1
|
Li X, Li Q, Xiang X, Zhang X, Wu Y. The diagnostic value and clinical correlations of bone marrow supernatant S100A8 and S100A9 in myelodysplastic neoplasms. Cytokine 2025; 187:156856. [PMID: 39799746 DOI: 10.1016/j.cyto.2025.156856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/08/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
PURPOSE Myelodysplastic neoplasms (MDS) are heterogeneous neoplasms that originate from bone marrow (BM) hematopoietic stem cells. S100A8 and S100A9 (S100A8/9) are crucial molecules involved in the innate immune pathogenesis of MDS. This study aimed to explore the value of these molecules in the differential diagnosis of MDS, and analyze the correlations between their concentrations and clinical characteristics. METHODS We measured the concentrations of S100A8/9 in BM supernatant from patients newly diagnosed with MDS (n = 80) or aplastic anemia (AA) (n = 26) by enzyme-linked immunosorbent assay (ELISA). Correlations between clinical characteristics and S100A8/9 were explored based on patients' clinical information. RESULTS Our study found the concentrations of S100A8/9 in the BM supernatant of MDS patients were significantly higher than those in AA patients (Both P < 0.05). The concentrations of S100A8/9 in the group of very low/low/partial intermediate (IPSS-R score ≤ 3.5) risk MDS patients were also higher than those in AA patients (Both P < 0.05). The serial or parallel diagnostic tests combining these two molecules for differentiating IPSS-R score ≤ 3.5 MDS and AA yielded high positive or negative predictive values, respectively. Moreover, the concentrations of S100A8/9 in MDS patients were positively correlated with the patients' age and the proportion of granulocytic series in BM (All P < 0.05). Meanwhile, the concentrations of the two molecules had significantly negative correlations with the proportion of erythrocytic series in BM (Both P < 0.05). However, intergroup differences in concentrations of S100A8/9 were not significant among different MDS risk groups, whether by IPSS-R or IPSS-M (All P > 0.05). CONCLUSION The concentrations of S100A8/9 in BM supernatant have potential value in the differential diagnosis of MDS and AA. The correlations between the molecules' concentrations and clinical characteristics could provide new perspectives for future research in MDS.
Collapse
Affiliation(s)
- Xuefeng Li
- Department of Hematology and Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Qing Li
- Department of Hematology and Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Xinrong Xiang
- Department of Hematology and Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Zhang
- Department of Hematology and Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Wu
- Department of Hematology and Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Zhang Z, Wang T, Fang G, Xiao X, Zhang Z, Zhao J. Decitabine suppresses MDSC-induced immunosuppression through dual functional mechanism and inhibits melanoma metastasis. Med Oncol 2024; 41:165. [PMID: 38819590 DOI: 10.1007/s12032-024-02320-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/01/2024] [Indexed: 06/01/2024]
Abstract
Myeloid-derived suppressor cells (MDSCs) play a crucial role in promoting melanoma metastasis. Reprogramming MDSCs into mature M1 macrophages has emerged as a strategy to inhibit metastasis. Decitabine (Dec) is known to eradicate MDSCs and suppress tumor growth. In this study, we provide evidence that Dec not only reduces the MDSC population by inducing apoptosis, arresting cell cycle, and impairing recruitment, but also suppresses their immunosuppressive function by downregulating related genes and facilitating differentiation into M1 macrophages. Transcriptomic analysis of Dec-treated MDSCs revealed a marked downregulation of immunosuppressive genes including S100a9, S100a8, Vegf, Cxcr2, and Nos2. Meanwhile, M1 macrophage-associated genes involved in immune activation were upregulated, such as Ddx58, Isg15, Tap1, Ccl5, Cxcl9, and Cxcl10. Further bioinformatic analysis indicated that Dec promotes MDSC-to-M1 macrophage differentiation and activates innate immune pathways including NOD-like signaling to enhance anti-tumor immunity. Time-course studies implied that Dec upregulates myeloid transcription factor Irf7 to initiate MDSC differentiation and orchestrate the anti-tumor immune response. Collectively, our study unveils a novel dual-functional mechanism of Dec as both a cytotoxic agent reducing MDSCs and an inducer of their differentiation into M1 macrophages, thereby alleviating immunosuppression. This highlights Dec's potential for clinical melanoma metastasis suppression.
Collapse
Affiliation(s)
- Zhonghai Zhang
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Jiangsu International Joint Center of Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, China
- Department of Physiology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Tianlong Wang
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Jiangsu International Joint Center of Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, China
| | - Gaochuan Fang
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Jiangsu International Joint Center of Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, China
| | - Xufeng Xiao
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Jiangsu International Joint Center of Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, China
| | - Zhengkui Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China.
| | - Jiaojiao Zhao
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Jiangsu International Joint Center of Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, China.
| |
Collapse
|
3
|
Li Y, He H, Jihu R, Zhou J, Zeng R, Yan H. Novel Characterization of Myeloid-Derived Suppressor Cells in Tumor Microenvironment. Front Cell Dev Biol 2021; 9:698532. [PMID: 34527668 PMCID: PMC8435631 DOI: 10.3389/fcell.2021.698532] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/09/2021] [Indexed: 11/21/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous group of cells generated in various pathologic conditions, which have been known to be key components of the tumor microenvironment (TME) involving in tumor immune tolerance. So MDSCs have been extensively researched recently. As its name suggests, immunosuppression is the widely accepted function of MDSCs. Aside from suppressing antitumor immune responses, MDSCs in the TME also stimulate tumor angiogenesis and metastasis, thereby promoting tumor growth and development. Therefore, altering the recruitment, expansion, activation, and immunosuppression of MDSCs could partially restore antitumor immunity. So, this view focused on the favorable TME conditions that promote the immunosuppressive effects of MDSCs and contribute to targeted therapies with increased precision for MDSCs.
Collapse
Affiliation(s)
- Yanan Li
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, China
| | - Hongdan He
- Immunotherapy Laboratory, Qinghai Tibet Plateau Research Institute, Southwest Minzu University, Chengdu, China
| | - Ribu Jihu
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, China
| | - Junfu Zhou
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, China
| | - Rui Zeng
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, China
| | - Hengxiu Yan
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, China
| |
Collapse
|
4
|
Jiang W, Li Y, Zhang S, Kong G, Li Z. Association between cellular immune response and spleen weight in mice with hepatocellular carcinoma. Oncol Lett 2021; 22:625. [PMID: 34267817 PMCID: PMC8258616 DOI: 10.3892/ol.2021.12886] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 05/24/2021] [Indexed: 12/29/2022] Open
Abstract
The spleen is an important site for extramedullary hematopoiesis and tumor immunotolerance. Spleen weight varies with tumor progression and may be a predictor of tumor recurrence. However, to the best of our knowledge, the association between spleen weight and tumor progression remains unclear. The present study revealed a novel role for the spleen in predicting the cellular immune response in tumor-bearing mice. A murine H22 subcutaneous hepatoma model was established. The spleen weight and tumor weight were measured. The proportion of immune cells in peripheral blood and spleen were detected by flow cytometry. The results demonstrated that the spleen weight of tumor-bearing mice at day 21 was higher than that of the controls. In addition, spleen weight was identified to be positively correlated with tumor weight. The percentages of CD4+ and CD8+ T lymphocytes in the spleen were decreased at day 21 after tumor cell inoculation, while those of monocytic-like myeloid-derived suppressor cells (M-MDSCs) and CD11b+F4/80+ macrophages were increased at day 21 after tumor cell inoculation. Similarly, the percentage of polymorphonuclear-like MDSCs (PMN-MDSCs) in the spleen of tumor-bearing mice was increased at days 7, 14 and 21 after tumor cell inoculation. Notably, spleen weight was negatively correlated with the percentages of CD4+ and CD8+ T lymphocytes in the spleen, although spleen and tumor weight were positively correlated with the percentages of M-MDSCs and PMN-MDSCs in the spleen. Similarly, the percentages of CD8+ T lymphocytes in the peripheral blood were decreased, and programmed cell death protein 1 expression on CD8+ T lymphocytes was increased at day 21 after tumor cell inoculation. Furthermore, the percentages of M-MDSCs were increased at day 21 and PMN-MDSCs in the peripheral blood were increased at days 7, 14 and 21 after tumor cell inoculation. Additionally, spleen and tumor weight were also positively correlated with the percentages of M-MDSC and PMN-MDSCs in the peripheral blood of tumor-bearing mice. Collectively, the findings of the present study suggested that spleen weight may be a predictor of tumor prognosis, since it was directly correlated with tumor weight and the percentages of M-MDSC and PMN-MDSCs in tumor-bearing mice.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Yu Li
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Shuqun Zhang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Guangyao Kong
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Zongfang Li
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
- Key Laboratory of Environment and Disease-Related Gene Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
5
|
Huang N, Zhao G, Yang Q, Tan J, Tan Y, Zhang J, Cheng Y, Chen J. Intracellular and extracellular S100A9 trigger epithelial-mesenchymal transition and promote the invasive phenotype of pituitary adenoma through activation of AKT1. Aging (Albany NY) 2020; 12:23114-23128. [PMID: 33203795 PMCID: PMC7746360 DOI: 10.18632/aging.104072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 07/30/2020] [Indexed: 05/06/2023]
Abstract
Pituitary adenoma (PA) is mostly benign intracranial tumor, but it also displays invasive growth characteristics and provokes challenging clinical conditions. S100A9 protein enhances tumor progression. In this study, we firstly demonstrated that both intracellular and extracellular S100A9 promoted the expression of Vimentin and Intercellular cell adhesion molecule-1 (ICAM-1), coupled with reduced E-cadherin in PA. As a result, PA acquired the phenotype of Epithelial-Mesenchymal Transition (EMT), leading to proliferation, cell cycle progression, migration and invasion. In addition, we indicated S100A9-induced EMT was mediated by activation of AKT1. Furthermore, immunohistochemistry showed that S100A9 expression was higher in invasive PA than that in non-invasive PA. These data extended our understanding for the effects of S100A9 on PA invasion and contributed to further development of a promising therapeutic target for invasive PA.
Collapse
Affiliation(s)
- Ning Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guanjian Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qiang Yang
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiahe Tan
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Tan
- Department of Neurosurgery, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Jiqin Zhang
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Yuan Cheng
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jin Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Prognostic significance of S100A8-positive immune cells in relation to other immune cell infiltration in pre-invasive and invasive breast cancers. Cancer Immunol Immunother 2020; 70:1365-1378. [PMID: 33146829 PMCID: PMC8053168 DOI: 10.1007/s00262-020-02776-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/20/2020] [Indexed: 12/03/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs) play an important role in tumor progression through both immunologic and non-immunologic mechanisms. This study was conducted to evaluate the expression of S100A8, a well-known MDSC marker, and the significance of its expression in pre-invasive and invasive breast cancers. S100A8 expression in tumor cells (TCs) and immune cells (ICs) was assessed by immunohistochemistry, and its association with clinicopathologic features and infiltration of other IC subsets including CD4+, CD8+, and FOXP3+ tumor-infiltrating lymphocytes (TILs) and PD-L1+ ICs was evaluated. S100A8 expression in TCs and ICs showed a positive correlation in pre-invasive carcinoma and invasive carcinoma. S100A8+ ICs, but not S100A8+ TCs, were significantly higher in number in invasive carcinoma than in pre-invasive carcinoma. Infiltration of S100A8+ ICs was revealed as a poor prognostic indicator in pre-invasive and invasive carcinomas, especially in hormone receptor-positive subgroup. Infiltration of CD4+, CD8+, and FOXP3+ TIL subsets and PD-L1+ ICs was significantly higher in S100A8+ IC (+) group than in S100A8+ IC (−) group. Combined analyses of IC subset infiltration revealed that infiltration of S100A8+ ICs was associated with poor clinical outcome in the PD-L1+ IC (−), CD8+ TIL-low, and FOXP3+ TIL-low subgroups. In conclusion, S100A8+ ICs seem to undergo a dynamic change during breast cancer progression in association with other IC subset infiltration. The prognostic impact of S100A8+ IC infiltration was greater in less immunogenic tumors.
Collapse
|
7
|
Wang Z, Zheng G, Li G, Wang M, Ma Z, Li H, Wang XY, Yi H. Methylprednisolone alleviates multiple sclerosis by expanding myeloid-derived suppressor cells via glucocorticoid receptor β and S100A8/9 up-regulation. J Cell Mol Med 2020; 24:13703-13714. [PMID: 33094923 PMCID: PMC7753844 DOI: 10.1111/jcmm.15928] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/17/2020] [Accepted: 09/05/2020] [Indexed: 02/06/2023] Open
Abstract
Methylprednisolone is an effective drug in the treatment of autoimmune disease, such as multiple sclerosis (MS), due to long‐acting anti‐inflammatory, antiallergic and immunosuppressant. Previous studies have noted the importance of myeloid‐derived suppressor cells (MDSC) in MS progression. However, it is still not known whether methylprednisolone could influence the ratio and function of MDSC during MS treatment. In the current study, we found an increased ratio of MDSC at the onset of EAE in mice model; but methylprednisolone pulse therapy (MPPT) did not alter the percentage and suppressive function of MDSC during disease attenuation. However, the percentage of G‐MDSC in PBMC significantly increased in patients with MS. Surprisingly, relapsing MS patients showed a significant increase in both M‐MDSC and G‐MDSC after MPPT. The disease remission positively correlated expansion of MDSC and expression of arginase‐1. Additionally, MPPT reduced the expression of inhibitory glucocorticoid (GCs) receptor β subunit on MDSC while elevating serum levels of immune regulatory S100A8/A9 heterodimer. Thus, MDSC dynamics and function in mouse EAE differ from those in human MS during MPPT. Our study suggested that GCs treatment may help relieve the acute phase of MS by expanding MDSC through up‐regulating of GR signalling and S100A8/A9 heterodimers.
Collapse
Affiliation(s)
- Zhongkun Wang
- Central Laboratory, The First Hospital of Jilin University, Changchun, China.,Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun, China.,Vasculocardiology Department, The Second Hospital of Jilin University, Changchun, China
| | - Ge Zheng
- Hepatopancreatobiliary Surgery Department, The Second Hospital of Jilin University, Changchun, China
| | - Guangjian Li
- Neurology Department, The First Hospital of Jilin University, Changchun, China
| | - Mengkun Wang
- Pediatric Department, The First Hospital of Jilin University, Changchun, China
| | - Zhanchuan Ma
- Central Laboratory, The First Hospital of Jilin University, Changchun, China.,Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun, China
| | - Huimin Li
- Central Laboratory, The First Hospital of Jilin University, Changchun, China.,Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun, China.,Clinical Laboratory, The Second Hospital of Jilin University, Changchun, China
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA.,Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Huanfa Yi
- Central Laboratory, The First Hospital of Jilin University, Changchun, China.,Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun, China
| |
Collapse
|
8
|
Pastaki Khoshbin A, Eskian M, Keshavarz-Fathi M, Rezaei N. Roles of Myeloid-Derived Suppressor Cells in Cancer Metastasis: Immunosuppression and Beyond. Arch Immunol Ther Exp (Warsz) 2019; 67:89-102. [PMID: 30386868 DOI: 10.1007/s00005-018-0531-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 10/08/2018] [Indexed: 12/23/2022]
Abstract
Metastasis is the direst face of cancer, and it is not a feature solely dependent on cancer cells; however, a complex interaction between cancer cells and host causes this process. Investigating the mechanisms of metastasis can lead to its control. Myeloid-derived suppressor cells (MDSCs) are key components of tumor microenvironment that favor cancer progression. These cells result from altered myelopoiesis in response to the presence of tumor. The most recognized function of MDSCs is suppressing anti-tumor immune responses. Strikingly, these cells are among important players in cancer dissemination and metastasis. They can exert their effect on metastatic process by affecting anti-cancer immunity, epithelial-mesenchymal transition, cancer stem cell formation, angiogenesis, establishing premetastatic niche, and supporting cancer cell survival and growth in metastatic sites. In this article, we review and discuss the mechanisms by which MDSCs contribute to cancer metastasis.
Collapse
Affiliation(s)
- Amin Pastaki Khoshbin
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Eskian
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr Qarib St, Keshavarz Blvd, Tehran, 14194, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahsa Keshavarz-Fathi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr Qarib St, Keshavarz Blvd, Tehran, 14194, Iran
- Breast Cancer Association (BrCA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr Qarib St, Keshavarz Blvd, Tehran, 14194, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Sheffield, UK.
| |
Collapse
|
9
|
Goulart MR, Hlavaty SI, Chang YM, Polton G, Stell A, Perry J, Wu Y, Sharma E, Broxholme J, Lee AC, Szladovits B, Turmaine M, Gribben J, Xia D, Garden OA. Phenotypic and transcriptomic characterization of canine myeloid-derived suppressor cells. Sci Rep 2019; 9:3574. [PMID: 30837603 PMCID: PMC6400936 DOI: 10.1038/s41598-019-40285-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 02/13/2019] [Indexed: 01/19/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are key players in immune evasion, tumor progression and metastasis. MDSCs accumulate under various pathological states and fall into two functionally and phenotypically distinct subsets that have been identified in humans and mice: polymorphonuclear (PMN)-MDSCs and monocytic (M)-MDSCs. As dogs are an excellent model for human tumor development and progression, we set out to identify PMN-MDSCs and M-MDSCs in clinical canine oncology patients. Canine hypodense MHC class II-CD5-CD21-CD11b+ cells can be subdivided into polymorphonuclear (CADO48A+CD14-) and monocytic (CADO48A-CD14+) MDSC subsets. The transcriptomic signatures of PMN-MDSCs and M-MDSCs are distinct, and moreover reveal a statistically significant similarity between canine and previously published human PMN-MDSC gene expression patterns. As in humans, peripheral blood frequencies of canine PMN-MDSCs and M-MDSCs are significantly higher in dogs with cancer compared to healthy control dogs (PMN-MDSCs: p < 0.001; M-MDSCs: p < 0.01). By leveraging the power of evolution, we also identified additional conserved genes in PMN-MDSCs of multiple species that may play a role in MDSC function. Our findings therefore validate the dog as a model for studying MDSCs in the context of cancer.
Collapse
Affiliation(s)
- Michelle R Goulart
- Royal Veterinary College, London, UK
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Sabina I Hlavaty
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | - James Perry
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ying Wu
- Royal Veterinary College, London, UK
| | - Eshita Sharma
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - John Broxholme
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Avery C Lee
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Mark Turmaine
- Division of Bioscience, University College London, London, UK
| | - John Gribben
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Dong Xia
- Royal Veterinary College, London, UK
| | - Oliver A Garden
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Denstaedt SJ, Spencer-Segal JL, Newstead MW, Laborc K, Zhao AP, Hjelmaas A, Zeng X, Akil H, Standiford TJ, Singer BH. S100A8/A9 Drives Neuroinflammatory Priming and Protects against Anxiety-like Behavior after Sepsis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 200:3188-3200. [PMID: 29563178 PMCID: PMC5915914 DOI: 10.4049/jimmunol.1700834] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 02/22/2018] [Indexed: 12/16/2022]
Abstract
Sepsis commonly results in acute and chronic brain dysfunction, which dramatically increases the morbidity associated with this common disease. Chronic brain dysfunction in animal models of sepsis survival is linked to persistent neuroinflammation and expression of multiple cytokines. However, we have found previously that microglia predominantly upregulate the damage associated molecule S100A8/A9 after sepsis. In this article, we show that S100A8/A9 is increased in the brains of patients who died of sepsis and that S100A8 is expressed in astrocytes and myeloid cells. Using a mouse model of sepsis survival, we show that S100A8/A9 is persistently expressed in the brain after sepsis. S100A9 expression is necessary for recruitment of neutrophils to the brain and for priming production of reactive oxygen species and TNF-α secretion in microglia and macrophages. However, despite improving these indices of chronic inflammation, S100A9 deficiency results in worsened anxiety-like behavior 2 wk after sepsis. Taken together, these results indicate that S100A8/A9 contributes to several facets of neuroinflammation in sepsis survivor mice, including granulocyte recruitment and priming of microglial-reactive oxygen species and cytokine production, and that these processes may be protective against anxiety behavior in sepsis survivors.
Collapse
Affiliation(s)
- Scott J Denstaedt
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Joanna L Spencer-Segal
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109; and
| | - Michael W Newstead
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Klaudia Laborc
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109; and
| | - Anne P Zhao
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Alexander Hjelmaas
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Xianying Zeng
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Huda Akil
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109; and
- Department of Psychiatry, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Theodore J Standiford
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Benjamin H Singer
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109;
| |
Collapse
|
11
|
In vitro exploration of a myeloid-derived suppressor cell line as vehicle for cancer gene therapy. Cancer Gene Ther 2016; 24:149-155. [PMID: 27857057 DOI: 10.1038/cgt.2016.60] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/11/2016] [Accepted: 10/11/2016] [Indexed: 12/12/2022]
Abstract
Recent research indicates that cell-mediated gene therapy can be an interesting method to obtain intratumoral expression of therapeutic proteins. This paper explores the possibility of using transfected myeloid-derived suppressor cells (MDSCs), derived from a murine cell line, as cellular vehicles for transporting plasmid DNA (pDNA) encoding interleukin-12 (IL-12) to tumors. Transfecting these cells via electroporation caused massive cell death. This was not due to electroporation-induced cell damage, but was mainly the result of the intracellular presence of plasmids. In contrast, pDNA transfection using Lipofectamine 2000 (LF2000) did not result in a significant loss of viability. Differences in delivery mechanism may explain the distinctive effects on cell viability. Indeed, electroporation is expected to cause a rapid and massive influx of pDNA resulting in cytosolic pDNA levels that most likely surpass the activation threshold of the intracellular DNA sensors leading to cell death. In contrast, a more sustained intracellular release of the pDNA is expected with LF2000. After lipofection with LF2000, 56% of the MDSCs were transfected and transgene expression lasted for at least 24 h. Moreover, biologically relevant amounts of IL-12 were produced by the MDSCs after lipofection with an IL-12 encoding pDNA. In addition, IL-12 transfection caused a significant upregulation of CD80 and considerably reduced the immunosuppressive capacity of the MDSCs. IL-12-transfected MDSCs were still able to migrate to tumor cells, albeit that lipofection of the MDSCs seemed to slightly decrease their migration capacity.
Collapse
|