats each: Subgroup 1 served as a positive control for Tz; Subgroup 2 received GA (200 mg/kg body weight); and Subgroup 3 was left untreated for an additional 30 days as a recovery group (TR). Our study revealed that GA normalized liver functions markers (ALT, AST, and bilirubin), regulated lipids (cholesterol, HDL, LDL, and TG), and ameliorated the redox potentials activity of liver tissue (Catalase, GSH, SOD, LPO, Total peroxide, and Carbonyl protein), revealing its potential in mitigating the negative impact of Tz administration. Moreover, histopathological examinations, including the TUNEL assay, and histological and histochemical studies, demonstrated that GA effectively prevented the histological damage caused by Tz administration.
Collapse
Affiliation(s)
- Rahma F Ezz El-Arab
- Zoology and Entomology Department, Faculty of Science, Assiut University, 71516, Assiut, Egypt
| | - Hanan S A Waly
- Zoology and Entomology Department, Faculty of Science, Assiut University, 71516, Assiut, Egypt
| | - M Bassam Al-Salahy
- Zoology and Entomology Department, Faculty of Science, Assiut University, 71516, Assiut, Egypt
| | - Moustafa A Saleh
- Bioch Unit, Animal Health Research Institute, 12618, Giza, Egypt
| | - Shaimaa M M Saleh
- Zoology and Entomology Department, Faculty of Science, Assiut University, 71516, Assiut, Egypt.
| |
Collapse
|
5
|
Yoladi FB, Palabiyik-Yucelik SS, Bahador Zirh E, Halici Z, Baydar T. Effects of idebenone and coenzyme Q10 on NLRP3/caspase-1/IL-1β pathway regulation on ethanol-induced hepatotoxicity in rats. Drug Chem Toxicol 2024; 47:1205-1217. [PMID: 38804209 DOI: 10.1080/01480545.2024.2351191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 04/29/2024] [Indexed: 05/29/2024]
Abstract
Chronic and excessive alcohol consumption leads to liver toxicity. There is a need to investigate effective therapeutic strategies to alleviate alcohol-induced liver injury, which remains the leading cause of liver-related morbidity and mortality worldwide. Therefore here, we looked into and evaluated how ethanol-induced hepatotoxicity was affected by coenzyme Q10 (CoQ10) and its analog, idebenone (IDE), on the NLRP3/caspase-1/IL-1 pathway. Hepatotoxicity induced in rats through the oral administration of gradually increasing dosages of ethanol (from 2 to 6 g/kg/day) over 30 days and the effect of CoQ10 (10 or 20 mg/kg) and IDE (50 or 100 mg/kg) were evaluated. Serum hepatotoxicity markers (ALT, AST, GGT, ALP, and TBIL), tissue oxidative stress markers and the mRNA expressions of IL-1β, IL-18, TGF-β, NF-κB, NLRP3, and caspase-1 were evaluated. Masson's trichrome staining was also used to visualize fibrosis in the liver tissue. The results indicated that ethanol exposure led to hepatotoxicity as well as considerable NLRP3/caspase-1/IL-1β pathway activation. Moreover, CoQ10 or IDE treatment reduced measured parameters in a dosage-dependent manner. Thus, by inhibiting the NLRP3/caspase-1/IL-1 pathway, CoQ10 and IDE can prevent the hepatotoxicity caused by ethanol, although CoQ10 is more effective than IDE. This study will provide insight into new therapeutic avenues that take advantage of the anti-inflammatory and antioxidant properties of CoQ10 and IDE in ethanol-induced liver diseases.
Collapse
Affiliation(s)
- Fatma Betül Yoladi
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Atatürk University, Erzurum, Turkey
- Department of Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Saziye Sezin Palabiyik-Yucelik
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Atatürk University, Erzurum, Turkey
- Clinical Research, Development and Design Application and Research Center, Atatürk University, Erzurum, Turkey
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ondokuz Mayıs University, Samsun, Turkey
| | - Elham Bahador Zirh
- Department of Histology and Embryology, Faculty of Medicine, TOBB University of Economics and Technology, Ankara, Turkey
| | - Zekai Halici
- Clinical Research, Development and Design Application and Research Center, Atatürk University, Erzurum, Turkey
- Department of Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Terken Baydar
- Department of Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
6
|
Bayramova A, Keçeci M, Akpolat M, Cengil O. Protective effect of curcumin on testicular damage caused by carbon tetrachloride exposure in rats. Reprod Fertil Dev 2024; 36:RD23133. [PMID: 38870343 DOI: 10.1071/rd23133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 05/27/2024] [Indexed: 06/15/2024] Open
Abstract
Context Carbon tetrachloride (CCl4 ) is a chemical that is still widely used in industry and has been shown to cause structural defects in rat testicles through oxidative stress. Aims In our study, the effect of curcumin on CCl4 -mediated testicular damage was investigated. Methods Twenty-four adult Wistar albino male rats weighing 300-350g were divided into four groups: control group (olive oil was applied by gavage every consecutive day for 3weeks); curcumin and CCl4 +curcumin groups (200mg/kg curcumin dissolved in olive oil was given by gavage once a day, every consecutive day for 3weeks); and CCl4 and CCl4 +curcumin groups (0.5mL/kg CCl4 was dissolved in olive oil at a ratio of 1/1 and given by i.p. injection every other day for 3weeks). Tissue samples were examined histopathologically, histomorphometrically, immunohistochemically and biochemically. Key results CCl4 disrupted both testicular morphology and testosterone synthesis, whereas curcumin treatment resulted in an improvement in testicular morphology and biochemical parameters, as well as a decrease in caspase-3 and tumour necrosis factor-α expression. Conclusions Curcumin has a protective effect on testicular tissue damage caused by CCl4 with its anti-inflammatory, antiapoptotic and antioxantioxidant properties. Implications Curcumin can prevent testicular damage due to CCl4 , an environmental pollutant.
Collapse
Affiliation(s)
- Aysel Bayramova
- Zonguldak Bülent Ecevit University, Health Sciences Institute, Histology and Embryology Department, Zonguldak, Türkiye
| | - Mete Keçeci
- Zonguldak Bülent Ecevit University, Health Sciences Institute, Histology and Embryology Department, Zonguldak, Türkiye
| | - Meryem Akpolat
- Zonguldak Bülent Ecevit University, Health Sciences Institute, Histology and Embryology Department, Zonguldak, Türkiye
| | - Osman Cengil
- Zonguldak Bülent Ecevit University, Health Sciences Institute, Histology and Embryology Department, Zonguldak, Türkiye
| |
Collapse
|
7
|
Sachi S, Jahan MP, Islam P, Rafiq K, Islam MZ. Evaluation of hematoprotective, hepatoprotective, and anti-inflammatory potentials of chia seed ( Salvia hispanica L.) extract in rats. Vet Anim Sci 2024; 24:100349. [PMID: 38590834 PMCID: PMC10999476 DOI: 10.1016/j.vas.2024.100349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024] Open
Abstract
This study was conducted to evaluate the effects of chia seed extract on CCl4-induced hepatotoxicity, hematological profile, and carrageenan-induced inflammation in rats. Water-ethanol-acetone extract of chia seeds at the doses of 200 and 400 mg/kg body weight/day were applied to evaluate the comparative protective roles. Hematological profile and serum biochemical parameters were measured to evaluate the hematoprotective, and hepatoprotective effects of chia seed extract. Paw thickness and motility level were assessed at 0, 1, 3, 5, and 7 h after sub-planter injection of carrageenan to evaluate the anti-inflammatory potential. Tissue histopathology was performed in both cases. Chia seed extract reduced the elevated level of serum AST and ALT significantly in a dose-dependent manner following intra-peritoneal injection of CCl4. Histopathological study of the liver tissue exhibited acute impairment of the hepatocytes and liver parenchyma following CCl4 exposure, which was markedly regenerated by the chia seed extract treatment. Protective effects of the extracts were also evidenced by the RBC count, Hb (%), PCV (%), ESR, and neutrophil count. Chia seed extract was found to inhibit the carrageenan-induced paw edema and increase motility level in a dose-oriented fashion. Histological examination of the paw tissue revealed severe inflammation characterized by massive infiltration of inflammatory cells in the carrageenan group, which was significantly reduced by chia seed extract treatment. The higher dose of chia seed extract showed significant increases in bodyweight gain and feed efficiency ratio but decrease in visceral fat deposition. These results suggest that chia seeds possess potentials for hematoprotective, hepatoprotective, and anti-inflammatory activities.
Collapse
Affiliation(s)
- Sabbya Sachi
- Department of Pharmacology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Mst. Prianka Jahan
- Department of Fisheries Technology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Purba Islam
- Department of Pharmacology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Kazi Rafiq
- Department of Pharmacology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md. Zahorul Islam
- Department of Pharmacology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| |
Collapse
|
8
|
Suljević D, Fočak M, Škrijelj R, Mitrašinović-Brulić M. Therapeutic benefit of oregano oil in the acute idiosyncratic hepatotoxicity induced by carbon tetrachloride in rats: Adverse effects of high dose of oreganum. Cell Biochem Funct 2024; 42:e4015. [PMID: 38613208 DOI: 10.1002/cbf.4015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/08/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024]
Abstract
Toxicity caused by carbon tetrachloride (CCl4) can lead to serious liver injury. The aim of the study is to investigate the protective effects of oregano oil (Origanum minutiflorum extract oil) against CCl4-induced liver injury. Two doses of oregano oil were used in the experiment: a low dose (LD; 20 mg/kg) and a high dose (HD; 60 mg/kg) during 2 weeks. CCl4 caused severe liver damage, nucleolus destruction in hepatocytes and cytogenetic changes in the nucleus. Indirectly, CCl4 causes decreased protein synthesis and significantly high creatinine and urea values. Hematological disorders have been recorded, such as decreased RBC and hemoglobin concentration, increased WBC and deformability of the erythrocyte membrane. Both doses of oregano oil had protective effects. Improved protein synthesis and high globulins level, creatinine and urea were found in both groups. Cytogenetic changes in the nucleus of hepatocytes were reduced. A high dose of oregano oil had maximal protective effects for RBC, but a very weak effect on hemoglobin synthesis. Also, WBC and lymphocyte values were low. Origanum stimulates protein synthesis and recovery of hepatocytes after liver injury, reduces the deformability of the erythrocyte membrane. High doses of oregano oil decreased WBC and lymphocytes which may lead to a weakening of the immune response. However, high doses are more effective against severe platelet aggregation than low doses, suggesting an effective treatment against thrombocytosis.
Collapse
Affiliation(s)
- Damir Suljević
- Faculty of Science, Department of Biology, Sarajevo, Bosnia and Herzegovina, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Muhamed Fočak
- Faculty of Science, Department of Biology, Sarajevo, Bosnia and Herzegovina, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Rifat Škrijelj
- Faculty of Science, Department of Biology, Sarajevo, Bosnia and Herzegovina, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Maja Mitrašinović-Brulić
- Faculty of Science, Department of Biology, Sarajevo, Bosnia and Herzegovina, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
9
|
Li X, Yang J, Luo H, Qiao Y, Zhao L, Cheng C, Fu W, Tan Y, Wang J, Liang C, Zhang J. Riboflavin Attenuates Fluoride-Induced Testicular Injury via Interleukin 17A-Mediated Classical Pyroptosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6143-6154. [PMID: 38475697 DOI: 10.1021/acs.jafc.3c09071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Male reproductive toxicity of fluoride is of great concern worldwide, yet the underlying mechanism is unclear. Pyroptosis is a novel mode of inflammatory cell death, and riboflavin with anti-inflammatory properties has the potential to protect against fluoride damage. However, it is unknown whether pyroptosis is involved in fluoride-induced testicular injury and riboflavin intervention. Here, we first found that riboflavin could alleviate fluoride-caused lower sperm quality and damaged testicular morphology by reducing pyroptosis based on a model of ICR mice treated with NaF (100 mg/L) and/or riboflavin supplementation (40 mg/L) via drinking water for 13 weeks. And then, together with the results of in vitro Leydig cell modelsm it was confirmed that the pyroptosis occurs predominantly through classical NLRP3/Caspase-1/GSDMD pathway. Furthermore, our results reveal that interleukin-17A mediates the process of pyroptosis in testes induced by fluoride and riboflavin attenuation according to the results of our established models of riboflavin- and/or fluoride-treated IL-17A knockout mice. The results not only declare a new mechanism by which fluoride induces testicular injury via interleukin 17A-mediated classical pyroptosis but also provide evidence for the potential clinical application of riboflavin as an effective therapy for fluoride toxicity.
Collapse
Affiliation(s)
- Xiang Li
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030800, People's Republic of China
| | - Jie Yang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030800, People's Republic of China
| | - Huifeng Luo
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030800, People's Republic of China
| | - Yurou Qiao
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030800, People's Republic of China
| | - Liying Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030800, People's Republic of China
| | - Chenkai Cheng
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030800, People's Republic of China
| | - Weixiang Fu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030800, People's Republic of China
| | - Yanjia Tan
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030800, People's Republic of China
| | - Jundong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030800, People's Republic of China
| | - Chen Liang
- College of Animal Science, Shanxi Agricultural University, Jinzhong, Shanxi 030800, People's Republic of China
| | - Jianhai Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, Shanxi 030800, People's Republic of China
| |
Collapse
|
10
|
Tsvetanova F. The Plethora of Microbes with Anti-Inflammatory Activities. Int J Mol Sci 2024; 25:2980. [PMID: 38474227 DOI: 10.3390/ijms25052980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/29/2024] [Accepted: 03/02/2024] [Indexed: 03/14/2024] Open
Abstract
Inflammation, which has important functions in human defense systems and in maintaining the dynamic homeostasis of the body, has become a major risk factor for the progression of many chronic diseases. Although the applied medical products alleviate the general status, they still exert adverse effects in the long term. For this reason, the solution should be sought in more harmless and affordable agents. Microorganisms offer a wide range of active substances with anti-inflammatory properties. They confer important advantages such as their renewable and inexhaustible nature. This review aims to provide the most recent updates on microorganisms of different types and genera, being carriers of anti-inflammatory activity.
Collapse
Affiliation(s)
- Flora Tsvetanova
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|
11
|
Pu X, Fu Y, Yang Y, Xu G. Ginkgo biloba extract alleviates CCl 4-induced acute liver injury by regulating PI3K/AKT signaling pathway. Heliyon 2024; 10:e26093. [PMID: 38390084 PMCID: PMC10881365 DOI: 10.1016/j.heliyon.2024.e26093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
Acute liver injury (ALI) is a global health problem associated with high mortality and has attracted clinical attention. Ginkgo biloba extract (GBE) is an extract from dried Ginkgo leaves that has many pharmacological effects because of its various ingredients and has been shown to be hepatoprotective. We investigated the hepatoprotective effect of GBE on carbon tetrachloride (CCl4)-induced acute liver injury in vitro. The components of Ginkgo biloba extract are analyzed by LC-MS, and the key targets of "liver injury-Ginkgo biloba" are identified based on bioinformatics analysis. The signaling pathways such as PI3K/AKT are mainly enriched with high correlation in KEGG. The results of in vitro experiments showed that compared with the Model group, except that the ALT activity level and MDA content in EGB-L group were not significantly decreased (P > 0.05), the activity of ALT, AST and MDA content in other EGB groups were significantly decreased (P < 0.05), and the activities of SOD and CAT were significantly increased (P < 0.05). The expression of inflammatory factors IL-1β, IL-6 and TNF-α were also detected. The results showed that compared with the Model group, the contents of IL-6 in EGB-L group were not significantly decreased (P > 0.05), while the contents of IL-1β, IL-6 and TNF-α in other EGB groups were significantly decreased (P < 0.05), indicating that EGB could reduce the level of cell inflammation. Western blot assay detected the protein expression levels of GF, RTK, PI3K, AKT and p-AKT in cells. The results showed that compared with the Model group, the protein expression levels of GF, RTK, PI3K, AKT and P-AKT were significantly increased after EGB treatment (P < 0.05), and the protein expression level of the EGB-H group was higher than the EGB-L group. Ginkgo biloba extract can inhibit the expression of downstream related genes by activating PI3K/AKT signaling pathway, and at the same time alleviate the inflammatory response of cells, reduce the level of inflammation, and protect the cell damage caused by CCl4.
Collapse
Affiliation(s)
- Xinyi Pu
- College of Pharmacy, Beihua University, 3999 Binjiang East Road, Jilin, Jilin, 132013, China
| | - Yujuan Fu
- College of Pharmacy, Beihua University, 3999 Binjiang East Road, Jilin, Jilin, 132013, China
| | - Yue Yang
- College of Pharmacy, Beihua University, 3999 Binjiang East Road, Jilin, Jilin, 132013, China
| | - Guangyu Xu
- College of Pharmacy, Beihua University, 3999 Binjiang East Road, Jilin, Jilin, 132013, China
| |
Collapse
|
12
|
Inai Y, Izawa T, Kamei T, Fujiwara S, Tanaka M, Yamate J, Kuwamura M. Difference in the Mechanism of Iron Overload-Enhanced Acute Hepatotoxicity Induced by Thioacetamide and Carbon Tetrachloride in Rats. Toxicol Pathol 2024; 52:55-66. [PMID: 38528719 DOI: 10.1177/01926233241235623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Iron overload has been recognized as a risk factor for liver disease; however, little is known about its pathological role in the modification of liver injury. The purpose of this study is to investigate the influence of iron overload on liver injury induced by two hepatotoxicants with different pathogenesis in rats. Rats were fed a control (Cont), 0.8% high-iron (0.8% Fe), or 1% high-iron diet (1% Fe) for 4 weeks and were then administered with saline, thioacetamide (TAA), or carbon tetrachloride (CCl4). Hepatic and systemic iron overload were seen in the 0.8% and 1% Fe groups. Twenty-four hours after administration, hepatocellular necrosis induced by TAA and hepatocellular necrosis, degeneration, and vacuolation induced by CCl4, as well as serum transaminase values, were exacerbated in the 0.8% and 1% Fe groups compared to the Cont group. On the other hand, microvesicular vacuolation induced by CCl4 was decreased in 0.8% and 1% Fe groups. Hepatocellular DNA damage was increased by iron overload in both models, whereas a synergistic effect of oxidative stress by excess iron and hepatotoxicant was only present in the CCl4 model. The data showed that dietary iron overload exacerbates TAA- and CCl4-induced acute liver injury with different mechanisms.
Collapse
Affiliation(s)
- Yohei Inai
- Laboratory of Veterinary Pathology, Osaka Metropolitan University, Osaka, Japan
| | - Takeshi Izawa
- Laboratory of Veterinary Pathology, Osaka Metropolitan University, Osaka, Japan
| | - Tomomi Kamei
- Laboratory of Veterinary Pathology, Osaka Metropolitan University, Osaka, Japan
| | - Sho Fujiwara
- Laboratory of Veterinary Pathology, Osaka Metropolitan University, Osaka, Japan
| | - Miyuu Tanaka
- Laboratory of Veterinary Pathology, Osaka Metropolitan University, Osaka, Japan
| | - Jyoji Yamate
- Laboratory of Veterinary Pathology, Osaka Metropolitan University, Osaka, Japan
| | - Mitsuru Kuwamura
- Laboratory of Veterinary Pathology, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
13
|
Mondal M, Bala J, Mondal KR, Afrin S, Saha P, Saha M, Jamaddar S, Roy UK, Sarkar C. The protective effects of nerol to prevent the toxicity of carbon tetrachloride to the liver in Sprague-Dawley rats. Heliyon 2023; 9:e23065. [PMID: 38125544 PMCID: PMC10731234 DOI: 10.1016/j.heliyon.2023.e23065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction Carbon-tetrachloride (CCl4) is well-known to cause liver damage due to severe oxidative stress. Nerol, on the other hand, is a monoterpene that is antioxidant, antiviral, antibacterial, anti-inflammatory, and anxiolytic. This study set out to determine if nerol may be used as a prophylactic measure against the oxidative stress mediated hepatic injury caused by CCl4. Materials and methods For the aim of this experiment, 35 male Sprague-Dawley rats ranging in body weight (BW) from 140 to 180 g were split into five separate groups. With the exception of vehicle control group 1, all experimental rats were subjected to carbon tetrachloride exposure through intra-peritoneal injection at a 0.7 mL/kg body weight dose once a week for 4 weeks (28 days). The treatment groups 3 and 4 received oral administration of nerol at 50 and 100 mg/kg BW for 28 days. In the same time period, the standard control group received 100 mg/kg BW silymarin. Results Serum hepatic markers, lipid profiles, albumin, globulin, bilirubin, and total protein were all substantially improved in nerol-treated rats in a dose-dependent manner that had been exposed to CCl4 compared to the only CCl4-treated group. Carbon tetrachloride-exposed rats had lower glutathione, superoxide dismutase, and catalase levels and higher thio-barbituric acid reactive substances (TBARS) levels than normal rats. In contrast, administration of nerol shown a significant augmentation in the concentrations of these antioxidant compounds, while concurrently inducing a decline in the levels of TBARS in the hepatic tissue. In a similar vein, the histo-pathological examination yielded further evidence indicating that nerol offered protection to the hepatocyte against damage generated by CCl4. Conclusion According to the findings of our investigation, nerol has potential as a functional element to shield the liver from harm brought on by ROS that are caused by CCL4.
Collapse
Affiliation(s)
- Milon Mondal
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Jibanananda Bala
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | | | - Sadia Afrin
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Protyaee Saha
- Department of Pharmaceutical Sciences, North South University, Dhaka, 1229, Bangladesh
| | - Moumita Saha
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| | - Sarmin Jamaddar
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Uttam Kumar Roy
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Chandan Sarkar
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| |
Collapse
|
14
|
Wang Y, Li Y, Bo L, Zhou E, Chen Y, Naranmandakh S, Xie W, Ru Q, Chen L, Zhu Z, Ding C, Wu Y. Progress of linking gut microbiota and musculoskeletal health: casualty, mechanisms, and translational values. Gut Microbes 2023; 15:2263207. [PMID: 37800576 PMCID: PMC10561578 DOI: 10.1080/19490976.2023.2263207] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/21/2023] [Indexed: 10/07/2023] Open
Abstract
The musculoskeletal system is important for balancing metabolic activity and maintaining health. Recent studies have shown that distortions in homeostasis of the intestinal microbiota are correlated with or may even contribute to abnormalities in musculoskeletal system function. Research has also shown that the intestinal flora and its secondary metabolites can impact the musculoskeletal system by regulating various phenomena, such as inflammation and immune and metabolic activities. Most of the existing literature supports that reasonable nutritional intervention helps to improve and maintain the homeostasis of intestinal microbiota, and may have a positive impact on musculoskeletal health. The purpose of organizing, summarizing and discussing the existing literature is to explore whether the intervention methods, including nutritional supplement and moderate exercise, can affect the muscle and bone health by regulating the microecology of the intestinal flora. More in-depth efficacy verification experiments will be helpful for clinical applications.
Collapse
Affiliation(s)
- Yu Wang
- Department of Health and Kinesiology, School of Physical Education, Jianghan University, Wuhan, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Bo
- Department of Rheumatology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Enyuan Zhou
- Department of Health and Kinesiology, School of Physical Education, Jianghan University, Wuhan, China
| | - Yanyan Chen
- Department of Health and Kinesiology, School of Physical Education, Jianghan University, Wuhan, China
| | - Shinen Naranmandakh
- School of Arts and Sciences, National University of Mongolia, Ulaanbaatar, Mongolia
| | - Wenqing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qin Ru
- Department of Health and Kinesiology, School of Physical Education, Jianghan University, Wuhan, China
| | - Lin Chen
- Department of Health and Kinesiology, School of Physical Education, Jianghan University, Wuhan, China
| | - Zhaohua Zhu
- Clinical Research Centre, Orthopedic Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Changhai Ding
- Clinical Research Centre, Orthopedic Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Rheumatology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Yuxiang Wu
- Department of Health and Kinesiology, School of Physical Education, Jianghan University, Wuhan, China
| |
Collapse
|
15
|
He X, Hao P, Wang Y, Wu C, Yin W, Shahid MA, Wu S, Nawaz S, Du W, Xu Y, Yu Y, Wu Y, Ye Y, Fan J, Mehmood K, Li K, Ju J. Swertia bimaculata moderated liver damage in mice by regulating intestine microbiota. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115223. [PMID: 37418941 DOI: 10.1016/j.ecoenv.2023.115223] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/25/2023] [Accepted: 06/30/2023] [Indexed: 07/09/2023]
Abstract
Swertia bimaculata (SB) is a medicinal herb in China having an array of therapeutic and biological properties. This study aimed to explore the attenuating effect of SB on carbon tetrachloride (CCl4) induced hepato-toxicity by regulation of gut microbiome in ICR mice. For this purpose, CCl4 was injected intraperitoneally in different mice groups (B, C, D and E) every 4th day for a period of 47 days. Additionally, C, D, and E groups received a daily dose (50 mg/kg, 100 mg/kg, and 200 mg/kg respectively) of Ether extract of SB via gavage for the whole study period. The results of serum biochemistry analysis, ELISA, H&E staining, and sequencing of the gut microbiome, indicated that SB significantly alleviates the CCl4-induced liver damage and hepatocyte degeneration. The serum levels of alanine transaminase, aspartate aminotransferase, malondialdehyde, interleukin 1 beta and tumor necrosis factor-alpha were significantly lower in SB treated groups compared to control while levels of glutathione peroxidase were raised. Also, the sequencing data indicate that supplementation with SB could restore the microbiome and its function in CCl4-induced variations in intestinal microbiome of mice by significantly downregulating the abundances of pathogenic intestinal bacteria species including Bacteroides, Enterococcus, Eubacterium, Bifidobacterium while upregulating the levels of beneficial bacteria like Christensenella in the gut. In conclusion, we revealed that SB depicts a beneficial effect against hepatotoxicity induced by CCl4 in mice through the remission of hepatic inflammation and injury, through regulation of oxidative stress, and by restoring gut microbiota dysbiosis.
Collapse
Affiliation(s)
- Xiaolei He
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Institute of Traditional Chinese Veterinary Medicine & MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ping Hao
- Institute of Traditional Chinese Veterinary Medicine & MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yun Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Chenyang Wu
- College of Animal Science & Technology, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, PR China
| | - Wen Yin
- College of Veterinary Medicine, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, PR China
| | - Muhammad Akbar Shahid
- Department of Pathobiology, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Bosan Road, Multan, 60800, Pakistan
| | - Shengbo Wu
- College of Veterinary Medicine, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, PR China
| | - Shah Nawaz
- Department of Anatomy, Faculty of Veterinary Science, University of Agriculture, Faisalabad 32000, Pakistan
| | - Weiming Du
- College of Veterinary Medicine, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, PR China
| | - Yanling Xu
- College of Veterinary Medicine, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, PR China
| | - Yi Yu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Yi Wu
- Institute of Traditional Chinese Veterinary Medicine & MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yuhan Ye
- College of Veterinary Medicine, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, PR China
| | - Junting Fan
- Department of Pharmaceutical Analysis, School of Pharmacy, Nanjing Medical University, Nanjing 211166, PR China
| | - Khalid Mehmood
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Kun Li
- Institute of Traditional Chinese Veterinary Medicine & MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Jianming Ju
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, PR China.
| |
Collapse
|
16
|
Abstract
Riboflavin, in its cofactor forms flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN), plays fundamental roles in energy metabolism, cellular antioxidant potential, and metabolic interactions with other micronutrients, including iron, vitamin B6, and folate. Severe riboflavin deficiency, largely confined to low-income countries, clinically manifests as cheilosis, angular stomatitis, glossitis, seborrheic dermatitis, and severe anemia with erythroid hypoplasia. Subclinical deficiency may be much more widespread, including in high-income countries, but typically goes undetected because riboflavin biomarkers are rarely measured in human studies. There are adverse health consequences of low and deficient riboflavin status throughout the life cycle, including anemia and hypertension, that could contribute substantially to the global burden of disease. This review considers the available evidence on causes, detection, and consequences of riboflavin deficiency, ranging from clinical deficiency signs to manifestations associated with less severe deficiency, and the related research, public health, and policy priorities.
Collapse
Affiliation(s)
- Helene McNulty
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland;
| | - Kristina Pentieva
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland;
| | - Mary Ward
- The Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland;
| |
Collapse
|
17
|
Lin Y, Chen XJ, Li JJ, He L, Yang YR, Zhong F, He MH, Shen YT, Tu B, Zhang X, Zeng Z. A novel type lavandulyl flavonoid from Sophora flavescens as potential anti-hepatic injury agent that inhibit TLR2/NF-κB signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 307:116163. [PMID: 36738945 DOI: 10.1016/j.jep.2023.116163] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/21/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Sophora flavescens Aiton, was a crucial source of Traditional Chinese Medicine (TCM) that has benefited human health for hundreds of years. Alkaloids and flavonoids were the major bioactive constituents from S. flavescens, which had been widely used for liver disease treatment in China. However, the liver-protective components of flavonoids from S. flavescens and their mechanism of action were not clear. AIM OF THE STUDY This work aimed to evaluate the in vitro hepatoprotective activities of 35 flavonoids from S. flavescens and screen active compounds. Furthermore, it was conducted to demonstrate the hepatoprotective effects of a new active compound (kurarinol A, 1) was isolated by authors and the ethyl acetate (EtOAc) extract form S. flavescens against carbon tetrachloride (CCl4)-induced hepatic injury in Kunming (KM) mice, meanwhile revealed the potential mechanism. MATERIALS AND METHODS The 35 flavonoids from S. flavescens were co-incubated with HepG2 cells and treated with 0.35% CCl4 for 6 h cell viability was measured by (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt) (MTS) assay. Then, in vivo animal experiments, the activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and alkaline phosphatase (ALP) in the serum were analyzed, the degree of hepatic injury was examined using hematoxylin-eosin (H&E) staining, the mRNA expression of Superoxide Dismutase 2 (SOD2), Nuclear factor E2-related factor 2 (Nrf2), heme oxygenase 1 (HO-1), Interleukin 6 (IL-6), Tumor Necrosis Factor-α (TNF-α), interleukin-1β (IL-1β), and the protein levels of nuclear factor-kappa B p65/p-p65 (NF-κB p65/p-p65), toll-like receptor 2 (TLR2), IL-1β and cyclooxygenase-2 (COX2) in hepatic tissues were detected. RESULTS The lavandulyl flavonoid (kurarinol A, 1) and the EtOAc extract from S. flavescens showed protective effects on CCl4-injured HepG2 cells, increasing cell viability from 24.5% to 61.3% and 91.8%, respectively. What's more, we found that treatment with kurarinol A (1) and the EtOAc extract lead to a significant reduction in hepatotoxicity in response to acute CCl4 exposure. Compared with the model group, experimental results exhibited kurarinol A (10 mg/kg, i.p.) and the EtOAc extract (300 mg/kg, i.p.) could decrease the levels of AST, ALT, ALP and tissue damage. Further mechanistic investigations revealed that up-regulated the mRNA expression of SOD2, Nrf2, OH-1 and down-regulated the IL-1β in liver tissues, respectively. Additionally, Western blot analyses elucidated that inhibition of IL-1β, TLR2, COX-2, NF-κB (p65/p-p65) via TLR2/NF-κB signaling pathway by kurarinol A and the EtOAc extract contribute to its hepatoprotective activity. CONCLUSION These findings demonstrated that the novel compound (kurarinol A, 1) possessed notable hepatoprotective activity against CCl4. It was confirmed that kurarinol A had a certain effect on mice with liver damage induced by CCl4, and its mechanism could be include inhibiting inflammation and reducing of oxidative stress reaction by regulating expression of related genes and proteins. Thus, kurarinol A could as a novel active agent that contributes to the hepatoprotective activity of S. flavescens for the treatment of live injury.
Collapse
Affiliation(s)
- Yan Lin
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang, 550025, China; School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, 550025, China; Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, 550025, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Xing-Jun Chen
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang, 550025, China; School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, 550025, China; Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, 550025, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Jing-Jing Li
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang, 550025, China; School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, 550025, China; Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, 550025, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Lei He
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang, 550025, China; School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, 550025, China; Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, 550025, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Ya-Ru Yang
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang, 550025, China; School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, 550025, China; Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, 550025, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Fei Zhong
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang, 550025, China; School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, 550025, China; Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, 550025, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Ming-Hui He
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang, 550025, China; School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, 550025, China; Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, 550025, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Yi-Tong Shen
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang, 550025, China; School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, 550025, China; Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, 550025, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Bo Tu
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang, 550025, China; School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, 550025, China; Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, 550025, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China.
| | - Xu Zhang
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang, 550025, China; School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, 550025, China; Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, 550025, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China.
| | - Zhu Zeng
- Key Laboratory of Infectious Immune and Antibody Engineering of Guizhou Province, Engineering Research Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang, 550025, China; School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guizhou, 550025, China; Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, 550025, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China.
| |
Collapse
|
18
|
Ghorbanpour A, Salari S, Baluchnejadmojarad T, Roghani M. Capsaicin protects against septic acute liver injury by attenuation of apoptosis and mitochondrial dysfunction. Heliyon 2023; 9:e14205. [PMID: 36938442 PMCID: PMC10018474 DOI: 10.1016/j.heliyon.2023.e14205] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
Capsaicin is the main pungent bioactive constituent in red chili with promising therapeutic properties due to its anti-oxidative and anti-inflammatory effects. No evidence exists on the beneficial effect of capsaicin on apoptosis and mitochondrial function in acute liver injury (ALI) under septic conditions. For inducing septic ALI, lipopolysaccharide (LPS, 50 μg/kg) and d-galactose (D-Gal, 400 mg/kg) was intraperitoneally injected and capsaicin was given orally at 5 or 20 mg/kg. Functional markers of liver function and mitochondrial dysfunction were determined as well as hepatic assessment of apoptotic, oxidative, and inflammatory factors. Capsaicin at the higher dose appropriately decreased serum level of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in addition to reducing hepatic level of malondialdehyde (MDA), reactive oxygen species (ROS), nitrite, NF-kB, TLR4, IL-1β, TNF-α, caspase 3, DNA fragmentation and boosting sirtuin 1, Nrf2, superoxide dismutase (SOD) activity, and heme oxygenase (HO-1). These beneficial effects of capsaicin were associated with reversal and/or improvement of gene expression for pro-apoptotic Bax, anti-apoptotic Bcl2, mitochondrial and metabolic regulators PGC-1α, sirtuin 1, and AMPK, and inflammation-associated factors. Additionally, capsaicin exerted a hepatoprotective effect, as revealed by its reduction of liver histopathological changes. These findings evidently indicate hepatoprotective property of capsaicin under septic conditions that can be attributed to its down-regulation of oxidative and inflammatory processes besides its potential to attenuate mitochondrial dysfunction and apoptosis.
Collapse
Affiliation(s)
| | | | | | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran
- Corresponding author.
| |
Collapse
|
19
|
Abstract
Aerobic organisms need antioxidant defense systems to deal with free radicals which either are produced during aerobic respiration or may have an external origin. Oxidative stress, which is resulted from an imbalance between the production of free radicals and the ability of antioxidant defense mechanism to deactivate them, is involved in the development of many chronic diseases such as cancer, diabetes, CVD and some neurodegenerative diseases. Reinforcing the antioxidant potential of the body has been considered as a strategy that could prevent and manage such conditions. In the previous review article published by British Journal of Nutrition, in 2014, for the first time, we concluded that riboflavin could alleviate oxidative stress. Although riboflavin can serve as a prooxidant when exposed to ultraviolet irradiation, the literature is replete with studies that support its antioxidant properties. Furthermore, recent evidence suggests that riboflavin may have a therapeutic potential in many conditions in which oxidative stress is involved, although the therapeutic efficacy of riboflavin as an antioxidant requires further study under conditions of wellness and clinical disease.
Collapse
|
20
|
Hassan ME, Hassan MA, El-Nekeety AA, Abdel-Aziem SH, Bakeer RM, Abdel-Wahhab MA. Zinc-loaded whey protein nanoparticles alleviate the oxidative damage and enhance the gene expression of inflammatory mediators in rats. J Trace Elem Med Biol 2022; 73:127030. [PMID: 35779434 DOI: 10.1016/j.jtemb.2022.127030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/09/2022] [Accepted: 06/22/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Zinc (Zn) is an essential trace element required for the function of the immune system. However, Zn fortification of food has faced some challenges, although excess Zn may be induced obesity and other related. This study aimed to use Zn-loaded whey protein nanoparticles (Zn-WPNPs) to enhance the immunomodulatory activity of Zn in rats treated with CCl4. METHODS Zn was loaded to WPNPs at a level of 14 mg/g. Four experimental groups of male albino Wistar rats were treated for 30 days including the control group, CCl4-treated group (0.5 ml/100 g b.w), Zn plus CCl4-treated group (50 mg/kg b.w), and CCl4 plus Zn-WPNPs-treated group (50 mg/kg b.w). Blood and tissue samples were collected for different assays and histological examinations. RESULTS The results revealed that CCl4 disturbs the serum biochemical, hematological, and immune indicators in different organs besides the liver as a target organ. Animals that received CCl4 showed a significant increase in oxidative stress markers, cytokines, and the mRNA expression of inflammatory mediators in the lung and spleen accompanied by a significant decrease in the hepatic and renal antioxidant enzymes along with histological changes in the liver, kidney, spleen, and lung. Zn or Zn-WPNPs could improve these parameters and the histological picture of the tested organs and Zn-WPNPs were more effective than Zn alone. CONCLUSION WPNPs induced synergistic immune-modulating effects which may control Zn release and may be a suitable candidate to enhance the immune system during any pandemic or the exposure to any chemicals that affect the immune system.
Collapse
Affiliation(s)
- Marwa E Hassan
- Toxicology Department, Research Institute of Medical Entomology, Giza, Egypt
| | - Mona A Hassan
- Food Evaluation and Food Science Department, National Organization for Drug Control and Research, Giza, Egypt
| | - Aziza A El-Nekeety
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Cairo, Egypt
| | | | - Rofanda M Bakeer
- Pathology Department, Faculty of Medicine, Helwan University, Cairo, Egypt
| | - Mosaad A Abdel-Wahhab
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Cairo, Egypt.
| |
Collapse
|
21
|
High-content imaging of human hepatic spheroids for researching the mechanism of duloxetine-induced hepatotoxicity. Cell Death Dis 2022; 13:669. [PMID: 35915074 PMCID: PMC9343405 DOI: 10.1038/s41419-022-05042-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/12/2022] [Accepted: 06/27/2022] [Indexed: 01/21/2023]
Abstract
Duloxetine (DLX) has been approved for the successful treatment of psychiatric diseases, including major depressive disorder, diabetic neuropathy, fibromyalgia and generalized anxiety disorder. However, since the usage of DLX carries a manufacturer warning of hepatotoxicity given its implication in numerous cases of drug-induced liver injuries (DILI), it is not recommended for patients with chronic liver diseases. In our previous study, we developed an enhanced human-simulated hepatic spheroid (EHS) imaging model system for performing drug hepatotoxicity evaluation using the human hepatoma cell line HepaRG and the support of a pulverized liver biomatrix scaffold, which demonstrated much improved hepatic-specific functions. In the current study, we were able to use this robust model to demonstrate that the DLX-DILI is a human CYP450 specific, metabolism-dependent, oxidative stress triggered complex hepatic injury. High-content imaging analysis (HCA) of organoids exposed to DLX showed that the potential toxicophore, naphthyl ring in DLX initiated oxidative stress which ultimately led to mitochondrial dysfunction in the hepatic organoids, and vice versa. Furthermore, DLX-induced hepatic steatosis and cholestasis was also detected in the exposed EHSs. We also discovered that a novel compound S-071031B, which replaced DLX's naphthyl ring with benzodioxole, showed dramatically lower hepatotoxicities through reducing oxidative stress. Thus, we conclusively present the human-relevant EHS model as an ideal, highly competent system for evaluating DLX induced hepatotoxicity and exploring related mechanisms in vitro. Moreover, HCA use on functional hepatic organoids has promising application prospects for guiding compound structural modifications and optimization in order to improve drug development by reducing hepatotoxicity.
Collapse
|
22
|
Shariare MH, Pinky NJK, Abedin J, Kazi M, Aldughaim MS, Uddin MN. Liposomal Drug Delivery of Blumea lacera Leaf Extract: In-Vivo Hepatoprotective Effects. NANOMATERIALS 2022; 12:nano12132262. [PMID: 35808096 PMCID: PMC9268469 DOI: 10.3390/nano12132262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 12/04/2022]
Abstract
Background: Blumea lacera (B. lacera) is a herbaceous plant commonly found in south-east Asia. It shows significant therapeutic activities against various diseases. The objectives of this study were to evaluate hepatoprotective effects of Blumea lacera leaf extract and also to investigate the comparative effectiveness between a liposomal preparation and a suspension of B. lacera leaf extract against carbon tetrachloride (CCl4)-induced liver damage. Methods: B. lacera leaf extract was characterized using a GC-MS method. A liposomal preparation of B. lacera leaf extract was developed using an ethanol injection method and characterized using dynamic light scattering (DLS) and electronic microscopic systems. The hepatoprotective effects of B. lacera leaf extracts and its liposomal preparation were investigated using CCl4-induced liver damage in Long Evan rats. Results: GC-MS data showed the presence of different components (e.g., phytol) in the B. lacera leaf extract. DLS and microscopic data showed that a liposomal preparation of B. lacera leaf extracts was in the nano size range. In vivo study results showed that liposomal preparation and a suspension of B. lacera leaf extract normalized liver biochemical parameters, enzymes and oxidative stress markers which were elevated due to CCl4 administration. However, a liposomal formulation of B. lacera leaf extract showed significantly better hepatoprotective effects compared to a suspension of leaf extract. In addition, histopathological evaluation showed that B. lacera leaf extract and its liposomal preparation treatments decreased the extent of CCl4-induced liver inflammations. Conclusion: Results demonstrated that B. lacera leaf extract was effective against CCl4-induced liver injury possibly due to the presence of components such as phytol. A liposomal preparation exhibited significantly better activity compared to a B. lacera suspension, probably due to improved bioavailability and stability of the leaf extract.
Collapse
Affiliation(s)
- Mohammad Hossain Shariare
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh; (M.H.S.); (N.J.K.P.); (J.A.)
| | - Nusrat Jahan Khan Pinky
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh; (M.H.S.); (N.J.K.P.); (J.A.)
| | - Joynal Abedin
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh; (M.H.S.); (N.J.K.P.); (J.A.)
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
- Correspondence: (M.K.); (M.N.U.)
| | | | - Mohammad N. Uddin
- College of Pharmacy, Mercer University, 3001 Mercer University Drive, Atlanta, GA 30341, USA
- Correspondence: (M.K.); (M.N.U.)
| |
Collapse
|
23
|
Zhu YY, Thakur K, Feng JY, Zhang JG, Hu F, Cespedes-Acuña CL, Liao C, Wei ZJ. Riboflavin Bioenriched Soymilk Alleviates Oxidative Stress Mediated Liver Injury, Intestinal Inflammation, and Gut Microbiota Modification in B 2 Depletion-Repletion Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3818-3831. [PMID: 35302755 DOI: 10.1021/acs.jafc.2c00117] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Epidemiological evidence emphasizes that ariboflavinosis can lead to oxidative stress, which in turn may mediate the initiation and progression of liver injury and intestinal inflammation. Although vitamin B2 has gained worldwide attention for its antioxidant defense, the relationship between B2 status, oxidative stress, inflammatory response, and intestinal homeostasis remains indistinct. Herein, we developed a B2 depletion-repletion BALB/c mice model to investigate the ameliorative effects of B2 bioenriched fermented soymilk (B2FS) on ariboflavinosis, accompanied by oxidative stress, inflammation, and gut microbiota modulation in response to B2 deficiency. In vivo results revealed that the phenotypic ariboflavinosis symptoms, growth rate, EGRAC status, and hepatic function reverted to normal after B2FS supplementation. B2FS significantly elevated CAT, SOD, T-AOC, and compromised MDA levels in the serum, simultaneously up-regulated Nrf2, CAT, and SOD2, and down-regulated Keap1 gene in the colon. The histopathological characteristics revealed significant alleviation in the liver and intestinal inflammation, confirmed by the downregulation of inflammatory (IL-1β and IL-6) and nuclear transcription (NF-κB) factors after B2FS supplementation. B2FS also increased the abundance and diversity of gut microbiota, increased the relative abundance of Prevotella and Absiella, as well as decreased Proteobacteria, Fusobacteria, Synergistetes, and Cyanobacteria in strong conjunction with antioxidant, anti-inflammatory properties, and gut homeostasis along with the remarkable increase in cecal SCFAs content. We hereby reveal that B2FS can effectively alleviate deleterious ariboflavinosis associated with oxidative stress mediated liver injury, chronic intestinal inflammation, and gut dysbiosis in the B2 depletion-repletion mice model via activation of the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Yun-Yang Zhu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Kiran Thakur
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
- School of Biological Science and Engineering, Collaborative Innovation Center for Food Production and Safety, North Minzu University, Yinchuan 750021, People's Republic of China
| | - Jing-Yu Feng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Jian-Guo Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
- School of Biological Science and Engineering, Collaborative Innovation Center for Food Production and Safety, North Minzu University, Yinchuan 750021, People's Republic of China
| | - Fei Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
- School of Biological Science and Engineering, Collaborative Innovation Center for Food Production and Safety, North Minzu University, Yinchuan 750021, People's Republic of China
| | - Carlos L Cespedes-Acuña
- Department of Basic Sciences, Research Group in Chemistry and Biotechnology of Bioactive Natural Products, Faculty of Sciences, University of Bio-Bío, Andrés Bello Avenue, Chillan 3800708, Chile
| | - Chenzhong Liao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Zhao-Jun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
- School of Biological Science and Engineering, Collaborative Innovation Center for Food Production and Safety, North Minzu University, Yinchuan 750021, People's Republic of China
| |
Collapse
|
24
|
Li X, Yang J, Liang C, Yang W, Zhu Q, Luo H, Liu X, Wang J, Zhang J. Potential Protective Effect of Riboflavin Against Pathological Changes in the Main Organs of Male Mice Induced by Fluoride Exposure. Biol Trace Elem Res 2022; 200:1262-1273. [PMID: 33961201 DOI: 10.1007/s12011-021-02746-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/28/2021] [Indexed: 12/13/2022]
Abstract
Long-term exposure to excessive fluorine could cause damage to various tissues and organs in human and animals. However, there is no effective antidote to prevent and cure fluorosis except for avoiding fluoride intake. As an essential nutrient, riboflavin (VB2) has been identified to relieve oxidative stress and inflammation in animal tissues caused by other toxic substances, whether it can alleviate the damage caused by fluoride is unknown. For this, 32 ICR male mice were allocated to four groups of eight each. They were treated with 0 (distilled water), 100 mg/L sodium fluoride (NaF), 40 mg/L VB2, and their combination (100 mg/L NaF plus 40 mg/L VB2) via the drinking water for 90 consecutive days, respectively. The content of bone fluoride and the histomorphology of the main organs including liver, kidney, cerebral cortex, epididymis, small intestine, and colon were evaluated and pathologically scored. The results found that fluoride caused the pathological changes in liver, kidney, cerebral cortex, epididymis, small intestine, and colon at varying degrees, while riboflavin supplementation reduced significantly the accumulation of fluoride in bone, alleviated the morphological damage to cerebral cortex, epididymis, ileum, and colon. This study provides new clues for deeply exploring the mechanism of riboflavin intervention in fluorosis.
Collapse
Affiliation(s)
- Xiang Li
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Jie Yang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Chen Liang
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Wei Yang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Qianlong Zhu
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Huifeng Luo
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Xueyan Liu
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Jundong Wang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China
| | - Jianhai Zhang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, People's Republic of China.
| |
Collapse
|
25
|
Hepatoprotective Effects of (-) Epicatechin in CCl 4-Induced Toxicity Model Are Mediated via Modulation of Oxidative Stress Markers in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2021:4655150. [PMID: 34976093 PMCID: PMC8716200 DOI: 10.1155/2021/4655150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/08/2021] [Indexed: 12/24/2022]
Abstract
Objective (−) Epicatechin (EP) is a naturally occurring antioxidant flavonoid found in some green plants. The current study was designed to evaluate the potential role of antioxidant mechanisms in the hepatoprotective properties of EP using the carbon tetrachloride (CCl4)-induced acute liver injury model. Materials and Methods Rats (n = 7 per group) were divided into five groups including control group, (−) epicatechin group (20 mg·kg−1 body weight), CCl4 group (1 mL−1 body weight), CCl4-EP treatment group, and CCl4-silymarin (SILY) group. The levels of enzymes including hepatic malondialdehyde (MDA), glutathione (GSH), catalase (CAT), glutathione S-transferase (GST), nitric oxide synthase (NOS), glutathione peroxidase (GPx), and cytochrome P450 (CYP450) were analyzed via enzyme-linked immunosorbent assay (ELISA). Histological studies were performed on all groups to assess the regenerative effects of test sample and compare it with the control group. Results Test compound EP and standard drug silymarin (SILY) considerably reduced liver function enzyme levels in the blood, which were raised by CCl4 administration, and increased serum albumin and total protein (TP) concentrations. The hepatic malondialdehyde (MDA) level was considerably declined, whereas glutathione (GSH), catalase (CAT), glutathione S-transferase (GST), nitric oxide synthase (NOS), glutathione peroxidase (GPx), and cytochrome P450 (CYP450) levels were upregulated in the EC-treated groups. The hepatoprotective results of the study were further confirmed via the histological assessments, which indicated a regeneration of the damaged hepatic tissue in treated rats. Conclusions The results of this study revealed a significant protective efficacy of EP against CCl4-induced liver injury, which was potentially mediated via upregulation of antioxidant enzymes and direct scavenging effects of the compound against free radicals.
Collapse
|
26
|
Macha B, Kulkarni R, Garige AK, Palabindala R, Akkinepally R, Garlapati A. Design, Synthesis and Biological Evaluation of New Cycloalkyl Fused Quinolines Tethered to Isatin Schiff Bases as Cholinesterase Inhibitors. Comb Chem High Throughput Screen 2020; 25:167-186. [PMID: 33308120 DOI: 10.2174/1386207323666201211092138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/01/2020] [Accepted: 11/08/2020] [Indexed: 11/22/2022]
Abstract
AIMS AND OBJECTIVE Alzheimer's disease is now a most prevalent neuro degenerative disease of central nervous system leading to dementia in elderly aged population. Numerous pathological changes have been associated in the progression of Alzheimer's disease. One of such pathological hypothesis is declined cholinergic activity which eventually affects cognitive and memory deficits. Inhibition cholinesterases will apparently elevate acetyl choline levels which is benefactor on cognitive symptoms of the disease. This manuscript describes the new tacrine derivatives tethered to isatin Schiff bases through alkanoyl linker and screened for cholinesterase inhibitory activity. MATERIALS AND METHODS Tacrine and two more cycloalkyl ring fused quinolones were synthesized and converted to Ncycloalkyl fused quinoline chloroamides. Isatin Schiff bases were also synthesized by the reaction between isatin and substituted aromatic anilines and in subsequent reaction, isatin Schiff bases were reacted with cycloalkyl fused quinolones to afford anticipated compounds 10a-i, 11a-i and 12a-i. All the compounds have been screened for acetyl and butyryl cholinesterase inhibitory activity and in vivo behavioral studies. Binding interactions of the desired compounds have also been studied by docking them in active site of both cholinesterases. RESULTS Three compounds 12d, 12e and 12h with propionyl and butyroyl linker between amine and isatin Schiff base scaffold have shown potent acetyl and butyryl cholinesterase inhibitory activity. However most potent cholinesterase inhibitor was 13d with IC50 value of 0.71±0.004 and 1.08±0.02 μM against acetyl and butyryl cholinesterases respectively. The hepatotoxicity of potent compounds revealed that the tested compounds were less hepatotoxic than tacrine and also exhibited encouraging in vivo behavioral studies in test animals. Docking studies of all the molecules disclosed close hydrogen bond interactions within the binding site of both cholinesterases. CONCLUSION New cycloalkyl fused quinolones tethered with alkoyl linker to isatin Schiff bases endowed significant and potent cholinesterase inhibitory activities. Few of the compounds have also exhibited lesser hepatotoxicity and all the synthesized compounds were good in behavioral studies. Molecular docking studies also indicated close interactions in active site of cholinesterases.
Collapse
Affiliation(s)
- Baswaraju Macha
- Medicinal Chemistry Division, University College of Pharmaceutical Sciences, University, Warangal, Telangana506009. India
| | - Ravindra Kulkarni
- Bharati Vidyapeeth's Poona College of Pharmacy, Paudh Road, Erandawane, Pune-411038. India
| | - Anil Kumar Garige
- Jayamukhi Institute of Pharmaceutical Sciences, Narsampet, Warangal, 506332 . India
| | - Rambabu Palabindala
- Medicinal Chemistry Division, University College of Pharmaceutical Sciences, University, Warangal, Telangana506009. India
| | - Raghuramrao Akkinepally
- Medicinal Chemistry Division, University College of Pharmaceutical Sciences, University, Warangal, Telangana506009. India
| | - Achaiah Garlapati
- Medicinal Chemistry Division, University College of Pharmaceutical Sciences, University, Warangal, Telangana506009. India
| |
Collapse
|
27
|
Xing H, Fu R, Cheng C, Cai Y, Wang X, Deng D, Gong X, Chen J. Hyperoside Protected Against Oxidative Stress-Induced Liver Injury via the PHLPP2-AKT-GSK-3β Signaling Pathway In Vivo and In Vitro. Front Pharmacol 2020; 11:1065. [PMID: 32765271 PMCID: PMC7379337 DOI: 10.3389/fphar.2020.01065] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/30/2020] [Indexed: 12/19/2022] Open
Abstract
Hyperoside, isolated from Drosera rotundifolia L., seeds of Cuscuta chinensis Lam., or Hypericum perforatum L., originally showed to possess an antifungal and antibacterial activity, while recently showed the protective effects against oxidative stress-induced liver injury. This study investigated such a protective effect of hyperoside and the underlying molecular mechanisms in vitro and in carbon tetrachloride (CCl4)-injured rat livers. The data showed that hyperoside was able to prevent the oxidative stress-induced liver morphological changes and CCl4-induced rat liver injury. Hyperoside reversed the decrease of superoxidase dismutase (SOD) level and the increase of malondialdehyde (MDA) level in vivo. Moreover, hyperoside regulated the pleckstrin homology (PH) domain leucine-rich repeat protein phosphatase 2 (PHLPP2)-protein kinase B (AKT)-glycogen synthase kinase 3β (GSK-3β) signaling pathway in tert-butylhydroquinone (t-BHP)-treated liver cells, e.g., Hyperoside reduced PHLPP2 expression to activate AKT phosphorylation, induce GSK-3β phosphorylation, and then increased nuclear factor erythroid-2-related factor 2 (Nrf2) nuclear translocation, reduced nuclear translocation of phosphorylated Fyn, and promoted heme oxygenase-1 (HO-1) expression in vivo and in vitro. In contrast, siRNA-mediated knockdown of PHLPP2 expression enhanced hyperoside-mediated activation of the AKT-GSK-3β kinase pathway in liver cells. In conclusion, the present study demonstrated that hyperoside could protect against oxidative stress-induced liver injury by regulating the PHLPP2-AKT-GSK-3β signaling pathway in vivo and in vitro.
Collapse
Affiliation(s)
- Haiyan Xing
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Ruoqiu Fu
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Caiyi Cheng
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Yongqing Cai
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Xianfeng Wang
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Dongmei Deng
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiaoyuan Gong
- Center for Joint Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Jianhong Chen
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
28
|
Zhang MQ, Ren X, Zhao Q, Yue SJ, Fu XM, Li X, Chen KX, Guo YW, Shao CL, Wang CY. Hepatoprotective effects of total phenylethanoid glycosides from Acanthus ilicifolius L. against carbon tetrachloride-induced hepatotoxicity. JOURNAL OF ETHNOPHARMACOLOGY 2020; 256:112795. [PMID: 32224197 DOI: 10.1016/j.jep.2020.112795] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 02/23/2020] [Accepted: 03/23/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acanthus ilicifolius L. has been used as a folk medicine in the treatment of acute and chronic hepatitis in China for a long time. Phenylethanoid glycosides are one of main components in A. ilicifolius L. AIM OF THE STUDY The aim of present study was to assess the hepatoprotective activities of total phenylethanoid glycosides from A. ilicifolius L. (APhGs) against carbon tetrachloride (CCl4)-induced liver injury in vivo and in vitro. MATERIALS AND METHOD The APhGs was separated by resin column chromatography. The purity of total phenylethanoid glycosides was determined by UV-Vis spectrophotometry using acteoside as a standard. The hepatoprotective activities of APhGs against CCl4-induced liver injury were performed on experimental mice and L-02 hepatocytes. Moreover, the antioxidant activities of APhGs were tested in vitro. RESULTS The results showed that pre-administration of APhGs to mice decreased alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels in serum, and improved superoxide dismutase (SOD) activity and decreased malondialdehyde (MDA) level in serum and liver tissue induced by CCl4. Specifically, the SOD activities of APhGs-H and APhGs-M treatment groups were stronger than that of silymarin treatment group. The protective activities of APhGs were confirmed by histopathological results. Moreover, immunohistochemical analysis showed that APhGs could remarkably down-regulate the protein expression of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). In vitro experiment, APhGs was observed to increase L-02 hepatocyte viability against CCl4-induced hepatotoxicity. In addition, antioxidation assays revealed that APhGs showed 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, and ferric reducing ability. CONCLUSION Overall, total phenylethanoid glycosides from A. ilicifolius L. displayed promising hepatoprotective effects. These results offer a support for the medicine uses of A. ilicifolius L.
Collapse
Affiliation(s)
- Meng-Qi Zhang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Key Laboratory for Biosensor of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Xia Ren
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Qing Zhao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Shi-Jun Yue
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Xiu-Mei Fu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; College of Economics, Ocean University of China, Qingdao, 266100, China
| | - Xin Li
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Kai-Xian Chen
- Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yue-Wei Guo
- Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
29
|
Application of vitamin-producing lactic acid bacteria to treat intestinal inflammatory diseases. Appl Microbiol Biotechnol 2020; 104:3331-3337. [PMID: 32112134 DOI: 10.1007/s00253-020-10487-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/13/2020] [Accepted: 02/18/2020] [Indexed: 12/15/2022]
Abstract
Recent studies have shown that inflammatory diseases are becoming more frequent throughout the world. The causes of these disorders are multifactorial and include genetic, immunological, and environmental factors, and intestinal microbiota dysbiosis. The use of beneficial microorganisms has shown to be useful in the prevention and treatment of disorders such as colitis, mucositis, and even colon cancer by their immune-stimulating properties. It has also been shown that certain vitamins, especially riboflavin and folate derivatives, have proven to be helpful in the treatment of these diseases. The application of vitamin-producing lactic acid bacteria, especially strains that produce folate and riboflavin together with immune-stimulating strains, could be used as adjunct treatments in patients suffering from a wide range of inflammatory diseases since they could improve treatment efficiency and prevent undesirable side effects in addition to their nutrition values. In this review, the most up to date information on the current knowledge and uses of vitamin-producing lactic acid bacteria is discussed in order to stimulate further studies in this field.
Collapse
|
30
|
Riboflavin: The Health Benefits of a Forgotten Natural Vitamin. Int J Mol Sci 2020; 21:ijms21030950. [PMID: 32023913 PMCID: PMC7037471 DOI: 10.3390/ijms21030950] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 02/07/2023] Open
Abstract
Riboflavin (RF) is a water-soluble member of the B-vitamin family. Sufficient dietary and supplemental RF intake appears to have a protective effect on various medical conditions such as sepsis, ischemia etc., while it also contributes to the reduction in the risk of some forms of cancer in humans. These biological effects of RF have been widely studied for their anti-oxidant, anti-aging, anti-inflammatory, anti-nociceptive and anti-cancer properties. Moreover, the combination of RF and other compounds or drugs can have a wide variety of effects and protective properties, and diminish the toxic effect of drugs in several treatments. Research has been done in order to review the latest findings about the link between RF and different clinical aberrations. Since further studies have been published in this field, it is appropriate to consider a re-evaluation of the importance of RF in terms of its beneficial properties.
Collapse
|
31
|
Anyasor GN, Moses N, Kale O. Hepatoprotective and hematological effects of Justicia secunda Vahl leaves on carbon tetrachloride induced toxicity in rats. Biotech Histochem 2020; 95:349-359. [PMID: 31969022 DOI: 10.1080/10520295.2019.1700430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Justicia secunda Vahl is an exotic plant that is used to treat medical problems. We investigated the hepatoprotective and hematological effects of aqueous extracts of J. secunda leaves on carbon tetrachloride induced toxicity in rats. Leaf extracts were prepared using hot and cold extraction methods to obtain a hot extract of J. secunda leaves (JSHAE) and a cold extract of J. secunda leaves (JSCAE). Total phenol and flavonoid measurements and antioxidant assays were performed to determine the extract with the greater antioxidant activity. JSHAE was the more effective extract for treatment of carbon tetrachloride (CCl4) induced hepatotoxicity and hepatotoxicity in rats. Silymarin was used as a standard for comparison. We found that JSHAE contained more total phenol and flavonoid than JSCAE. JSHAE exhibited significantly greater ferric reducing antioxidant power and 1,1-diphenyl-2-picryl hydrazyl and thiobarbituric acid scavenging activity than JSCAE. We also found that in vivo, 100 and 200 mg/kg JSHAE significantly reduced plasma aspartate aminotransferase, alanine aminotransferase, lactate dehydrogenase and total bilirubin levels following CCl4 induced toxicity compared to untreated rats. JSHAE treated animals exhibited white blood cell, red blood cell, hemoglobin, hematocrit, platelet and procalcitonin levels that were comparable to control animals. Liver sections of rats treated with 200 mg/kg. JSHAE exhibited no abnormalities.
Collapse
Affiliation(s)
- Godswill Nduka Anyasor
- Department of Biochemistry, Benjamin S. Carson (Snr.) School of Medicine, College of Medicine, Babcock University, Nigeria, PMB 21244 Ikeja
| | - Nwobi Moses
- Department of Biochemistry, Benjamin S. Carson (Snr.) School of Medicine, College of Medicine, Babcock University, Nigeria, PMB 21244 Ikeja
| | - Oluwafemi Kale
- Department of Pharmacology, Benjamin S. Carson (Snr.) School of Medicine, College of Medicine, Babcock University, Nigeria, PMB 21244 Ikeja
| |
Collapse
|
32
|
Ren X, Xin LT, Zhang MQ, Zhao Q, Yue SY, Chen KX, Guo YW, Shao CL, Wang CY. Hepatoprotective effects of a traditional Chinese medicine formula against carbon tetrachloride-induced hepatotoxicity in vivo and in vitro. Biomed Pharmacother 2019; 117:109190. [PMID: 31387170 DOI: 10.1016/j.biopha.2019.109190] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/24/2019] [Accepted: 06/28/2019] [Indexed: 12/15/2022] Open
Abstract
Le-Cao-Shi (LCS), a formula of Traditional Chinese Medicine (TCM), has been used as a folk medicine for protection and treatment of liver injury. However, scientific evidences on its hepatoprotective effects have not been investigated. In this study, hepatoprotective activities of LCS water extracts (LCS-W) and ethanol extracts (LCS-E) against carbon tetrachloride (CCl4)-induced liver damage were investigated in vivo and in vitro. In vivo experiments, pretreatment of LCS-W and LCS-E to rats significantly declined the levels of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST), and markedly increased the activity of superoxide dismutase (SOD) and ameliorated the level of malondialdehyde (MDA) induced by CCl4 treatment. Especially, LCS-WM group significantly prevented the elevation of lipid peroxidation level induced by CCl4, with the MDA level closed to that of normal group. Histopathological examinations further confirmed that LCS-W and LCS-E could protect the liver cells from CCl4-induced damage. In addition, immunohistochemically analysis revealed that LCS-W could significantly down-regulated the hepatic protein expression of necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). Correspondingly, LCS-W and LCS-E were observed to promote cell viability and decline the levels of ALT, AST, and lactate dehydrogenase (LDH) in vitro. It could be concluded that LCS can exert a protective effect against CCl4-induced hepatotoxicity, which might be a potential therapeutic prescription for preventing or treating liver injury. Notably, LCS-W displayed better hepatoprotective activity against CCl4-induced injury than that of LCS-E, suggesting that LCS extracted by water decoction has good development prospects. Our results contribute towards the validation of the traditional use of LCS in the treatment of liver disorders.
Collapse
Affiliation(s)
- Xia Ren
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266237, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Lan-Ting Xin
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266237, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Meng-Qi Zhang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266237, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Qing Zhao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266237, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Shi-Yun Yue
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266237, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Kai-Xian Chen
- Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yue-Wei Guo
- Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266237, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266237, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
33
|
Liang X, Wu K, Liu M, Yang B. Adverse impact of carbon tetrachloride on metabolic function in mice. J Cell Biochem 2019; 120:11973-11980. [PMID: 30775809 DOI: 10.1002/jcb.28481] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 10/31/2018] [Accepted: 01/07/2019] [Indexed: 01/24/2023]
Abstract
Carbon tetrachloride (CCl4 ), a potent hepatotoxin, is linked to the histopathological outcomes of inflammatory or oxidative stress, and cell death. However, further study of additional dysmetabolism induced by CCl 4 toxicant has not yet been investigated. In current study, chronical and acute exposures of CCl 4 in mice were used to unmask the biological molecular mechanism responsible for insulin-dependent metabolic disorder. In experimental methods, a number of biochemical assays were used in assessment of biological impacts on insulin-produced pancreas and insulin-responsive hepatocyte after long- and short-term exposures of CCl 4 toxicant, respectively. As a result, data from oral glucose tolerance test showed that CCl 4 exposures induced glucose tolerance and disrupted blood insulin and glucagon levels time-dependently. Meanwhile, biochemical and histocytological analyses further indicated that CCl 4 exposures significantly resulted in liver cell damage, induced abnormal changes of hepatic and skeletal glycogen synthesis. In addition, acute CCl 4 -exposed mice showed reduced functional proteins of glucose transporter 2 (GLUT2), insulin receptor β, insulin receptor substrate 1, glycogen synthase kinase 3β (GSK3β), p-AKT Ser473 associated with AKT signaling pathway in liver cells, whereas acute CCl 4 exposure downregulated the endogenous expressions of the insulin and glucagon hormonal proteins in the pancreas. Taken together, the current findings highlight that CCl 4 impaired insulin-dependent glucose homeostasis through modulating hepatocellular AKT signaling pathway in acute CCl 4 exposure and GLUT2/GSK3β pathway in chronic CCl 4 -exposed liver cells.
Collapse
Affiliation(s)
- Xiaoliu Liang
- College of Pharmacy, Guangxi Medical University, Guangxi, Nanning, P. R. China
| | - Ka Wu
- Department of Pharmacy, The Second People's Hospital of Nanning City, The Third Affiliated Hospital of Guangxi Medical University, Guangxi, Nanning, P. R. China
| | - Meizhen Liu
- College of Pharmacy, Guangxi Medical University, Guangxi, Nanning, P. R. China
| | - Bin Yang
- College of Pharmacy, Guangxi Medical University, Guangxi, Nanning, P. R. China
| |
Collapse
|
34
|
Sun Z, Tan X, Xu M, Liu Q, Ye H, Zou C, Zhou Y, Su N, Chen L, Wang A, Ye C. Effects of dietary dandelion extracts on growth performance, liver histology, immune-related gene expression and CCl 4 resistance of hybrid grouper (Epinephelus lanceolatus♂ × Epinephelus fuscoguttatus♀). FISH & SHELLFISH IMMUNOLOGY 2019; 88:126-134. [PMID: 30779997 DOI: 10.1016/j.fsi.2019.02.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 06/09/2023]
Abstract
The study investigated the effects of dietary supplementation with dandelion extracts (DE) on growth performance, feed utilization, body composition, serum biochemical, liver histology, immune-related gene expression and CCl4 resistance of hybrid grouper (Epinephelus lanceolatus♂ × Epinephelus fuscoguttatus♀). A basal diet supplemented with DE at 0% (diet 0%), 0.1% (diet 0.1%), 0.2% (diet 0.2%), 0.4% (diet 0.4%) and 0.8% (diet 0.8%) were fed to hybrid grouper for 8 weeks. The results revealed that dietary DE had not a significant impact on growth performance and feed utilization (P > 0.05), but it could decrease the percent of crude lipids in whole body and increase the percent of crude protein in muscle (P < 0.05). Dietary DE increased the mRNA levels of antioxidant enzymes (catalase, glutathione peroxidase and glutathione reductase) and reduced inflammatory factor in the spleen and head-kidney of fish (P < 0.05), but reduced the expression of the liver antioxidant gene except for glutathione reductase (P < 0.05). Dietary supplementation with 0.2%-0.4% DE could effectively improve liver health. After injection of CCL4 by 72 h, fish fed Diet0.2% and Diet0.4% showed regular hepatocyte morphology while fish fed Diet 0%, Diet 0.1% and Diet 0.8% showed hepatocyte damage. Higher survival rate and total blood cell count was observed in fish fed 0.1%-0.4% dietary DE (P < 0.05). In conclusion, DE could be used as a functional feed additive to enhance liver function of farmed fish. The best level of it should be between 0.2% and 0.4%.
Collapse
Affiliation(s)
- Zhenzhu Sun
- Institute of Modern Aquaculture Science and Engineering, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Xiaohong Tan
- Institute of Modern Aquaculture Science and Engineering, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Minglei Xu
- Institute of Modern Aquaculture Science and Engineering, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Qingying Liu
- Institute of Modern Aquaculture Science and Engineering, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Huaqun Ye
- Institute of Modern Aquaculture Science and Engineering, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Cuiyun Zou
- Institute of Modern Aquaculture Science and Engineering, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Yuanyuan Zhou
- Institute of Modern Aquaculture Science and Engineering, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Ningning Su
- Institute of Modern Aquaculture Science and Engineering, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Leling Chen
- Institute of Modern Aquaculture Science and Engineering, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Anli Wang
- Institute of Modern Aquaculture Science and Engineering, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, PR China.
| | - Chaoxia Ye
- Institute of Modern Aquaculture Science and Engineering, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631, PR China.
| |
Collapse
|
35
|
Characterizations and hepatoprotective effect of polysaccharides from Mesona blumes against tetrachloride-induced acute liver injury in mice. Int J Biol Macromol 2019; 124:788-795. [DOI: 10.1016/j.ijbiomac.2018.11.260] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 11/16/2018] [Accepted: 11/26/2018] [Indexed: 12/27/2022]
|
36
|
Darvin SS, Esakkimuthu S, Toppo E, Balakrishna K, Paulraj MG, Pandikumar P, Ignacimuthu S, Al-Dhabi NA. Hepatoprotective effect of lawsone on rifampicin-isoniazid induced hepatotoxicity in in vitro and in vivo models. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 61:87-94. [PMID: 29859372 DOI: 10.1016/j.etap.2018.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 06/08/2023]
Abstract
The Drug-induced liver injury is one of the common unfavourable impacts, which seriously affects any drug therapy. This study documented the hepatoprotective efficacy of lawsone, the major bioactive naphthoquinone present in Lawsonia inermis L. (Lythraceae) using in vitro and in vivo models. Lawsone was isolated from the leaves of L. inermis and its structure was confirmed using spectroscopic data. In-vitro antioxidant effect of lawsone was evaluated using ABTS assay. Hepatoprotective effect of lawsone was determined with RIF-INH treated HepG2 cells and Wistar rats. Administration of RIF-INH reduced the viability of the HepG2 cells and the treatment with lawsone significantly restored the viability of the cells even at lower concentration (7.5 μM). The other parameters such as the leakage of transaminases and MDA levels were also significantly reduced by the treatment with lawsone. Oral administration of lawsone to the animals did not show any toxicity up to 2 g/kg b.w. concentration. Treatment with lawsone to the RIF-INH administered animals significantly lowered the serum transaminases levels. The ratio of albumin to globulin was improved and the level of bilirubin was lowered. This study indicated the hepatoprotective effect of lawsone; detailed investigations will give deeper understanding of the application of lawsone for hepatoprotection.
Collapse
Affiliation(s)
- S Sylvester Darvin
- Division of Ethnopharmacology, Entomology Research Institute, Loyola College, Chennai, Tamil Nadu, 600034, India.
| | - S Esakkimuthu
- Division of Ethnopharmacology, Entomology Research Institute, Loyola College, Chennai, Tamil Nadu, 600034, India.
| | - Erenius Toppo
- Division of Ethnopharmacology, Entomology Research Institute, Loyola College, Chennai, Tamil Nadu, 600034, India.
| | - K Balakrishna
- Division of Ethnopharmacology, Entomology Research Institute, Loyola College, Chennai, Tamil Nadu, 600034, India.
| | - M Gabriel Paulraj
- Division of Ethnopharmacology, Entomology Research Institute, Loyola College, Chennai, Tamil Nadu, 600034, India.
| | - P Pandikumar
- Division of Ethnopharmacology, Entomology Research Institute, Loyola College, Chennai, Tamil Nadu, 600034, India.
| | - S Ignacimuthu
- Division of Ethnopharmacology, Entomology Research Institute, Loyola College, Chennai, Tamil Nadu, 600034, India; International Scientific Partnership Programme, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - N A Al-Dhabi
- Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P.O Box 2455, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
37
|
Levit R, Savoy de Giori G, de Moreno de LeBlanc A, LeBlanc JG. Protective effect of the riboflavin-overproducing strain Lactobacillus plantarum CRL2130 on intestinal mucositis in mice. Nutrition 2018; 54:165-172. [PMID: 29982144 DOI: 10.1016/j.nut.2018.03.056] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/07/2018] [Accepted: 03/26/2018] [Indexed: 01/29/2023]
Abstract
OBJECTIVES Intestinal mucositis (IM) is a local inflammatory response that causes alterations of the intestinal structure that in turn affect nutrient absorption and a side effect that is commonly associated with cancer treatments. Lactobacillus plantarum CRL2130 is a riboflavin-overproducing strain that has previously been shown to provide antiinflammatory properties. The objective of this study was to evaluate the effects of this riboflavin-producing strain in a chemically induced murine mucositis model. METHODS Mucositis was induced by daily injections of 5-fluororacil (5-FU) after which mice were either given L. plantarum CRL2130, CRL725 (strain from which CRL2130 was derived that does not overproduce riboflavin), or commercial riboflavin twice daily during 6 d of chemotherapy agent injections. The effect of the strains and riboflavin was also evaluated in vitro using Caco-2 intestinal cancer cell cultures to determine if they interfere with 5-FU's anticancer activity. RESULTS The administration of L. plantarum CRL2130 significantly attenuated the pathologic changes induced by 5-FU in mice such as body weight loss, diarrhea, shortening of villus height, increases in proinflammatory cytokine concentrations, and elevated production of interleukin 10. In vitro assays using Caco-2 cells showed that the effectiveness of 5-FU was not affected by L. plantarum CRL2130 and that this strain exerted an inhibitory mechanism against oxidative stress. CONCLUSIONS These results indicate that the riboflavin-overproducing strain L. plantarum CRL2130 could be useful to prevent mucositis during cancer treatments and would not affect the primary treatment.
Collapse
Affiliation(s)
- Romina Levit
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Tucumán, Argentina
| | - Graciela Savoy de Giori
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Tucumán, Argentina; Cátedra de Microbiología Superior, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| | | | - Jean Guy LeBlanc
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Tucumán, Argentina.
| |
Collapse
|
38
|
Karakoyun B, Ertaş B, Yüksel M, Akakın D, Çevik Ö, Şener G. Ameliorative effects of riboflavin on acetic acid-induced colonic injury in rats. Clin Exp Pharmacol Physiol 2017; 45:563-572. [PMID: 29164668 DOI: 10.1111/1440-1681.12894] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/06/2017] [Accepted: 11/16/2017] [Indexed: 12/31/2022]
Abstract
Riboflavin (RF) has been found to be a promising antioxidant and/or anti-inflammatory agent in several studies. However, the effect of RF against acetic acid (AA)-induced colonic injury is currently unknown. This study aimed to investigate the potential antioxidant and protective effects of RF in a rat model of ulcerative colitis. Starting immediately after the colitis induction (AA+RF group) or 1 week before the colitis induction (RF+AA+RF group), the rats were treated with RF (25 mg/kg per day; p.o.) for 3 days. The control and AA groups received saline (1 mL; p.o.) whereas AA+SS group (positive control) received sulfasalazine (100 mg/kg per day; p.o.) for 3 days. Colonic samples were taken for the biochemical and histological assessments on the third day. High damage scores, elevated tissue wet weight index (WI), tissue myeloperoxidase (MPO) activity, 8-hydroxy-2'-deoxyguanosine levels and chemiluminescence values, and a pronounced decrease in antioxidant glutathione (GSH) levels of the AA group were all reversed by RF pretreatment (RF+AA+RF group) and SS treatment (AA+SS group) (P < .05-.001). Tissue WI, MPO activity and GSH levels were not statistically changed in the AA+RF group. Western blot analysis revealed that the decreased protein expressions of tissue collagen (COL) 1A1, COL3A1 and transforming growth factor-β1 in the AA group were elevated in all the treatment groups (P < .05-.001). In conclusion, RF exerts both the antioxidant and anti-inflammatory effects against AA-induced colonic inflammation by suppressing neutrophil accumulation, inhibiting reactive oxidant generation, preserving endogenous glutathione, improving oxidative DNA damage and regulating inflammatory mediators, suggesting a future potential role in the treatment and prevention of ulcerative colitis.
Collapse
Affiliation(s)
- Berna Karakoyun
- Department of Basic Health Sciences, Faculty of Health Sciences, Marmara University, Istanbul, Turkey
| | - Büşra Ertaş
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
| | - Meral Yüksel
- Department of Medical Laboratory, Vocational School of Health Related Professions, Marmara University, Istanbul, Turkey
| | - Dilek Akakın
- Department of Histology and Embryology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Özge Çevik
- Department of Biochemistry, Faculty of Pharmacy, Cumhuriyet University, Sivas, Turkey
| | - Göksel Şener
- Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
| |
Collapse
|
39
|
Levit R, Savoy de Giori G, de Moreno de LeBlanc A, LeBlanc JG. Effect of riboflavin-producing bacteria against chemically induced colitis in mice. J Appl Microbiol 2017; 124:232-240. [PMID: 29080295 DOI: 10.1111/jam.13622] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/19/2017] [Accepted: 10/22/2017] [Indexed: 12/18/2022]
Abstract
AIM To assess the anti-inflammatory effect associated with individual probiotic suspensions of riboflavin-producing lactic acid bacteria (LAB) in a colitis murine model. METHODS AND RESULTS Mice intrarectally inoculated with trinitrobenzene sulfonic acid (TNBS) were orally administered with individual suspensions of riboflavin-producing strains: Lactobacillus (Lact.) plantarum CRL2130, Lact. paracasei CRL76, Lact. bulgaricus CRL871 and Streptococcus thermophilus CRL803; and a nonriboflavin-producing strain or commercial riboflavin. The extent of colonic damage and inflammation and microbial translocation to liver were evaluated. iNOs enzyme was analysed in the intestinal tissues and cytokine concentrations in the intestinal fluids. Animals given either one of the four riboflavin-producing strains showed lower macroscopic and histologic damage scores, lower microbial translocation to liver, significant decreases of iNOs+ cells in their large intestines and decreased proinflammatory cytokines, compared with mice without treatment. The administration of pure riboflavin showed similar benefits. Lact. paracasei CRL76 accompanied its anti-inflammatory effect with increased IL-10 levels demonstrating other beneficial properties in addition to the vitamin production. CONCLUSION Administration of riboflavin-producing strains prevented the intestinal damage induced by TNBS in mice. SIGNIFICANCE AND IMPACT OF THE STUDY Riboflavin-producing phenotype in LAB represents a potent tool to select them for preventing/treating IBD.
Collapse
Affiliation(s)
- R Levit
- Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán, Argentina
| | - G Savoy de Giori
- Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán, Argentina.,Cátedra de Microbiología Superior, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| | - A de Moreno de LeBlanc
- Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán, Argentina
| | - J G LeBlanc
- Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán, Argentina
| |
Collapse
|
40
|
Perazzoli MRA, Perondi CK, Baratto CM, Winter E, Creczynski-Pasa TB, Locatelli C. Gallic Acid and Dodecyl Gallate Prevents Carbon Tetrachloride-Induced Acute and Chronic Hepatotoxicity by Enhancing Hepatic Antioxidant Status and Increasing p53 Expression. Biol Pharm Bull 2017; 40:425-434. [PMID: 28381798 DOI: 10.1248/bpb.b16-00782] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Gallic acid (3,4,5-trihydroxybenzoic acid, GA), a natural phenolic acid has been reported as a strong antioxidant. Therefore the present study was designed to evaluate the effects of GA and dodecyl gallate (DGA) against acute and chronic carbon tetrachloride (CCl4)-induced hepatotoxicity. For acute model, rats were orally treated with GA and DGA for 7 d prior to CCl4 by intraperitoneally (i.p.) injection. For the chronic model, rats were orally treated with GA or DGA and CCl4 i.p. twice a week for four weeks. In both acute and chronic models, the CCl4-treated groups showed significantly increase in serum hepatic enzyme activities and histopathologic alterations, as well as a disruption in antioxidative status. In contrast, the treatment with GA and DGA restored serum hepatic enzymes activities, improved histopathologic alterations, increased glutathione (GSH) and decreased lipid peroxidation levels. The activities of liver antioxidant enzymes were increased by GA and DGA only in acute model. The expression of p53 gene increased about 3.5 times after GA and DGA treatments, which could result in cell death of damaged hepatocytes preventing of a lifelong liver failure. Thus, these results suggest that GA and DGA has the potential to prevent liver damages as the case of fibrosis condition.
Collapse
|
41
|
Levit R, de Giori GS, de Moreno de LeBlanc A, LeBlanc JG. Evaluation of the effect of soymilk fermented by a riboflavin-producing Lactobacillus plantarum strain in a murine model of colitis. Benef Microbes 2016; 8:65-72. [PMID: 27873546 DOI: 10.3920/bm2016.0063] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Inflammatory bowel diseases (IBD) are idiopathic diseases of the gastrointestinal tract characterised by recurrent inflammation that require lifelong treatments. It has been shown that certain strains of lactic acid bacteria (LAB) can produce specific health-promoting compounds in foods or in the gastrointestinal tract that can in turn prevent and/or treat IBD. This study was designed to evaluate the possible therapeutic potential of soymilk fermented by the riboflavin-producing strain Lactobacillus plantarum CRL 2130 in a trinitrobenzene sulfonic induced colitis mouse model. Mice that received soymilk fermented by L. plantarum CRL 2130 showed a decrease in weight loss, lower damage scores in their large intestines, lower microbial translocation to liver and decreased cytokines levels in their intestinal fluids compared to animals that received unfermented soymilk or soymilk fermented by a non-riboflavin-producing L. plantarum strain. This is the first report that demonstrates that a riboflavin-producing LAB was able to prevent experimental colitis in a murine model.
Collapse
Affiliation(s)
- R Levit
- 1 Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, T4000ILC San Miguel de Tucumán, Tucumán, Argentina
| | - G Savoy de Giori
- 1 Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, T4000ILC San Miguel de Tucumán, Tucumán, Argentina.,2 Cátedra de Microbiología Superior, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Calle Batalla de Ayacucho 471, 4000 San Miguel de Tucumán, Tucumán, Argentina
| | - A de Moreno de LeBlanc
- 1 Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, T4000ILC San Miguel de Tucumán, Tucumán, Argentina
| | - J G LeBlanc
- 1 Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, T4000ILC San Miguel de Tucumán, Tucumán, Argentina
| |
Collapse
|
42
|
Al-Harbi NO. Carfilzomib-induced cardiotoxicity mitigated by dexrazoxane through inhibition of hypertrophic gene expression and oxidative stress in rats. Toxicol Mech Methods 2016; 26:189-95. [PMID: 26899300 DOI: 10.3109/15376516.2016.1143071] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Carfilzomib (CFZ) is an inhibitor of proteasome that is generally used in the treatment of multiple myeloma but due to its cardiotoxicity clinical use may be limited. Dexrazoxane (DZR), an inhibitor of topoisomerase-II, prevents cardiac damage by reducing the formation of reactive oxygen species and hypertrophic gene expression. This study evaluated the protective effect of DZR on CFZ-induced cardiotoxicity. Thirty-two male Albino rats were randomly divided into four groups (n = 8). Group I received DMSO, Group II received CFZ (4 mg/kg, intraperitoneally [i.p.]) twice weekly up to day 16, Group III received DZR (20 mg/kg, i.p.) for 16 days and CFZ twice weekly for 16, Group IV received DZR (40 mg/kg, i.p.) for 16 days and CFZ twice weekly for 16. CFZ-induced cardiotoxicity was assessed by hematological, biochemical, mRNA expression, oxidative stress and histopathological studies. CFZ-induced significant changes have been observed in blood parameters including red blood cells, white blood cells, hemoglobin and hematocrit concentrations which were associated with increase in cardiac enzymes markers like creatine kinase (CK), CK-MB and lactate dehydrogenase. Treatment with DZR reversed the hematological statistics and the biochemical markers of CFZ-induced cardiotoxicity. Furthermore, DZR also attenuated the effects of CFZ-induced toxic effect on redox markers such as malondialdehyde and reduced glutathione. Above findings were further confirmed by beta-myosin heavy chain (β-MHC) and alpha-MHC (α-MHC) gene expression. Histopathological reports suggested that DZR ameliorates CFZ-induced changes in cardiac cellular architecture in rats. These results confirm that DZR protects heart from CFZ-induced cardiotoxicity.
Collapse
Affiliation(s)
- Naif O Al-Harbi
- a Department of Pharmacology and Toxicology , College of Pharmacy, King Saud University , Riyadh , KSA
| |
Collapse
|
43
|
Chen L, Feng L, Jiang WD, Jiang J, Wu P, Zhao J, Kuang SY, Tang L, Tang WN, Zhang YA, Zhou XQ, Liu Y. Intestinal immune function, antioxidant status and tight junction proteins mRNA expression in young grass carp (Ctenopharyngodon idella) fed riboflavin deficient diet. FISH & SHELLFISH IMMUNOLOGY 2015; 47:470-484. [PMID: 26419312 DOI: 10.1016/j.fsi.2015.09.037] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 09/14/2015] [Accepted: 09/24/2015] [Indexed: 06/05/2023]
Abstract
This study investigated the effects of riboflavin on intestinal immunity, tight junctions and antioxidant status of young grass carp (Ctenopharyngodon idella). Fish were fed diets containing graded levels of riboflavin (0.63-10.04 mg/kg diet) for 8 weeks. The study indicated that riboflavin deficiency decreased lysozyme, acid phosphatase, copper/zinc superoxide dismutase, glutathione reductase and glutathione peroxidase activities, and contents of complement component 3 and reduced glutathione in the intestine of fish (P < 0.05). Meanwhile, riboflavin deficiency increased reactive oxygen species, malondialdehyde and protein carbonyl contents and catalase activity (P < 0.05) in the intestine of fish. Furthermore, real-time polymerase chain reaction analysis was used to investigate mRNA expression patterns and found that the mRNA levels of interleukin 10 and transforming growth factor β1, Occludin, zonula occludens 1, Claudin-b and Claudin-c, inhibitor protein κBα, target of rapamycin, ribosomal S6 protein kinase 1 and NF-E2-related factor 2, copper/zinc superoxide dismutase, glutathione peroxidase and glutathione reductase were decreased (P < 0.05) in the intestine of fish fed riboflavin-deficient diet. Conversely, the mRNA levels of tumor necrosis factor α, interleukin 1β, interleukin 8, nuclear factor kappa B p65, Ikappa B kinase β, Ikappa B kinase γ, Kelch-like-ECH-associated protein 1b, p38 mitogen-activated protein kinase, myosin light chain kinase and Claudin-12 were increased (P < 0.05) in the intestine of fish fed riboflavin-deficient diet. In conclusion, riboflavin deficiency decreased immunity and structural integrity of fish intestine. The optimum riboflavin level for intestinal acid phosphatase activity of young grass carp was estimated to be 6.65 mg/kg diet.
Collapse
Affiliation(s)
- Liang Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Juan Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
44
|
Mazur-Bialy AI, Pocheć E. HMGB1 Inhibition During Zymosan-Induced Inflammation: The Potential Therapeutic Action of Riboflavin. Arch Immunol Ther Exp (Warsz) 2015; 64:171-6. [PMID: 26445809 PMCID: PMC4805693 DOI: 10.1007/s00005-015-0366-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 08/31/2015] [Indexed: 02/07/2023]
Abstract
Sepsis, also known as systemic inflammatory response syndrome, is a life-threatening condition caused by a pathogenic agent and leading to multiple organ dysfunction syndrome. One of the factors responsible for the excessive intensification of the inflammatory response in the course of inflammation is high-mobility group protein B1 (HMGB1). HMG-1 is a nuclear protein which, after being released to the intercellular space, has a highly pro-inflammatory effect and acts as a late mediator of lethal damage. The purpose of this study was to examine whether the anti-inflammatory action of riboflavin is accompanied by inhibition of HMGB1 release during peritoneal inflammation and zymosan stimulation of macrophages. Peritonitis was induced in male BALB/c and C57BL/6J mice via intraperitoneal injection of zymosan (40 mg/kg). RAW 264.7 macrophages were activated with zymosan (250 µg/ml). Riboflavin (mice, 50 mg/kg; RAW 264.7, 25 µg/ml) was administered 30 min before zymosan, simultaneously with, or 2, 4, 6 h after zymosan. Additionally, mRNA expression of HMGB1 and its intracellular and serum levels were evaluated. The research showed that riboflavin significantly reduces both the expression and the release of HMGB1; however, the effect of riboflavin was time-dependent. The greatest efficacy was found when riboflavin was given 30 min prior to zymosan, and also 2 and 4 h (C57BL/6J; RAW 264.7) or 4 and 6 h (BALB/c) after zymosan. Research showed that riboflavin influences the level of HMGB1 released in the course of inflammation; however, further study is necessary to determine its mechanisms of action.
Collapse
Affiliation(s)
- Agnieszka Irena Mazur-Bialy
- Department of Ergonomics and Exercise Physiology, Faculty of Health Science, Jagiellonian University Medical College, Grzegorzecka 20, 31-531, Kraków, Poland.
| | - Ewa Pocheć
- Department of Glycoconjugate Biochemistry, Institute of Zoology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
45
|
Ma JQ, Li Z, Xie WR, Liu CM, Liu SS. Quercetin protects mouse liver against CCl4-induced inflammation by the TLR2/4 and MAPK/NF-κB pathway. Int Immunopharmacol 2015. [DOI: 10.1016/j.intimp.2015.06.036] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
46
|
Autoserum: An Optimal Supplement for Bone Marrow Mesenchymal Stem Cells of Liver-Injured Rats. Stem Cells Int 2015; 2015:459580. [PMID: 26089916 PMCID: PMC4458300 DOI: 10.1155/2015/459580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 04/14/2015] [Accepted: 04/15/2015] [Indexed: 01/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are an attractive source for the clinical cell therapy of liver injury. Although the use of adult serum, platelet lysate, or cord blood serum solves some of the problems caused by fetal bovine serum (FBS), the allogeneic immune response, contamination, and donor-to-donor and donor-to-receptor differences still obstruct the application of MSCs. In this study, the influences of autoserum from liver-injured rats (LIRs) and allogeneic serum from healthy rats on the isolation and culture of bone marrow MSCs (BMSCs) were examined and compared to FBS. The results showed that BMSCs cultured with autoserum or allogeneic serum exhibited better MSC-specific morphology, lower rate of cell senescent, and higher proliferation kinetics than those with FBS. In addition, autoserum promoted the osteogenic differentiation potential of BMSCs as allogeneic serum did. Although there were no significant differences in proliferation activity, immunophenotypic characterization, and differentiation potential between BMSCs cultured with autoserum and those with allogeneic serum, the potential adverse immunological reactions in patients with allogeneic material transplantation must be considered. We therefore believe that the autoserum from liver-injured patients may be a better choice for MSC expansion to meet the needs of liver injury therapy.
Collapse
|
47
|
Li ZY, Sun HM, Xing J, Qin XM, Du GH. Chemical and biological comparison of raw and vinegar-baked Radix Bupleuri. JOURNAL OF ETHNOPHARMACOLOGY 2015; 165:20-28. [PMID: 25701749 DOI: 10.1016/j.jep.2015.02.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 02/05/2015] [Accepted: 02/09/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Radix Bupleuri (RB) is a commonly used herbal drug in Traditional Chinese Medicine (TCM), and it can be baked with vinegar to afford vinegar-baked Radix Bupleuri (VBRB), which is used in TCM for liver diseases treatment. In this study, the chemical compositions and biological effects between raw and two processed RBs by different vinegars were systematically compared. MATERIALS AND METHODS The chemical compositions of raw and two processed RBs were analyzed by (1)H NMR spectroscopy coupled with multivariate analysis. Two different extraction procedures were used, including direct extraction and liquid-liquid partition. Then HPLC was applied to determine the changes of saikosaponin contents. In addition, their liver protective effects against CCl4 induced liver injury were also investigated, and the biochemical parameters and histopathology were measured after treatment of mice with raw RB and two processed RBs (5 g/kg/day) for 14 days. RESULTS Multivariate analysis showed clear differences between the raw and the two processed RBs, and the vinegar-baking process induced elevated contents of ssb1, ssb2, acetic acid, malic acid, citric acid, 5-HMF, and ligustrazine, as well as the decreased contents of ssa, ssd, sucrose, glycine, succinic acid etc. In addition, both raw and processed RBs showed liver protective effects against CCl4 induced liver injury, and the vinegar-baked RBs showed better effects than that of raw RB. CONCLUSIONS The raw and vinegar-baked RBs differed not only in the chemical compositions but also in the pharmacological effects. And two processed RBs also showed chemical differences, suggesting that the type of vinegar had an important effect on vinegar baking. In order to ensure the therapeutic effect and safety of TCM, the effect of different vinegars on processing of herbal drugs should be further studied.
Collapse
Affiliation(s)
- Zhen-Yu Li
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, People׳s Republic of China
| | - Hui-Min Sun
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, People׳s Republic of China; College of Chemistry and Chemical Engineering of Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, People׳s Republic of China
| | - Jie Xing
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, People׳s Republic of China; College of Chemistry and Chemical Engineering of Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, People׳s Republic of China
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, People׳s Republic of China.
| | - Guan-Hua Du
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, People׳s Republic of China; Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing 100050, People׳s Republic of China.
| |
Collapse
|
48
|
El-Sayed YS, Lebda MA, Hassinin M, Neoman SA. Chicory (Cichorium intybus L.) root extract regulates the oxidative status and antioxidant gene transcripts in CCl4-induced hepatotoxicity. PLoS One 2015; 10:e0121549. [PMID: 25807561 PMCID: PMC4373694 DOI: 10.1371/journal.pone.0121549] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/02/2015] [Indexed: 12/13/2022] Open
Abstract
The ability of Cichorium intybus root extract (chicory extract) to protect against carbon tetrachloride (CCl4)-induced oxidative stress and hepatotoxicity was evaluated in male rats. The rats were divided into four groups according to treatment: saline (control); chicory extract (100 mg/kg body weight daily, given orally for 2 weeks); CCl4 (1 ml/kg body weight by intraperitoneal injection for 2 consecutive days only); or chicory extract (100 mg/kg body weight daily for 2 weeks) + CCl4 injection on days 16 and 17. The levels of hepatic lipid peroxidation, antioxidants, and molecular biomarkers were estimated twenty-four hours after the last CCl4 injection. Pretreatment with chicory extract significantly reduced CCl4-induced elevation of malondialdehyde levels and nearly normalized levels of glutathione and activity of glutathione S-transferase, glutathione peroxidase (GPx), glutathione reductase, catalase (CAT), paraoxonase-1 (PON1), and arylesterase in the liver. Chicory extract also attenuated CCl4-induced downregulation of hepatic mRNA expression levels of GPx1, CAT and PON1 genes. Results of DNA fragmentation support the ability of chicory extract to ameliorate CCl4-induced liver toxicity. Taken together, our results demonstrate that chicory extract is rich in natural antioxidants and able to attenuate CCl4-induced hepatocellular injury, likely by scavenging reactive free radicals, boosting the endogenous antioxidant defense system, and overexpressing genes encoding antioxidant enzymes.
Collapse
Affiliation(s)
- Yasser S. El-Sayed
- Department of Veterinary Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Mohamed A. Lebda
- Department of Biochemistry, Faculty of Veterinary Medicine, Alexandria University, Edfina, Egypt
| | - Mohammed Hassinin
- Department of Clinical Biochemistry, College of Medicine, King Abdulaziz University Jeddah, Jeddah, Saudi Arabia
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Saad A. Neoman
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
49
|
Silymarin as a Natural Antioxidant: An Overview of the Current Evidence and Perspectives. Antioxidants (Basel) 2015; 4:204-47. [PMID: 26785346 PMCID: PMC4665566 DOI: 10.3390/antiox4010204] [Citation(s) in RCA: 382] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 02/06/2015] [Accepted: 03/09/2015] [Indexed: 12/16/2022] Open
Abstract
Silymarin (SM), an extract from the Silybum marianum (milk thistle) plant containing various flavonolignans (with silybin being the major one), has received a tremendous amount of attention over the last decade as a herbal remedy for liver treatment. In many cases, the antioxidant properties of SM are considered to be responsible for its protective actions. Possible antioxidant mechanisms of SM are evaluated in this review. (1) Direct scavenging free radicals and chelating free Fe and Cu are mainly effective in the gut. (2) Preventing free radical formation by inhibiting specific ROS-producing enzymes, or improving an integrity of mitochondria in stress conditions, are of great importance. (3) Maintaining an optimal redox balance in the cell by activating a range of antioxidant enzymes and non-enzymatic antioxidants, mainly via Nrf2 activation is probably the main driving force of antioxidant (AO) action of SM. (4) Decreasing inflammatory responses by inhibiting NF-κB pathways is an emerging mechanism of SM protective effects in liver toxicity and various liver diseases. (5) Activating vitagenes, responsible for synthesis of protective molecules, including heat shock proteins (HSPs), thioredoxin and sirtuins and providing additional protection in stress conditions deserves more attention. (6) Affecting the microenvironment of the gut, including SM-bacteria interactions, awaits future investigations. (7) In animal nutrition and disease prevention strategy, SM alone, or in combination with other hepatho-active compounds (carnitine, betaine, vitamin B12, etc.), might have similar hepatoprotective effects as described in human nutrition.
Collapse
|
50
|
Agrawal AG, Kumar A, Gide PS. Formulation development and in vivo hepatoprotective activity of self nanoemulsifying drug delivery system of antioxidant coenzyme Q 10.. Arch Pharm Res 2014. [PMID: 25503273 DOI: 10.1007/s12272-014-0497-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 10/08/2014] [Indexed: 01/18/2023]
Abstract
Coenzyme Q10 (CQ10) is known as an endogenous cellular antioxidant, naturally found in every cell of the human body and plays an important role in maintaining human health. It is widely used as a nutritional supplement and pharmaceutical drug for various disorders like diabetes mellitus, carcinomas, neurodegenerative disorders etc. However, CQ10 is practically insoluble even in the presence of 5 % sodium lauryl sulfate in water and poorly absorbed from the gastrointestinal tract. The present research is aimed to formulate and evaluate self nanoemulsifying drug delivery system (SNEDDS) of CQ10 primarily to improve its aqueous solubility, dissolution velocity as well as hepatoprotective activity and thus enhancing its nutraceutical and pharmaceutical values. Robustness to dilution, thermodynamic stability study, droplet size analysis and drug release were adopted to optimize liquid SNEDDS. Droplet size of the SNEDDS was found to be size less than 200 nm and appeared round in shape without aggregation under transmission electron microscopy examination. Liquid SNEDDS were adsorbed on porous carrier to get solid SNEDDS (S-SNEDDS). S-SNEDDS gave rapid (>90 %) drug release within 30 min while pure drug was not practically dissolved within 1 h. In vivo hepatoprotective activity showed that S-SNEDDS achieved the most liver protection as compared to the pure drug. Further S-SNEDDS was successfully converted to self nanoemulsifying mouth dissolving tablet. The enhanced solubility, dissolution velocity as well as hepatoprotective activity of CQ10, unravels the potential of S-SNEDDS as suitable carrier for enhancing nutraceutical and pharmaceutical values of CQ10.
Collapse
Affiliation(s)
- Anuj G Agrawal
- Cachet Pharmaceutical Pvt. Ltd, An ALKEM Group, Baddi, Dist. Solan, 173205, India,
| | | | | |
Collapse
|