1
|
Zhang X, Han L, Nie F, Zhang H, Li L, Liang R. Development of a radiomic model to predict CEACAM1 expression and prognosis in ovarian cancer. Sci Rep 2025; 15:15259. [PMID: 40307488 PMCID: PMC12044014 DOI: 10.1038/s41598-025-99625-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 04/22/2025] [Indexed: 05/02/2025] Open
Abstract
We aimed to investigate the prognostic role of CEACAM1 and to construct a radiomic model to predict CEACAM1 expression and prognosis in ovary cancer (OC). Sequencing data and CT scans in OC were sourced from TCGA and TCIA databases. CEACAM1 expression was assessed by Cox regression analyses, Kaplan-Meier curves and GSVA enrichment analysis. Furthermore, radiomic features were extracted from CT scans and selected by LASSO and ROC. The selected radiomic features were used to construct a radiomic model to predict CEACAM1 expression. In addition, the radiomic score (RS) and its relationship with OC survival were investigated by Kaplan-Meier and ROC curves. At last, RS and clinical features were included into LASSO, using nomogram to predict OC prognosis. Cox regression analyses showed that CEACAM1 expression was an independent prognostic factor and associated with immune cell infiltration in OC. By LASSO and ROC, six radiomic features were selected and used to construct a radiomic model. The PR, calibration, DCA and ROC curves revealed the good performance and clinical utility of the radiomic model to predict CEACAM1 expression. In addition, RS based on radiomic features was found to be associated with OC survival. At last, a nomogram based on RS, age, chemotherapy and tumor residual disease was constructed and was found to have high accuracy in predicting OC prognosis. For the first time, our study constructed a radiomic model to predict CEACAM1 expression and prognosis of OC patients. Those findings may guide novel diagnosis and treatment for OC patients.
Collapse
Affiliation(s)
- Xiaoxue Zhang
- Department of Physical Examination, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Liping Han
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Fangfang Nie
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Huimin Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Liming Li
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China.
| | - Ruopeng Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China.
| |
Collapse
|
2
|
Salminen A. Cooperation between inhibitory immune checkpoints of senescent cells with immunosuppressive network to promote immunosenescence and the aging process. Ageing Res Rev 2025; 106:102694. [PMID: 39984130 DOI: 10.1016/j.arr.2025.102694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/30/2024] [Accepted: 02/14/2025] [Indexed: 02/23/2025]
Abstract
The accumulation of senescent cells within tissues promotes the aging process by remodelling the functions of the immune system. For many years, it has been known that senescent cells secrete pro-inflammatory cytokines and chemokines, a phenotype called the senescence-associated secretory phenotype (SASP). Chemokines and colony-stimulating factors stimulate myelopoiesis and recruit myeloid cells into aging tissues. Interestingly, recent studies have demonstrated that senescent cells are not only secretory but they also express an increased level of ligand proteins for many inhibitory immune checkpoint receptors. These ligands represent "don't eat me" markers in senescent cells and moreover, they are able to induce an exhaustion of many immune cells, such as surveying natural killer (NK) cells, cytotoxic CD8+ T cells, and macrophages. The programmed cell death protein-1 (PD-1) and its ligand PD-L1 represent the best known inhibitory immune checkpoint pathway. Importantly, the activation of inhibitory checkpoint receptors, e.g., in chronic inflammatory states, can also induce certain immune cells to differentiate toward their immunosuppressive phenotype. This can be observed in myeloid derived suppressor cells (MDSC), tissue regulatory T cells (Treg), and M2 macrophages. Conversely, these immunosuppressive cells stimulate in senescent cells the expression of many ligand proteins for inhibitory checkpoint receptors. Paradoxically, senescent cells not only promote the pro-inflammatory state but they maintain it at a low-grade level by expressing ligands for inhibitory immune checkpoint receptors. Thus, the cooperation between senescent cells and immunosuppressive cells enhances the senescence state of immune cells, i.e., immune senescence/exhaustion, and cellular senescence within tissues via bystander effects.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland.
| |
Collapse
|
3
|
Zhang X, Guo Z, Li Y, Xu Y. Splicing to orchestrate cell fate. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102416. [PMID: 39811494 PMCID: PMC11729663 DOI: 10.1016/j.omtn.2024.102416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Alternative splicing (AS) plays a critical role in gene expression by generating protein diversity from single genes. This review provides an overview of the role of AS in regulating cell fate, focusing on its involvement in processes such as cell proliferation, differentiation, apoptosis, and tumorigenesis. We explore how AS influences the cell cycle, particularly its impact on key stages like G1, S, and G2/M. The review also examines AS in cell differentiation, highlighting its effects on mesenchymal stem cells and neurogenesis, and how it regulates differentiation into adipocytes, osteoblasts, and chondrocytes. Additionally, we discuss the role of AS in programmed cell death, including apoptosis and pyroptosis, and its contribution to cancer progression. Importantly, targeting aberrant splicing mechanisms presents promising therapeutic opportunities for restoring normal cellular function. By synthesizing recent findings, this review provides insights into how AS governs cellular fate and offers directions for future research into splicing regulatory networks.
Collapse
Affiliation(s)
- Xurui Zhang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, P.R. China
| | - Zhonghao Guo
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, P.R. China
| | - Yachen Li
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, P.R. China
| | - Yungang Xu
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, P.R. China
| |
Collapse
|
4
|
Zhao L, Li T, Zhou Y, Wang P, Luo L. Monoclonal antibody targeting CEACAM1 enhanced the response to anti-PD1 immunotherapy in non-small cell lung cancer. Int Immunopharmacol 2024; 143:113395. [PMID: 39426236 DOI: 10.1016/j.intimp.2024.113395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 09/27/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
Carcinoembryonic antigen-related cellular adhesion molecule 1 (CEACAM1), an extensively studied cell surface molecule, mainly expressed by certain epithelial, endothelial, lymphoid and myeloid cells, and is an attractive target for cancer immunotherapy. Here, to investigate the anti-tumor effects and mechanisms of CEACAM1 antibody, we prepared the antibody and explored its anti-tumor effects on Non-small Cell Lung Cancer (NSCLC) in vitro and in vivo. Firstly, antigen of human CEACAM1 recombinant protein was immunized on BALB/c mice and the high-affinity mouse anti-human monoclonal antibody 3C11 was selected by hybridoma technique. Next, ELISA was applied to detect the blocking effects of 3C11 on CEACAM1-CEACAM1 and CEACAM1-CEACAM5. Then, cell assays and ELISA were used to evaluate the role of 3C11 in blocking CEACAM1-CEACAM1 immunosuppressive signal transduction between dendritic cells (DCs) and T cells or natural killer cells (NK) and tumor cells. Finally, the synergistic anti-tumor effect of 3C11 combined with anti-PD-1 antibody was evaluated through cell stimulation assays and NCI-H358-induced tumor models in mice. The results showed the EC50 of 3C11 binding to NCI-H358 or exhausted T cells were 0.04971 μg/mL and 0.03475 μg/mL, respectively. 3C11 activated the exhausted T cells and enhanced the killing effect of NK by blocking CEACAM1-CEACAM1. In addition, the combination of 3C11 and anti-PD1 antibody produced synergistic anti-tumor effect on NSCLC. Its improved tumor growth inhibition value (TGI) of anti-PD-1 from 18 % to 85 % in vivo. These findings suggest that 3C11 can be considered an effective immunotherapy drug for NSCLC.
Collapse
MESH Headings
- Animals
- Carcinoma, Non-Small-Cell Lung/immunology
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/therapy
- Humans
- Lung Neoplasms/immunology
- Lung Neoplasms/drug therapy
- Lung Neoplasms/therapy
- Mice, Inbred BALB C
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal/pharmacology
- Immunotherapy/methods
- Cell Adhesion Molecules/immunology
- Cell Adhesion Molecules/antagonists & inhibitors
- Cell Adhesion Molecules/metabolism
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- Programmed Cell Death 1 Receptor/immunology
- Mice
- Cell Line, Tumor
- Killer Cells, Natural/immunology
- Killer Cells, Natural/drug effects
- Female
- Immune Checkpoint Inhibitors/pharmacology
- Immune Checkpoint Inhibitors/therapeutic use
- Dendritic Cells/immunology
- Dendritic Cells/drug effects
- T-Lymphocytes/immunology
- T-Lymphocytes/drug effects
- Xenograft Model Antitumor Assays
- Carcinoembryonic Antigen/immunology
Collapse
Affiliation(s)
- Lianqi Zhao
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, PR China; Ouyue Biotech. Inc, Suzhou, Jiangsu 215400, PR China; In Vivo Pharmacology, Frontage Laboratories, Suzhou, Jiangsu 215400, PR China
| | - Tingting Li
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, PR China; Ouyue Biotech. Inc, Suzhou, Jiangsu 215400, PR China
| | - Yinwei Zhou
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, PR China
| | - Pengbo Wang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, PR China.
| | - Lin Luo
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, PR China.
| |
Collapse
|
5
|
Luo J, Zhang C, Chen D, Chang T, Chen S, Lin Z, Yi C, Tang ZH. Tim-3 pathway dysregulation and targeting in sepsis-induced immunosuppression. Eur J Med Res 2024; 29:583. [PMID: 39696711 PMCID: PMC11656820 DOI: 10.1186/s40001-024-02203-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/05/2024] [Indexed: 12/20/2024] Open
Abstract
Sepsis is a major medical problem which causes millions of deaths worldwide every year. The host immune response in sepsis is characterized by acute inflammation and a simultaneous state of immunosuppression. In the later stage of sepsis, immunosuppression is a crucial factor that increases the susceptibility of septic patients to secondary infection and mortality. It is characterized by T cell exhaustion, excessive production of anti-inflammatory cytokines, hyperproliferation of immune suppressor cells and aberrant expression of immune checkpoint molecules. T cell immunoglobulin and mucin domain 3 (Tim-3), an immune checkpoint molecule, is found on the surface of various cells, including macrophages, NK cells, NKT cells, and T cells. There are four different ligands for Tim-3, and accumulating evidence indicates that Tim-3 and its ligands play a crucial role in regulating immune cell dysfunction during sepsis. Anti-Tim-3 antibodies have been applied in the field of cancer immunotherapy and have achieved positive therapeutic effects in some clinical trials. However, the therapeutic efficacy of Tim-3 blockade is still controversial in animal models of sepsis. These challenges highlight the need for a deeper understanding of Tim-3 signaling in sepsis. This review examines the comprehensive effect of Tim-3 signaling in the development of sepsis-induced immunosuppression and the therapeutic efficacy of Tim-3 blockade.
Collapse
Affiliation(s)
- Jialiu Luo
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cong Zhang
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Deng Chen
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Teding Chang
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shunyao Chen
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiqiang Lin
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengla Yi
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Zhao-Hui Tang
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
6
|
Gandhi AK, Huang YH, Sun ZYJ, Kim WM, Kondo Y, Hanley T, Beauchemin N, Blumberg RS. Structural aspects of CEACAM1 interactions. Eur J Clin Invest 2024; 54 Suppl 2:e14357. [PMID: 39555955 DOI: 10.1111/eci.14357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/03/2024] [Indexed: 11/19/2024]
Abstract
Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is a membrane protein that plays an important role in a variety of immune and non-immune functions. Such functions are regulated by its activity as a homophilic ligand but also through its ability to interact as a heterophilic ligand with various host proteins. These include CEACAM5, T cell immunoglobulin-mucin like protein-3 (TIM-3) and, potentially, protein death protein 1 (PD-1). Furthermore, CEACAM1 is targeted by various pathogens to allow them to invade a host and bypass an effective immune response. Clinically, CEACAM1 plays an important role in infectious diseases, autoimmunity and cancer. In this review, we describe the structural basis for CEACAM1 interactions as a homophilic and heterophilic ligand. We discuss the regulation of its monomeric, dimeric and oligomeric states in cis and trans binding as well as the consequences for eliciting downstream signalling activities. Furthermore, we explore the potential role of avidity in determining CEACAM1's activities.
Collapse
Affiliation(s)
- Amit K Gandhi
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yu-Hwa Huang
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Zhen-Yu J Sun
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Walter M Kim
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yasuyuki Kondo
- Division of Gastroenterology, Department of Internal Medicine, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Thomas Hanley
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Nicole Beauchemin
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Canada
| | - Richard S Blumberg
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Karami R, Fathi M, Jalali P, Hassannia H, Zarei A, Hojjat-Farsangi M, Jadidi F. The emerging role of TIM-3 in colorectal cancer: a promising target for immunotherapy. Expert Opin Ther Targets 2024; 28:1093-1115. [PMID: 39670788 DOI: 10.1080/14728222.2024.2442437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 11/30/2024] [Accepted: 12/10/2024] [Indexed: 12/14/2024]
Abstract
INTRODUCTION Colorectal cancer (CRC) imposes a substantial worldwide health burden, necessitating innovative strategies to enhance therapeutic outcomes. T cell immunoglobulin-3 (Tim-3), an immune checkpoint, enhances immunological tolerance. Tim-3's role in CRC surpasses its conventional function as an indicator of dysfunction in T lymphocytes. AREAS COVERED This review provides an all-inclusive summary of the structural and functional attributes of Tim-3's involvement in the case of CRC. It explores the implications of Tim-3 expression in CRC with regard to tumor progression, clinical characteristics, and therapeutic approaches. Furthermore, it delves into the intricate signaling pathways and molecular mechanisms through which Tim-3 exerts its dual function in both immunity against tumors and immune evasion. EXPERT OPINION Understanding Tim-3's complicated network of interactions in CRC has significant consequences for the development of novel immunotherapeutic strategies targeted toward restoring anti-tumor immune responses and improving patient survival. Tim-3 is an important and valuable target for CRC patient risk classification and treatment because it regulates a complex network of strategies for suppressing immune responses, including causing T cell exhaustion, increasing Treg (regulatory T-cell) proliferation, and altering antigen-presenting cell activity.
Collapse
Affiliation(s)
- Reza Karami
- Immunology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehrdad Fathi
- Immunology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pooya Jalali
- Immunology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Hassannia
- Department of Paramedicine, Amol School of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran
| | - Asieh Zarei
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Farhad Jadidi
- Immunology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Götz L, Rueckschloss U, Najjar SM, Ergün S, Kleefeldt F. Carcinoembryonic antigen-related cell adhesion molecule 1 in cancer: Blessing or curse? Eur J Clin Invest 2024; 54 Suppl 2:e14337. [PMID: 39451132 DOI: 10.1111/eci.14337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024]
Abstract
The Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1, also CD66a), a transmembrane glycoprotein of the immunoglobulin superfamily, is a pivotal mediator of various physiological and pathological processes, including oncologic disorders. However, its precise role in tumorigenicity is contradictory discussed by several clinical studies. This review aims to elucidate the clinical significance of CEACAM1 in different cancer entities focusing on tumour formation, progression and metastasis as well as on CEACAM1-mediated treatment resistance. Furthermore, we discuss the contribution of CEACAM1 to cancer immunity and modulation of the inflammatory microenvironment and finally provide a comprehensive review of treatment regimens targeting this molecule.
Collapse
Affiliation(s)
- Lisa Götz
- Institute of Anatomy and Cell Biology, University of Wuerzburg, Wuerzburg, Germany
| | - Uwe Rueckschloss
- Institute of Anatomy and Cell Biology, University of Wuerzburg, Wuerzburg, Germany
| | - Sonia M Najjar
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine Irvine Hall, Ohio University, Athens, Ohio, USA
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, University of Wuerzburg, Wuerzburg, Germany
| | - Florian Kleefeldt
- Institute of Anatomy and Cell Biology, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
9
|
Kong H, Yang Q, Wu C, Wu X, Yan X, Huang LB, Chen L, Zhou ZG, Wang P, Jiang H. Spatial Context of Immune Checkpoints as Predictors of Overall Survival in Patients with Resectable Colorectal Cancer Independent of Standard Tumor-Node-Metastasis Stages. CANCER RESEARCH COMMUNICATIONS 2024; 4:3025-3035. [PMID: 39485029 PMCID: PMC11589669 DOI: 10.1158/2767-9764.crc-24-0270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/10/2024] [Accepted: 10/29/2024] [Indexed: 11/03/2024]
Abstract
SIGNIFICANCE The identification of specific spatial patterns of immune checkpoint expression that correlate with overall survival in patients with colon cancer suggests a potential prognostic tool for risk stratification and treatment selection. These findings pave the way for the development of novel therapeutic strategies to enhance antitumor immune responses.
Collapse
Affiliation(s)
- Hao Kong
- Department of Pancreatic Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Qingxin Yang
- Department of Pancreatic Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Chunwei Wu
- Department of Pancreatic Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiangji Wu
- Department of Pancreatic Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xinrui Yan
- Department of Pancreatic Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Li-Bin Huang
- Laboratory of Digestive Surgery, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Lu Chen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Zong-Guang Zhou
- Laboratory of Digestive Surgery, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Ping Wang
- Department of Pancreatic Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Jiang
- Department of Pancreatic Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Salminen A. Inhibitory immune checkpoints suppress the surveillance of senescent cells promoting their accumulation with aging and in age-related diseases. Biogerontology 2024; 25:749-773. [PMID: 38954358 PMCID: PMC11374851 DOI: 10.1007/s10522-024-10114-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
The accumulation of pro-inflammatory senescent cells within tissues is a common hallmark of the aging process and many age-related diseases. This modification has been called the senescence-associated secretory phenotype (SASP) and observed in cultured cells and in cells isolated from aged tissues. Currently, there is a debate whether the accumulation of senescent cells within tissues should be attributed to increased generation of senescent cells or to a defect in their elimination from aging tissues. Emerging studies have revealed that senescent cells display an increased expression of several inhibitory immune checkpoint ligands, especially those of the programmed cell death protein-1 (PD-1) ligand-1 (PD-L1) proteins. It is known that the PD-L1 ligands, especially those of cancer cells, target the PD-1 receptor of cytotoxic CD8+ T and natural killer (NK) cells disturbing their functions, e.g., evoking a decline in their cytotoxic activity and promoting their exhaustion and even apoptosis. An increase in the level of the PD-L1 protein in senescent cells was able to suppress their immune surveillance and inhibit their elimination by cytotoxic CD8+ T and NK cells. Senescent cells are known to express ligands for several inhibitory immune checkpoint receptors, i.e., PD-1, LILRB4, NKG2A, TIM-3, and SIRPα receptors. Here, I will briefly describe those pathways and examine whether these inhibitory checkpoints could be involved in the immune evasion of senescent cells with aging and age-related diseases. It seems plausible that an enhanced inhibitory checkpoint signaling can prevent the elimination of senescent cells from tissues and thus promote the aging process.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| |
Collapse
|
11
|
Zhao J, Wang Z, Tian Y, Ning J, Ye H. T cell exhaustion and senescence for ovarian cancer immunotherapy. Semin Cancer Biol 2024; 104-105:1-15. [PMID: 39032717 DOI: 10.1016/j.semcancer.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/30/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024]
Abstract
Ovarian cancer is a common gynecological malignancy, and its treatment remains challenging. Although ovarian cancer may respond to immunotherapy because of endogenous immunity at the molecular or T cell level, immunotherapy has so far not had the desired effect. The functional status of preexisting T cells is an indispensable determinant of powerful antitumor immunity and immunotherapy. T cell exhaustion and senescence are two crucial states of T cell dysfunction, which share some overlapping phenotypic and functional features, but each status possesses unique molecular and developmental signatures. It has been widely accepted that exhaustion and senescence of T cells are important strategies for cancer cells to evade immunosurveillance and maintain the immunosuppressive microenvironment. Herein, this review summarizes the phenotypic and functional features of exhaust and senescent T cells, and describes the key drivers of the two T cell dysfunctional states in the tumor microenvironment and their functional roles in ovarian cancer. Furthermore, we present a summary of the molecular machinery and signaling pathways governing T cell exhaustion and senescence. Possible strategies that can prevent and/or reverse T cell dysfunction are also explored. An in-depth understanding of exhausted and senescent T cells will provide novel strategies to enhance immunotherapy of ovarian cancer through redirecting tumor-specific T cells away from a dysfunctional developmental trajectory.
Collapse
Affiliation(s)
- Jiao Zhao
- Department of Gynecology Surgery 3, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Zhongmiao Wang
- Department of Digestive Diseases 1, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Yingying Tian
- Department of Oncology Radiotherapy 2, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong 266042, China
| | - Jing Ning
- Department of General Internal Medicine (VIP Ward), Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China.
| | - Huinan Ye
- Department of Digestive Diseases 1, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China.
| |
Collapse
|
12
|
Ledderose S, Ledderose C, Ledderose GJ. Expression of immune checkpoint molecules TIGIT and TIM-3 by tumor-infiltrating lymphocytes predicts poor outcome in sinonasal mucosal melanoma. Pathol Res Pract 2024; 260:155468. [PMID: 39018929 DOI: 10.1016/j.prp.2024.155468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND Sinonasal mucosal melanoma (SNMM) is a rare but aggressive tumor with a poor prognosis. The co-inhibitory receptors T cell immunoglobulin and mucinodomain containing-3 (TIM-3), lymphocyte activation gene-3 (LAG-3) and T cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain (TIGIT) are promising new targets in anti-cancer immunotherapy. The expression profiles of these immune checkpoint molecules (ICMs) and potential prognostic implications have not been characterized in SNMM yet. METHODS Immunohistochemical staining for TIGIT, LAG-3 and TIM-3 was performed on tumor tissue samples from 27 patients with primary SNMM. Associations between ICM expression and demographic parameters, AJCC tumor stage, overall survival, and recurrence-free survival were retrospectively analyzed. RESULTS SNMM patients with low numbers of TIGIT+ and TIM-3+ tumor infiltrating lymphocytes (TILs) in the primary tumor survived significantly longer than patients with a high degree of TIGIT+ and TIM-3+ TILs. High infiltration with TIM-3+ or TIGIT+ lymphocytes was associated with the higher T4 stage and decreased 5-year survival. CONCLUSION We identified high densities of TIM-3+ and TIGIT+ TILs as strong negative prognostic biomarkers in SNMM. This suggests that TIM-3 and TIGIT contribute to immunosuppression in SNMM and provides a rationale for novel treatment strategies based on this next generation of immune checkpoint inhibitors. Prospective studies with larger case numbers are warranted to confirm our findings and their implications for immunotherapy.
Collapse
Affiliation(s)
- Stephan Ledderose
- Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany.
| | - Carola Ledderose
- Department of Surgery, Division of Surgical Sciences, University of California San Diego, San Diego, CA, USA
| | - Georg J Ledderose
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital of LMU Munich, Munich, Germany; ENT-Center Dr. Lübbers & Kollegen, Weilheim, Germany
| |
Collapse
|
13
|
Huang YH, Yoon CH, Gandhi A, Hanley T, Castrillon C, Kondo Y, Lin X, Kim W, Yang C, Driouchi A, Carroll M, Gray-Owen SD, Wesemann DR, Drake CG, Bertagnolli MM, Beauchemin N, Blumberg RS. High-dimensional mapping of human CEACAM1 expression on immune cells and association with melanoma drug resistance. COMMUNICATIONS MEDICINE 2024; 4:128. [PMID: 38956268 PMCID: PMC11219841 DOI: 10.1038/s43856-024-00525-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/08/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Human carcinoembryonic antigen cell adhesion molecule 1 (CEACAM1) is an inhibitory cell surface protein that functions through homophilic and heterophilic ligand binding. Its expression on immune cells in human tumors is poorly understood. METHODS An antibody that distinguishes human CEACAM1 from other highly related CEACAM family members was labeled with 159Tb and inserted into a panel of antibodies that included specificity for programmed cell death protein 1 (PD1) and PD-L1, which are targets of immunotherapy, to gain a data-driven immune cell atlas using cytometry by time-of-flight (CyTOF). A detailed inventory of CEACAM1, PD1, and PD-L1 expression on immune cells in metastatic lesions to lymph node or soft tissues and peripheral blood samples from patients with treatment-naive and -resistant melanoma as well as peripheral blood samples from healthy controls was performed. RESULTS CEACAM1 is absent or at low levels on healthy circulating immune cells but is increased on immune cells in peripheral blood and tumors of melanoma patients. The majority of circulating PD1-positive NK cells, innate T cells, B cells, monocytic cells, dendritic cells, and CD4+ T cells in the peripheral circulation of treatment-resistant disease co-express CEACAM1 and are demonstrable as discrete populations. CEACAM1 is present on distinct types of cells that are unique to the tumor microenvironment and exhibit expression levels that are highest in treatment resistance; this includes tumor-infiltrating CD8+ T cells. CONCLUSIONS To the best of our knowledge, this work represents the first comprehensive atlas of CEACAM1 expression on immune cells in a human tumor and reveals an important correlation with treatment-resistant disease. These studies suggest that agents targeting CEACAM1 may represent appropriate partners for PD1-related pathway therapies.
Collapse
Affiliation(s)
- Yu-Hwa Huang
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Charles H Yoon
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Amit Gandhi
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Thomas Hanley
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Carlos Castrillon
- Program in Cellular and Molecular Medicine, Children's Hospital Medical Center, Harvard Medical School, Boston, MA, USA
| | - Yasuyuki Kondo
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Internal Medicine, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Xi Lin
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Walter Kim
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Chao Yang
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Amine Driouchi
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Michael Carroll
- Program in Cellular and Molecular Medicine, Children's Hospital Medical Center, Harvard Medical School, Boston, MA, USA
| | - Scott D Gray-Owen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Duane R Wesemann
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Allergy and Immunology, Division of Genetics, Brigham and Women's Hospital and Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA
| | - Charles G Drake
- Herbert Irving Comprehensive Cancer Center, Columbia University School of Medicine, New York, NY, USA
- Janssen R&D, Springhouse, PA, USA
| | - Monica M Bertagnolli
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- National Institutes of Health, Bethesda, MD, USA
| | - Nicole Beauchemin
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
| | - Richard S Blumberg
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
14
|
Gan Q, Li Y, Li Y, Liu H, Chen D, Liu L, Peng C. Pathways and molecules for overcoming immunotolerance in metastatic gastrointestinal tumors. Front Immunol 2024; 15:1359914. [PMID: 38646539 PMCID: PMC11026648 DOI: 10.3389/fimmu.2024.1359914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
Worldwide, gastrointestinal (GI) cancer is recognized as one of the leading malignancies diagnosed in both genders, with mortality largely attributed to metastatic dissemination. It has been identified that in GI cancer, a variety of signaling pathways and key molecules are modified, leading to the emergence of an immunotolerance phenotype. Such modifications are pivotal in the malignancy's evasion of immune detection. Thus, a thorough analysis of the pathways and molecules contributing to GI cancer's immunotolerance is vital for advancing our comprehension and propelling the creation of efficacious pharmacological treatments. In response to this necessity, our review illuminates a selection of groundbreaking cellular signaling pathways associated with immunotolerance in GI cancer, including the Phosphoinositide 3-kinases/Akt, Janus kinase/Signal Transducer and Activator of Transcription 3, Nuclear Factor kappa-light-chain-enhancer of activated B cells, Transforming Growth Factor-beta/Smad, Notch, Programmed Death-1/Programmed Death-Ligand 1, and Wingless and INT-1/beta-catenin-Interleukin 10. Additionally, we examine an array of pertinent molecules like Indoleamine-pyrrole 2,3-dioxygenase, Human Leukocyte Antigen G/E, Glycoprotein A Repetitions Predominant, Clever-1, Interferon regulatory factor 8/Osteopontin, T-cell immunoglobulin and mucin-domain containing-3, Carcinoembryonic antigen-related cell adhesion molecule 1, Cell division control protein 42 homolog, and caspases-1 and -12.
Collapse
Affiliation(s)
- Qixin Gan
- 1Department of Radiology, First Affiliated Hospital of Hunan College of TCM (Hunan Province Directly Affiliated TCM Hospital), Zhuzhou, Hunan, China
| | - Yue Li
- Department of Cardiovascular Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yuejun Li
- Department of Oncology, First Affiliated Hospital of Hunan College of TCM (Hunan Province Directly Affiliated TCM Hospital), Zhuzhou, Hunan, China
| | - Haifen Liu
- 1Department of Radiology, First Affiliated Hospital of Hunan College of TCM (Hunan Province Directly Affiliated TCM Hospital), Zhuzhou, Hunan, China
| | - Daochuan Chen
- 1Department of Radiology, First Affiliated Hospital of Hunan College of TCM (Hunan Province Directly Affiliated TCM Hospital), Zhuzhou, Hunan, China
| | - Lanxiang Liu
- 1Department of Radiology, First Affiliated Hospital of Hunan College of TCM (Hunan Province Directly Affiliated TCM Hospital), Zhuzhou, Hunan, China
| | - Churan Peng
- 1Department of Radiology, First Affiliated Hospital of Hunan College of TCM (Hunan Province Directly Affiliated TCM Hospital), Zhuzhou, Hunan, China
| |
Collapse
|
15
|
Mestiri S, El-Ella DMA, Fernandes Q, Bedhiafi T, Almoghrabi S, Akbar S, Inchakalody V, Assami L, Anwar S, Uddin S, Gul ARZ, Al-Muftah M, Merhi M, Raza A, Dermime S. The dynamic role of immune checkpoint molecules in diagnosis, prognosis, and treatment of head and neck cancers. Biomed Pharmacother 2024; 171:116095. [PMID: 38183744 DOI: 10.1016/j.biopha.2023.116095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/08/2024] Open
Abstract
Head and neck cancer (HNC) is the sixth most common cancer type, accounting for approximately 277,597 deaths worldwide. Recently, the Food and Drug Administration (FDA) has approved immune checkpoint blockade (ICB) agents targeting programmed death-1 (PD-1) and programmed death-ligand 1 (PD-L1) as a treatment regimen for head and neck squamous cell carcinomas (HNSCC). Studies have reported the role of immune checkpoint inhibitors as targeted therapeutic regimens that unleash the immune response against HNSCC tumors. However, the overall response rates to immunotherapy vary between 14-32% in recurrent or metastatic HNSCC, with clinical response and treatment success being unpredictable. Keeping this perspective in mind, it is imperative to understand the role of T cells, natural killer cells, and antigen-presenting cells in modulating the immune response to immunotherapy. In lieu of this, these immune molecules could serve as prognostic and predictive biomarkers to facilitate longitudinal monitoring and understanding of treatment dynamics. These immune biomarkers could pave the path for personalized monitoring and management of HNSCC. In this review, we aim to provide updated immunological insight on the mechanism of action, expression, and the clinical application of immune cells' stimulatory and inhibitory molecules as prognostic and predictive biomarkers in HNC. The review is focused mainly on CD27 and CD137 (members of the TNF-receptor superfamily), natural killer group 2 member D (NKG2D), tumor necrosis factor receptor superfamily member 4 (TNFRSF4 or OX40), S100 proteins, PD-1, PD-L1, PD-L2, T cell immunoglobulin and mucin domain 3 (TIM-3), cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), lymphocyte-activation gene 3 (LAG-3), indoleamine-pyrrole 2,3-dioxygenase (IDO), B and T lymphocyte attenuator (BTLA). It also highlights the importance of T, natural killer, and antigen-presenting cells as robust biomarker tools for understanding immune checkpoint inhibitor-based treatment dynamics. Though a comprehensive review, all aspects of the immune molecules could not be covered as they were beyond the scope of the review; Further review articles can cover other aspects to bridge the knowledge gap.
Collapse
Affiliation(s)
- Sarra Mestiri
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Dina Moustafa Abo El-Ella
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Queenie Fernandes
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; College of Medicine, Qatar University, Doha, Qatar
| | - Takwa Bedhiafi
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Salam Almoghrabi
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shayista Akbar
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Varghese Inchakalody
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Laila Assami
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shaheena Anwar
- Department of Biosciences, Salim Habib University, Karachi, Pakistan
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Abdul Rehman Zar Gul
- National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Mariam Al-Muftah
- Translational Cancer and Immunity Centre, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Maysaloun Merhi
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Afsheen Raza
- Department of Biomedical Sciences, College of Health Science, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Said Dermime
- Translational Cancer Research Facility, National Center for Cancer Care and Research/ Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar.
| |
Collapse
|
16
|
Rastin F, Javid H, Oryani MA, Rezagholinejad N, Afshari AR, Karimi-Shahri M. Immunotherapy for colorectal cancer: Rational strategies and novel therapeutic progress. Int Immunopharmacol 2024; 126:111055. [PMID: 37992445 DOI: 10.1016/j.intimp.2023.111055] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/30/2023] [Accepted: 10/09/2023] [Indexed: 11/24/2023]
Abstract
There are increasing incidences and mortality rates for colorectal cancer in the world. It is common for chemotherapy and radiation given to patients with colorectal cancer to cause toxicities that limit their effectiveness and cause cancer cells to become resistant to these treatments. Additional targeted treatments are needed to improve patient's quality of life and outcomes. Immunotherapy has rapidly emerged as an incredibly exciting and promising avenue for cancer treatment in recent years. This innovative approach provides novel options for tackling solid tumors, effectively establishing itself as a new cornerstone in cancer treatment. Specifically, in the realm of colorectal cancer (CRC), there is great promise in developing new drugs that target immune checkpoints, offering a hopeful and potentially transformative solution. While immunotherapy of CRC has made significant advances, there are still obstacles and limitations. CRC patients have a poor response to treatment because of the immune-suppressing function of their tumor microenvironment (TME). In addition to blocking inhibitory immune checkpoints, checkpoint-blocking antibodies may also boost immune responses against tumors. The review summarizes recent advances in immune checkpoint inhibitors (ICIs) for CRC, including CTLA-4, PD-1, PD-L1, LAG-3, and TIM-3.
Collapse
Affiliation(s)
- Farangis Rastin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hossein Javid
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mahsa Akbari Oryani
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Amir-R Afshari
- Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mehdi Karimi-Shahri
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pathology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran.
| |
Collapse
|
17
|
Götz L, Rueckschloss U, Balk G, Pfeiffer V, Ergün S, Kleefeldt F. The role of carcinoembryonic antigen-related cell adhesion molecule 1 in cancer. Front Immunol 2023; 14:1295232. [PMID: 38077351 PMCID: PMC10704240 DOI: 10.3389/fimmu.2023.1295232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023] Open
Abstract
The Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), also known as CD66a, is a member of the immunoglobulin superfamily. CEACAM1 was shown to be a prognostic marker in patients suffering from cancer. In this review, we summarize pre-clinical and clinical evidence linking CEACAM1 to tumorigenicity and cancer progression. Furthermore, we discuss potential CEACAM1-based mechanisms that may affect cancer biology.
Collapse
Affiliation(s)
- Lisa Götz
- Institute of Anatomy and Cell Biology, Julius‐Maximilians‐University Würzburg, Würzburg, Germany
| | - Uwe Rueckschloss
- Institute of Anatomy and Cell Biology, Julius‐Maximilians‐University Würzburg, Würzburg, Germany
| | - Gözde Balk
- Institute of Anatomy and Cell Biology, Julius‐Maximilians‐University Würzburg, Würzburg, Germany
| | - Verena Pfeiffer
- Institute of Anatomy and Cell Biology, Julius‐Maximilians‐University Würzburg, Würzburg, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Julius‐Maximilians‐University Würzburg, Würzburg, Germany
| | - Florian Kleefeldt
- Institute of Anatomy and Cell Biology, Julius‐Maximilians‐University Würzburg, Würzburg, Germany
- Harvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, United States
| |
Collapse
|
18
|
Sauer N, Janicka N, Szlasa W, Skinderowicz B, Kołodzińska K, Dwernicka W, Oślizło M, Kulbacka J, Novickij V, Karłowicz-Bodalska K. TIM-3 as a promising target for cancer immunotherapy in a wide range of tumors. Cancer Immunol Immunother 2023; 72:3405-3425. [PMID: 37567938 PMCID: PMC10576709 DOI: 10.1007/s00262-023-03516-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023]
Abstract
T-cell immunoglobulin and mucin domain-containing protein 3 (TIM-3) expression has been a trending topic in recent years due to its differential expression in a wide range of neoplasms. TIM-3 is one of the key immune checkpoint receptors that interact with GAL-9, PtdSer, HMGB1 and CEACAM1. Initially identified on the surface of T helper 1 (Th1) lymphocytes and later on cytotoxic lymphocytes (CTLs), monocytes, macrophages, natural killer cells (NKs), and dendritic cells (DCs), TIM-3 plays a key role in immunoregulation. Recently, a growing body of evidence has shown that its differential expression in various tumor types indicates a specific prognosis for cancer patients. Here, we discuss which types of cancer TIM-3 can serve as a prognostic factor and the influence of coexpressed immune checkpoint inhibitors, such as LAG-3, PD-1, and CTLA-4 on patients' outcomes. Currently, experimental medicine involving TIM-3 has significantly enhanced the anti-tumor effect and improved patient survival. In this work, we summarized clinical trials incorporating TIM-3 targeting monoclonal and bispecific antibodies in monotherapy and combination therapy and highlighted the emerging role of cell-based therapies.
Collapse
Affiliation(s)
- Natalia Sauer
- Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Natalia Janicka
- Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Wojciech Szlasa
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | | | | | - Wioletta Dwernicka
- Faculty of Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Julita Kulbacka
- State Research Institute Centre for Innovative Medicine, Department of Immunology, Vilnius, Lithuania.
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland.
| | - Vitalij Novickij
- State Research Institute Centre for Innovative Medicine, Department of Immunology, Vilnius, Lithuania
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | | |
Collapse
|
19
|
Manabile MA, Hull R, Khanyile R, Molefi T, Damane BP, Mongan NP, Bates DO, Dlamini Z. Alternative Splicing Events and Their Clinical Significance in Colorectal Cancer: Targeted Therapeutic Opportunities. Cancers (Basel) 2023; 15:3999. [PMID: 37568815 PMCID: PMC10417810 DOI: 10.3390/cancers15153999] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Colorectal cancer (CRC) ranks as one of the top causes of cancer mortality worldwide and its incidence is on the rise, particularly in low-middle-income countries (LMICs). There are several factors that contribute to the development and progression of CRC. Alternative splicing (AS) was found to be one of the molecular mechanisms underlying the development and progression of CRC. With the advent of genome/transcriptome sequencing and large patient databases, the broad role of aberrant AS in cancer development and progression has become clear. AS affects cancer initiation, proliferation, invasion, and migration. These splicing changes activate oncogenes or deactivate tumor suppressor genes by producing altered amounts of normally functional or new proteins with different, even opposing, functions. Thus, identifying and characterizing CRC-specific alternative splicing events and variants might help in designing new therapeutic splicing disrupter drugs. CRC-specific splicing events can be used as diagnostic and prognostic biomarkers. In this review, alternatively spliced events and their role in CRC development will be discussed. The paper also reviews recent research on alternatively spliced events that might be exploited as prognostic, diagnostic, and targeted therapeutic indicators. Of particular interest is the targeting of protein arginine methyltransferase (PMRT) isoforms for the development of new treatments and diagnostic tools. The potential challenges and limitations in translating these discoveries into clinical practice will also be addressed.
Collapse
Affiliation(s)
- Mosebo Armstrong Manabile
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria 0028, South Africa; (M.A.M.); (R.H.); (R.K.); (T.M.); (D.O.B.)
- Department of Medical Oncology, Faculty of Health Sciences, Steve Biko Academic Hospital, University of Pretoria, Pretoria 0028, South Africa
| | - Rodney Hull
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria 0028, South Africa; (M.A.M.); (R.H.); (R.K.); (T.M.); (D.O.B.)
| | - Richard Khanyile
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria 0028, South Africa; (M.A.M.); (R.H.); (R.K.); (T.M.); (D.O.B.)
- Department of Medical Oncology, Faculty of Health Sciences, Steve Biko Academic Hospital, University of Pretoria, Pretoria 0028, South Africa
| | - Thulo Molefi
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria 0028, South Africa; (M.A.M.); (R.H.); (R.K.); (T.M.); (D.O.B.)
- Department of Medical Oncology, Faculty of Health Sciences, Steve Biko Academic Hospital, University of Pretoria, Pretoria 0028, South Africa
| | - Botle Precious Damane
- Department of Surgery, Steve Biko Academic Hospital, University of Pretoria, Pretoria 0028, South Africa;
| | - Nigel Patrick Mongan
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham NG7 2QL, UK;
| | - David Owen Bates
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria 0028, South Africa; (M.A.M.); (R.H.); (R.K.); (T.M.); (D.O.B.)
- Centre for Cancer Sciences, Division of Cancer and Stem Cells, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria 0028, South Africa; (M.A.M.); (R.H.); (R.K.); (T.M.); (D.O.B.)
| |
Collapse
|
20
|
Ding JT, Yang KP, Zhou HN, Huang YF, Li H, Zong Z. Landscapes and mechanisms of CD8 + T cell exhaustion in gastrointestinal cancer. Front Immunol 2023; 14:1149622. [PMID: 37180158 PMCID: PMC10166832 DOI: 10.3389/fimmu.2023.1149622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023] Open
Abstract
CD8+ T cells, a cytotoxic T lymphocyte, are a key component of the tumor immune system, but they enter a hyporeactive T cell state in long-term chronic inflammation, and how to rescue this depleted state is a key direction of research. Current studies on CD8+ T cell exhaustion have found that the mechanisms responsible for their heterogeneity and differential kinetics may be closely related to transcription factors and epigenetic regulation, which may serve as biomarkers and potential immunotherapeutic targets to guide treatment. Although the importance of T cell exhaustion in tumor immunotherapy cannot be overstated, studies have pointed out that gastric cancer tissues have a better anti-tumor T cell composition compared to other cancer tissues, which may indicate that gastrointestinal cancers have more promising prospects for the development of precision-targeted immunotherapy. Therefore, the present study will focus on the mechanisms involved in the development of CD8+ T cell exhaustion, and then review the landscapes and mechanisms of T cell exhaustion in gastrointestinal cancer as well as clinical applications, which will provide a clear vision for the development of future immunotherapies.
Collapse
Affiliation(s)
- Jia-Tong Ding
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- The Second Clinical Medicine School, Nanchang University, Nanchang, China
| | - Kang-Ping Yang
- The Second Clinical Medicine School, Nanchang University, Nanchang, China
| | - Hao-Nan Zhou
- Queen Mary School, Nanchang University, Nanchang, China
| | - Ying-Feng Huang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hui Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhen Zong
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
21
|
Al-Harbi N, Abdulla MH, Vaali-Mohammed MA, Bin Traiki T, Alswayyed M, Al-Obeed O, Abid I, Al-Omar S, Mansour L. Evidence of Association between CTLA-4 Gene Polymorphisms and Colorectal Cancers in Saudi Patients. Genes (Basel) 2023; 14:genes14040874. [PMID: 37107632 PMCID: PMC10138150 DOI: 10.3390/genes14040874] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/28/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Cytotoxic T lymphocyte antigen-4 (CTLA-4) has been identified as an immunosuppressive molecule involved in the negative regulation of T cells. It is highly expressed in several types of autoimmune diseases and cancers including colorectal cancer (CRC). (1) Objective: To explore the association between CTLA-4 single nucleotide polymorphisms (SNP) and risk to (CRC) in the Saudi population. (2) Methods: In this case-control study, 100 patients with CRC and 100 matched healthy controls were genotyped for three CTLA-4 SNPs: rs11571317 (-658C > T), rs231775 (+49A > G) and rs3087243 (CT60 G > A), using TaqMan assay method. Associations were evaluated using odds ratios (ORs) and 95% confidence intervals (95% CIs) for five inheritance models (co-dominant, dominant, recessive, over-dominant and log-additive). Furthermore, CTLA-4 expression levels were evaluated using quantitative real-time PCR (Q-RT-PCR) in colon cancer and adjacent colon tissues. (3) Results: Our result showed a significant association of the G allele (OR = 2.337, p < 0.0001) and GG genotype of the missense SNP +49A > G with increased risk of developing CRC in codominant (OR = 8.93, p < 0.0001) and recessive (OR = 16.32, p < 0.0001) models. Inversely, the AG genotype was significantly associated with decreased risk to CRC in the codominant model (OR = 0.23, p < 0.0001). In addition, the CT60 G > A polymorphism exhibited a strong association with a high risk of developing CRC for the AA genotype in codominant (OR = 3.323, p = 0.0053) and in allele models (OR = 1.816, p = 0.005). No significant association was found between -658C > T and CRC. The haplotype analysis showed that the G-A-G haplotype of the rs11571317, rs231775 and rs3087243 was associated with high risk for CRC (OR = 57.66; p < 0.001). The CTLA-4 mRNA gene expression was found significantly higher in tumors compared to normal adjacent colon samples (p < 0.001). (4) Conclusions: Our findings support an association between the CTLA-4 rs231775 (+49A > G) and rs3087243 (CT60 G > A) polymorphisms and CRC risk in the Saudi population. Further validation in a larger cohort size is needed prior to utilizing these SNPs as a potential screening marker in the Saudi population.
Collapse
Affiliation(s)
- Nouf Al-Harbi
- Department of Zoology, College of Science, King Saud University, Riyadh 11472, Saudi Arabia
| | - Maha-Hamadien Abdulla
- Department of Surgery, College of Medicine, King Saud University, Riyadh 11472, Saudi Arabia
| | | | - Thamer Bin Traiki
- Department of Surgery, College of Medicine, King Saud University, Riyadh 11472, Saudi Arabia
| | - Mohammed Alswayyed
- Department of Pathology and Laboratory Medicine, College of Medicine, King Saud University, Riyadh 11495, Saudi Arabia
| | - Omar Al-Obeed
- Department of Surgery, College of Medicine, King Saud University, Riyadh 11472, Saudi Arabia
| | - Islem Abid
- Department of Botany and Microbiology, Science College, King Saud University, Riyadh 11495, Saudi Arabia
| | - Suliman Al-Omar
- Department of Zoology, College of Science, King Saud University, Riyadh 11472, Saudi Arabia
| | - Lamjed Mansour
- Department of Zoology, College of Science, King Saud University, Riyadh 11472, Saudi Arabia
| |
Collapse
|
22
|
Dumolard L, Aspord C, Marche PN, Macek Jilkova Z. Immune checkpoints on T and NK cells in the context of HBV infection: Landscape, pathophysiology and therapeutic exploitation. Front Immunol 2023; 14:1148111. [PMID: 37056774 PMCID: PMC10086248 DOI: 10.3389/fimmu.2023.1148111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
In hepatitis B virus (HBV) infection, the interplay between the virus and the host immune system is crucial in determining the pathogenesis of the disease. Patients who fail to mount a sufficient and sustained anti-viral immune response develop chronic hepatitis B (CHB). T cells and natural killer (NK) cells play decisive role in viral clearance, but they are defective in chronic HBV infection. The activation of immune cells is tightly controlled by a combination of activating and inhibitory receptors, called immune checkpoints (ICs), allowing the maintenance of immune homeostasis. Chronic exposure to viral antigens and the subsequent dysregulation of ICs actively contribute to the exhaustion of effector cells and viral persistence. The present review aims to summarize the function of various ICs and their expression in T lymphocytes and NK cells in the course of HBV infection as well as the use of immunotherapeutic strategies targeting ICs in chronic HBV infection.
Collapse
Affiliation(s)
- Lucile Dumolard
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Institute for Advanced Biosciences, Grenoble, France
| | - Caroline Aspord
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Institute for Advanced Biosciences, Grenoble, France
- R&D Laboratory, Etablissement Français du Sang Auvergne-Rhone-Alpes, Grenoble, France
| | - Patrice N. Marche
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Institute for Advanced Biosciences, Grenoble, France
| | - Zuzana Macek Jilkova
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Institute for Advanced Biosciences, Grenoble, France
- Hepato-Gastroenterology and Digestive Oncology Department, CHU Grenoble Alpes, Grenoble, France
- *Correspondence: Zuzana Macek Jilkova,
| |
Collapse
|
23
|
Yu S, Ren X, Meng F, Guo X, Tao J, Zhang W, Liu Z, Fu R, Li L. TIM3/CEACAM1 pathway involves in myeloid-derived suppressor cells induced CD8 + T cells exhaustion and bone marrow inflammatory microenvironment in myelodysplastic syndrome. Immunology 2023; 168:273-289. [PMID: 35470423 DOI: 10.1111/imm.13488] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/24/2022] [Indexed: 01/21/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSC) induced cellular immune deficiency and bone marrow inflammatory microenvironment play an important role in the pathogenesis and progression of myelodysplastic syndrome (MDS), but the underlying mechanism remains unclear. Here, we revealed that immune checkpoint protein TIM3 and CEACAM1 were highly demonstrated on MDSC and CD8+ T cells in MDS patients. CD8+ T cells were reduced in number and function and presented a exhaustion state. The levels of pro-inflammatory cytokines (IL-1β, IL-18) and CEACAM1 were raised in bone marrow supernatants and MDSC culture supernatants. Blocking or neutralizing TIM3/CEACAM1 and IL-1β/IL-18 partially reversed exhaustion of CD8+ T cells. Moreover, TIM3 correlated with NF-κB /NLRP3 inflammatory pathway. The levels of NF-κB/NLRP3/Caspase-1/IL-1β and IL-18 were all increased in MDSC of MDS. Co-culturing MDSC from MDS patients with rhCEACAM1 enhanced NF-κB/NLRP3/Caspase-1/IL-1β and IL-18 levels, whereas blocking TIM3 could partially reverse the above manifestations. These results indicated that TIM3/CEACAM1 pathway involved in CD8+ T cells exhaustion and might activate the NF-κB/NLRP3/Caspase-1 pathway in MDSC, increasing pro-inflammatory cytokines secretion in MDS bone marrow microenvironment. This study provided a basis for applying immune checkpoint inhibitors that could simultaneously modulate pro-inflammatory cytokine secretion and enhance anti-tumour immune function in the treatment of MDS.
Collapse
Affiliation(s)
- Shunjie Yu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China. Address:Heping District 154 Anshan Road, Tianjin, China
| | - Xiaotong Ren
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China. Address:Heping District 154 Anshan Road, Tianjin, China
| | - Fanqiao Meng
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China. Address:Heping District 154 Anshan Road, Tianjin, China
| | - Xinyu Guo
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China. Address:Heping District 154 Anshan Road, Tianjin, China
| | - Jinglian Tao
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China. Address:Heping District 154 Anshan Road, Tianjin, China
| | - Wei Zhang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China. Address:Heping District 154 Anshan Road, Tianjin, China
| | - Zhaoyun Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China. Address:Heping District 154 Anshan Road, Tianjin, China
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China. Address:Heping District 154 Anshan Road, Tianjin, China
| | - Lijuan Li
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China. Address:Heping District 154 Anshan Road, Tianjin, China
| |
Collapse
|
24
|
CEACAM1 Is a Prognostic Biomarker and Correlated with Immune Cell Infiltration in Clear Cell Renal Cell Carcinoma. DISEASE MARKERS 2023; 2023:3606362. [PMID: 36712923 PMCID: PMC9876685 DOI: 10.1155/2023/3606362] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/24/2022] [Accepted: 01/05/2023] [Indexed: 01/19/2023]
Abstract
Background CEACAM1 has been shown to be aberrantly expressed in a variety of tumors, and modulation of CEACAM1-related signaling pathways has been suggested as a novel approach for cancer immunotherapy in recent years. However, its role in clear cell renal cell carcinoma (ccRCC) is unclear. Methods The relationship between CEACAM1 and ccRCC was demonstrated based on data from TCGA, GEO, and HPA databases. And the relationship between clinicopathological features and CEACAM1 expression was also assessed. Survival curve analysis was performed to analyze the prognostic relationship between CEACAM1 expression and ccRCC. Protein interaction network analysis was used to analyze the relationship between CEACAM1 and microenvironment-related proteins. In addition, the immunomodulatory role of CEACAM1 in ccRCC was assessed by analyzing CEACAM1 and immune cell infiltration. Results The expression of CEACAM1 was lower in ccRCC tissues than in adjacent normal tissues, and its expression level was negatively correlated with tumor size status (P < 0.001), metastasis status (P = 0.009), pathological stage (P = 0.002), gender (P < 0.001), histological grade (P < 0.001), and primary therapy outcome (P = 0.045) of ccRCC. Survival curve analysis showed that ccRCC patients with lower CEACAM1 expression exhibited shorter overall survival (P < 0.001), and CEACAM1 interacted with microenvironmental molecules such as fibronectin and integrins. Furthermore, immune infiltration analysis showed that CEACAM1 expression correlated with CD8+ and CD4+ T cells, macrophage, neutrophil, and dendritic cell infiltration in ccRCC. Conclusions CEACAM1 expression correlates with progression, prognosis, and immune cell infiltration in ccRCC patients, and it may be a promising prognostic biomarker and therapeutic target for ccRCC.
Collapse
|
25
|
Mishra AK, Ali A, Dutta S, Banday S, Malonia SK. Emerging Trends in Immunotherapy for Cancer. Diseases 2022; 10:60. [PMID: 36135216 PMCID: PMC9498256 DOI: 10.3390/diseases10030060] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Recent advances in cancer immunology have enabled the discovery of promising immunotherapies for various malignancies that have shifted the cancer treatment paradigm. The innovative research and clinical advancements of immunotherapy approaches have prolonged the survival of patients with relapsed or refractory metastatic cancers. Since the U.S. FDA approved the first immune checkpoint inhibitor in 2011, the field of cancer immunotherapy has grown exponentially. Multiple therapeutic approaches or agents to manipulate different aspects of the immune system are currently in development. These include cancer vaccines, adoptive cell therapies (such as CAR-T or NK cell therapy), monoclonal antibodies, cytokine therapies, oncolytic viruses, and inhibitors targeting immune checkpoints that have demonstrated promising clinical efficacy. Multiple immunotherapeutic approaches have been approved for specific cancer treatments, while others are currently in preclinical and clinical trial stages. Given the success of immunotherapy, there has been a tremendous thrust to improve the clinical efficacy of various agents and strategies implemented so far. Here, we present a comprehensive overview of the development and clinical implementation of various immunotherapy approaches currently being used to treat cancer. We also highlight the latest developments, emerging trends, limitations, and future promises of cancer immunotherapy.
Collapse
Affiliation(s)
- Alok K. Mishra
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Amjad Ali
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Shubham Dutta
- MassBiologics, UMass Chan Medical School, Boston, MA 02126, USA
| | - Shahid Banday
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Sunil K. Malonia
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
26
|
Defining the Immune Checkpoint Landscape in Human Colorectal Cancer Highlights the Relevance of the TIGIT/CD155 Axis for Optimizing Immunotherapy. Cancers (Basel) 2022; 14:cancers14174261. [PMID: 36077799 PMCID: PMC9454990 DOI: 10.3390/cancers14174261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
While immune checkpoint (IC) therapies, particularly those targeting the PD-1/PD-L1 axis, have revolutionized the treatment of melanoma and several other cancers, their effect remains very limited in colorectal cancer (CRC). To define a comprehensive landscape of ICs in the human CRC tumor microenvironment (TME), we evaluated, using multiparametric flow cytometry, their ex vivo expression via tumor-infiltrating lymphocytes (TILs) (n = 40 CRCs) as well as that of their respective ligands on tumor and myeloid cells (n = 29). Supervised flow cytometry analyses showed that (i) most CD3+ TILs expressed PD-1 and TIGIT and, to a lesser extent, Tim-3, Lag3 and NKG2A, and (ii) EpCAM+ tumor cells and CD11b+ myeloid cells differed in their IC ligand expression profile, with a strikingly high expression of CD155 by tumor cells. An in situ analysis of IC and their ligands using immunohistochemistry on paraffin sections of CRC confirmed the overexpression of TIGIT and its ligand, CD155, in the TME. Most interestingly, an unsupervised clustering analysis of IC co-expression on CD4+ and CD8+ TILs identified two tumor subgroups, named IChigh and IClow. Altogether, our findings highlight the TIGIT/CD155 axis as a potential target that could be used in combination IC therapy in CRC.
Collapse
|
27
|
Kuzevanova A, Apanovich N, Mansorunov D, Korotaeva A, Karpukhin A. The Features of Checkpoint Receptor—Ligand Interaction in Cancer and the Therapeutic Effectiveness of Their Inhibition. Biomedicines 2022; 10:biomedicines10092081. [PMID: 36140182 PMCID: PMC9495440 DOI: 10.3390/biomedicines10092081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/14/2022] [Accepted: 08/22/2022] [Indexed: 12/12/2022] Open
Abstract
To date, certain problems have been identified in cancer immunotherapy using the inhibition of immune checkpoints (ICs). Despite the excellent effect of cancer therapy in some cases when blocking the PD-L1 (programmed death-ligand 1) ligand and the immune cell receptors PD-1 (programmed cell death protein 1) and CTLA4 (cytotoxic T-lymphocyte-associated protein 4) with antibodies, the proportion of patients responding to such therapy is still far from desirable. This situation has stimulated the exploration of additional receptors and ligands as targets for immunotherapy. In our article, based on the analysis of the available data, the TIM-3 (T-cell immunoglobulin and mucin domain-3), LAG-3 (lymphocyte-activation gene 3), TIGIT (T-cell immunoreceptor with Ig and immunoreceptor tyrosine-based inhibitory motif (ITIM) domains), VISTA (V-domain Ig suppressor of T-cell activation), and BTLA (B- and T-lymphocyte attenuator) receptors and their ligands are comprehensively considered. Data on the relationship between receptor expression and the clinical characteristics of tumors are presented and are analyzed together with the results of preclinical and clinical studies on the therapeutic efficacy of their blocking. Such a comprehensive analysis makes it possible to assess the prospects of receptors of this series as targets for anticancer therapy. The expression of the LAG-3 receptor shows the most unambiguous relationship with the clinical characteristics of cancer. Its inhibition is the most effective of the analyzed series in terms of the antitumor response. The expression of TIGIT and BTLA correlates well with clinical characteristics and demonstrates antitumor efficacy in preclinical and clinical studies, which indicates their high promise as targets for anticancer therapy. At the same time, the relationship of VISTA and TIM-3 expression with the clinical characteristics of the tumor is contradictory, and the results on the antitumor effectiveness of their inhibition are inconsistent.
Collapse
|
28
|
Tsang KY, Fantini M, Mavroukakis SA, Zaki A, Annunziata CM, Arlen PM. Development and Characterization of an Anti-Cancer Monoclonal Antibody for Treatment of Human Carcinomas. Cancers (Basel) 2022; 14:cancers14133037. [PMID: 35804808 PMCID: PMC9264992 DOI: 10.3390/cancers14133037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022] Open
Abstract
NEO-201 is an IgG1 humanized monoclonal antibody (mAb) that binds to tumor-associated variants of carcinoembryonic antigen-related cell adhesion molecule (CEACAM)-5 and CEACAM-6. NEO-201 reacts to colon, ovarian, pancreatic, non-small cell lung, head and neck, cervical, uterine and breast cancers, but is not reactive against most normal tissues. NEO-201 can kill tumor cells via antibody-dependent cell-mediated cytotoxicity (ADCC) and complement dependent cytotoxicity (CDC) to directly kill tumor cells expressing its target. We explored indirect mechanisms of its action that may enhance immune tumor killing. NEO-201 can block the interaction between CEACAM-5 expressed on tumor cells and CEACAM-1 expressed on natural killer (NK) cells to reverse CEACAM-1-dependent inhibition of NK cytotoxicity. Previous studies have demonstrated safety/tolerability in non-human primates, and in a first in human phase 1 clinical trial at the National Cancer Institute (NCI). In addition, preclinical studies have demonstrated that NEO-201 can bind to human regulatory T (Treg) cells. The specificity of NEO-201 in recognizing suppressive Treg cells provides the basis for combination cancer immunotherapy with checkpoint inhibitors targeting the PD-1/PD-L1 pathway.
Collapse
Affiliation(s)
- Kwong yok Tsang
- Precision Biologics, Inc., Bethesda, MD 20814, USA; (M.F.); (S.A.M.); (A.Z.); (P.M.A.)
- Correspondence: ; Tel.: +1-301-500-8646
| | - Massimo Fantini
- Precision Biologics, Inc., Bethesda, MD 20814, USA; (M.F.); (S.A.M.); (A.Z.); (P.M.A.)
| | - Sharon A. Mavroukakis
- Precision Biologics, Inc., Bethesda, MD 20814, USA; (M.F.); (S.A.M.); (A.Z.); (P.M.A.)
| | - Anjum Zaki
- Precision Biologics, Inc., Bethesda, MD 20814, USA; (M.F.); (S.A.M.); (A.Z.); (P.M.A.)
| | - Christina M. Annunziata
- Women’s Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Philip M. Arlen
- Precision Biologics, Inc., Bethesda, MD 20814, USA; (M.F.); (S.A.M.); (A.Z.); (P.M.A.)
| |
Collapse
|
29
|
Xia M, Hu X, Zhao Q, Ru Y, Wang H, Zheng F. Development and Characterization of a Nanobody against Human T-Cell Immunoglobulin and Mucin-3. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:2929605. [PMID: 35726228 PMCID: PMC9206550 DOI: 10.1155/2022/2929605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/07/2022] [Accepted: 04/19/2022] [Indexed: 11/17/2022]
Abstract
Monoclonal antibodies and antibody-derived biologics are essential tools for cancer research and therapy. The development of monoclonal antibody treatments for successful tumor-targeted therapies took several decades. A nanobody constructed by molecular engineering of heavy-chain-only antibody, which is unique in camel or alpaca, is a burgeoning tools of diagnostic and therapeutic in clinic. In this study, we immunized a 4-year-old female alpaca with TIM-3 antigen. Then, a VHH phage was synthesized from the transcriptome of its B cells by nested PCR as an intermediate library; the library selection for Tim-3 antigen is carried out in three rounds of translation. The most reactive colonies were selected by periplasmic extract monoclonal ELISA. The nanobody was immobilized by metal affinity chromatography (IMAC) purification with the use of a Ni-NTA column, SDS-PAGE, and Western blotting. Finally, the affinity of TIM3-specific nanobody was determined by ELISA. As results, specific 15 kD bands representing nanomaterials were observed on the gel and confirmed by Western blotting. The nanobody showed obvious specific immune response to Tim-3 and had high binding affinity. We have successfully prepared a functional anti-human Tim-3 nanobody with high affinity in vitro.
Collapse
Affiliation(s)
- Mingyuan Xia
- Department of Urology, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an City, 710032 Shaanxi Province, China
| | - Xiangnan Hu
- No. 986 Hospital, Air Force Military Medical University, Xi'an City, 710054 Shaanxi Province, China
| | - Qiuxiang Zhao
- Department of Urology, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an City, 710032 Shaanxi Province, China
| | - Yi Ru
- Department of Biochemistry and Molecular Biology, Basic Medical College, Air Force Military Medical University, Xi'an City, 710032 Shaanxi Province, China
| | - He Wang
- Department of Urology, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an City, 710032 Shaanxi Province, China
| | - Fang Zheng
- The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
30
|
Blaeschke F, Ortner E, Stenger D, Mahdawi J, Apfelbeck A, Habjan N, Weißer T, Kaeuferle T, Willier S, Kobold S, Feuchtinger T. Design and Evaluation of TIM-3-CD28 Checkpoint Fusion Proteins to Improve Anti-CD19 CAR T-Cell Function. Front Immunol 2022; 13:845499. [PMID: 35464394 PMCID: PMC9018974 DOI: 10.3389/fimmu.2022.845499] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
Therapeutic targeting of inhibitory checkpoint molecules in combination with chimeric antigen receptor (CAR) T cells is currently investigated in a variety of clinical studies for treatment of hematologic and solid malignancies. However, the impact of co-inhibitory axes and their therapeutic implication remains understudied for the majority of acute leukemias due to their low immunogenicity/mutational load. The inhibitory exhaustion molecule TIM-3 is an important marker for the interaction of T cells with leukemic cells. Moreover, inhibitory signals from malignant cells could be transformed into stimulatory signals by synthetic fusion molecules with extracellular inhibitory receptors fused to an intracellular stimulatory domain. Here, we designed a variety of different TIM-3-CD28 fusion proteins to turn inhibitory signals derived by TIM-3 engagement into T-cell activation through CD28. In the absence of anti-CD19 CAR, two TIM-3-CD28 fusion receptors with large parts of CD28 showed strongest responses in terms of cytokine secretion and proliferation upon stimulation with anti-CD3 antibodies compared to controls. We then combined these two novel TIM-3-CD28 fusion proteins with first- and second-generation anti-CD19 CAR T cells and found that the fusion receptor can increase proliferation, activation, and cytotoxic capacity of conventional anti-CD19 CAR T cells. These additionally armed CAR T cells showed excellent effector function. In terms of safety considerations, the fusion receptors showed exclusively increased cytokine release, when the CAR target CD19 was present. We conclude that combining checkpoint fusion proteins with anti-CD19 CARs has the potential to increase T-cell proliferation capacity with the intention to overcome inhibitory signals during the response against malignant cells.
Collapse
Affiliation(s)
- Franziska Blaeschke
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, Dr. von Hauner Children's Hospital, University Hospital, Ludwig Maximilian University of Munich (LMU), Munich, Germany
| | - Eva Ortner
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, Dr. von Hauner Children's Hospital, University Hospital, Ludwig Maximilian University of Munich (LMU), Munich, Germany
| | - Dana Stenger
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, Dr. von Hauner Children's Hospital, University Hospital, Ludwig Maximilian University of Munich (LMU), Munich, Germany.,German Cancer Consortium (DKTK), Munich, Germany
| | - Jasmin Mahdawi
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, Dr. von Hauner Children's Hospital, University Hospital, Ludwig Maximilian University of Munich (LMU), Munich, Germany
| | - Antonia Apfelbeck
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, Dr. von Hauner Children's Hospital, University Hospital, Ludwig Maximilian University of Munich (LMU), Munich, Germany
| | - Nicola Habjan
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, Dr. von Hauner Children's Hospital, University Hospital, Ludwig Maximilian University of Munich (LMU), Munich, Germany
| | - Tanja Weißer
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, Dr. von Hauner Children's Hospital, University Hospital, Ludwig Maximilian University of Munich (LMU), Munich, Germany
| | - Theresa Kaeuferle
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, Dr. von Hauner Children's Hospital, University Hospital, Ludwig Maximilian University of Munich (LMU), Munich, Germany.,National Center for Infection Research (DZIF), Munich, Germany
| | - Semjon Willier
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, Dr. von Hauner Children's Hospital, University Hospital, Ludwig Maximilian University of Munich (LMU), Munich, Germany
| | - Sebastian Kobold
- German Cancer Consortium (DKTK), Munich, Germany.,Center for Integrated Protein Science Munich (CIPSM) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der LMU München, Munich, Germany
| | - Tobias Feuchtinger
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, Dr. von Hauner Children's Hospital, University Hospital, Ludwig Maximilian University of Munich (LMU), Munich, Germany.,German Cancer Consortium (DKTK), Munich, Germany.,National Center for Infection Research (DZIF), Munich, Germany
| |
Collapse
|
31
|
Shahzad MH, Feng L, Su X, Brassard A, Dhoparee-Doomah I, Ferri LE, Spicer JD, Cools-Lartigue JJ. Neutrophil Extracellular Traps in Cancer Therapy Resistance. Cancers (Basel) 2022; 14:1359. [PMID: 35267667 PMCID: PMC8909607 DOI: 10.3390/cancers14051359] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/01/2022] [Accepted: 03/05/2022] [Indexed: 02/04/2023] Open
Abstract
Neutrophils and their products are increasingly recognized to have a key influence on cancer progression and response to therapy. Their involvement has been shown in nearly every aspect of cancer pathophysiology with growing evidence now supporting their role in resistance to a variety of cancer therapies. Recently, the role of neutrophils in cancer progression and therapy resistance has been further complicated with the discovery of neutrophil extracellular traps (NETs). NETs are web-like structures of chromatin decorated with a variety of microbicidal proteins. They are released by neutrophils in a process called NETosis. NET-dependent mechanisms of cancer pathology are beginning to be appreciated, particularly with respect to tumor response to chemo-, immuno-, and radiation therapy. Several studies support the functional role of NETs in cancer therapy resistance, involving T-cell exhaustion, drug detoxification, angiogenesis, the epithelial-to-mesenchymal transition, and extracellular matrix remodeling mechanisms, among others. Given this, new and promising data suggests NETs provide a microenvironment conducive to limited therapeutic response across a variety of neoplasms. As such, this paper aims to give a comprehensive overview of evidence on NETs in cancer therapy resistance with a focus on clinical applicability.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jonathan J. Cools-Lartigue
- Department of Surgery, Division of Thoracic and Upper Gastrointestinal Surgery, Montreal General Hospital, Montreal, QC H3G 1A4, Canada; (M.H.S.); (L.F.); (X.S.); (A.B.); (I.D.-D.); (L.E.F.); (J.D.S.)
| |
Collapse
|
32
|
Wang T, Zhang J, Li N, Li M, Ma S, Tan S, Guo X, Wang Z, Wu Z, Gao L, Ma C, Liang X. Spatial distribution and functional analysis define the action pathway of Tim-3/Tim-3 ligands in tumor development. Mol Ther 2022; 30:1135-1148. [PMID: 34808386 PMCID: PMC8899527 DOI: 10.1016/j.ymthe.2021.11.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/20/2021] [Accepted: 11/16/2021] [Indexed: 12/28/2022] Open
Abstract
The spatial organization of immune cells within the tumor microenvironment (TME) largely determines the anti-tumor immunity and also highly predicts tumor progression and therapeutic response. Tim-3 is a well-accepted immune checkpoint and plays multifaceted immunoregulatory roles via interaction with distinct Tim-3 ligands (Tim-3L), showing great potential as an immunotherapy target. However, the cell sociology mediated by Tim-3/Tim-3L and their contribution to tumor development remains elusive. Here, we analyzed the spatial distribution of Tim-3/Tim-3L in TME using multiplex fluorescence staining and revealed that despite the increased Tim-3 expression in various tumor-infiltrated lymphocytes, Tim-3+CD4+ cells were more accumulated in parenchymal/tumor region compared with stromal region and exhibited more close association with patient survival. Strikingly, CD4 T cells surrounding Tim-3L+ cells expressed higher Tim-3 than other cells in cancerous tissues. In vivo studies confirmed that depletion of CD4 T cells completely abrogated the inhibition of tumor growth and metastasis, as well as the functional improvement of CD8 T and NK, mediated by Tim-3 blockade, which was further validated in peripheral lymphocytes from patients with hepatocellular carcinoma. In conclusion, our findings unravel the importance of CD4 T cells in Tim-3/Tim-3L-mediated immunosuppression and provide new thoughts for Tim-3 targeted cancer immunotherapy.
Collapse
Affiliation(s)
- Tixiao Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province, and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan 250012, Shandong, China
| | - Jie Zhang
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province, and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan 250012, Shandong, China
| | - Na Li
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province, and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan 250012, Shandong, China
| | - Mengzhen Li
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province, and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan 250012, Shandong, China
| | - Shuaiya Ma
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province, and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan 250012, Shandong, China
| | - Siyu Tan
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province, and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan 250012, Shandong, China
| | - Xiaowei Guo
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province, and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan 250012, Shandong, China
| | - Zehua Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province, and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan 250012, Shandong, China
| | - Zhuanchang Wu
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province, and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan 250012, Shandong, China
| | - Lifen Gao
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province, and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan 250012, Shandong, China
| | - Chunhong Ma
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province, and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan 250012, Shandong, China; Shandong Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy, Jinan 250012, Shandong, China.
| | - Xiaohong Liang
- Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province, and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Jinan 250012, Shandong, China; Shandong Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy, Jinan 250012, Shandong, China.
| |
Collapse
|
33
|
Tian T, Li Z. Targeting Tim-3 in Cancer With Resistance to PD-1/PD-L1 Blockade. Front Oncol 2021; 11:731175. [PMID: 34631560 PMCID: PMC8492972 DOI: 10.3389/fonc.2021.731175] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022] Open
Abstract
Programmed death receptor 1 (PD-1) or programmed death ligand 1 (PD-L1) blocking therapy has completely changed the treatment pattern of malignant tumors. It has been tested in a wide range of malignant tumors and achieved clinical success. It might be a promising cancer treatment strategy. However, one of the important disadvantages of PD-1/PD-L1 blocking therapy is that only a few patients have a positive response to it. In addition, primary or acquired drug resistance can also lead to cancer recurrence in patients with clinical response. Therefore, it is very important to overcome the resistance of PD-1/PD-L1 blocking therapy and improve the overall response rate of patients to the immunotherapy. T cell immunoglobulin and mucin domain molecule 3 (Tim-3) belongs to the co-inhibitory receptor family involved in immune checkpoint function. Due to adaptive resistance, the expression of Tim-3 is up-regulated in PD-1/PD-L1 blocking therapy resistant tumors. Therefore, blocking the immune checkpoint Tim-3 might antagonize the resistance of PD-1/PD-L1 blocking therapy. This review systematically introduces the preclinical and clinical data of combined blockade of Tim-3 and PD-1/PD-L1 in cancer immunotherapy, and discusses the prospect of overcoming the drug resistance of PD-1/PD-L1 blockade therapy through blockade of Tim-3.
Collapse
Affiliation(s)
- Tian Tian
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhaoming Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
34
|
Makaremi S, Asadzadeh Z, Hemmat N, Baghbanzadeh A, Sgambato A, Ghorbaninezhad F, Safarpour H, Argentiero A, Brunetti O, Bernardini R, Silvestris N, Baradaran B. Immune Checkpoint Inhibitors in Colorectal Cancer: Challenges and Future Prospects. Biomedicines 2021; 9:1075. [PMID: 34572263 PMCID: PMC8467932 DOI: 10.3390/biomedicines9091075] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy is a new pillar of cancer therapy that provides novel opportunities to treat solid tumors. In this context, the development of new drugs targeting immune checkpoints is considered a promising approach in colorectal cancer (CRC) treatment because it can be induce specific and durable anti-cancer effects. Despite many advances in the immunotherapy of CRC, there are still limitations and obstacles to successful treatment. The immunosuppressive function of the tumor microenvironment (TME) is one of the causes of poor response to treatment in CRC patients. For this reason, checkpoint-blocking antibodies have shown promising outcomes in CRC patients by blocking inhibitory immune checkpoints and enhancing immune responses against tumors. This review summarizes recent advances in immune checkpoint inhibitors (ICIs), such as CTLA-4, PD-1, PD-L1, LAG-3, and TIM-3 in CRC, and it discusses various therapeutic strategies with ICIs, including the double blockade of ICIs, combination therapy of ICIs with other immunotherapies, and conventional treatments. This review also delineates a new hopeful path in the combination of anti-PD-1/anti-PD-L1 with other ICIs such as anti-CTLA-4, anti-LAG-3, and anti-TIM-3 for CRC treatment.
Collapse
Affiliation(s)
- Shima Makaremi
- Department of Immunology & Microbiology, School of Medicine, Arak University of Medical Sciences, Arak 3848176941, Iran;
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran; (Z.A.); (N.H.); (A.B.); (F.G.)
| | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran; (Z.A.); (N.H.); (A.B.); (F.G.)
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran; (Z.A.); (N.H.); (A.B.); (F.G.)
| | - Alessandro Sgambato
- Istituto di Ricovero e Cura a Carattere Scientifico Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 5972362 Rome, Italy;
- Area of Pathology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli-IRCCS, 5972362 Rome, Italy
| | - Farid Ghorbaninezhad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran; (Z.A.); (N.H.); (A.B.); (F.G.)
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
| | - Hossein Safarpour
- Cellular & Molecular Research Center, Birjand University of Medical Sciences, Birjand 9717853577, Iran;
| | - Antonella Argentiero
- IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy; (A.A.); (O.B.)
| | - Oronzo Brunetti
- IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy; (A.A.); (O.B.)
| | - Renato Bernardini
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, 95121 Catania, Italy;
| | - Nicola Silvestris
- IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy; (A.A.); (O.B.)
- Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari, 70124 Bari, Italy
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran; (Z.A.); (N.H.); (A.B.); (F.G.)
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran
| |
Collapse
|
35
|
Shhadeh A, Galaski J, Alon-Maimon T, Fahoum J, Wiener R, Slade DJ, Mandelboim O, Bachrach G. CEACAM1 Activation by CbpF-Expressing E. coli. Front Cell Infect Microbiol 2021; 11:699015. [PMID: 34395310 PMCID: PMC8358318 DOI: 10.3389/fcimb.2021.699015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/13/2021] [Indexed: 01/04/2023] Open
Abstract
Recent studies on the oral, anaerobic, gram-negative bacterium Fusobacterium nucleatum revealed its presence and involvement in colorectal, esophageal and breast cancer. We previously demonstrated that F. nucleatum binds and activates the human inhibitory receptors TIGIT and CEACAM1 leading to inhibition of T and NK cell anti-tumor immunity. CEACAM1 was found to be bound and activated by the fusobacterial trimeric autotransporter adhesin CbpF. Here we report the generation of a recombinant E. coli expressing full-length CbpF that efficiently binds and activates CEACAM1.
Collapse
Affiliation(s)
- Amjad Shhadeh
- The Institute of Dental Sciences, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| | - Johanna Galaski
- The Concern Foundation Laboratories at the Lautenberg Center for General and Tumor Immunology, Department of Immunology and Cancer Research, Institute for Medical Research Israel Canada (IMRIC), Faculty of Medicine, The Hebrew University Medical School, Jerusalem, Israel.,I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tamar Alon-Maimon
- The Institute of Dental Sciences, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| | - Jamal Fahoum
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel Canada (IMRIC), Faculty of Medicine, The Hebrew University Medical School, Jerusalem, Israel
| | - Reuven Wiener
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel Canada (IMRIC), Faculty of Medicine, The Hebrew University Medical School, Jerusalem, Israel
| | - Daniel J Slade
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Ofer Mandelboim
- The Concern Foundation Laboratories at the Lautenberg Center for General and Tumor Immunology, Department of Immunology and Cancer Research, Institute for Medical Research Israel Canada (IMRIC), Faculty of Medicine, The Hebrew University Medical School, Jerusalem, Israel
| | - Gilad Bachrach
- The Institute of Dental Sciences, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| |
Collapse
|
36
|
Yang F, Zeng Z, Li J, Ren X, Wei F. TIM-3 and CEACAM1 are Prognostic Factors in Head and Neck Squamous Cell Carcinoma. Front Mol Biosci 2021; 8:619765. [PMID: 34368221 PMCID: PMC8343070 DOI: 10.3389/fmolb.2021.619765] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 07/12/2021] [Indexed: 12/14/2022] Open
Abstract
Background: T-cell Immunoglobulin and Mucin domain-containing molecule-3 (TIM-3) is a new immune checkpoint molecule which plays important and complex roles in regulating immune responses and in inducing immune tolerance. TIM-3 is expressed on activated T cells and its signaling on cytotoxic T cells leads to T cell exhaustion which is mediated by carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), another well-known molecule expressed on tumor tissues and/or tumor infiltrating lymphocytes (TILs). Methods: In the present study, we investigated TIM-3 and CEACAM1 immunohistochemical expression in 80 head and neck squamous cell carcinoma (HNSCC) specimens, linked to detailed outcome, clinic-pathological parameters. Here we reported scores and absolute counts of TIM-3+/CEACAM1+ TILs, and evaluated the expression of CEACAM1 on tumor tissues. Results: The results showed that more TIM-3+ TILs infiltration correlated with poorer overall survival (p < 0.001), as did the presence of CEACAM1 on cancer cells (p < 0.001) and CEACAM1+ TILs in tumor microenvironment (p = 0.015). Multivariate Cox regression analysis revealed that high TIM-3+ TILs may be considered as an independent prognostic factor of poor disease outcome (hazard ratio, 2.066; 95% confidence interval, 1.027-4.159; p = 0.042), as well as cancer cells expressed CEACAM1 level (hazard ratio, 5.885; 95% confidence interval, 2.832-12.230; p < 0.001). Conclusion: Our results indicate that expression of TIM-3 and CEACAM1 may represent a highly dysfunctional population of T cells. Our current findings suggest both of them were valuable predicting markers that might provide help for clinicians to design effective immunotherapeutic regimen against head and neck carcinoma.
Collapse
Affiliation(s)
- Fan Yang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Tianjin Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Ziqing Zeng
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Tianjin Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Jing Li
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Tianjin Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Xiubao Ren
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Tianjin Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Feng Wei
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Tianjin Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| |
Collapse
|
37
|
Zhao L, Cheng S, Fan L, Zhang B, Xu S. TIM-3: An update on immunotherapy. Int Immunopharmacol 2021; 99:107933. [PMID: 34224993 DOI: 10.1016/j.intimp.2021.107933] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/12/2021] [Accepted: 06/27/2021] [Indexed: 12/12/2022]
Abstract
T cell immunoglobulin and mucin domain 3 (TIM-3) was originally found to be expressed on the surface of Th1 cells, acting as a negative regulator and binding to the ligand galectin-9 to mediate Th1 cell the apoptosis. Recent studies have shown that TIM-3 is also expressed on other immune cells, such as macrophages, dendritic cells, and monocytes. In addition, TIM-3 ligands also include Psdter, High Mobility Group Box 1 (HMGB1) and Carcinoembryonic antigen associated cell adhesion molecules (Ceacam-1), which have different effects upon biding to different ligands on immune cells. Studies have shown that TIM-3 plays an important role in autoimmune diseases, chronic viral infections and tumors. A large amount of experimental data supports TIM-3 as an immune checkpoint, and targeting TIM-3 is a promising treatment method in current immunotherapy, especially the new combination of other immune checkpoint blockers. In this review, we summarize the role of TIM-3 in different diseases and its possible signaling pathway mechanisms, providing new insights for better breakthrough immunotherapy.
Collapse
Affiliation(s)
- Lizhen Zhao
- Department of Laboratory Medicine, The Third People's Hospital of Qingdao, Qingdao, Shandong 266071, China
| | - Shaoyun Cheng
- Department of Laboratory Medicine, The Third People's Hospital of Qingdao, Qingdao, Shandong 266071, China
| | - Lin Fan
- Department of Laboratory Medicine, The Third People's Hospital of Qingdao, Qingdao, Shandong 266071, China
| | - Bei Zhang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, China.
| | - Shengwei Xu
- Department of Laboratory Medicine, The Third People's Hospital of Qingdao, Qingdao, Shandong 266071, China.
| |
Collapse
|
38
|
Yu L, Liu X, Wang X, Yan F, Wang P, Jiang Y, Du J, Yang Z. TIGIT + TIM-3 + NK cells are correlated with NK cell exhaustion and disease progression in patients with hepatitis B virus‑related hepatocellular carcinoma. Oncoimmunology 2021; 10:1942673. [PMID: 34249476 PMCID: PMC8244763 DOI: 10.1080/2162402x.2021.1942673] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The prognosis of hepatocellular carcinoma (HCC) is extremely poor, of which hepatitis B virus-related hepatocellular carcinoma (HBV-HCC) accounts for the majority in China. Immune checkpoint inhibitors have become an effective immunotherapy method for the treatment of HCC, but they are mainly used for T cells. NK cells play a vital role as the first line of defense against tumors. Therefore, we explored the characteristic expression pattern of immune checkpoints on NK cells of HBV-HCC patients. We analyzed the correlation between the co-expression of TIGIT and TIM-3 and the clinical progress of patients with HBV-HCC. The co-expression of TIGIT and TIM-3 on NK cells is elevated in patients with HBV-HCC. TIGIT+TIM-3+NK cells showed exhausted phenotypic characteristics and displayed dysfunction manifested as weakened killing function, reduced cytokine production, and proliferation function. TIGIT+TIM-3+NK cells participate in NK cells function exhaustion and are closely related to the disease progression of patients with HBV-HCC, suggesting a new target for future immunotherapy.
Collapse
Affiliation(s)
- Lihua Yu
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xiaoli Liu
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xinhui Wang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Fengna Yan
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Peng Wang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yuyong Jiang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Juan Du
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Zhiyun Yang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
39
|
Zeidan AM, Komrokji RS, Brunner AM. TIM-3 pathway dysregulation and targeting in cancer. Expert Rev Anticancer Ther 2021; 21:523-534. [PMID: 33334180 DOI: 10.1080/14737140.2021.1865814] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Dysfunction of the immune system is a hallmark of cancer. Through increased understanding of the complex interactions between immunity and cancer, immunotherapy has emerged as a treatment modality for different types of cancer. Promising activity with immunotherapy has been reported in numerous malignancies, but challenges such as limited response rates and treatment resistance remain. Furthermore, outcomes with this therapeutic approach in hematologic malignancies are even more limited than in solid tumors. T-cell immunoglobulin domain and mucin domain 3 (TIM-3) has emerged as a potential immune checkpoint target in both solid tumors and hematologic malignancies. TIM-3 has been shown to promote immune tolerance, and overexpression of TIM-3 is associated with more aggressive or advanced disease and poor prognosis. AREAS COVERED This review examines what is currently known regarding the biology of TIM-3 and clinical implications of targeting TIM-3 in cancer. Particular focus is given to myeloid malignancies. EXPERT OPINION The targeting of TIM-3 is a promising therapeutic approach in cancers, including hematologic cancers such as myeloid malignancies which have not benefited much from current immunotherapeutic treatment approaches. We anticipate that with further clinical evaluation, TIM-3 blockade will emerge as an important treatment strategy in myeloid malignancies.
Collapse
Affiliation(s)
- Amer M Zeidan
- Department of Internal Medicine, Section of Hematology, Yale University School of Medicine, New Haven, CT, USA
| | - Rami S Komrokji
- Malignant Hematology Department, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Andrew M Brunner
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
40
|
Saleh R, Toor SM, Elkord E. Targeting TIM-3 in solid tumors: innovations in the preclinical and translational realm and therapeutic potential. Expert Opin Ther Targets 2020; 24:1251-1262. [PMID: 33103506 DOI: 10.1080/14728222.2020.1841750] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Immune checkpoint inhibitors (ICIs) have shown a great therapeutic efficacy in cancer patients. However, a significant proportion of cancer patients remain unresponsive or show limited response. T cell immunoglobulin and mucin-domain containing protein-3 (TIM-3) is a co-inhibitory receptor expressed on various cell types and is involved in the attenuation of immune responses. TIM-3 and its ligands are highly expressed in various solid malignancies and some studies have reported its association with worse disease outcomes. Thus, targeting TIM-3 could be a promising therapeutic approach to treat cancer patients. AREAS COVERED This review describes the role of TIM-3 and its ligands in regulating anti-tumor immunity and their contribution to cancer progression. Moreover, this review focuses on the preclinical models and translational data from important studies published in PubMed till October 2020, which demonstrate the therapeutic benefits of targeting TIM-3 signaling. EXPERT OPINION Despite the promising data obtained from targeting TIM-3 in preclinical models, precise mechanisms underlying the anti-tumor effects of TIM-3 inhibition are not fully elucidated. Therefore, mechanistic studies are required to provide better insights into the anti-tumor effects of targeting TIM-3, and clinical data are necessary to determine the safety profiles and therapeutic efficacy of TIM-3 inhibition in cancer patients.
Collapse
Affiliation(s)
- Reem Saleh
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF) , Doha, Qatar
| | - Salman M Toor
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF) , Doha, Qatar
| | - Eyad Elkord
- Biomedical Research Center, School of Science, Engineering and Environment, University of Salford , Manchester, United Kingdom
| |
Collapse
|
41
|
Zöller J, Ebel JF, Khairnar V, Schmitt V, Klopfleisch R, Meiners J, Seiffart V, Hansen W, Buer J, Singer BB, Lang KS, Westendorf AM. CEACAM1 regulates CD8 + T cell immunity and protects from severe pathology during Citrobacter rodentium induced colitis. Gut Microbes 2020; 11:1790-1805. [PMID: 32521208 PMCID: PMC7524155 DOI: 10.1080/19490976.2020.1775464] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023] Open
Abstract
The incidence of gastrointestinal infections continues to increase, and infectious colitis contributes significantly to morbidity and mortality worldwide. Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) has been discovered to be strongly involved in the intestinal homeostasis. However, whether intestinal CEACAM1 expression has an impact on the control of infectious colitis remains elusive. Citrobacter rodentium (C. rodentium) is a gram-negative enteric pathogen that induces colonic inflammation in mice, with a critical role for CD4+ T cell but not CD8+ T cell immunity to primary infection. Here, we show that Ceacam1-/- mice are much more susceptible to C. rodentium infection than wildtype mice, which is mediated by a defect in the intestinal barrier and, surprisingly, by a dysregulated CD8+ T cell but not CD4+ T cell response in the colon. CEACAM1 expression is essential for the control of CD8+ T cell immunity, as CEACAM1 deficiency during C. rodentium infection inhibits CD8+ T cell exhaustion. We conclude that CEACAM1 is an important regulator of CD8+ T cell function in the colon, and blocking CEACAM1 signaling to activate CD8+ T cells may have unforeseen side effects.
Collapse
Affiliation(s)
- Julia Zöller
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jana-Fabienne Ebel
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Vishal Khairnar
- Institute for Immunology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Department of Systems Biology, City of Hope Comprehensive Cancer Center, Monrovia, CA, USA
| | - Verena Schmitt
- Institute of Anatomy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Robert Klopfleisch
- Institute of Veterinary Pathology, Free University of Berlin, Berlin, Germany
| | - Jana Meiners
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Virginia Seiffart
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Wiebke Hansen
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jan Buer
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Bernhard B. Singer
- Institute of Anatomy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Karl S. Lang
- Institute for Immunology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Astrid M. Westendorf
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
42
|
Prognostic Impact of PD-1 and Tim-3 Expression in Tumor Tissue in Stage I-III Colorectal Cancer. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5294043. [PMID: 32509862 PMCID: PMC7244975 DOI: 10.1155/2020/5294043] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 03/26/2020] [Accepted: 04/15/2020] [Indexed: 02/07/2023]
Abstract
Background Programmed cell death receptor 1 (PD-1) and T cell immunoglobulin mucin-3 (Tim-3) are considered as important immunosuppressive molecules and play an important role in tumor immune escape and cancer progression. However, it remains unclear whether PD-1 and Tim-3 are coexpressed in stage I-III colorectal cancer (CRC) and how they impact on the prognosis of the disease. Materials and Methods A total of two cohorts with 451 patients who underwent surgery for stage I-III CRC treatment were enrolled in the study. Among which, 378 cases were from The Cancer Genome Atlas (TCGA) database and 73 cases were from the Fourth Hospital of Hebei Medical University (FHHMU) cohort. The mRNA expressions of PD-1 and Tim-3 in tumor tissue in stage I-III CRC were obtained from TCGA database. Immunohistochemistry was used to assess the expressions of PD-1 and Tim-3 in tumor tissue in stage I-III CRC in the FHHMU cohort. Interactive relationships between PD-1 and Tim-3 were retrieved through the online STRING database, which was used to study the interactions between proteins. DAVID, consisting of comprehensive biological function annotation information, was applied for the GO and KEGG pathway enrichment analysis of the interactive genes. Results In the FHHMU cohort, the high expressions of PD-1 and Tim-3 were, respectively, found in 42.47% and 84.93% of stage I-III CRC tissue. PD-1 was significantly associated with age, primary site, and lymphatic metastasis. Tim-3 was closely related to the primary site. Correlation analysis showed that PD-1 and Tim-3 were positively correlated (r = 0.5682, P < 0.001). In TCGA cohort, PD-1 and Tim-3 were associated with the prognosis of CRC patients in terms of 5-year survival (P < 0.05). In the FHHMU cohort, the 5-year survival of patients with high levels of PD-1 and Tim-3 was 54.84% and 65.85%, respectively. Among which, the high expression of PD-1 was associated with poor prognosis (5-year OS: 54.84% vs. 88.10%, P = 0.003). The 5-year survival rate of CRC patients with coexpression of PD-1 and Tim-3 was 45.00%, which was significantly worse than non-coexpression (72.73%, 85.71%, and 90.48% separately). The functional network of PD-1 and Tim-3 primarily participates in the regulation of immune cell activation and proliferation, immune cell receptor complex, cell adhesion molecules, and T cell receptor signaling pathway. Conclusion In summary, upregulation of PD-1 and Tim-3 in stage I-III CRC tumor tissue could be associated with the poor prognosis of patients. Those patients with coexpression of PD-1 and Tim-3 may have a significantly worse prognosis.
Collapse
|
43
|
Zhang M, Shi Y, Zhang Y, Wang Y, Alotaibi F, Qiu L, Wang H, Peng S, Liu Y, Li Q, Gao D, Wang Z, Yuan K, Dou FF, Koropatnick J, Xiong J, Min W. miRNA-5119 regulates immune checkpoints in dendritic cells to enhance breast cancer immunotherapy. Cancer Immunol Immunother 2020; 69:951-967. [PMID: 32076794 DOI: 10.1007/s00262-020-02507-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/28/2020] [Indexed: 12/13/2022]
Abstract
Dendritic cell (DC) based immunotherapy is a promising approach to clinical cancer treatment. miRNAs are a class of small non-coding RNA molecules that bind to RNAs to mediate multiple events which are important in diverse biological processes. miRNA mimics and antagomirs may be potent agents to enhance DC-based immunotherapy against cancers. miRNA array analysis was used to identify a representative miR-5119 potentially regulating PD-L1 in DCs. We evaluated levels of ligands of immune cell inhibitory receptors (IRs) and miR-5119 in DCs from immunocompetent mouse breast tumor-bearing mice, and examined the molecular targets of miR-5119. We report that miRNA-5119 was downregulated in spleen DCs from mouse breast cancer-bearing mice. In silico analysis and qPCR data showed that miRNA-5119 targeted mRNAs encoding multiple negative immune regulatory molecules, including ligands of IRs such as PD-L1 and IDO2. DCs engineered to express a miR-5119 mimic downregulated PD-L1 and prevented T cell exhaustion in mice with breast cancer homografts. Moreover, miR-5119 mimic-engineered DCs effectively restored function to exhausted CD8+ T cells in vitro and in vivo, resulting in robust anti-tumor cell immune response, upregulated cytokine production, reduced T cell apoptosis, and exhaustion. Treatment of 4T1 breast tumor-bearing mice with miR-5119 mimic-engineered DC vaccine reduced T cell exhaustion and suppressed mouse breast tumor homograft growth. This study provides evidence supporting a novel therapeutic approach using miRNA-5119 mimic-engineered DC vaccines to regulate inhibitory receptors and enhance anti-tumor immune response in a mouse model of breast cancer. miRNA/DC-based immunotherapy has potential for advancement to the clinic as a new strategy for DC-based anti-breast cancer immunotherapy.
Collapse
Affiliation(s)
- Meng Zhang
- Medical Laboratory Education Center, Colleges of Basic Medicine and Pharmacology, Jiangxi Academy of Medical Sciences, Nanchang University, Nanchang, China
| | - Yanmei Shi
- Medical Laboratory Education Center, Colleges of Basic Medicine and Pharmacology, Jiangxi Academy of Medical Sciences, Nanchang University, Nanchang, China.,Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yujuan Zhang
- Medical Laboratory Education Center, Colleges of Basic Medicine and Pharmacology, Jiangxi Academy of Medical Sciences, Nanchang University, Nanchang, China.
| | - Yifan Wang
- Medical Laboratory Education Center, Colleges of Basic Medicine and Pharmacology, Jiangxi Academy of Medical Sciences, Nanchang University, Nanchang, China.,Jiangxi Cancer Hospital, Nanchang, China
| | - Faizah Alotaibi
- Departments of Surgery, Pathology, Oncology, Microbiology and Immunology, University of Western Ontario, London, Canada.,The Lawson Health Research Institute, London, ON, Canada
| | - Li Qiu
- Department of Endocrinology of Metabolism, Peking University People's Hospital, Beijing, China
| | - Hongmei Wang
- Medical Laboratory Education Center, Colleges of Basic Medicine and Pharmacology, Jiangxi Academy of Medical Sciences, Nanchang University, Nanchang, China
| | - Shanshan Peng
- Medical Laboratory Education Center, Colleges of Basic Medicine and Pharmacology, Jiangxi Academy of Medical Sciences, Nanchang University, Nanchang, China
| | - Yanling Liu
- Jiangxi University of Technology, Nanchang, China
| | - Qing Li
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Dian Gao
- Medical Laboratory Education Center, Colleges of Basic Medicine and Pharmacology, Jiangxi Academy of Medical Sciences, Nanchang University, Nanchang, China
| | - Zhigang Wang
- Medical Laboratory Education Center, Colleges of Basic Medicine and Pharmacology, Jiangxi Academy of Medical Sciences, Nanchang University, Nanchang, China
| | - Keng Yuan
- Medical Laboratory Education Center, Colleges of Basic Medicine and Pharmacology, Jiangxi Academy of Medical Sciences, Nanchang University, Nanchang, China
| | | | - James Koropatnick
- Departments of Surgery, Pathology, Oncology, Microbiology and Immunology, University of Western Ontario, London, Canada.,The Lawson Health Research Institute, London, ON, Canada
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Weiping Min
- Medical Laboratory Education Center, Colleges of Basic Medicine and Pharmacology, Jiangxi Academy of Medical Sciences, Nanchang University, Nanchang, China. .,Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China. .,Departments of Surgery, Pathology, Oncology, Microbiology and Immunology, University of Western Ontario, London, Canada. .,The Lawson Health Research Institute, London, ON, Canada.
| |
Collapse
|
44
|
Fantini M, David JM, Annunziata CM, Morelli MP, Arlen PM, Tsang KY. The Monoclonal Antibody NEO-201 Enhances Natural Killer Cell Cytotoxicity Against Tumor Cells Through Blockade of the Inhibitory CEACAM5/CEACAM1 Immune Checkpoint Pathway. Cancer Biother Radiopharm 2020; 35:190-198. [PMID: 31928422 DOI: 10.1089/cbr.2019.3141] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background: Natural killer (NK) cells are essential to innate immunity and participate in cancer immune surveillance. Heterophilic interactions between carcinoembryonic antigen (CEA) on tumor cells and carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) on NK cells inhibit NK cell cytotoxicity against tumor cells. NEO-201 is a humanized IgG1 monoclonal antibody that recognizes members of CEACAM family, expressed specifically on a variety of human carcinoma cell lines and tumor tissues. This investigation was designed to determine whether the binding of NEO-201 with CEACAM5 on tumor cells can block the CEACAM5/CEACAM1 interaction to restore antitumor cytotoxicity of NK cells. Materials and Methods: In vitro functional assays, using various human tumor cell lines as target cells and NK-92 cells as effectors, were conducted to assess the ability of NEO-201 to block the interaction between CEACAM5 on tumor cells and CEACAM1 on NK cells to enhance the in vitro killing of tumor cells by NK-92. NK-92 cells were used as a model of direct NK killing of tumor cells because they lack antibody-dependent cellular cytotoxicity activity. Results: Expression profiling revealed that various human carcinoma cell lines expressed different levels of CEACAM5+ and NEO-201+ cells. Addition of NEO-201 significantly enhanced NK-92 cell cytotoxicity against highly CEACAM5+/NEO-201+ expressing tumor cells, suggesting that its activity is correlated with the level of CEACAM5+/NEO-201+ expression. Conclusions: These findings demonstrate that NEO-201 can block the interaction between CEACAM5 on tumor cells and CEACAM1 on NK cells to reverse CEACAM1-dependent inhibition of NK cytotoxicity.
Collapse
Affiliation(s)
| | | | - Christina M Annunziata
- Women's Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Maria Pia Morelli
- Women's Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | | | | |
Collapse
|
45
|
Li X, Lu H, Gu Y, Zhang X, Zhang G, Shi T, Chen W. Tim-3 suppresses the killing effect of Vγ9Vδ2 T cells on colon cancer cells by reducing perforin and granzyme B expression. Exp Cell Res 2019; 386:111719. [PMID: 31726050 DOI: 10.1016/j.yexcr.2019.111719] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/24/2019] [Accepted: 11/09/2019] [Indexed: 02/06/2023]
Abstract
Gamma delta (γδ) T cell-based tumor immunotherapy has been one of the most promising cancer immunotherapeutic strategies. However, the key regulators of the Vγ9Vδ2 T cell-mediated antitumor response remain unclear. Recently, mounting reports have indicated that Tim-3 performs critical roles in the regulation of the activities of immune cells, including Vγ9Vδ2 T cells. However, the roles of Tim-3 in Vγ9Vδ2 T cell-mediated killing of colon cancer cells and the underlying mechanism remain largely unknown. Here, the proportion of Tim-3+ γδ T cells was significantly increased in both the peripheral blood and colon cancer tissue of patients and was significantly associated with TNM staging and tumor volume. Additionally, the activation of Tim-3 signaling significantly inhibited the killing efficiency of Vγ9Vδ2 T cells against colon cancer cells. In addition, Tim-3 signaling reduced the expression of perforin and granzyme B in Vγ9Vδ2 T cells. Blocking the perforin/granzyme B pathway also decreased the cytotoxicity of Vγ9Vδ2 T cells to colon cancer cells. Moreover, Tim-3 signaling reduced the perforin and granzyme B expression of Vγ9Vδ2 T cells in an ERK1/2 signaling pathway-dependent manner. This knowledge reveals that Tim-3 may be a promising therapeutic target to improve Vγ9Vδ2 T cell-based adoptive immunotherapy for colon cancer.
Collapse
Affiliation(s)
- Xiaomi Li
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, China
| | - Huimin Lu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, China; Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, 708 Renmin Road, Suzhou, China
| | - Yanzheng Gu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, China
| | - Xueguang Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, 708 Renmin Road, Suzhou, China
| | - Guangbo Zhang
- Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, China
| | - Tongguo Shi
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 708 Renmin Road, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, 708 Renmin Road, Suzhou, China.
| | - Weichang Chen
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, China.
| |
Collapse
|
46
|
Andrews LP, Yano H, Vignali DAA. Inhibitory receptors and ligands beyond PD-1, PD-L1 and CTLA-4: breakthroughs or backups. Nat Immunol 2019; 20:1425-1434. [PMID: 31611702 DOI: 10.1038/s41590-019-0512-0] [Citation(s) in RCA: 349] [Impact Index Per Article: 58.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 09/04/2019] [Indexed: 12/14/2022]
Abstract
Although immunotherapeutics targeting the inhibitory receptors (IRs) CTLA-4, PD-1 or PD-L1 have made substantial clinical progress in cancer, a considerable proportion of patients remain unresponsive to treatment. Targeting novel IR-ligand pathways in combination with current immunotherapies may improve clinical outcomes. New clinical immunotherapeutics target T cell-expressed IRs (LAG-3, TIM-3 and TIGIT) as well as inhibitory ligands in the B7 family (B7-H3, B7-H4 and B7-H5), although many of these targets have complex biologies and unclear mechanisms of action. With only modest clinical success in targeting these IRs, current immunotherapeutic design may not be optimal. This Review covers the biology of targeting novel IR-ligand pathways and the current clinical status of their immunotherapeutics, either as monotherapy or in combination with antibody to PD-1 or to its ligand PD-L1. Further understanding of the basic biology of these targets is imperative to the development of effective cancer immunotherapies.
Collapse
Affiliation(s)
- Lawrence P Andrews
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Hiroshi Yano
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Graduate Program of Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. .,Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
47
|
Immune checkpoint molecules. Possible future therapeutic implications in autoimmune diseases. J Autoimmun 2019; 104:102333. [DOI: 10.1016/j.jaut.2019.102333] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023]
|
48
|
Zhang M, Gao D, Shi Y, Wang Y, Joshi R, Yu Q, Liu D, Alotaibi F, Zhang Y, Wang H, Li Q, Zhang ZX, Koropatnick J, Min W. miR-149-3p reverses CD8 + T-cell exhaustion by reducing inhibitory receptors and promoting cytokine secretion in breast cancer cells. Open Biol 2019; 9:190061. [PMID: 31594465 PMCID: PMC6833224 DOI: 10.1098/rsob.190061] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 09/15/2019] [Indexed: 12/14/2022] Open
Abstract
Blockade of inhibitory receptors (IRs) is one of the most effective immunotherapeutic approaches to treat cancer. Dysfunction of miRNAs is a major cause of aberrant expression of IRs and contributes to the immune escape of cancer cells. How miRNAs regulate immune checkpoint proteins in breast cancer remains largely unknown. In this study, downregulation of miRNAs was observed in PD-1-overexpressing CD8+ T cells using miRNA array analysis of mouse breast cancer homografts. The data reveal that miR-149-3p was predicted to bind the 3'UTRs of mRNAs encoding T-cell inhibitor receptors PD-1, TIM-3, BTLA and Foxp1. Treatment of CD8+ T cells with an miR-149-3p mimic reduced apoptosis, attenuated changes in mRNA markers of T-cell exhaustion and downregulated mRNAs encoding PD-1, TIM-3, BTLA and Foxp1. On the other hand, T-cell proliferation and secretion of effector cytokines indicative of increased T-cell activation (IL-2, TNF-α, IFN-γ) were upregulated after miR-149-3p mimic treatment. Moreover, the treatment with a miR-149-3p mimic promoted the capacity of CD8+ T cells to kill targeted 4T1 mouse breast tumour cells. Collectively, these data show that miR-149-3p can reverse CD8+ T-cell exhaustion and reveal it to be a potential antitumour immunotherapeutic agent in breast cancer.
Collapse
Affiliation(s)
- Meng Zhang
- Institute of Immunotherapy of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang 330006, People's Republic of China
- Department of Surgery, Western University, London, CanadaN6A 5A5
- Department of Pathology and Laboratory Medicine, Western University, London, CanadaN6A 5A5
- Department of Oncology, Western University, London, CanadaN6A 5A5
- Department of Microbiology and Immunology, Western University, London, CanadaN6A 5A5
| | - Dian Gao
- Department of Pathogen Biology and Immunology, Medical College of Nanchang University, Nanchang 330006, People's Republic of China
| | - Yanmei Shi
- Institute of Immunotherapy of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang 330006, People's Republic of China
- Department of Surgery, Western University, London, CanadaN6A 5A5
- Department of Pathology and Laboratory Medicine, Western University, London, CanadaN6A 5A5
- Department of Oncology, Western University, London, CanadaN6A 5A5
- Department of Microbiology and Immunology, Western University, London, CanadaN6A 5A5
- Department of Oncology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Yifan Wang
- Institute of Immunotherapy of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang 330006, People's Republic of China
- Department of Surgery, Western University, London, CanadaN6A 5A5
- Department of Pathology and Laboratory Medicine, Western University, London, CanadaN6A 5A5
- Department of Oncology, Western University, London, CanadaN6A 5A5
- Department of Microbiology and Immunology, Western University, London, CanadaN6A 5A5
| | - Rakesh Joshi
- Department of Surgery, Western University, London, CanadaN6A 5A5
- Department of Pathology and Laboratory Medicine, Western University, London, CanadaN6A 5A5
- Department of Oncology, Western University, London, CanadaN6A 5A5
- Department of Microbiology and Immunology, Western University, London, CanadaN6A 5A5
| | - Qiongfang Yu
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
- Department of Oncology, Second Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Daheng Liu
- Department of Surgery, Western University, London, CanadaN6A 5A5
- Department of Pathology and Laboratory Medicine, Western University, London, CanadaN6A 5A5
- Department of Oncology, Western University, London, CanadaN6A 5A5
- Department of Microbiology and Immunology, Western University, London, CanadaN6A 5A5
| | - Faizah Alotaibi
- Department of Surgery, Western University, London, CanadaN6A 5A5
- Department of Pathology and Laboratory Medicine, Western University, London, CanadaN6A 5A5
- Department of Oncology, Western University, London, CanadaN6A 5A5
- Department of Microbiology and Immunology, Western University, London, CanadaN6A 5A5
| | - Yujuan Zhang
- Institute of Immunotherapy of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang 330006, People's Republic of China
- Department of Pathogen Biology and Immunology, Medical College of Nanchang University, Nanchang 330006, People's Republic of China
| | - Hongmei Wang
- Institute of Immunotherapy of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang 330006, People's Republic of China
| | - Qing Li
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
- Department of Oncology, Second Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Zhu-Xu Zhang
- Institute of Immunotherapy of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang 330006, People's Republic of China
- Department of Surgery, Western University, London, CanadaN6A 5A5
- Department of Pathology and Laboratory Medicine, Western University, London, CanadaN6A 5A5
- Department of Oncology, Western University, London, CanadaN6A 5A5
- Department of Microbiology and Immunology, Western University, London, CanadaN6A 5A5
| | - James Koropatnick
- Department of Surgery, Western University, London, CanadaN6A 5A5
- Department of Pathology and Laboratory Medicine, Western University, London, CanadaN6A 5A5
- Department of Oncology, Western University, London, CanadaN6A 5A5
- Department of Microbiology and Immunology, Western University, London, CanadaN6A 5A5
| | - Weiping Min
- Institute of Immunotherapy of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang 330006, People's Republic of China
- Department of Surgery, Western University, London, CanadaN6A 5A5
- Department of Pathology and Laboratory Medicine, Western University, London, CanadaN6A 5A5
- Department of Oncology, Western University, London, CanadaN6A 5A5
- Department of Microbiology and Immunology, Western University, London, CanadaN6A 5A5
- Department of Oncology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| |
Collapse
|
49
|
Wen L, Lu H, Li Q, Li Q, Wen S, Wang D, Wang X, Fang J, Cui J, Cheng B, Wang Z. Contributions of T cell dysfunction to the resistance against anti-PD-1 therapy in oral carcinogenesis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:299. [PMID: 31291983 PMCID: PMC6617956 DOI: 10.1186/s13046-019-1185-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/22/2019] [Indexed: 12/13/2022]
Abstract
Background Programmed death 1 (PD-1) blockade has great effect in the prevention of oral precancerous lesions, but the drug resistance has also been observed. The determinants of immune resistance during the malignant transformation are poorly understood. Methods Anti-PD-1 antibody was administered in the 4NQO-induced carcinogenesis mouse models. The mice were then subdivided into PD-1 resistance(PD-1R) group and PD-1 sensitive(PD-1S) group according to the efficacy. The expression of PD-1 and PD-L1, and the abundance of CD3+ T cells in tumor microenvironment between the two groups was tested by immunohistochemistry. In addition, the activation and effector functions, as well as the accumulation of immunosuppressive cells and expression of immune checkpoints of T cells in the draining lymph nodes and spleen between PD-1R and PD-1S group were analyzed by flow cytometry. Results Our results showed that T cell infiltration in tumor microenvironment, effector T cell cytokine secretion and central memory T cell accumulation in peripheral lymphoid organs were all inhibited in the anti-PD-1 resistance group. Furthermore, we found that an increase of regulatory T cell (Treg) population contributed to the resistance of the anti-PD-1 therapy. Notably, TIM-3 was found to be the only immunosuppressive molecule that mediated the resistance to anti-PD-1 therapy in the oral malignant transformation model. Conclusions Our findings identified a novel mechanism that T cell dysfunction contributes to the immune resistance during the malignant transformation of the oral mucosa. This study provides new targets for improving the efficacy of immunotherapy for early stage of tumorigenesis. Electronic supplementary material The online version of this article (10.1186/s13046-019-1185-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Liling Wen
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Stomatological Hospital, Sun Yat-Sen University, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055, Guangdong, People's Republic of China
| | - Huanzi Lu
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Stomatological Hospital, Sun Yat-Sen University, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055, Guangdong, People's Republic of China
| | - Qiusheng Li
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Stomatological Hospital, Sun Yat-Sen University, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055, Guangdong, People's Republic of China
| | - Qunxing Li
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Stomatological Hospital, Sun Yat-Sen University, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055, Guangdong, People's Republic of China
| | - Shuqiong Wen
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Stomatological Hospital, Sun Yat-Sen University, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055, Guangdong, People's Republic of China
| | - Dikan Wang
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Stomatological Hospital, Sun Yat-Sen University, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055, Guangdong, People's Republic of China
| | - Xi Wang
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Stomatological Hospital, Sun Yat-Sen University, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055, Guangdong, People's Republic of China
| | - Juan Fang
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Stomatological Hospital, Sun Yat-Sen University, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055, Guangdong, People's Republic of China
| | - Jun Cui
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, No. 135, Xingang West Road, Haizhu District, Guangzhou, 510275, Guangdong, People's Republic of China
| | - Bin Cheng
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Stomatological Hospital, Sun Yat-Sen University, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055, Guangdong, People's Republic of China
| | - Zhi Wang
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Stomatological Hospital, Sun Yat-Sen University, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055, Guangdong, People's Republic of China.
| |
Collapse
|
50
|
Piancone F, Saresella M, Marventano I, La Rosa F, Caputo D, Mendozzi L, Rovaris M, Clerici M. A Deficit of CEACAM-1–Expressing T Lymphocytes Supports Inflammation in Primary Progressive Multiple Sclerosis. THE JOURNAL OF IMMUNOLOGY 2019; 203:76-83. [DOI: 10.4049/jimmunol.1801625] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/30/2019] [Indexed: 11/19/2022]
|