1
|
Gu S, Zheng Y, Chen C, Liu J, Wang Y, Wang J, Li Y. Research progress on the molecular mechanisms of Saikosaponin D in various diseases (Review). Int J Mol Med 2025; 55:37. [PMID: 39717942 PMCID: PMC11722148 DOI: 10.3892/ijmm.2024.5478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/04/2024] [Indexed: 12/25/2024] Open
Abstract
Bupleurum, a Traditional Chinese Medicine (TCM) herb, is widely used in China and other Asian countries to manage chronic liver inflammation and viral hepatitis. Saikosaponin D (SSD), a triterpenoid saponin extracted from Bupleurum, exhibits extensive pharmacological properties, including anti‑inflammatory, antioxidant, anti‑apoptotic, anti‑fibrotic and anti‑cancer effects, making it a therapeutic candidate for numerous diseases. Clarifying the targets and molecular mechanisms underlying TCM compounds is essential for scientifically validating TCM's therapeutic roles in disease prevention and treatment, as well as for identifying novel therapeutic targets and lead compounds. This analysis comprehensively examines SSD's mechanisms across various conditions, such as myocardial injury, pulmonary diseases, hepatic disorders, renal pathologies, neurological disorders, diabetes and cancer. In addition, challenges and potential solutions encountered in SSD research are addressed. SSD is posited as a promising monomer for multifaceted therapeutic applications and this article aims to enhance researchers' understanding of the current landscape of SSD studies, offering strategic insights to guide future investigations.
Collapse
Affiliation(s)
- Simin Gu
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Yiyuan Zheng
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Chong Chen
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Jing Liu
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Yanping Wang
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Junmin Wang
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Yong Li
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| |
Collapse
|
2
|
Makled MN, Makled NN, Abdel-Rahman AM, Sharawy MH. Inhibition of p75 NTR/p53 axis by ambrisentan suppresses apoptosis and oxidative stress-mediated renal damage in a cisplatin AKI model. Chem Biol Interact 2025; 408:111408. [PMID: 39892498 DOI: 10.1016/j.cbi.2025.111408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/25/2025] [Accepted: 01/29/2025] [Indexed: 02/03/2025]
Abstract
Cisplatin (CP) is a potent antineoplastic agent that triggers nephrotoxicity as a major adverse effect which can cause treatment interruptions and limitations to its clinical use. Nephrotoxicity associated with CP involves inflammation, oxidative stress, and apoptosis in kidney tubules. The objective of this work was to assess the effect of the blockade of endothelin-1 (ET-1) receptor with ambrisentan on altered renal function induced by CP. Swiss albino mice were assigned into control, CP, CP/Amb-5, and CP/Amb-10 groups. Ambrisentan improved kidney function (serum creatinine and BUN) and histopathological changes in comparison to CP-treated group. Ambrisentan significantly reduced protein expression of p75NTR and protein level of JNK influencing renal apoptosis as evidenced by reducing p53, caspase-3, and Bax levels and elevating Bcl-2 level (p < 0.05 vs CP group). Moreover, vasodilatory effect of ambrisentan was indicated by significant increase in level of vascular endothelial growth factor (VEGF) and endothelial nitric oxide synthase (eNOS) (p < 0.05 vs CP group). Ambrisentan also significantly restored oxidative balance in renal tissues as evidenced by reduced malondialdehyde and increased total antioxidant capacity and superoxide dismutase activity, in addition to decreasing nitric oxide levels (p < 0.05 vs CP group). This protective effect of ambrisentan might be mediated through the downregulation of death receptor, P75NTR that in turn restores renal blood flow and oxidative balance and regulates p53, VEGF/eNOS, NF-κB, and Bcl-2/Bax/caspase-3 signaling.
Collapse
Affiliation(s)
- Mirhan N Makled
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Noran N Makled
- Department of Urology, Faculty of Medicine, Damietta University, Damietta, Egypt; Department of Urology, Urology and Nephrology Center, Mansoura University, Mansoura, 35516, Egypt
| | - Ahmed M Abdel-Rahman
- Department of Nephrology, Urology and Nephrology Center, Mansoura University, Mansoura, 35516, Egypt
| | - Maha H Sharawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
3
|
Yang S, Guo J, Chen D, Sun Z, Pu L, Sun G, Yang M, Peng Y. The Cardioprotective Effect of Ginseng Derived Exosomes via Inhibition of Oxidative Stress and Apoptosis. ACS APPLIED BIO MATERIALS 2025; 8:814-824. [PMID: 39740230 DOI: 10.1021/acsabm.4c01644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Ginsenosides possess potential protective effects against cisplatin (CDDP)-induced toxicity, but the limited bioavailability of ginsenosides hampered their therapeutic application. Ginseng exosomes (G-Exo), which are active ingredients in ginseng, exhibit excellent biocompatibility and low immunogenicity. Here, G-Exo were isolated from ginseng roots through a combination of ultracentrifugation and sucrose gradient centrifugation techniques. Subsequently, the potential protective effect of G-Exo on CDDP induced cardiotoxicity, and its underlying mechanisms were explored. The findings demonstrated that G-Exo effectively mitigated CDDP-induced oxidative stress and apoptosis in vitro. Moreover, in vivo experiments revealed that G-Exo significantly inhibited the increases in serum cardiac troponin T (cTnT), creatine kinase (CK), and lactate dehydrogenase (LDH) levels in mice induced by CDDP. Histological assessment and tissue staining further corroborated that G-Exo alleviated the cardiac tissue damage and apoptosis caused by CDDP. Mechanistically, G-Exo were found to alleviate CDDP-induced apoptosis through blocking the MAPK signaling. Collectively, these results suggest that G-Exo hold the potential to mitigate cisplatin-induced cardiac injury by regulating the MAPK pathway, thereby highlighting the therapeutic potential of G-Exo as a protective agent against CDDP-induced cardiotoxicity.
Collapse
Affiliation(s)
- Shuiyue Yang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin 130112, China
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, Jilin 130012, China
| | - Jia Guo
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin 130112, China
| | - Danyang Chen
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin 130112, China
| | - Zepeng Sun
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin 130112, China
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, Jilin 130012, China
| | - Li Pu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin 130112, China
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, Jilin 130012, China
| | - Guoying Sun
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, Jilin 130012, China
| | - Min Yang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin 130112, China
| | - Yinghua Peng
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin 130112, China
| |
Collapse
|
4
|
Zhu Y, Lv X, Li R, Gao Z, Lei C, Wang L, Li S. Saikosaponin-b2 Regulates the Proliferation and Apoptosis of Liver Cancer Cells by Targeting the MACC1/c-Met/Akt Signalling Pathway. Adv Pharmacol Pharm Sci 2024; 2024:2653426. [PMID: 39544485 PMCID: PMC11561180 DOI: 10.1155/2024/2653426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/15/2024] [Accepted: 10/18/2024] [Indexed: 11/17/2024] Open
Abstract
Saikosaponin-b2 (SS-b2), an active ingredient derived from the root of Radix Bupleuri, possesses antitumour, anti-inflammatory, antioxidative and hepatoprotective properties. We investigated the inhibition of tumour proliferation by SS-b2 and the underlying molecular mechanisms, including the MACC1/p-c-Met/p-Akt pathway expression in HepG2 liver cancer cells and H22 tumour-bearing mice. Animal experiments showed that SS-b2 significantly decreased the levels of MACC1, p-c-MET and p-Akt in tumour tissue transplanted with H22 liver cancer cells in mice, while it increased the expression of p-BAD. The results also revealed a concentration-dependent suppression of MACC1, p-c-Met and p-Akt expression in the SS-b2 treatment group compared with the control group. Additionally, the suppression of MACC1 activation by SS-b2 resulted in a reduction in the viability and proliferation of HepG2 liver cancer cells, and this reduction was comparable to that by doxorubicin (DOX). This suggests that SS-b2 has significant efficacy in liver cancer, comparable to DOX. Meanwhile, Annexin V-FITC/PI staining and western blot analysis of cleaved caspase 9 and cleaved caspase 3 demonstrated that SS-b2 induced apoptosis of HepG2 liver cancer cells. These findings provide experimental evidence suggesting that SS-b2 is a promising anticancer agent for liver cancer.
Collapse
Affiliation(s)
- Yanxue Zhu
- Department of Pharmacology, Basic Medicine and Forensic Medicine College, Henan University of Science and Technology, KaiYuan Road 263, Luoyang 471023, Henan, China
| | - Xingzhi Lv
- Department of Pharmacology, Basic Medicine and Forensic Medicine College, Henan University of Science and Technology, KaiYuan Road 263, Luoyang 471023, Henan, China
| | - Ruifang Li
- Department of Pharmacology, Basic Medicine and Forensic Medicine College, Henan University of Science and Technology, KaiYuan Road 263, Luoyang 471023, Henan, China
| | - Zihan Gao
- Department of Pharmacology, Basic Medicine and Forensic Medicine College, Henan University of Science and Technology, KaiYuan Road 263, Luoyang 471023, Henan, China
| | - Chanhao Lei
- Department of Pharmacology, Basic Medicine and Forensic Medicine College, Henan University of Science and Technology, KaiYuan Road 263, Luoyang 471023, Henan, China
| | - Lan Wang
- Department of Pharmacology, Basic Medicine and Forensic Medicine College, Henan University of Science and Technology, KaiYuan Road 263, Luoyang 471023, Henan, China
| | - Sanqiang Li
- Department of Pharmacology, Basic Medicine and Forensic Medicine College, Henan University of Science and Technology, KaiYuan Road 263, Luoyang 471023, Henan, China
| |
Collapse
|
5
|
Hirano SI, Takefuji Y. Molecular Hydrogen Protects against Various Tissue Injuries from Side Effects of Anticancer Drugs by Reducing Oxidative Stress and Inflammation. Biomedicines 2024; 12:1591. [PMID: 39062164 PMCID: PMC11274581 DOI: 10.3390/biomedicines12071591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/07/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
While drug therapy plays a crucial role in cancer treatment, many anticancer drugs, particularly cytotoxic and molecular-targeted drugs, cause severe side effects, which often limit the dosage of these drugs. Efforts have been made to alleviate these side effects by developing derivatives, analogues, and liposome formulations of existing anticancer drugs and by combining anticancer drugs with substances that reduce side effects. However, these approaches have not been sufficiently effective in reducing side effects. Molecular hydrogen (H2) has shown promise in this regard. It directly reduces reactive oxygen species, which have very strong oxidative capacity, and indirectly exerts antioxidant, anti-inflammatory, and anti-apoptotic effects by regulating gene expression. Its clinical application in various diseases has been expanded worldwide. Although H2 has been reported to reduce the side effects of anticancer drugs in animal studies and clinical trials, the underlying molecular mechanisms remain unclear. Our comprehensive literature review revealed that H2 protects against tissue injuries induced by cisplatin, oxaliplatin, doxorubicin, bleomycin, and gefitinib. The underlying mechanisms involve reductions in oxidative stress and inflammation. H2 itself exhibits anticancer activity. Therefore, the combination of H2 and anticancer drugs has the potential to reduce the side effects of anticancer drugs and enhance their anticancer activities. This is an exciting prospect for future cancer treatments.
Collapse
Affiliation(s)
- Shin-ichi Hirano
- Independent Researcher, 5-8-1-207 Honson, Chigasaki 253-0042, Japan
| | - Yoshiyasu Takefuji
- Keio University, 2-15-45 Mita, Minato-ku, Tokyo 108-8345, Japan;
- Faculty of Data Science, Musashino University, 3-3-3 Ariake, Koto-Ku, Tokyo 135-8181, Japan
| |
Collapse
|
6
|
Abass SA, Elgazar AA, El-kholy SS, El-Refaiy AI, Nawaya RA, Bhat MA, Farrag FA, Hamdi A, Balaha M, El-Magd MA. Unraveling the Nephroprotective Potential of Papaverine against Cisplatin Toxicity through Mitigating Oxidative Stress and Inflammation: Insights from In Silico, In Vitro, and In Vivo Investigations. Molecules 2024; 29:1927. [PMID: 38731418 PMCID: PMC11085772 DOI: 10.3390/molecules29091927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024] Open
Abstract
Cisplatin is a potent compound in anti-tumor chemotherapy; however, its clinical utility is hampered by dose-limiting nephrotoxicity. This study investigated whether papaverine could mitigate cisplatin-induced kidney damage while preserving its chemotherapeutic efficacy. Integrative bioinformatics analysis predicted papaverine modulation of the mechanistic pathways related to cisplatin renal toxicity; notably, mitogen-activated protein kinase 1 (MAPK1) signaling. We validated protective effects in normal kidney cells without interfering with cisplatin cytotoxicity on a cancer cell line. Concurrent in vivo administration of papaverine alongside cisplatin in rats prevented elevations in nephrotoxicity markers, including serum creatinine, blood urea nitrogen, and renal oxidative stress markers (malondialdehyde, inducible nitric oxide synthase (iNOS), and pro-inflammatory cytokines), as tumor necrosis factor alpha (TNF-α), monocyte chemoattractant protein 1 (MCP-1), and interleukin-6 (IL-6). Papaverine also reduced apoptosis markers such as Bcl2 and Bcl-2-associated X protein (Bax) and kidney injury molecule-1 (KIM-1), and histological damage. In addition, it upregulates antioxidant enzymes like catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) while boosting anti-inflammatory signaling interleukin-10 (IL-10). These effects were underlined by the ability of Papaverine to downregulate MAPK-1 expression. Overall, these findings show papaverine could protect against cisplatin kidney damage without reducing its cytotoxic activity. Further research would allow the transition of these results to clinical practice.
Collapse
Affiliation(s)
- Shimaa A. Abass
- Department of Biochemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Abdullah A. Elgazar
- Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Sanad S. El-kholy
- Department of Physiology, Faculty of Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Amal I. El-Refaiy
- Department of Agricultural Zoology and Nematology, Faculty of Agriculture (Girls), Al-Azhar University, Cairo 11884, Egypt;
| | - Reem A. Nawaya
- Department of Biochemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Mashooq Ahmad Bhat
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Foad A. Farrag
- Department of Anatomy, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| | - Abdelrahman Hamdi
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt;
| | - Marwa Balaha
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, Via dei vestini, 31-66100 Chieti, Italy;
| | - Mohammed A. El-Magd
- Department of Anatomy, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
| |
Collapse
|
7
|
Luo Y, Zhang J, Jiao Y, Huang H, Ming L, Song Y, Niu Y, Tang X, Liu L, Li Y, Jiang Y. Dihydroartemisinin abolishes cisplatin-induced nephrotoxicity in vivo. J Nat Med 2024; 78:439-454. [PMID: 38351420 DOI: 10.1007/s11418-024-01783-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/15/2024] [Indexed: 02/29/2024]
Abstract
Dihydroartemisinin (DHA), a derivative of artemisinin which is primarily used to treat malaria in clinic, also confers protective effect on lipopolysaccharide-induced nephrotoxicity. While, the activities of DHA in cisplatin (CDDP)-caused nephrotoxicity are elusive. To investigate the role and underlying mechanism of DHA in CDDP-induced nephrotoxicity. Mice were randomly separated into four groups: normal, CDDP, and DHA (25 and 50 mg/kg were orally injected 1 h before CDDP for consecutive 10 days). All mice except the normal were single injected intraperitoneally with CDDP (22 mg/kg) for once on the 7th day. Combined with quantitative proteomics and bioinformatics analysis, the impact of DHA on renal cell apoptosis, oxidative stress, biochemical indexes, and inflammation in mice were investigated. Moreover, a human hepatocellular carcinoma cells xenograft model was established to elucidate the impact of DHA on tumor-related effects of CDDP. DHA reduced the levels of creatinine (CREA) (p < 0.01) and blood urea nitrogen (BUN) (p < 0.01), reversed CDDP-induced oxidative, inflammatory, and apoptosis indexes (p < 0.01). Mechanistically, DHA attenuated CDDP-induced inflammation by inhibiting nuclear factor κB p65 (NFκB p65) expression, and suppressed CDDP-induced renal cell apoptosis by inhibiting p63-mediated endogenous and exogenous apoptosis pathways. Additionally, DHA alone significantly decreased the tumor weight and did not destroy the antitumor effect of CDDP, and did not impact AST and ALT. In conclusion, DHA prevents CDDP-triggered nephrotoxicity via reducing inflammation, oxidative stress, and apoptosis. The mechanisms refer to inhibiting NFκB p65-regulated inflammation and alleviating p63-mediated mitochondrial endogenous and Fas death receptor exogenous apoptosis pathway.
Collapse
Affiliation(s)
- Yan Luo
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, School of Pharmacy, Scientific Research Center, Gannan Medical University, Ganzhou, 341000, China
| | - Jiaxing Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yue Jiao
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research On Prevention and Treatment of Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hao Huang
- National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, Gannan Medical University, Jiangxi, China
| | - Liangshan Ming
- Institute for Advanced Study, Jiangxi University of Chinese Medicine, Jiangxi, China
| | - Yunlei Song
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, School of Pharmacy, Scientific Research Center, Gannan Medical University, Ganzhou, 341000, China
| | - Yanlong Niu
- National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, Gannan Medical University, Jiangxi, China
| | - Xiaolu Tang
- Department of Human Anatomy, School of Basic Medical Science, Gannan Medical University, Jiangxi, China
| | - Liwei Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Li
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China.
| | - Yumao Jiang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, School of Pharmacy, Scientific Research Center, Gannan Medical University, Ganzhou, 341000, China.
- Artemisinin Research Center, and Institute of Chinese Materia Medical, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
8
|
Gao H, Sun L, Li J, Zhou Q, Xu H, Ma X, Li R, Yu B, Tian J. Illumination of Hydroxyl Radical in Kidney Injury and High-Throughput Screening of Natural Protectants Using a Fluorescent/Photoacoustic Probe. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303926. [PMID: 37870188 PMCID: PMC10667829 DOI: 10.1002/advs.202303926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/04/2023] [Indexed: 10/24/2023]
Abstract
The hydroxyl radical (•OH) is shown to play a crucial role in the occurrence and progression of acute kidney injury (AKI). Therefore, the development of a robust •OH probe holds great promise for the early diagnosis of AKI, high-throughput screening (HTS) of natural protectants, and elucidating the molecular mechanism of intervention in AKI. Herein, the design and synthesis of an activatable fluorescent/photoacoustic (PA) probe (CDIA) for sensitive and selective imaging of •OH in AKI is reported. CDIA has near-infrared fluorescence/PA channels and fast activation kinetics, enabling the detection of the onset of •OH in an AKI model. The positive detection time of 12 h using this probe is superior to the 48-hour detection time for typical clinical assays, such as blood urea nitrogen and serum creatinine detection. Furthermore, a method is established using CDIA for HTS of natural •OH inhibitors from herbal medicines. Puerarin is screened out by activating the Sirt1/Nrf2/Keap1 signaling pathway to protect renal cells in AKI. Overall, this work provides a versatile and dual-mode tool for illuminating the •OH-related pathological process in AKI and screening additional compounds to prevent and treat AKI.
Collapse
Affiliation(s)
- Han Gao
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of TCM Evaluation and Translational ResearchCellular and Molecular Biology CenterSchool of Traditional Chinese PharmacyChina Pharmaceutical UniversityNanjing211198P. R. China
| | - Lei Sun
- Jiangsu Co‐innovation Center of Efficient Processing and Utilization of Forest Resources, Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agroforest BiomassCollege of Chemical EngineeringNanjing Forestry UniversityNanjing210037P. R. China
| | - Jiwei Li
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of TCM Evaluation and Translational ResearchCellular and Molecular Biology CenterSchool of Traditional Chinese PharmacyChina Pharmaceutical UniversityNanjing211198P. R. China
| | - Qilin Zhou
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of TCM Evaluation and Translational ResearchCellular and Molecular Biology CenterSchool of Traditional Chinese PharmacyChina Pharmaceutical UniversityNanjing211198P. R. China
| | - Haijun Xu
- Jiangsu Co‐innovation Center of Efficient Processing and Utilization of Forest Resources, Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agroforest BiomassCollege of Chemical EngineeringNanjing Forestry UniversityNanjing210037P. R. China
- School of Chemistry and Chemical EngineeringHenan Normal UniversityXinxiang453002P. R. China
| | - Xiao‐Nan Ma
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of TCM Evaluation and Translational ResearchCellular and Molecular Biology CenterSchool of Traditional Chinese PharmacyChina Pharmaceutical UniversityNanjing211198P. R. China
| | - Renshi Li
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of TCM Evaluation and Translational ResearchCellular and Molecular Biology CenterSchool of Traditional Chinese PharmacyChina Pharmaceutical UniversityNanjing211198P. R. China
| | - Bo‐Yang Yu
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of TCM Evaluation and Translational ResearchCellular and Molecular Biology CenterSchool of Traditional Chinese PharmacyChina Pharmaceutical UniversityNanjing211198P. R. China
| | - Jiangwei Tian
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of TCM Evaluation and Translational ResearchCellular and Molecular Biology CenterSchool of Traditional Chinese PharmacyChina Pharmaceutical UniversityNanjing211198P. R. China
| |
Collapse
|
9
|
Zhang D, Luo G, Jin K, Bao X, Huang L, Ke J. The underlying mechanisms of cisplatin-induced nephrotoxicity and its therapeutic intervention using natural compounds. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2925-2941. [PMID: 37289283 DOI: 10.1007/s00210-023-02559-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 05/28/2023] [Indexed: 06/09/2023]
Abstract
Cisplatin is an effective chemotherapeutic drug widely used for the treatment of various solid tumors; however, its clinical use and efficacy are limited by its inherent nephrotoxicity. The pathogenesis of cisplatin-induced nephrotoxicity is complex and has not been fully elucidated. Cellular uptake and transport, DNA damage, apoptosis, oxidative stress, inflammatory response, and autophagy are involved in the development of cisplatin-induced nephrotoxicity. Currently, despite some deficiencies, hydration regimens remain the major protective measures against cisplatin-induced nephrotoxicity. Therefore, effective drugs must be explored and developed to prevent and treat cisplatin-induced kidney injury. In recent years, many natural compounds with high efficiency and low toxicity have been identified for the treatment of cisplatin-induced nephrotoxicity, including quercetin, saikosaponin D, berberine, resveratrol, and curcumin. These natural agents have multiple targets, multiple effects, and low drug resistance; therefore, they can be safely used as a supplementary regimen or combination therapy for cisplatin-induced nephrotoxicity. This review aimed to comprehensively describe the molecular mechanisms underlying cisplatin-induced nephrotoxicity and summarize natural kidney-protecting compounds to provide new ideas for the development of better therapeutic agents.
Collapse
Affiliation(s)
- Doudou Zhang
- Jinhua Municipal Central Hospital, Jinhua, 321000, China
| | - Guangwen Luo
- Jinhua Municipal Central Hospital, Jinhua, 321000, China.
| | - Kaixiang Jin
- Jinhua Municipal Central Hospital, Jinhua, 321000, China
| | - Xiaodong Bao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lili Huang
- Ningbo Medical Center Lihuili Hospital, Ningbo, 315040, China
| | - Jianghuan Ke
- Jinhua Municipal Central Hospital, Jinhua, 321000, China
| |
Collapse
|
10
|
Wu H, Shi X, Zang Y, Zhao X, Liu X, Wang W, Shi W, Wong CTT, Sheng L, Chen X, Zhang S. 7-hydroxycoumarin-β-D-glucuronide protects against cisplatin-induced acute kidney injury via inhibiting p38MAPK-mediated apoptosis in mice. Life Sci 2023; 327:121864. [PMID: 37336359 DOI: 10.1016/j.lfs.2023.121864] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/03/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023]
Abstract
AIMS Cisplatin is a widely-used drug in the clinical treatment of tumors, but kidney nephrotoxicity is one of the reasons that limits its widespread use. We previously found that 7-hydroxycoumarin-β-D-glucuronide (7-HCG) was one of metabolites of skimmin and highly enriched in the kidneys and maintained a high blood concentration in skimmin-treated rats. Therefore, we investigated whether 7-HCG has a protective effect on cisplatin-induced acute kidney injury. MATERIALS AND METHODS Male C57BL/6 mice were continuously administered 7-HCG for five days, and on the third day, an intraperitoneal injection of cisplatin was given to induce acute kidney injury. After 72 h, the mice were sacrificed for analysis. Serum and renal tissue were collected for renal function evaluation. RNA sequencing was used to explore mechanism, and further validated by western blot and immunohistochemistry. In addition, pharmacokinetic study of oral 7-HCG administration was performed to examine how much 7-hydroxycoumarin (7-HC) was metabolized and 7-HC possible effect on renal protection. KEY FINDINGS 7-HCG significantly reduced serum BUN and SCR levels, and alleviated pathological damage in renal tissue, and reduced the renal index. RNA sequencing revealed that 7-HCG could reverse p38 MAPK regulation and apoptosis. By western blotting, it was found that 7-HCG could reduce renal injury by reducing p-p38, p-ERK, p-JNK, cleaved-caspase3 and Bax. The immunohistochemical results of cleaved-caspase3 were consistent with western blotting. 7-HCG also significantly reduced the production of ROS in kidney tissue. Pharmacokinetic experiments have shown that 7-HCG in the blood increased rapidly and was eliminated slowly, with an average t1/2β of 18.3 h. And the concentration of 7-HCG in the target organ kidney was about 4 times higher than that in blood. SIGNIFICANCE Our findings indicate that 7-HCG could exert its protective effect against cisplatin-induced acute kidney injury by inhibiting apoptosis via p38 MAPK regulation and elucidates its pharmacokinetics.
Collapse
Affiliation(s)
- Haijie Wu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Xiaohu Shi
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, PR China
| | - Yingda Zang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Xiaodi Zhao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Xikun Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Weida Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Wenying Shi
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Clarence T T Wong
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Li Sheng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China.
| | - Xiaoguang Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China.
| | - Sen Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China.
| |
Collapse
|
11
|
Esan OO, Maikifi AS, Esuola LO, Ajibade TO, Adetona MO, Aina OO, Oyagbemi AA, Adejumobi OA, Omobowale TO, Oladele OA, Oguntibeju OO, Nwulia E, Yakubu MA. Taurine mitigates sodium arsenite–induced cardiorenal dysfunction in cockerel chicks: from toxicological, biochemical, and immunohistochemical stand-points. COMPARATIVE CLINICAL PATHOLOGY 2023; 32:769-782. [DOI: 10.1007/s00580-023-03485-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/26/2023] [Indexed: 01/05/2025]
|
12
|
Huang M, Yan Y, Deng Z, Zhou L, She M, Yang Y, Zhang M, Wang D. Saikosaponin A and D attenuate skeletal muscle atrophy in chronic kidney disease by reducing oxidative stress through activation of PI3K/AKT/Nrf2 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154766. [PMID: 37002971 DOI: 10.1016/j.phymed.2023.154766] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/22/2023] [Accepted: 03/12/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Skeletal muscle atrophy in chronic kidney disease (CKD) leads to a decline in quality of life and increased risk of morbidity and mortality. We have obtained evidence that oxidative stress is essential in the progression of CKD-related muscle atrophy. Whether Saikosaponin A and D, two emerging antioxidants extracted from Bupleurum chinense DC, alleviate muscle atrophy remains to be further studied. The purpose of this study was to investigate the effects and mechanisms of these two components on CKD complicated with muscle atrophy. METHODS In this research, muscle dystrophy model was established using 5/6 nephrectomized mice in vivo and in vitro with Dexamethasone (Dex)-managed C2C12 myotubes. RESULTS The results of RNA-sequencing showed that exposure to Dex affected the antioxidant activity, catalytic activity and enzyme regulator activity of C2C12 cells. According to KEGG analysis, the largest numbers of differentially expressed genes detected were enriched in the PI3K/AKT pathway. In vivo, Saikosaponin A and D remain renal function, cross-section size, fiber-type composition and anti-inflammatory ability. These two components suppressed the expression of MuRF-1 and enhanced the expression of MyoD and Dystrophin. In addition, Saikosaponin A and D maintained redox balance by increasing the activities of antioxidant enzymes while inhibiting the excessive accumulation of reactive oxygen species. Furthermore, Saikosaponin A and D stimulated PI3K/AKT and its downstream Nrf2 pathway in CKD mice. The effects of Saikosaponin A and D on increasing the inner diameter of C2C12 myotube, reducing oxidative stress and enhancing expression of p-AKT, p-mTOR, p70S6K, Nrf2 and HO-1 proteins were observed in vitro. Importantly, we verified that these protective effects could be significantly reversed by inhibiting PI3K and knocking out Nrf2. CONCLUSIONS In summary, Saikosaponin A and D improve CKD-induced muscle atrophy by reducing oxidative stress through the PI3K/AKT/Nrf2 pathway.
Collapse
Affiliation(s)
- Minna Huang
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510000, China
| | - Yan Yan
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510000, China
| | - Zihao Deng
- The First Clinical Medical College, Southern Medical University, Guangzhou, 510000, China
| | - Lingli Zhou
- The First Clinical Medical College, Southern Medical University, Guangzhou, 510000, China
| | - Meiling She
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510000, China
| | - Yajun Yang
- Department of Pharmacology, Guangdong Key Laboratory for R&D of Natural Drug, Guangdong Medical University, Zhanjiang,524000, China
| | - Meng Zhang
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510000, China
| | - Dongtao Wang
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510000, China.
| |
Collapse
|
13
|
Li N, Yao CY, Diao J, Liu XL, Tang EJ, Huang QS, Zhou YM, Hu YG, Li XK, Long JY, Xiao H, Li DW, Du N, Li YF, Luo P, Cai TJ. The role of MAPK/NF-κB-associated microglial activation in T-2 toxin-induced mouse learning and memory impairment. Food Chem Toxicol 2023; 174:113663. [PMID: 36775139 DOI: 10.1016/j.fct.2023.113663] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/10/2022] [Accepted: 02/09/2023] [Indexed: 02/12/2023]
Abstract
T-2 toxin is a mycotoxin with multiple toxic effects and has emerged as an important food pollutant. Microglia play a significant role in the toxicity of various neurotoxins. However, whether they participate in the neurotoxicity of T-2 toxin has not been reported. To clarify this point, an in vivo mouse model of T-2 toxin (4 mg/kg) poisoning was established. The results of Morris water maze and open-field showed that T-2 toxin induced learning and memory impairment and locomotor inhibition. Meanwhile, T-2 toxin induced microglial activation, while inhibiting microglia activation by minocycline (50 mg/kg) suppressed the toxic effect of the T-2 toxin. To further unveil the potential mechanisms involved in T-2 toxin-induced microglial activation, an in vitro model of T-2 toxin (0, 2.5, 5, 10 ng/mL) poisoning was established using BV-2 cells. Transcriptomic sequencing revealed lots of differentially expressed genes related to MAPK/NF-κB pathway. Western blotting results further confirmed that T-2 toxin (5 ng/mL) induced the activation of MAPKs and their downstream NF-κB. Moreover, the addition of inhibitors of NF-κB and MAPKs reversed the microglial activation induced by T-2 toxin. Overall, microglial activation may contribute a considerable role in T-2 toxin-induced behavioral abnormalities, which could be MAPK/NF-κB pathway dependent.
Collapse
Affiliation(s)
- Na Li
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China; Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Chun-Yan Yao
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Jun Diao
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China; Chongqing Jiulongpo District Center for Disease Control and Prevention, Chongqing, 400050, China
| | - Xiao-Ling Liu
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - En-Jie Tang
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Qing-Song Huang
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China; Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yu-Meng Zhou
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yue-Gu Hu
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xiu-Kuan Li
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China; Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Jin-Yun Long
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China; Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Hua Xiao
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Da-Wei Li
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Ning Du
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Ya-Fei Li
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Peng Luo
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China.
| | - Tong-Jian Cai
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China; Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
14
|
Sharaf G, El Morsy EM, El-Sayed EK. Augmented nephroprotective effect of liraglutide and rabeprazole via inhibition of OCT2 transporter in cisplatin-induced nephrotoxicity in rats. Life Sci 2023; 321:121609. [PMID: 36958435 DOI: 10.1016/j.lfs.2023.121609] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/16/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023]
Abstract
AIMS Cisplatin, a widely used anticancer treatment, has a marked nephrotoxic effect. This nephrotoxic effect is linked to the triggering of oxidative stress, inflammation, activation of mitogen-activated protein kinase (MAPK) pathway as well as apoptosis. The purpose of the present research was to examine the possible ameliorative effect of liraglutide and/or rabeprazole on cisplatin-induced nephrotoxicity in rats and to underline the potential molecular pathways involved. MAIN METHODS Rats were divided into five groups: Control, cisplatin, liraglutide (200 μg/kg/day, i.p), rabeprazole (10 mg/kg/day, orally) and liraglutide + rabeprazole combination groups. All treatments were given for 7 days. Cisplatin was given as a single dose (7 mg/kg, i.p) at day 4 to induce nephrotoxicity in all groups except the control group. KEY FINDINGS Treatment with liraglutide and/or rabeprazole prior to cisplatin maintained the function and morphology of kidney via decreasing cisplatin renal uptake by significant inhibition of OCT2. Besides, they showed a significant increase in GLP-1 receptor expression. Liraglutide and/or rabeprazole significantly attenuated the levels of TNF-α. ICAM, NF-κB, and downregulated MAPK pathway proteins such as JNK, and ERK1/2. Moreover, they maintained oxidant antioxidant balance by decreasing MDA level and increasing GSH level and CAT activity. Additionally, liraglutide and/or rabeprazole exhibited antiapoptotic effect evidenced by the decreased caspase-3 level and Bax expression and the increased Bcl-2 expression. SIGNIFICANCE The current study showed that both liraglutide and rabeprazole exerted a nephroprotective effect against cisplatin-induced renal toxicity in rats. Interestingly, co-treatment with both drugs showed an augmented effect.
Collapse
Affiliation(s)
- Gehad Sharaf
- Nasr Hospital Health Insurance, Helwan, Cairo, Egypt.
| | - E M El Morsy
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt.
| | - Elsayed K El-Sayed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt.
| |
Collapse
|
15
|
Chen LL, Xia LY, Zhang JP, Wang Y, Chen JY, Guo C, Xu WH. Saikosaponin D alleviates cancer cachexia by directly inhibiting STAT3. Phytother Res 2023; 37:809-819. [PMID: 36447385 DOI: 10.1002/ptr.7676] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 12/03/2022]
Abstract
Cancer cachexia is a metabolic syndrome that is characterized by progressive loss of skeletal muscle mass, and effective therapeutics have yet to be developed. Saikosaponin D (SSD), a major bioactive component of Radix Bupleuri, exhibits antiinflammatory, anti-tumor, anti-oxidant, anti-viral, and hepatoprotective effects. In this study, we demonstrated that SSD is a promising agent for the treatment of cancer cachexia. SSD could alleviate TCM-induced myotube atrophy and inhibit the expression of E3 ubiquitin ligases muscle RING-finger containing protein-1 (MuRF1) and muscle atrophy Fbox protein (Atrogin-1/MAFbx) in vitro. Moreover, SSD suppressed the progression of cancer cachexia, with significant improvements in the loss of body weight, gastrocnemius muscle, and tibialis anterior muscle mass in vivo. Mechanism investigations demonstrated that SSD could directly bind to STAT3 and specifically inhibit its phosphorylation as well as its transcriptional activity. Overexpression of STAT3 partially abolished the inhibitory effect of SSD on myotube atrophy, indicating that the therapeutic effect of SSD was attributed to STAT3 inhibition. These findings provide novel strategies for treatment of cancer cachexia by targeting STAT3, and SSD may be a promising drug candidate for cancer cachexia.
Collapse
Affiliation(s)
- Lin-Lin Chen
- School of Pharmacy, Naval Medical University, Shanghai, China.,Department of Critical Care Medicine, School of Anesthesiology, Naval Medical University, Shanghai, China
| | - Liu-Yuan Xia
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Jun-Ping Zhang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yan Wang
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Jian-Yu Chen
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Cheng Guo
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wei-Heng Xu
- School of Pharmacy, Naval Medical University, Shanghai, China
| |
Collapse
|
16
|
Chemotherapeutic Potential of Saikosaponin D: Experimental Evidence. J Xenobiot 2022; 12:378-405. [PMID: 36547471 PMCID: PMC9782205 DOI: 10.3390/jox12040027] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/03/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Saikosaponin D (SSD), an active compound derived from the traditional plant Radix bupleuri, showcases potential in disease management owing to its antioxidant, antipyretic, and anti-inflammatory properties. The toxicological effects of SSD mainly include hepatotoxicity, neurotoxicity, hemolysis, and cardiotoxicity. SSD exhibits antitumor effects on multiple targets and has been witnessed in diverse cancer types by articulating various cell signaling pathways. As a result, carcinogenic processes such as proliferation, invasion, metastasis, and angiogenesis are inhibited, whereas apoptosis, autophagy, and differentiation are induced in several cancer cells. Since it reduces side effects and strengthens anti-cancerous benefits, SSD has been shown to have an additive or synergistic impact with chemo-preventive medicines. Regardless of its efficacy and benefits, the considerations of SSD in cancer prevention are absolutely under-researched due to its penurious bioavailability. Diverse studies have overcome the impediments of inadequate bioavailability using nanotechnology-based methods such as nanoparticle encapsulation, liposomes, and several other formulations. In this review, we emphasize the association of SSD in cancer therapeutics and the discussion of the mechanisms of action with the significance of experimental evidence.
Collapse
|
17
|
Duan YY, Mi XJ, Su WY, Tang S, Jiang S, Wang Z, Zhao LC, Li W. Trilobatin, an Active Dihydrochalcone from Lithocarpus polystachyus, Prevents Cisplatin-Induced Nephrotoxicity via Mitogen-Activated Protein Kinase Pathway-Mediated Apoptosis in Mice. ACS OMEGA 2022; 7:37401-37409. [PMID: 36312396 PMCID: PMC9607670 DOI: 10.1021/acsomega.2c04142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
Although naturally occurring flavonoids have shown beneficial effects on the side effects caused by cisplatin, there are few reports on the protective effect of dihydrochalcone on the cisplatin-induced toxicity. Trilobatin (TLB), as the major sweetener and active ingredient in Lithocarpus polystachyus Rehd, is a dihydrochalcone-like compound that can be present in concentrations of up to 10% or more in tender leaves. Herein, a cisplatin-induced acute kidney injury (AKI) model was established to investigate the protective effect and mechanism of TLB against the cisplatin-induced nephrotoxicity in mice. The results showed that TLB significantly reversed the inhibition of CRE, BUN, and MDA levels compared with the cisplatin group. Furthermore, TLB treatment (50 and 100 mg/kg) for 10 days significantly alleviated cisplatin-induced renal pathological changes. TUNEL staining showed that TLB administration can effectively improve the occurrence of apoptosis of renal tissue cells caused by cisplatin exposure. Importantly, western blot analysis verified that TLB alleviated cisplatin-induced nephrotoxicity by regulating the AKT/MAPK signaling pathway and apoptosis. In summary, our findings showed clearly that TLB has a significant preventive effect on cisplatin-induced AKI.
Collapse
Affiliation(s)
- Yue-yang Duan
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
- National
and Local Joint Engineering Research Center for Ginseng Breeding and
Development, Changchun 130118, China
| | - Xiao-jie Mi
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
- Graduate
School of Biotechnology, and College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Wen-ya Su
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
| | - Shan Tang
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
| | - Shuang Jiang
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
| | - Zi Wang
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
| | - Li-Chun Zhao
- College
of Pharmacy, Guangxi University of Chinese
Medicine, Nanning 530001, China
| | - Wei Li
- College
of Chinese Medicinal Materials, Jilin Agricultural
University, Changchun 130118, China
- National
and Local Joint Engineering Research Center for Ginseng Breeding and
Development, Changchun 130118, China
| |
Collapse
|
18
|
Loren P, Lugones Y, Saavedra N, Saavedra K, Páez I, Rodriguez N, Moriel P, Salazar LA. MicroRNAs Involved in Intrinsic Apoptotic Pathway during Cisplatin-Induced Nephrotoxicity: Potential Use of Natural Products against DDP-Induced Apoptosis. Biomolecules 2022; 12:biom12091206. [PMID: 36139046 PMCID: PMC9496062 DOI: 10.3390/biom12091206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/28/2022] Open
Abstract
Cisplatin (cis-diamminedichloroplatinum (II), DDP) is an antineoplastic agent widely used in the treatment of solid tumors because of its extensive cytotoxic activity. However, the main limiting side effect of DDP use is nephrotoxicity, a rapid deterioration in kidney function due to toxic chemicals. Several studies have shown that epigenetic processes are involved in DDP-induced nephrotoxicity. Noncoding RNAs (ncRNAs), a class of epigenetic processes, are molecules that regulate gene expression under physiological and pathological conditions. MicroRNAs (miRNAs) are the most characterized class of ncRNAs and are engaged in many cellular processes. In this review, we describe how different miRNAs regulate some pathways leading to cell death by apoptosis, specifically the intrinsic apoptosis pathway. Accordingly, many classes of natural products have been tested for their ability to prevent DDP-induced apoptosis. The study of epigenetic regulation for underlying cell death is still being studied, which will allow new strategies for the diagnosis and therapy of this unwanted disease, which is presented as a side effect of antineoplastic treatment.
Collapse
Affiliation(s)
- Pía Loren
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | - Yuliannis Lugones
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
- Doctoral Programme in Sciences with major in Applied Cellular and Molecular Biology, Universidad de La Frontera, Temuco 4811230, Chile
| | - Nicolás Saavedra
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | - Kathleen Saavedra
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | - Isis Páez
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
- Doctoral Programme in Sciences with major in Applied Cellular and Molecular Biology, Universidad de La Frontera, Temuco 4811230, Chile
| | - Nelia Rodriguez
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
- Doctoral Programme in Sciences with major in Applied Cellular and Molecular Biology, Universidad de La Frontera, Temuco 4811230, Chile
| | - Patricia Moriel
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas 13083970, SP, Brazil
| | - Luis A. Salazar
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
- Correspondence: ; Tel.: +56-452-596-724
| |
Collapse
|
19
|
Alqahtani MJ, Mostafa SA, Hussein IA, Elhawary S, Mokhtar FA, Albogami S, Tomczyk M, Batiha GES, Negm WA. Metabolic Profiling of Jasminum grandiflorum L. Flowers and Protective Role against Cisplatin-Induced Nephrotoxicity: Network Pharmacology and In Vivo Validation. Metabolites 2022; 12:metabo12090792. [PMID: 36144196 PMCID: PMC9502427 DOI: 10.3390/metabo12090792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/15/2022] [Accepted: 08/22/2022] [Indexed: 12/02/2022] Open
Abstract
Cisplatin (CP) is a powerful chemotherapeutic agent; however, its therapeutic use is restricted due to its nephrotoxicity. In this work, we profiled the phytoconstituents of Jasminum grandiflorum flower extract (JGF) using LC-MS/MS and explored the possible molecular mechanisms against acute renal failure through pharmacological network analysis. Furthermore, the possible molecular mechanisms of JGF against acute renal failure were verified in an in vivo nephrotoxicity model caused by cisplatin. LC-MS analysis furnished 26 secondary metabolites. Altogether, there were 112 total hit targets for the identified metabolites, among which 55 were potential consensus targets related to nephrotoxicity based on the network pharmacology approach. Upon narrowing the scope to acute renal failure, using the DisGeNET database, only 30 potential targets were determined. The computational pathway analysis illustrated that JGF might inhibit renal failure through PI3K-Akt, MAPK signaling pathway, and EGFR tyrosine kinase inhibitor resistance. This study was confirmed by in vivo experiment in which kidneys were collected for histopathology and gene expression of mitogen-activated protein kinase 4 (MKK4), MKK7, I-CAM 1, IL-6, and TNF receptor-associated factor 2 (TRAF2). The animal-administered cisplatin exhibited a substantial rise in the expression levels of the MMK4, MKK7, I CAM 1, and TRFA2 genes compared to the control group. To summarize, J. grandiflorum could be a potential source for new reno-protective agents. Further experiments are needed to confirm the obtained activities and determine the therapeutic dose and time.
Collapse
Affiliation(s)
- Moneerah J. Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Sally A. Mostafa
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura 35511, Egypt
| | - Ismail A. Hussein
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Seham Elhawary
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Fatma A. Mokhtar
- Department of Pharmacognosy, Faculty of Pharmacy, ALSalam University, Al Gharbiya, Kafr El Zayat 31616, Egypt
| | - Sarah Albogami
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Michał Tomczyk
- Department of Pharmacognosy, Medical University of Białystok, ul. Mickiewicza 2a, 15-230 Białystok, Poland
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Walaa A. Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
- Correspondence:
| |
Collapse
|
20
|
Domingo IK, Latif A, Bhavsar AP. Pro-Inflammatory Signalling PRRopels Cisplatin-Induced Toxicity. Int J Mol Sci 2022; 23:7227. [PMID: 35806229 PMCID: PMC9266867 DOI: 10.3390/ijms23137227] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023] Open
Abstract
Cisplatin is a platinum-based chemotherapeutic that has long since been effective against a variety of solid-cancers, substantially improving the five-year survival rates for cancer patients. Its use has also historically been limited by its adverse drug reactions, or cisplatin-induced toxicities (CITs). Of these reactions, cisplatin-induced nephrotoxicity (CIN), cisplatin-induced peripheral neuropathy (CIPN), and cisplatin-induced ototoxicity (CIO) are the three most common of several CITs recognised thus far. While the anti-cancer activity of cisplatin is well understood, the mechanisms driving its toxicities have only begun to be defined. Most of the literature pertains to damage caused by oxidative stress that occurs downstream of cisplatin treatment, but recent evidence suggests that the instigator of CIT development is inflammation. Cisplatin has been shown to induce pro-inflammatory signalling in CIN, CIPN, and CIO, all of which are associated with persisting markers of inflammation, particularly from the innate immune system. This review covered the hallmarks of inflammation common and distinct between different CITs, the role of innate immune components in development of CITs, as well as current treatments targeting pro-inflammatory signalling pathways to conserve the use of cisplatin in chemotherapy and improve long-term health outcomes of cancer patients.
Collapse
Affiliation(s)
| | | | - Amit P. Bhavsar
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada; (I.K.D.); (A.L.)
| |
Collapse
|
21
|
Salari S, Ghorbanpour A, Marefati N, Baluchnejadmojarad T, Roghani M. Therapeutic effect of lycopene in lipopolysaccharide nephrotoxicity through alleviation of mitochondrial dysfunction, inflammation, and oxidative stress. Mol Biol Rep 2022; 49:8429-8438. [DOI: 10.1007/s11033-022-07661-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/30/2022] [Indexed: 12/29/2022]
|
22
|
Hao R, Ge J, Li F, Jiang Y, Sun-Waterhouse D, Li D. MiR-34a-5p/Sirt1 axis: A novel pathway for puerarin-mediated hepatoprotection against benzo(a)pyrene. Free Radic Biol Med 2022; 186:53-65. [PMID: 35561843 DOI: 10.1016/j.freeradbiomed.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/20/2022] [Accepted: 05/05/2022] [Indexed: 02/07/2023]
Abstract
Benzo[a]pyrene (BaP) as a carcinogen induces oxidative stress and inflammation, causing health problems including liver damage. Puerarin (a natural flavonoid) is traditionally used to provide hepatoprotective effects. This research was established to meet the rising demand for effective therapies/treatments against hepatic diseases and investigate the mechanism underlying the protective actions of puerarin against BaP-induced liver damage. In mice, puerarin combated effectively the detrimental changes in liver weight, color and function indices caused by BaP. In HepG2 cells, puerarin alleviated BaP-induced cell death, oxidative stress and inflammation, and such effects were positively correlated with puerarin's concentration (12.5-50 μM). Mechanistic studies revealed that BaP induced low Sirt1 expression and high miR-34a-5p expression, and puerarin treatment alleviated these changes. Oxidative stress and inflammation induced by BaP were almost eliminated when miR-34a-5p was silenced. Inhibiting miR-34a-5p or overexpressing Sirt1 had a similar effect to puerain treatment. Overexpression of miR-34a-5p and inhibition of Sirt1 reduced the protective effect of puerarin. Collectively, miR-34a-5p participates in the regulation of puerarin's protective function against BaP-induced injury through targeting Sirt1. There is a novel pathway for suppressing oxidative stress and inflammation via miR-34a-5p/Sirt1 axis in puerarin-mediated hepatoprotection, which opens up a new avenue for alternative therapies.
Collapse
Affiliation(s)
- Rili Hao
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, 271018, People's Republic of China
| | - Junlin Ge
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, 271018, People's Republic of China
| | - Feng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, 271018, People's Republic of China
| | - Yang Jiang
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, 271018, People's Republic of China
| | - Dongxiao Sun-Waterhouse
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, 271018, People's Republic of China; School of Chemical Sciences, The University of Auckland, Auckland, New Zealand.
| | - Dapeng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, 271018, People's Republic of China.
| |
Collapse
|
23
|
Jia A, Yang X, Zou B, Li J, Wang Y, Ma R, Li J, Yao Y. Saikosaponins: A Review of Structures and Pharmacological Activities. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221094908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Radix Bupleuri is a traditional medicine widely used in China and other Asian countries. Phytochemistry and pharmacology study reveal that saikosaponins(SSs) are the main bioactive compounds in Radix Bupleuri. SSs are complex compounds composed of triterpene aglycone and carbohydrate part containing 1-13 monosaccharides, which can be divided into seven types based on their structural characteristics. Many different kinds of SSs have been isolated from plants of Bupleurum L. SSs show a variety of biological activities, such as central nervous system protection, liver protection, antivirus, anti-tumor, anti-inflammation, hormone-like effects, and immune regulation functions. Due to their broad activity and favorable safety profile, SSs attract an increasing amount of attention in recent years. In this review, the structures of 86 SSs are summarized based on the different aglycones due to the diverse structures of saikosaponin(SS). The pharmacological effects and related mechanism of SSs are thoroughly reviewed, and perspectives for future research are further discussed.
Collapse
Affiliation(s)
- Ao Jia
- School of pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Xinhe Yang
- School of pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Bin Zou
- School of pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Jia Li
- School of pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Yefeng Wang
- School of Public Health & Management, Ningxia Medical University, Yinchuan 750004, China
| | - Ruixia Ma
- School of pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Juan Li
- School of pharmacy, Ningxia Medical University, Yinchuan 750004, China
- Key Laboratory of Modernization of Traditional Chinese Medicine, Ministry of Education, Yinchuan 750004, China
| | - Yao Yao
- School of Basic Medical Science, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
24
|
Wu Y, Zhao L, Gu L, Tilyek A, Yu B, Chai C. Renoprotective activity of Ribes diacanthum pall (RDP) against inflammation in cisplatin-stimulated mice model and human renal tubular epithelial cells. JOURNAL OF ETHNOPHARMACOLOGY 2022; 283:114696. [PMID: 34601083 DOI: 10.1016/j.jep.2021.114696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ribes diacanthum Pall (RDP) is mostly distributed in Mongolia. As a Mongolian folk medicinal plant, it is traditionally used to treat kidney diseases by the native inhabitants of Mongolia due to its effect of increasing urine output and eliminating edema. However, its renal protection mechanism remains to be elucidated. AIM OF THE STUDY To assess the pharmacological mechanism of RDP from an anti-inflammatory point of view using cisplatin (CDDP)-induced kidney injury models in vivo and in vitro. The influence of RDP on the chemotherapy efficacy of CDDP was also evaluated in vitro. MATERIALS AND METHODS We established a CDDP-induced nephrotoxicity mouse model and a Human Renal Tubular Epithelial (HK-2) damage cellular model, respectively. In vivo, kidney function, the content of urine albumin, and renal histopathology examination were performed to observe the kidney injury. Moreover, the expression and secretion of inflammatory cytokines and adhesive molecules were examined by enzyme-linked immunosorbent assay (ELISA), immunohistochemistry (IHC), and real-time PCR. The key protein levels of mitogen-activated protein kinase/nuclear factor kappa B (MAPK/NF-κB) signaling pathway were measured by western blotting analysis. Electrophoretic mobility shift assay (EMSA) was carried out to detect the activation of NF-κB. In vitro, inflammatory mediators and the proteins related to the NF-κB signaling pathway in HK-2 cells were measured by western blotting analysis. Besides, A549 cell lines were treated with CDDP and RDP to explore RDP's impact on CDDP chemotherapy. RESULTS Gavage RDP decreased the elevated levels of serum creatinine (Scr), urea nitrogen (BUN), as well as the ratio of urine albumin and creatinine, ameliorated pathological changes of kidney tissue. Correspondingly, the RDP administration group showed a higher survival rate than that of the CDDP exposed group. The expression levels of a plethora of inflammatory mediators were inhibited by RDP treatment compared with the CDDP-exposed group. Furthermore, protein expression levels of MAPK/NF-κB signaling pathway significantly decreased after RDP intervention. For in vitro studies, we confirmed the inhibitory effect of RDP on relative protein expressions involving in the NF-κB pathway. The results also showed that RDP had no impairment on the inhibitory effect of CDDP on A549 cells. CONCLUSION These findings demonstrated RDP's anti-inflammatory effect against CDDP nephrotoxicity through in vivo and in vitro experiments, and suggested that RDP may have a potential application as an adjuvant medication for CDDP chemotherapy and other inflammatory kidney diseases.
Collapse
Affiliation(s)
- Yanliang Wu
- Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Lei Zhao
- Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Lifei Gu
- Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Akhtolkhyn Tilyek
- Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China; Department of Pharmaceutical Chemistry and Pharmacognosy, Mongolian University of Pharmaceutical Sciences, Ulaanbaatar, 18130, Mongolia
| | - Boyang Yu
- Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China; Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Chengzhi Chai
- Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
25
|
Saikosaponin D alleviates DOX-induced cardiac injury in vivo and in vitro. J Cardiovasc Pharmacol 2021; 79:558-567. [PMID: 34983912 DOI: 10.1097/fjc.0000000000001206] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/17/2021] [Indexed: 02/05/2023]
Abstract
ABSTRACT As a highly efficient anticancer agent, Doxorubicin (DOX) is used for various cancers' treatment, but DOX-induced oxidative damages contribute to a degenerative irreversible cardiac toxicity. Saikosaponin D (SSD), which is a triterpenoid saponin with many biological activities including anti-inflammatory effects and antioxidant properties, provides protection against pathologic cardiac remodeling and fibrosis. In present study, we investigated the work of SSD for DOX-induced cardiotoxicity and the involved mechanisms. We observed that DOX injection induced cardiac injury, malfunction and decreased survival rate. Besides, DOX treatment increased lactate dehydrogenase (LDH) leakage, cardiomyocyte apoptosis, myocardium fibrosis and decrease of cardiomyocytes' sizes. Meanwhile, all the effects were notably attenuated by SSD treatment. In vitro, we found that 1μM SSD could enhance the proliferation of H9c2 cells, and inhibit DOX-induced apoptosis. It was found that the levels of MDA and reactive oxygen species (ROS) were significantly reduced by improving the activities of the endogenous antioxidative enzymes including catalase (CAT), and glutathione peroxidase (GSH-Px). Furthermore, SSD treatment could downregulate the DOX-induced p38 phosphorylation. Our results suggested that SSD efficiently protected the cardiomyocytes from DOX-induced cardiotoxicity by inhibiting the excessive oxidative stress via p38 MAPK signaling pathway.
Collapse
|
26
|
Natural products: potential treatments for cisplatin-induced nephrotoxicity. Acta Pharmacol Sin 2021; 42:1951-1969. [PMID: 33750909 PMCID: PMC8633358 DOI: 10.1038/s41401-021-00620-9] [Citation(s) in RCA: 191] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/01/2021] [Indexed: 12/13/2022]
Abstract
Cisplatin is a clinically advanced and highly effective anticancer drug used in the treatment of a wide variety of malignancies, such as head and neck, lung, testis, ovary, breast cancer, etc. However, it has only a limited use in clinical practice due to its severe adverse effects, particularly nephrotoxicity; 20%–35% of patients develop acute kidney injury (AKI) after cisplatin administration. The nephrotoxic effect of cisplatin is cumulative and dose dependent and often necessitates dose reduction or withdrawal. Recurrent episodes of AKI result in impaired renal tubular function and acute renal failure, chronic kidney disease, uremia, and hypertensive nephropathy. The pathophysiology of cisplatin-induced AKI involves proximal tubular injury, apoptosis, oxidative stress, inflammation, and vascular injury in the kidneys. At present, there are no effective drugs or methods for cisplatin-induced kidney injury. Recent in vitro and in vivo studies show that numerous natural products (flavonoids, saponins, alkaloids, polysaccharide, phenylpropanoids, etc.) have specific antioxidant, anti-inflammatory, and anti-apoptotic properties that regulate the pathways associated with cisplatin-induced kidney damage. In this review we describe the molecular mechanisms of cisplatin-induced nephrotoxicity and summarize recent findings in the field of natural products that undermine these mechanisms to protect against cisplatin-induced kidney damage and provide potential strategies for AKI treatment.
Collapse
|
27
|
Zhang L, Dong R, Wang Y, Wang L, Zhou T, Jia D, Meng Z. The anti-breast cancer property of physcion via oxidative stress-mediated mitochondrial apoptosis and immune response. PHARMACEUTICAL BIOLOGY 2021; 59:303-310. [PMID: 33715588 PMCID: PMC7971271 DOI: 10.1080/13880209.2021.1889002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
CONTEXT Physcion (Phy) exerts several pharmacological effects including anti-inflammatory, antioxidant, and antitumor properties. OBJECTIVE This study investigates the cytotoxicity and its underlying mechanisms of Phy on breast cancer. MATERIALS AND METHODS Human breast cancer cell MCF-7 was treated with 5-400 µM Phy for 24 h, MCF-7-xenografted BALB/c nude mice and immunosuppressive mice model induced by cyclophosphamide were intraperitoneally injected with 0.1 mL/mouse normal saline (control group) and 30 mg/kg Phy every other day for 14 or 28 days, and pathological examination, ELISA and western blot were employed to investigate the Phy anti-breast cancer property in vitro and in vivo. RESULTS In MCF-7 cells, Phy 24 h treatment significantly reduced the cell viability at dose of 50-400 µM and 24 h, with an IC50 of 203.1 µM, and 200 µM Phy induced 56.9, 46.9, 36.9, and 46.9% increment on LDH and caspase-3, -8 and -9. In MCF-7-xenograft tumour nude mice and immunosuppressive mice, 30 mg/kg Phy treatment inhibited tumour growth from the 8th day, and reduced Bcl-2 and Bcl-xL >50%, HO-1 and SOD-1 > 70% in tumour tissues of immunosuppressive mice. In addition, Phy reduced nuclear factor erythroid 2-related factor 2 > 30% and its downstream proteins, and enhanced the phosphorylation of nuclear factor-kappa B > 110% and inhibitor of NF-кB α > 80% in the tumour tissues of BALB/c mice. DISCUSSION AND CONCLUSIONS This research demonstrated that Phy has an anti-breast cancer property via the modulation of oxidative stress-mediated mitochondrial apoptosis and immune response, which provides a scientific basis for further research on its clinical applications.
Collapse
Affiliation(s)
- Luping Zhang
- The Gastroenterology & Endoscopy Center, First Hospital, Jilin University, Changchun, Jilin, China
| | - Ruitao Dong
- School of Life Sciences, Jilin University, Changchun, China
| | - Yu Wang
- The Gastroenterology & Endoscopy Center, First Hospital, Jilin University, Changchun, Jilin, China
| | - Longxiang Wang
- School of Life Sciences, Jilin University, Changchun, China
| | - Tian Zhou
- Department of Translational Medicine Research Institute, First Hospital, Jilin University, Changchun, Jilin, China
| | - Dongxu Jia
- School of Life Sciences, Jilin University, Changchun, China
- Department of Translational Medicine Research Institute, First Hospital, Jilin University, Changchun, Jilin, China
- CONTACT Dongxu Jia School of Life Sciences, Jilin University, Changchun, Jilin, 130021, China
| | - Zhaoli Meng
- Department of Translational Medicine Research Institute, First Hospital, Jilin University, Changchun, Jilin, China
- Zhaoli Meng Department of Translational Medicine Research Institute, First Hospital, Jilin University, Changchun City, Jilin Province, P. R. China
| |
Collapse
|
28
|
Tang ZY, Li Y, Tang YT, Ma XD, Tang ZY. Anticancer activity of oleanolic acid and its derivatives: Recent advances in evidence, target profiling and mechanisms of action. Biomed Pharmacother 2021; 145:112397. [PMID: 34798468 DOI: 10.1016/j.biopha.2021.112397] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
Oleanolic acid (OA, 3 β - hydroxyoleanolic acid-12-en-28-oic acid) is a pentacyclic triterpenoid present in many plants. As a new framework for development of semi synthetic triterpenoids, OA is of great significance in the discovery of anticancer drugs. Some of these derivatives, such as CDDO (2-cyano-3,12-dioxooleana-1, 9 (11)-dien-28-oic acid) have been verified in clinical trials, while other derivatives studied previously, such as SZC014, SZC015 and SZC017 (OA derivatives respectively), are also candidate drugs for cancer treatment. This paper reviews the preclinical studies, literature evidence, target analysis and anticancer mechanism of OA and its derivatives. The mechanism of action of its derivatives mainly includes anti-cancer cell proliferation, inducing tumor cell apoptosis, inducing autophagy, regulating cell cycle regulatory proteins, inhibiting vascular endothelial growth, anti angiogenesis, inhibiting tumor cell migration and invasion. In recent years, the molecular mechanism of OA and its derivatives has been elucidated. These effects seem to be mediated by the alterations in a variety of signaling pathways induced by OA and its derivatives. In conclusion, OA and its derivatives are considered as important candidate drugs for the treatment of cancer, indicating that OA and its derivatives have the potential to be used as anticancer drugs in practice.
Collapse
Affiliation(s)
- Zhong-Yuan Tang
- Department of Orthodontics, School of Stomatology, Jilin University, 1500 Qinghua Road, Changchun 130021, Jilin, PR China
| | - Yang Li
- Pharmacology Department, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Yu-Ting Tang
- Pharmacology Department, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Xiao-Dong Ma
- Pharmacology Department, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Ze-Yao Tang
- Pharmacology Department, Dalian Medical University, Dalian, Liaoning 116044, PR China.
| |
Collapse
|
29
|
Li C, Cui L, Zhang L, Yang L, Zhuo Y, Cui J, Cui N, Zhang S. Saikosaponin D Attenuates Pancreatic Injury Through Suppressing the Apoptosis of Acinar Cell via Modulation of the MAPK Signaling Pathway. Front Pharmacol 2021; 12:735079. [PMID: 34744719 PMCID: PMC8566544 DOI: 10.3389/fphar.2021.735079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/15/2021] [Indexed: 01/14/2023] Open
Abstract
Chronic pancreatitis (CP) is a progressive fibro-inflammatory syndrome. The damage of acinar cells is the main cause of inflammation and the activation of pancreatic stellate cells (PSCs), which can thereby possibly further aggravate the apoptosis of more acinar cells. Saikosaponind (SSd), a major active ingredient derived from Chinese medicinal herb bupleurum falcatum, which exerted multiple pharmacological effects. However, it is not clear whether SSd protects pancreatic injury of CP via regulating the apoptosis of pancreatic acinar cells. This study systematically investigated the effect of SSd on pancreatic injury of CP in vivo and in vitro. The results revealed that SSd attenuate pancreatic damage, decrease the apoptosis and suppress the phosphorylation level of MAPK family proteins (JNK1/2, ERK1/2, and p38 MAPK) significantly in the pancreas of CP rats. In addition, SSd markedly reduced the apoptosis and inflammation of pancreatic acinar AR42J cells induced by cerulein, a drug induced CP, or Conditioned Medium from PSCs (PSCs-CM) or the combination of PSCs-CM and cerulein. Moreover, SSd significantly inhibited the activated phosphorylation of JNK1/2, ERK1/2, and p38 MAPK induced by cerulein or the combination of PSCs-CM and cerulein in AR42J cells. Furthermore, SSd treatment markedly decreased the protein levels of p-JNK and p-p38 MAPK caused by PSCs-CM alone. In conclusion, SSd ameliorated pancreatic injury, suppressed AR42J inflammation and apoptosis induced by cerulein, interrupted the effect of PSCs-CM on AR42J cells inflammation and apoptosis, possibly through MAPK pathway.
Collapse
Affiliation(s)
- Caixia Li
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin Nankai Hospital, Nankai Clinical College, Tianjin Medical University, Tianjin, China
| | - Lihua Cui
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin Nankai Hospital, Nankai Clinical College, Tianjin Medical University, Tianjin, China
| | - Lanqiu Zhang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin Nankai Hospital, Nankai Clinical College, Tianjin Medical University, Tianjin, China
| | - Lei Yang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin Nankai Hospital, Nankai Clinical College, Tianjin Medical University, Tianjin, China
| | - Yuzhen Zhuo
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin Nankai Hospital, Nankai Clinical College, Tianjin Medical University, Tianjin, China
| | - Jialin Cui
- The Clinical Medicine, Tianjin Medical University, Tianjin, China
| | - Naiqiang Cui
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin Nankai Hospital, Nankai Clinical College, Tianjin Medical University, Tianjin, China
| | - Shukun Zhang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin Nankai Hospital, Nankai Clinical College, Tianjin Medical University, Tianjin, China
| |
Collapse
|
30
|
Bai S, Peng X, Wu C, Cai T, Liu J, Shu G. Effects of dietary inclusion of Radix Bupleuri extract on the growth performance, and ultrastructural changes and apoptosis of lung epithelial cells in broilers exposed to atmospheric ammonia. J Anim Sci 2021; 99:skab313. [PMID: 34718609 PMCID: PMC8599180 DOI: 10.1093/jas/skab313] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/23/2021] [Indexed: 02/07/2023] Open
Abstract
To explore whether Radix Bupleuri extract (RBE) could protect lung injury of broilers under ammonia (NH3) exposure, 360 one-d-old male broilers were randomly allocated to four groups of six replicates each in a 2 × 2 factorial design with two diets (the basal diet [control; CON] and the basal diet supplemented with RBE [RB]) and two air conditions (normal condition [<2 ppm of NH3; NOR] and NH3 exposure [70 ppm of NH3; NH70]). The RB diet contained 80 mg saikosaponins/kg diet. On day 7, the lung tissues were collected and the lung epithelial cells (LEC) were isolated. Our experimental results showed that the NH3 exposure decreased body weight gain and feed intake irrespective of dietary treatments during days 1 to 7. However, the RBE addition decreased feed consumption to body weight gain ratio in broilers under NH70 conditions. In the LEC of CON-fed broilers under NH70 conditions, Golgi stacks showed the dilation of cisternaes and reduced secretory vesicles, mitochondria enlarged, the inner membrane of mitochondria became obscure, and the cristae of mitochondria ruptured, whereas only a mild enlargement of Golgi cisternaes and the part rupture of mitochondrial cristaes occurred in the LEC of RB-fed broilers under NH70 conditions. The NH3 exposure increased malondialdehyde (MDA) level, but decreased total antioxidant capacity (T-AOC) in the lungs of CON-fed broilers. However, the RBE addition decreased MDA level and increased T-AOC in the lungs of broilers under NH70 conditions. Simultaneously, the NH3 exposure increased apoptotic rate (AR), mitochondrial membrane potential (MMP), and reactive oxygen species (ROS) level in the isolated LEC of CON-fed broilers. The RBE addition decreased AR, MMP, and ROS in the isolated LEC of broilers under NH70 condition. Besides, the NH3 exposure increased mRNA expression of B-cell lymphoma-2 associated X protein (BAX), caspase-3, and tumor necrosis factor α (TNF-α), but increased interferon γ (IFN-γ) mRNA abundance in the lungs of CON-fed broilers. The RBE supplement decreased mRNA levels of BAX, caspase-3, and TNF-α, but increased IFN-γ, interleukin (IL)-4, and IL-17 mRNA levels in the lungs of broilers under NH70 conditions. These results indicated that dietary RBE addition alleviated NH3 exposure-induced intercellular ultrastructural damage via mitochondrial apoptotic pathway, possibly due to RBE-induced increase of antioxidant capacity and immunomodulatory function in the lungs of broilers under NH3 exposure.
Collapse
Affiliation(s)
- Shiping Bai
- Institute of Animal Nutrition, Feed Engineering Research Centre of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xi Peng
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Caimei Wu
- Institute of Animal Nutrition, Feed Engineering Research Centre of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Tong Cai
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Jiangfeng Liu
- School of Intelligence Technology, Geely University of China, Chengdu 641423, China
| | - Gang Shu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
31
|
Lee D, Kang KB, Hwang GS, Choi YK, Kim TK, Kang KS. Antioxidant and Anti-Inflammatory Effects of 3-Dehydroxyceanothetric Acid 2-Methyl Ester Isolated from Ziziphus jujuba Mill. against Cisplatin-Induced Kidney Epithelial Cell Death. Biomolecules 2021; 11:1614. [PMID: 34827612 PMCID: PMC8615384 DOI: 10.3390/biom11111614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 11/17/2022] Open
Abstract
Cisplatin is a platinum-based chemotherapeutic agent for treating solid tumors; however, it presents a risk factor for nephropathy. In the present study, we investigated the antioxidant and anti-inflammatory effects of 3-dehydroxyceanothetric acid 2-methyl ester (3DC2ME) isolated from Ziziphus jujuba Mill. in LLC-PK1 cells following cisplatin-induced cytotoxicity. These cells were exposed to 3DC2ME for 2 h, followed by treatment with cisplatin for 24 h. The treated cells were subjected to cell viability analysis using the Ez-Cytox assay. Reactive oxygen species (ROS) were detected via 2', 7'- dichlorodihydrofluorescein diacetate (DCFH-DA) staining. In addition, western blotting and fluorescent immunostaining were performed to evaluate protein expressions related to oxidative stress and inflammation pathways. Pretreatment with 3DC2ME protected LLC-PK1 cells from cisplatin-induced cytotoxicity and oxidative stress. In addition, pretreatment with 3DC2ME upregulated heme oxygenase 1 (HO-1) via the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway in the cisplatin-treated LLC-PK1 cells. Furthermore, the increase in the expressions of IκB kinase α/β (IKKα/β), inhibitor of kappa B alpha (IκBα), nuclear factor kappa B (NF-κB), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) in these cells was inhibited. These results provide basic scientific evidence for understanding the antioxidant and anti-inflammatory effects of 3DC2ME isolated from Z. jujuba against cisplatin-induced kidney epithelial cell death.
Collapse
Affiliation(s)
- Dahae Lee
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea; (D.L.); (G.S.H.); (Y.-K.C.)
| | - Kyo Bin Kang
- College of Pharmacy, Sookmyung Women’s University, Seoul 04310, Korea;
| | - Gwi Seo Hwang
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea; (D.L.); (G.S.H.); (Y.-K.C.)
| | - You-Kyoung Choi
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea; (D.L.); (G.S.H.); (Y.-K.C.)
| | - Tae Kon Kim
- College of Science & Engineering, Jungwon University, Chungbuk 28024, Korea
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea; (D.L.); (G.S.H.); (Y.-K.C.)
| |
Collapse
|
32
|
Chien LH, Wu CT, Deng JS, Jiang WP, Huang WC, Huang GJ. Salvianolic Acid C Protects against Cisplatin-Induced Acute Kidney Injury through Attenuation of Inflammation, Oxidative Stress and Apoptotic Effects and Activation of the CaMKK-AMPK-Sirt1-Associated Signaling Pathway in Mouse Models. Antioxidants (Basel) 2021; 10:antiox10101620. [PMID: 34679755 PMCID: PMC8533075 DOI: 10.3390/antiox10101620] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/23/2021] [Accepted: 10/13/2021] [Indexed: 12/28/2022] Open
Abstract
Acute kidney injury (AKI) is a sudden reduction in kidney activity and has a high mortality rate. Salvianolic acid C (SAC), one of the main polyphenolic components of Salvia miltiorrhiza, displays significant pharmacologically active effects. An animal model of cisplatin-induced kidney injury was used to study the potential of SAC to improve AKI. First, SAC was administered intraperitoneally in mice for 10 consecutive days, and then cisplatin was administered intraperitoneally on day 7 to establish a nephrotoxicity mouse model. SAC mitigated renal histological changes, blood creatinine (CRE) and blood urea nitrogen (BUN) production and the levels of inflammatory mediators in the cisplatin-induced AKI. Furthermore, malondialdehyde (MDA) levels were reduced and glutathione (GSH) was increased after intraperitoneal injection (i.p.) administration of SAC. In addition, based on Western blot data, SAC reduced the expression of inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) activation in mouse renal tissues. Finally, SAC diminished the level of TLR-4 expression and enhanced the production of several antioxidative enzymes (superoxidase dismutase (SOD1), glutathione peroxidase (GPx3), catalase, nuclear-factor-erythroid-2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1)), Sirtuin 1 (Sirt1), p-AMP-activated protein kinase (AMPK) and p-Ca2+/calmodulin-dependent protein kinase kinase (CaMKK). In addition, Sirt1 inhibition (EX 527) inverted the effect of SAC against cisplatin-induced nephrotoxicity. Collectively, SAC provides a therapeutic target with promising clinical potential after cisplatin treatment by attenuating oxidative stress and inflammation.
Collapse
Affiliation(s)
- Liang-Hsuan Chien
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan;
| | - Chien-Ta Wu
- Faculty of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Jeng-Shyan Deng
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 413, Taiwan;
| | - Wen-Ping Jiang
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan;
| | - Wen-Chin Huang
- Graduate Institute of Biomedical Sciences, School of Medicine, China Medical University, Taichung 404, Taiwan;
- International Master’s Program of Biomedical Sciences, School of Medicine, China Medical University, Taichung 404, Taiwan
| | - Guan-Jhong Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan;
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 413, Taiwan;
- Correspondence: ; Tel.: +886-4-2205-3366 (ext. 5508)
| |
Collapse
|
33
|
Mechanism Prediction of Astragalus membranaceus against Cisplatin-Induced Kidney Damage by Network Pharmacology and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9516726. [PMID: 34457031 PMCID: PMC8390139 DOI: 10.1155/2021/9516726] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/21/2021] [Accepted: 08/11/2021] [Indexed: 02/05/2023]
Abstract
Background Cisplatin is a frequently used and effective chemotherapy drug in clinical practice, but severe side effects limit its use, among which nephrotoxicity is considered the most serious and prolonged damage to the body. Astragalus membranaceus (AM) is a well-known herbal medicine, and modern pharmacological studies have confirmed its antioxidant, immunomodulatory, and antiapoptotic effects. Clinical studies have shown that AM and its active components can attenuate cisplatin-induced kidney damage, but the molecular mechanism has not been fully expounded. Materials and Methods First, the components and targets information of AM were collected from the TCMSP, and the relevant targets of cisplatin-induced kidney damage were accessed from the GeneCards and OMIM databases. Then, the core targets were selected by the Venn diagram and network topology analysis, which was followed by GO and KEGG pathway enrichment analysis. Finally, we construct a component-target-pathway network. Furthermore, molecular docking was carried out to identify the binding activity between active components and key targets. Results A total of 20 active components and 200 targets of AM and 646 targets related to cisplatin-induced kidney damage were obtained. 91 intersection targets were found between AM and cisplatin-induced kidney damage. Then, 16 core targets were identified, such as MAPK1, TNF-α, and p53. Furthermore, GO and KEGG pathway enrichment analysis suggested that MAPK, Toll-like receptor, and PI3K-Akt signaling pathways may be of significance in the treatment of cisplatin-induced kidney damage by AM. Molecular docking indicated that quercetin and kaempferol had high binding affinities with many core targets. Conclusion In summary, the active components, key targets, and signaling pathways of AM in the treatment of cisplatin-induced kidney damage were predicted in this study, which contributed to the development and application of AM.
Collapse
|
34
|
Kim MK, Choi YC, Cho SH, Choi JS, Cho YW. The Antioxidant Effect of Small Extracellular Vesicles Derived from Aloe vera Peels for Wound Healing. Tissue Eng Regen Med 2021; 18:561-571. [PMID: 34313971 PMCID: PMC8325744 DOI: 10.1007/s13770-021-00367-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) derived from plants have emerged as potential candidates for cosmetic and therapeutic applications. In this study, we isolated EVs from Aloe vera peels (A-EVs) and investigated the antioxidant and wound healing potential of A-EVs. METHODS A-EVs were isolated by ultracentrifugation and tangential flow filtration and were characterized using transmission electron microscopy, nanoparticle tracking analysis. The cytotoxicity and cellular uptake of A-EVs were investigated by WST-1 assay and flow cytometry. The antioxidant effect of A-EVs was evaluated by superoxide dismutase (SOD) activity assay and cellular antioxidant activity (CAA) assay. The wound healing potential was assessed by in vitro scratch assay using human keratinocytes (HaCaT) and fibroblasts (HDF). The expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and their associated genes was analyzed by quantitative RT-PCR. RESULTS A-EVs displayed a round shape and had diameters from 50 to 200 nm. A-EVs showed good cytocompatibility on human skin cells and were internalized into HaCaT cells via clathrin-, caveolae-mediated endocytosis, and membrane fusion. The SOD activity and CAA assays exhibited that A-EVs had antioxidant activity and reduced intracellular ROS levels in H2O2-treated HaCaT cells in a dose-dependent manner. A scratch assay showed that A-EVs enhanced the migration ability of HaCaT and HDF. Moreover, A-EVs significantly upregulated the mRNA expression of Nrf2, HO-1, CAT, and SOD genes in H2O2-treated HaCaT cells. Our findings reveal that A-EVs could activate the antioxidant defense mechanisms and wound healing process via the Nrf2 activation. CONCLUSION Overall results suggest that the A-EVs are promising as a potential agent for skin regeneration.
Collapse
Affiliation(s)
- Min Kang Kim
- Exostemtech Inc., Education Research Industry Collaboration Complex (ERICC), Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, 15588, Republic of Korea
| | - Young Chan Choi
- Exostemtech Inc., Education Research Industry Collaboration Complex (ERICC), Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, 15588, Republic of Korea
| | - Seung Hee Cho
- Exostemtech Inc., Education Research Industry Collaboration Complex (ERICC), Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, 15588, Republic of Korea
| | - Ji Suk Choi
- Exostemtech Inc., Education Research Industry Collaboration Complex (ERICC), Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, 15588, Republic of Korea.
| | - Yong Woo Cho
- Exostemtech Inc., Education Research Industry Collaboration Complex (ERICC), Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, 15588, Republic of Korea.
- Department of Materials Science and Chemical Engineering, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, 15588, Republic of Korea.
| |
Collapse
|
35
|
Saikosaponin-D Alleviates Renal Inflammation and Cell Apoptosis in a Mouse Model of Sepsis via TCF7/FOSL1/MMP9 Inhibition. Mol Cell Biol 2021; 41:e0033221. [PMID: 34309413 DOI: 10.1128/mcb.00332-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Evidence exists reporting that Saikosaponin-d can prevent experimental sepsis, and this study aims to illustrate the molecular events underlying its renoprotective effects on lipopolysaccharide (LPS)-induced renal inflammation simulating sepsis. Through network pharmacology analysis and bioinformatics analysis, we identified that saikosaponin-d may influence sepsis development by mediating TCF7. Dual luciferase reporter gene and ChIP assays were used to explore the interactions between TCF7, FOSL1 and MMP9. The experimental data suggested that Saikosaponin-d attenuated LPS-induced renal injury, as evidenced by reduced the production of proinflammatory cytokines as well as cell apoptosis in the renal tissues of LPS-induced mice. Mechanically, Saikosaponin-d inhibited FOSL1 by inhibiting TCF7, which reduced the expression of inflammatory factors in renal cells. TCF7 activated the FOSL1 expression and consequently promoted the expression of MMP9. Also, Saikosaponin-d reduced cell apoptosis and the expression of inflammatory factors by inhibiting the TCF7/FOSL1/MMP9 axis in vivo. In conclusion, Saikosaponin-d suppresses FOSL1 transcription by downregulating TCF7, thereby inhibiting MMP9 expression and ultimately reducing the renal inflammation and cell apoptosis induced by sepsis.
Collapse
|
36
|
Qiu Y, Qiu Y, Yao GM, Luo C, Zhang C. Natural product therapies in chronic kidney diseases: An update. Nephrol Ther 2021; 18:75-79. [PMID: 34187761 DOI: 10.1016/j.nephro.2021.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 11/15/2020] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
Chronic kidney disease is one of the major worldwide public health problems. Traditional Chinese medications have been widely used for chronic kidney disease treatment. As the development of modern phytochemistry technology, natural products have been isolated from traditional Chinese medications, which provide a more precise method for the investigation of traditional Chinese medications. In this article, we selected eight natural products from traditional Chinese medications for chronic kidney disease therapy to summarize the recent advances for the development of new medications.
Collapse
Affiliation(s)
- Yue Qiu
- Department of nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yang Qiu
- Department of nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Guang-Min Yao
- Hubei Key laboratory of natural medicinal chemistry and resource evaluation, School of pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Changqing Luo
- Department of nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Chun Zhang
- Department of nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
37
|
Gao C, Liu C, Chen Y, Wang Q, Hao Z. Protective effects of natural products against drug-induced nephrotoxicity: A review in recent years. Food Chem Toxicol 2021; 153:112255. [PMID: 33989732 DOI: 10.1016/j.fct.2021.112255] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/03/2021] [Accepted: 05/05/2021] [Indexed: 12/17/2022]
Abstract
Drug-induced nephrotoxicity (DIN) is a major cause of kidney damage and is associated with high mortality and morbidity, which limits the clinical use of certain therapeutic or diagnostic agents, such as antineoplastic drugs, antibiotics, immunosuppressive agents, non-steroidal anti-inflammatory drugs (NSAIDs), and contrast agents. However, in recent years, a number of studies have shown that many natural products (NPs), including phytochemicals, various plants extracts, herbal formulas, and NPs derived from animals, confer protective effects against DIN through multi-targeting therapeutic mechanisms, such as inhibition of oxidative stress, inflammation, apoptosis, fibrosis, and necroptosis, regulation of autophagy, maintenance of cell polarity, etc., by regulating multiple signaling pathways and novel molecular targets. In this review, we summarize and discuss the protective effects and mechanisms underlying the action of NPs against DIN found in recent years, which will contribute to the development of promising renal protective agents.
Collapse
Affiliation(s)
- Chen Gao
- Innovation Center for Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Chang Liu
- Innovation Center for Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yuwei Chen
- Innovation Center for Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Qingtao Wang
- Innovation Center for Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Zhihui Hao
- Innovation Center for Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
38
|
Zhang Y, Zha Z, Shen W, Li D, Kang N, Chen Z, Liu Y, Xu G, Xu Q. Anemoside B4 ameliorates TNBS-induced colitis through S100A9/MAPK/NF-κB signaling pathway. Chin Med 2021; 16:11. [PMID: 33461587 PMCID: PMC7814617 DOI: 10.1186/s13020-020-00410-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/10/2020] [Accepted: 12/10/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Despite the increased morbidity of ulcerative colitis (UC) in the developing countries, available treatments remain unsatisfactory. Therefore, it is urgent to discover more effective therapeutic strategies. Pulsatilla chinensis was widely used for the treatment of inflamed intestinal diseases including UC for thousands of years in China. Anemoside B4, the most abundant triterpenoid saponin isolated from P. chinensis, exerts anti-inflammatory and antioxidant effects and may be the most active compounds, which is responsible for the therapeutic effects. However, the mechanism how anemoside B4 executes its biological functions is still elusive. METHODS Here, we used the 2, 4, 6-trinitrobenzene sulfonic acid (TNBS)-induced colitis rat model to evaluate the therapeutic effect of anemoside B4. Blood samples of colitis rats were collected for hematology analysis. The inflammation-associated factors were investigated by enzyme-linked immunosorbent assay (ELISA). Cell proliferation and apoptosis was determined with EdU cell proliferation assay and TUNEL assay. The proteins regulated by anemoside B4 were identified by label-free quantitative proteomics. The significantly down-regulated proteins were verified by Western blotting analysis. mRNA expression was analyzed by quantitative real-time RT-PCR. RESULTS The results showed that anemoside B4 ameliorated TNBS-induced colitis symptoms, including tissue damage, inflammatory cell infiltration, and pro-inflammatory cytokine production, apoptosis and slowed proliferation in colon. Quantitative proteomic analyses discovered that 56 proteins were significantly altered by anemoside B4 in the TNBS-induced rats. These proteins mainly clustered in tricarboxylic acid (TCA) cycle and respiratory electron transport chain. Among the altered proteins, S100A9 is one of the most significantly down-regulated proteins and associated with NF-κB and MAPK signaling pathways in the pathogenesis of UC. Further experiments revealed that anemoside B4 suppressed the expression of S100A9 and its downstream genes including TLR4 and NF-κB in colon. In vitro, anemoside B4 could inhibit the NF-κB signaling pathway induced by recombinant S100A9 protein in human intestinal epithelial Caco-2 cells. Moreover, anemoside B4 inhibits neutrophils recruitment and activation in colon induced by TNBS. CONCLUSIONS Our results demonstrate that anemoside B4 prevents TNBS-induced colitis by inhibiting the NF-κB signaling pathway through deactivating S100A9, suggesting that anemoside B4 is a promising therapeutic candidate for colitis.
Collapse
Affiliation(s)
- Yong Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Zhengxia Zha
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Wenhua Shen
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Dan Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China.,Jiangsu Key Laboratory of Neuropsychiatric Diseases and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Naixin Kang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Zhong Chen
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Yanli Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Guoqiang Xu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China. .,Jiangsu Key Laboratory of Neuropsychiatric Diseases and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Qiongming Xu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
39
|
Wu PY, Li TM, Chen SI, Chen CJ, Chiou JS, Lin MK, Tsai FJ, Wu YC, Lin TH, Liao CC, Huang SM, Lin YN, Liang WM, Lin YJ. Complementary Chinese Herbal Medicine Therapy Improves Survival in Patients With Pemphigus: A Retrospective Study From a Taiwan-Based Registry. Front Pharmacol 2020; 11:594486. [PMID: 33362549 PMCID: PMC7756119 DOI: 10.3389/fphar.2020.594486] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/28/2020] [Indexed: 12/26/2022] Open
Abstract
Pemphigus is a life-threatening and skin-specific inflammatory autoimmune disease, characterized by intraepidermal blistering between the mucous membranes and skin. Chinese herbal medicine (CHM) has been used as an adjunct therapy for treating many diseases, including pemphigus. However, there are still limited studies in effects of CHM treatment in pemphigus, especially in Taiwan. To more comprehensively explore the effect of long-term CHM treatment on the overall mortality of pemphigus patients, we performed a retrospective analysis of 1,037 pemphigus patients identified from the Registry for Catastrophic Illness Patients database in Taiwan. Among them, 229 and 177 patients were defined as CHM users and non-users, respectively. CHM users were young, predominantly female, and had a lesser Charlson comorbidity index (CCI) than non-CHM users. After adjusting for age, sex, prednisolone use, and CCI, CHM users had a lower overall mortality risk than non-CHM users (multivariate model: hazard ratio (HR): 0.422, 95% confidence interval (CI): 0.242–0.735, p = 0.0023). The cumulative incidence of overall survival was significantly higher in CHM users than in non-users (p = 0.0025, log rank test). Association rule mining and network analysis showed that there was one main CHM cluster with Qi–Ju–Di–Huang–Wan (QJDHW), Dan–Shen (DanS; Radix Salviae miltiorrhizae; Salvia miltiorrhiza Bunge), Jia–Wei–Xiao–Yao-–San (JWXYS), Huang–Lian (HL; Rhizoma coptidis; Coptis chinensis Franch.), and Di–Gu–Pi (DGP; Cortex lycii; Lycium barbarum L.), while the second CHM cluster included Jin–Yin–Hua (JYH; Flos lonicerae; Lonicera hypoglauca Miq.) and Lian–Qiao (LQ; Fructus forsythiae; Forsythia suspensa (Thunb.) Vahl). In Taiwan, CHMs used as an adjunctive therapy reduced the overall mortality to approximately 20% among pemphigus patients after a follow-up of more than 6 years. A comprehensive CHM list may be useful in future clinical trials and further scientific investigations to improve the overall survival in these patients.
Collapse
Affiliation(s)
- Po-Yuan Wu
- Department of Dermatology, China Medical University Hospital, Taichung, Taiwan.,School of Medicine, China Medical University, Taichung, Taiwan
| | - Te-Mao Li
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Shu-I Chen
- Department of Chinese Medicine, Asia University Hospital, Taichung, Taiwan
| | - Chao-Jung Chen
- Proteomics Core Laboratory, Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - Jian-Shiun Chiou
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
| | - Ming-Kuem Lin
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
| | - Fuu-Jen Tsai
- School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Proteomics Core Laboratory, Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,Department of Biotechnology and Bioinformatics, Asia University, Taichung, Taiwan
| | - Yang-Chang Wu
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Ting-Hsu Lin
- Proteomics Core Laboratory, Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Chiu-Chu Liao
- Proteomics Core Laboratory, Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Shao-Mei Huang
- Proteomics Core Laboratory, Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Ning Lin
- Proteomics Core Laboratory, Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Wen-Miin Liang
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
| | - Ying-Ju Lin
- School of Chinese Medicine, China Medical University, Taichung, Taiwan.,Proteomics Core Laboratory, Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
40
|
Protective Effects of Traditional Polyherbs on Cisplatin-Induced Acute Kidney Injury Cell Model by Inhibiting Oxidative Stress and MAPK Signaling Pathway. Molecules 2020; 25:molecules25235641. [PMID: 33266089 PMCID: PMC7730198 DOI: 10.3390/molecules25235641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/26/2020] [Accepted: 11/29/2020] [Indexed: 12/13/2022] Open
Abstract
Acute kidney injury (AKI) is a disease caused by sudden renal dysfunction, which is an important risk factor for chronic renal failure. However, there is no effective treatment for renal impairment. Although some traditional polyherbs are commercially available for renal diseases, their effectiveness has not been reported. Therefore, we examined the nephroprotective effects of polyherbs and their relevant mechanisms in a cisplatin-induced cell injury model. Rat NRK-52E and human HK-2 subjected to cisplatin-induced AKI were treated with four polyherbs, Injinhotang (IJ), Ucha-Shinki-Hwan (US), Yukmijihwang-tang (YJ), and UrofenTM (Uro) similar with Yondansagan-tang, for three days. All polyherbs showed strong free radical scavenging activities, and the treatments prevented cisplatin-induced cell death in both models, especially at 1.2 mg/mL. The protective effects involved antioxidant effects by reducing reactive oxygen species and increasing the activities of superoxide dismutase and catalase. The polyherbs also reduced the number of annexin V-positive apoptotic cells and the expression of cleaved caspase-3, along with inhibited expression of mitogen-activated protein kinase-related proteins. These findings provide evidence for promoting the development of herbal formulas as an alternative therapy for treating AKI.
Collapse
|
41
|
Hwang M, Kim JN, Lee JR, Kim SC, Kim BJ. Effects of Chaihu-Shugan-San on Small Intestinal Interstitial Cells of Cajal in Mice. Biol Pharm Bull 2020; 43:707-715. [PMID: 32238713 DOI: 10.1248/bpb.b19-01058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chaihu-Shugan-San (CSS) has been widely used as an alternative treatment for gastrointestinal (GI) diseases in East Asia. Interstitial cells of Cajal (ICCs) are pacemakers in the GI tract. In the present study, we examined the action of CSS on pacemaker potentials in cultured ICCs from the mouse small intestine in vitro and on GI motility in vivo. We used the electrophysiological methods to measure the pacemaker potentials in ICCs. GI motility was investigated by measuring intestinal transit rates (ITR). CSS inhibited the pacemaker potentials in a dose-dependent manner. The capsazepine did not block the effect of CSS. However, the effects of CSS were blocked by glibenclamide. In addition, NG-nitro-L-arginine methyl ester (L-NAME) also blocked the CSS-induced effects. Pretreatment with SQ-22536 or with KT-5720 did not suppress the effects of CSS; however, pretreatment with ODQ or KT-5823 did. Furthermore, CSS significantly suppressed murine ITR enhancement by neostigmine in vivo. These results suggest that CSS exerts inhibitory effects on the pacemaker potentials of ICCs via nitric oxide (NO)/cGMP and ATP-sensitive K+ channel dependent and transient receptor potential vanilloid 1 (TRPV1) channel independent pathways. Accordingly, CSS could provide the basis for the development of new treatments for GI motility dysfunction.
Collapse
Affiliation(s)
- Minwoo Hwang
- Department of Sasang Constitutional Medicine, College of Korean Medicine, Kyung Hee University
| | - Jeong Nam Kim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine
| | - Jong Rok Lee
- Department of Pharmaceutical Engineering, Daegu Haany University
| | - Sang Chan Kim
- College of Oriental Medicine, Daegu Haany University
| | - Byung Joo Kim
- Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine
| |
Collapse
|
42
|
Azouz AA, Abdel-Nassir Abdel-Razek E, Abo-Youssef AM. Amlodipine alleviates cisplatin-induced nephrotoxicity in rats through gamma-glutamyl transpeptidase (GGT) enzyme inhibition, associated with regulation of Nrf2/HO-1, MAPK/NF-κB, and Bax/Bcl-2 signaling. Saudi Pharm J 2020; 28:1317-1325. [PMID: 33250641 PMCID: PMC7679434 DOI: 10.1016/j.jsps.2020.08.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/27/2020] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The therapeutic utility of the effective chemotherapeutic agent cisplatin is hampered by its nephrotoxic effect. We aimed from the current study to examine the possible protective effects of amlodipine through gamma-glutamyl transpeptidase (GGT) enzyme inhibition against cisplatin nephrotoxicity. METHODS Amlodipine (5 mg/kg, po) was administered to rats for 14 successive days. On the 10th day, nephrotoxicity was induced by a single dose of cisplatin (6.5 mg/kg, ip). On the last day, blood samples were collected for estimation of kidney function, while kidney samples were used for determination of GGT activity, oxidative stress, inflammatory, and apoptotic markers, along with histopathological evaluation. RESULTS Amlodipine alleviated renal injury that was manifested by significantly diminished serum creatinine and blood urea nitrogen levels, compared to cisplatin group. Amlodipine inhibited GGT enzyme, which participates in the metabolism of extracellular glutathione (GSH) and platinum-GSH-conjugates to a reactive toxic thiol. Besides, amlodipine diminished mRNA expression of NADPH oxidase in the kidney, while enhanced the anti-oxidant defense by activating Nrf2/HO-1 signaling. Additionally, it showed marked anti-inflammatory response by reducing expressions of p38 mitogen-activated protein kinase (p38 MAPK) and nuclear factor-kappa B (NF-κB), with subsequent down-regulation of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and vascular cell adhesion molecule-1 (VCAM-1). Moreover, amlodipine reduced Bax/Bcl-2 ratio and elevated hepatocyte growth factor (HGF), thus favoring renal cell survival. CONCLUSIONS Effective GGT inhibition by amlodipine associated with enhancement of anti-oxidant defense and suppression of inflammatory signaling and apoptosis support our suggestion that amlodipine could replace toxic GGT inhibitors in protection against cisplatin nephrotoxicity.
Collapse
Key Words
- Amlodipine
- Anti-inflammatory response
- Anti-oxidant defense
- BUN, Blood urea nitrogen
- Bax, Bcl-2-associated X protein
- Bcl-2, B-cell lymphoma 2
- CMC, Carboxymethyl cellulose
- Cisplatin nephrotoxicity
- GGT inhibition
- GGT, gamma-glutamyl transpeptidase
- GSH, Reduced glutathione
- H & E, Hematoxylin and eosin
- HGF, Hepatocyte growth factor
- HO-1, Heme oxygenase-1
- IL-6, Interleukin-6
- Keap1, Kelch-like ECH-associated protein 1
- MAPK, Mitogen-activated protein kinase
- MDA, Malondialdehyde
- NADPH, Nicotinamide adenine dinucleotide phosphate
- NF-κB, Nuclear factor-kappa B
- NO, Nitric oxide
- NOx, Total nitrate/nitrite
- Nrf2, Nuclear factor erythroid 2-related factor 2
- ROS, Reactive oxygen species
- Renal cell survival
- TNF-α, Tumor necrosis factor-alpha
- VCAM-1, vascular cell adhesion molecule-1
Collapse
Affiliation(s)
- Amany A. Azouz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | | | - Amira M. Abo-Youssef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| |
Collapse
|
43
|
Wang Z, Wu J, Hu Z, Luo C, Wang P, Zhang Y, Li H. Dexmedetomidine Alleviates Lipopolysaccharide-Induced Acute Kidney Injury by Inhibiting p75NTR-Mediated Oxidative Stress and Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5454210. [PMID: 33194004 PMCID: PMC7648709 DOI: 10.1155/2020/5454210] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/22/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023]
Abstract
Oxidative stress and apoptosis play a key role in the pathogenesis of sepsis-associated acute kidney injury (AKI). Dexmedetomidine (DEX) may present renal protective effects in sepsis. Therefore, we studied antioxidant effects and the mechanism of DEX in an inflammatory proximal tubular epithelial cell model and lipopolysaccharide- (LPS-) induced AKI in mice. Methods. We assessed renal function (creatinine, urea nitrogen), histopathology, oxidative stress (malondialdehyde (MDA) and superoxide dismutase (SOD)), and apoptosis (TUNEL staining and Cleaved caspase-3) in mice. In vitro experiments including Cleaved caspase-3 and p75NTR/p38MAPK/JNK signaling pathways were evaluated using western blot. Reactive oxidative species (ROS) production and apoptosis were determined using flow cytometry. Results. DEX significantly improved renal function and kidney injury and also revert the substantially increased level of MDA concentrations as well as the reduction of the SOD enzyme activity found in LPS-induced AKI mice. In parallel, DEX treatment also reduced the apoptosis and Cleaved caspase-3 expression evoked by LPS. The expression of p75NTR was increased in kidney tissues of mice with AKI but decreased after treatment with DEX. In cultured human renal tubular epithelial cell line (HK-2 cells), DEX inhibited LPS-induced apoptosis and generation of ROS, but this was reversed by overexpression of p75NTR. Furthermore, pretreatment with DEX significantly downregulated phosphorylation of JNK and p38MAPK in LPS-stimulated HK-2 cells, and this effect was abolished by overexpression of p75NTR. Conclusion. DEX ameliorated AKI in mice with sepsis by partially reducing oxidative stress and apoptosis through regulation of p75NTR/p38MAPK/JNK signaling pathways.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiali Wu
- Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhaolan Hu
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Cong Luo
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Pengfei Wang
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yanling Zhang
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hui Li
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
44
|
Polysulfide and Hydrogen Sulfide Ameliorate Cisplatin-Induced Nephrotoxicity and Renal Inflammation through Persulfidating STAT3 and IKKβ. Int J Mol Sci 2020; 21:ijms21207805. [PMID: 33096924 PMCID: PMC7589167 DOI: 10.3390/ijms21207805] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/17/2020] [Accepted: 10/20/2020] [Indexed: 12/29/2022] Open
Abstract
Cisplatin, a widely used chemotherapy for the treatment of various tumors, is clinically limited due to its extensive nephrotoxicity. Inflammatory response in tubular cells is a driving force for cisplatin-induced nephrotoxicity. The plant-derived agents are widely used to relieve cisplatin-induced renal dysfunction in preclinical studies. Polysulfide and hydrogen sulfide (H2S) are ubiquitously expressed in garlic, and both of them are documented as potential agents for preventing and treating inflammatory disorders. This study was designed to determine whether polysulfide and H2S could attenuate cisplatin nephrotoxicity through suppression of inflammatory factors. In renal proximal tubular cells, we found that sodium tetrasulfide (Na2S4), a polysulfide donor, and sodium hydrosulfide (NaHS) and GYY4137, two H2S donors, ameliorated cisplatin-caused renal toxicity through suppression of the massive production of inflammatory cytokines, including tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), and cyclooxygenase-2 (COX-2). Mechanistically, the anti-inflammatory actions of Na2S4 and H2S may be mediated by persulfidation of signal transducer and activator of transcription 3 (STAT3) and inhibitor kappa B kinase β (IKKβ), followed by decreased phosphorylation of STAT3 and IKKβ. Moreover, the nuclear translocation of nuclear transcription factor kappa B (NF-κB), and phosphorylation and degradation of nuclear factor kappa B inhibitor protein alpha (IκBα) induced by cisplatin, were also mitigated by both polysulfide and H2S. In mice, after treatment with polysulfide and H2S donors, cisplatin-associated renal dysfunction was strikingly ameliorated, as evidenced by measurement of serum blood urea nitrogen (BUN) and creatinine levels, renal morphology, and the expression of renal inflammatory factors. Our present work suggests that polysulfide and H2S could afford protection against cisplatin nephrotoxicity, possibly via persulfidating STAT3 and IKKβ and inhibiting NF-κB-mediated inflammatory cascade. Our results might shed light on the potential benefits of garlic-derived polysulfide and H2S in chemotherapy-induced renal damage.
Collapse
|
45
|
Wang S, Tang S, Chen X, Li X, Jiang S, Li HP, Jia PH, Song MJ, Di P, Li W. Pulchinenoside B4 exerts the protective effects against cisplatin-induced nephrotoxicity through NF-κB and MAPK mediated apoptosis signaling pathways in mice. Chem Biol Interact 2020; 331:109233. [PMID: 32991863 DOI: 10.1016/j.cbi.2020.109233] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 01/17/2023]
Abstract
Cisplatin (cis-Dichlorodiammine platinum, CP), as the first-line chemotherapy drug of choice for many cancers such as urogenital system tumors and digestive tract tumors, also causes toxicity and side effects to the kidney. Previous studies have shown that Pulsatilla chinensis has significant anti-inflammatory and antioxidant activities, but the mechanism of cisplatin induced acute kidney injury (AKI) in vivo has not been thoroughly studied. The purpose of this study is to investigate the protective effect of pulchinenoside B4 (PB4), a representative and major component with a content of up to 10% in root of P. chinensis, on AKI induced by CP in mice. Our results indicated the significant protective effect of PB4 by evaluating renal function indicators, inflammatory factor levels and renal histopathological changes. In addition, PB4 may mainly act on NF-κB signaling pathway to reduce the levels of tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS) in the kidney after CP exposure, thus exerting anti-inflammatory activity. Furthermore, PB4 regulated MAPK signaling pathway and its downstream apoptotic factors to inhibit the occurrence of apoptosis, such as Bax, Bcl-2, caspase 3 and caspase 9. Notably, the activations of caspase 3 induced by cisplatin were strikingly reduced in PB4-treated mice. Therefore, the above evidence suggested that PB4 is a potential renal protectant with significant anti-inflammatory and anti-apoptotic effects.
Collapse
Affiliation(s)
- Shuang Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Shan Tang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Xuan Chen
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Xin Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Shuang Jiang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China; National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, 130118, China
| | - Hui-Ping Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China; National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, 130118, China
| | - Pin-Hui Jia
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China
| | - Ming-Jie Song
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China; National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, 130118, China
| | - Peng Di
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China; National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, 130118, China.
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, China; National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, 130118, China.
| |
Collapse
|
46
|
Taghizadeh F, Hosseinimehr SJ, Zargari M, Karimpour Malekshah A, Talebpour Amiri FB. Gliclazide attenuates cisplatin-induced nephrotoxicity through inhibiting NF-κB and caspase-3 activity. IUBMB Life 2020; 72:2024-2033. [PMID: 32687680 DOI: 10.1002/iub.2342] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 12/14/2022]
Abstract
Cisplatin (CP), as a chemotherapeutic drug, causes nephrotoxicity that has limited the clinical utility of CP. Gliclazide (GLZ), as an antihyperglycemic drug, at low dose has antioxidant property. In this study, we aimed to investigate the protective effect of GLZ against CP-induced acute renal injury. Sixty-four BALB/c mice were randomly divided into eight groups. The groups were included as control, GLZ (5, 10, and 25 mg/kg), CP, and GLZ (5, 10, and 25 mg/kg) + CP. Renal function markers (serum creatinine and blood urea nitrogen), oxidative stress markers (malondialdehyde and glutathione), apoptotic marker (caspase-3), and NF-κB were histopathologically evaluated. The results of our study showed that increased urea and creatinine were evidence of CP-induced nephrotoxicity. Histopathological examination revealed tubular epithelial and Bowman degeneration, edema, and cytoplasmic vacuolation in renal tissue structure. Administration of GLZ reduced oxidative stress, caspase-3, and NF-κB activity, and improved kidney function markers in CP-treated mice compared with CP alone group. Also, we observed that the histological tissue structure of the kidney was maintained. GLZ at dose of 25 mg/kg had higher protective effect as compared with other doses. Overall, our study suggests that GLZ with antioxidant, antiapoptotic, and anti-inflammatory properties may be a promising new therapeutic agent to prevent CP-induced nephrotoxicity.
Collapse
Affiliation(s)
- Fatemeh Taghizadeh
- Department of Anatomy, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mehryar Zargari
- Department of Biochemistry, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | | | | |
Collapse
|
47
|
Jiang J, Meng Y, Hu S, Botchway BOA, Zhang Y, Liu X. Saikosaponin D: A potential therapeutic drug for osteoarthritis. J Tissue Eng Regen Med 2020; 14:1175-1184. [PMID: 32592611 DOI: 10.1002/term.3090] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 05/30/2020] [Accepted: 06/15/2020] [Indexed: 01/15/2023]
Abstract
Osteoarthritis is a degenerative joint disease. Currently, no effective therapeutic exists for osteoarthritis in the clinic setting. Inflammatory response and autophagy are key players in the occurrence and prognosis of osteoarthritis. In recent years, the regulation of inflammation and autophagy signal pathway has been touted as a potential treatment course for osteoarthritis. Saikosaponin D has anti-inflammatory and induces autophagy effects via inhibiting the nuclear transcription factor-κB, mTOR signaling pathways. Here in the report, we analyze and summarize recent evidences pertaining to the relationship between Saikosaponin and osteoarthritis. Published studies were scoured for in research databases, such as PubMed and Scopus with the keywords Saikosaponin and osteoarthritis. Phosphatidylinositol 3-kinase (PI3k)/Akt/mTOR signaling pathway is an important autophagy modulator, and can regulate chondrocytic autophagy, inflammation, and apoptosis. Saikosaponin D alleviates inflammation and regulates autophagy by inhibiting the PI3k/Akt/mTOR signaling pathway. Saikosaponin D could be a potential therapeutic drug for osteoarthritis.
Collapse
Affiliation(s)
- Junsong Jiang
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, China
| | - Yanfeng Meng
- Department of Orthopedics, Affiliated Hospital, Shaoxing University, Shaoxing, China
| | - Songfeng Hu
- Department of Orthopedics, Shaoxing Hospital of Traditional Chinese Medicine, Shaoxing, China
| | - Benson O A Botchway
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Yong Zhang
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, China
| | - Xuehong Liu
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, China
| |
Collapse
|
48
|
Zhang Y, Chen Y, Li B, Ding P, Jin D, Hou S, Cai X, Sheng X. The effect of monotropein on alleviating cisplatin-induced acute kidney injury by inhibiting oxidative damage, inflammation and apoptosis. Biomed Pharmacother 2020; 129:110408. [PMID: 32574971 DOI: 10.1016/j.biopha.2020.110408] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/10/2020] [Accepted: 06/13/2020] [Indexed: 12/15/2022] Open
Abstract
Although cisplatin is a common drug in the treatment of malignant tumors, its clinical application is limited due to various side effects, especially acute kidney injury (AKI). Till now, few effective pharmacological strategies can be applied to inhibit cisplatin-induced AKI. Here, we aimed to investigate the protective effects and possible mechanisms of monotropein on cisplatin-induced AKI. In this study, an AKI model was established in cisplatin-treated mice, and serum level of inflammatory cytokines, protein expressions of biochemical indicators and renal pathology were analyzed. Our results showed that our results showed that monotropein could significantly attenuate cisplatin-induced nephrotoxicity and reduce the levels of blood urea nitrogen (BUN) and serum creatinine (CRE). Furthermore, monotropein inhibited cisplatin-induced oxidative stress by reducing MDA level and increasing the activities of GSH, SOD and CAT. The underlying mechanisms of monotropein on alleviating cisplatin-induced AKI were associated with the activation of Nrf2/HO-1 pathway against oxidative stress and the inhibition on NF-κB signaling to suppress inflammation as well as the regulation on the expressions of proteins in apoptosis pathway in this renal injury model. This study firstly provided the evidence that monotropein could significantly attenuate cisplatin-induced AKI and suggested that monotropein might be used as a potential agent to alleviate side effects of cisplatin.
Collapse
Affiliation(s)
- Yuping Zhang
- Department of Gynaecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China
| | - Yonger Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Baixue Li
- Department of Gynaecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China
| | - Ping Ding
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Daxiang Jin
- Department of Osteology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Shaozhen Hou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Xiaochun Cai
- Department of Gynecology and Obstetrics, Chenghai District People's Hospital, Shantou, 515800, Guangdong, China.
| | - Xiujie Sheng
- Department of Gynaecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China.
| |
Collapse
|
49
|
Kurman Y, Kiliccioglu I, Dikmen AU, Esendagli G, Bilen CY, Sozen S, Konac E. Cucurbitacin B and cisplatin induce the cell death pathways in MB49 mouse bladder cancer model. Exp Biol Med (Maywood) 2020; 245:805-814. [PMID: 32252554 DOI: 10.1177/1535370220917367] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
IMPACT STATEMENT Alternative agents that will increase the effectiveness of cisplatin, which are widely used in the advanced stage and metastatic bladder cancer, are being investigated. In previous studies, Cucurbitacin B (CuB), which is a natural compound from the Cucurbitaceae family has been shown to inhibit the proliferation of tumor cells and create synergistic effects with cisplatin. In this study, we investigated the synergistic effect of CuB with cisplatin for the first time in bladder cancer in vitro and in vivo models. Our findings showed that CuB treatment with cisplatin reduced cell proliferation, and reduced tumor development through activating apoptosis and autophagy via PI3K/AKT/mTOR signaling pathway. Our results showed that CuB may be a new agent that can support conventional treatment in bladder cancer. Our study is important in terms of enlightening new pathways and developing new treatment methods in the treatment of bladder cancer.
Collapse
Affiliation(s)
- Yener Kurman
- Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Ankara 06510, Turkey
| | - Ilker Kiliccioglu
- Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Ankara 06510, Turkey.,Department of Medical Biology, Faculty of Medicine, Duzce University, Duzce 81620, Turkey
| | - Asiye U Dikmen
- Department of Public Health, Faculty of Medicine, Gazi University, Ankara 06510, Turkey
| | - Guldal Esendagli
- Department of Pathology, Faculty of Medicine, Gazi University, Ankara 06510, Turkey
| | - Cenk Y Bilen
- Department of Urology, Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey
| | - Sinan Sozen
- Department of Urology, Faculty of Medicine, Gazi University, Ankara 06510, Turkey
| | - Ece Konac
- Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Ankara 06510, Turkey
| |
Collapse
|
50
|
Chi X, Zhang Y, Ma X, Lu M, Li Z, Xu W, Hu S. Antioxidative stress of oral administration of tea extract granule in chickens. Poult Sci 2020; 99:1956-1966. [PMID: 32241476 PMCID: PMC7587910 DOI: 10.1016/j.psj.2019.11.063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 12/23/2022] Open
Abstract
The present study was to evaluate antioxidative effect of tea extract granule (TEG) on oxidative stress induced by cyclophosphamide (Cy) in chickens. In experiment 1, chickens were randomly divided into 5 groups with 10 birds in each. Groups 3 to 5 were orally administered TEG in drinking water for 7 D at doses of 20, 40, and 80 mg/kg body weight, respectively. After that, groups 2 to 5 received intramuscular injection of Cy (100 mg/kg BW) for 3 D. Group 1 was not treated as a control. In experiment 2, chickens were grouped in the same way as in experiment 1. Groups 2 to 5 received intramuscular injection of Cy (100 mg/kg BW) for 3 D. After that, groups 3 to 5 were orally administered TEG in drinking water for 7 D at doses of 20, 40, and 80 mg/kg BW, respectively. Results showed that Cy injection induced significantly decreased body weight and oxidative stress. Oral administration of TEG before or after Cy injection increased body weight, the thymus, bursa, and spleen indices, total antioxidant capacity, and the levels of glutathione; elevated the activity of superoxide dismutase, catalase, and glutathione peroxidase; as well as decreased the protein carbonyl content, lipid peroxide, and malondialdehyde. In addition, TEG administration reduced intracellular reactive oxygen species. Therefore, TEG could be a promising agent against oxidative stress in the poultry industry.
Collapse
Affiliation(s)
- X Chi
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R.China
| | - Y Zhang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R.China
| | - X Ma
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R.China
| | - M Lu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R.China
| | - Z Li
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R.China
| | - W Xu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R.China
| | - S Hu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R.China.
| |
Collapse
|