1
|
Zheng Q, Wang D, Lin R, Xu W. Pyroptosis, ferroptosis, and autophagy in spinal cord injury: regulatory mechanisms and therapeutic targets. Neural Regen Res 2025; 20:2787-2806. [PMID: 39101602 PMCID: PMC11826477 DOI: 10.4103/nrr.nrr-d-24-00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/24/2024] [Accepted: 06/07/2024] [Indexed: 08/06/2024] Open
Abstract
Regulated cell death is a form of cell death that is actively controlled by biomolecules. Several studies have shown that regulated cell death plays a key role after spinal cord injury. Pyroptosis and ferroptosis are newly discovered types of regulated cell deaths that have been shown to exacerbate inflammation and lead to cell death in damaged spinal cords. Autophagy, a complex form of cell death that is interconnected with various regulated cell death mechanisms, has garnered significant attention in the study of spinal cord injury. This injury triggers not only cell death but also cellular survival responses. Multiple signaling pathways play pivotal roles in influencing the processes of both deterioration and repair in spinal cord injury by regulating pyroptosis, ferroptosis, and autophagy. Therefore, this review aims to comprehensively examine the mechanisms underlying regulated cell deaths, the signaling pathways that modulate these mechanisms, and the potential therapeutic targets for spinal cord injury. Our analysis suggests that targeting the common regulatory signaling pathways of different regulated cell deaths could be a promising strategy to promote cell survival and enhance the repair of spinal cord injury. Moreover, a holistic approach that incorporates multiple regulated cell deaths and their regulatory pathways presents a promising multi-target therapeutic strategy for the management of spinal cord injury.
Collapse
Affiliation(s)
- Qingcong Zheng
- Department of Spinal Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Du Wang
- Arthritis Clinical and Research Center, Peking University People’s Hospital, Beijing, China
| | - Rongjie Lin
- Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Weihong Xu
- Department of Spinal Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| |
Collapse
|
2
|
She W, Su J, Ma W, Ma G, Li J, Zhang H, Qiu C, Li X. Natural products protect against spinal cord injury by inhibiting ferroptosis: a literature review. Front Pharmacol 2025; 16:1557133. [PMID: 40248093 PMCID: PMC12003294 DOI: 10.3389/fphar.2025.1557133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/10/2025] [Indexed: 04/19/2025] Open
Abstract
Spinal cord injury (SCI) is a severe traumatic condition that frequently results in various neurological disabilities, including significant sensory, motor, and autonomic dysfunctions. Ferroptosis, a recently identified non-apoptotic form of cell death, is characterized by the accumulation of reactive oxygen species (ROS), intracellular iron overload, and lipid peroxidation, ultimately culminating in cell death. Recent studies have demonstrated that ferroptosis plays a critical role in the pathophysiology of SCI, contributing significantly to neural cell demise. Three key cellular enzymatic antioxidants such as glutathione peroxidase 4 (GPX4), ferroptosis suppressor protein 1 (FSP1), and dihydroorotate dehydrogenase (DHODH), have been elucidated as crucial components in the defense against ferroptosis. Natural products, which are bioactive compounds mostly derived from plants, have garnered considerable attention for their potential therapeutic effects. Numerous studies have reported that several natural products can effectively mitigate neural cell death and alleviate SCI symptoms. This review summarizes fifteen natural products containing (-)-Epigallocatechin-3-gallate (EGCG), Proanthocyanidin, Carnosic acid, Astragaloside IV, Trehalose, 8-gingerol, Quercetin, Resveratrol, Albiflorin, Alpha-tocopherol, Celastrol, Hispolon, Dendrobium Nobile Polysaccharide, Silibinin, and Tetramethylpyrazine that have shown promise in treating SCI by inhibiting ferroptosis. Additionally, this review provides an overview of the mechanisms involved in these studies and proposes several perspectives to guide future research directions.
Collapse
Affiliation(s)
- Wei She
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Department of Orthopaedic Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Junxiao Su
- Department of Orthopaedic Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Wenji Ma
- Department of Orthopaedic Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Guohai Ma
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Jianfu Li
- Department of Orthopaedic Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Hui Zhang
- Department of Orthopaedic Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Cheng Qiu
- Department of Orthopaedic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xingyong Li
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Department of Orthopaedic Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, China
| |
Collapse
|
3
|
Wang F, Lou J, Lou X, Wu F, Gao X, Yao X, Wan J, Duan X, Deng W, Ma L, Zhang L, He G, Wang M, Ni C, Lei N, Qin Z. A Spleen-Targeted Tolerogenic mRNA-LNPs Vaccine for the Treatment of Experimental Asthma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412543. [PMID: 39921498 PMCID: PMC11967843 DOI: 10.1002/advs.202412543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/27/2024] [Indexed: 02/10/2025]
Abstract
Lipid nanoparticles (LNPs)-based mRNA vaccines have witnessed their great advantages in the fight against infectious diseases. However, the pro-inflammatory properties of mRNA-LNPs vaccines may hinder the induction of antigen-specific tolerogenic immune responses. Here, it is demonstrated that stearic acid-doped LNPs co-loaded with nucleoside-modified mRNA and celastrol selectively target spleen, convert their adjuvanticity and promote a tolerogenic rather than immunogenic DCs phenotype. Furthermore, the tolerogenic mRNA vaccine also invokes the generation of antigen-specific regulatory T cells (Tregs) in the spleen and migration of the induced Tregs to the lung. In a mouse model of allergic asthma, immunization with the tolerogenic mRNA vaccine significantly alleviated symptom induction, reducing eosinophilic granulocyte accumulation and mucus secretion. In conclusion, this spleen-targeted mRNA-LNPs vaccine platform induces tolerogenic immune responses, offering promise for the development of therapeutics against allergic asthma and other conditions requiring immune tolerance modulation.
Collapse
Affiliation(s)
- Fazhan Wang
- Medical Research CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouHenan450052China
| | - Jia Lou
- Medical Research CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouHenan450052China
- Department of Pain and RehabilitationSecond Affiliated HospitalArmy Medical UniversityChongqing400038China
| | - Xiaohan Lou
- Medical Research CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouHenan450052China
| | - Fang Wu
- Department of Microbiology and ImmunologySchool of Basic Medical SciencesZhengzhou UniversityZhengzhouHenan450001China
| | - Xiaoke Gao
- Medical Research CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouHenan450052China
| | - Xiaohan Yao
- Medical Research CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouHenan450052China
| | - Jiajia Wan
- Medical Research CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouHenan450052China
| | - Xixi Duan
- Medical Research CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouHenan450052China
| | - Wenjing Deng
- Department of Neuro‐Intensive Care UnitThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450052China
| | - Lixia Ma
- Department of Neuro‐Intensive Care UnitThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450052China
| | - Lijing Zhang
- Medical Research CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouHenan450052China
| | - Guangjie He
- Xinxiang Key Laboratory of Forensic Science EvidenceSchool of Forensic MedicineXinxiang Medical UniversityXinxiangHenan453003China
| | - Ming Wang
- Medical Research CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouHenan450052China
| | - Chen Ni
- Medical Research CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouHenan450052China
| | - Ningjing Lei
- Department of Microbiology and ImmunologySchool of Basic Medical SciencesZhengzhou UniversityZhengzhouHenan450001China
| | - Zhihai Qin
- Medical Research CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhouHenan450052China
| |
Collapse
|
4
|
Tang W, Wang A, Liu S, Wen G, Qi H, Gu Y, Xu C, Ren S, Zhang S, He Y. Calycosin regulates astrocyte reactivity and astrogliosis after spinal cord injury by targeting STAT3 phosphorylation. J Neuroimmunol 2025; 400:578535. [PMID: 39954615 DOI: 10.1016/j.jneuroim.2025.578535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND Astrocytes are the most populous glial cells in the central nervous system (CNS), which can exert detrimental effects through a process of reactive astrogliosis. Our previous study has indicated the potential effect of Calycosin in preventing spinal cord injury (SCI). This study aims to investigate the mechanism by which calycosin regulates the polarization of A1 astrocytes, a neurotoxic subtype of reactive astrocytes, in SCI models. MATERIALS AND METHODS The SCI model was induced by applying mechanical compression to the spinal cord using vascular clamps. A1 astrocyte differentiation was induced by treating astrocytes with microglia supernatant obtained after Lipopolysaccharide (LPS) stimulation. Key protein expression levels were analyzed by Western blotting, and astrocyte markers such as CS56, GFAP, C3, S100A10 were assessed through immunofluorescence staining. RESULTS Calycosin treatment significantly reduced glial scar formation and C3 expression in SCI rats. However, S100A10 expression remained unchanged. Further analysis showed that Calycosin inhibited A1 astrocyte activation, migration, and invasion, which was associated with STAT3 phosphorylation. Calycosin downregulated p-STAT3 levels in both A1 astrocytes and SCI rats. These effects were reversed by Colivelin (a STAT3 activator) in A1 astrocytes. CONCLUSION Calycosin treatment can modulate p-STAT3 expression, thereby altering the functionality of astrocytes during the recovery phase and positively impacting the treatment and rehabilitation of SCI.
Collapse
Affiliation(s)
- Wenhai Tang
- Department of Spine Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou 570216, China
| | - Aitao Wang
- Department of Anesthesiology, Hohhot First Hospital, Hohhot 010030, China
| | - Shengxing Liu
- Department of Spine Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou 570216, China
| | - Guangyu Wen
- Department of Spine Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou 570216, China
| | - Hao Qi
- Department of Spine Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou 570216, China
| | - Yuntao Gu
- Department of Spine Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou 570216, China
| | - Chunzhao Xu
- Department of Spine Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou 570216, China
| | - Shanwu Ren
- Department of Spine Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou 570216, China
| | - Shunli Zhang
- Department of Spine Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou 570216, China.
| | - Yongxiong He
- Department of Orthopedics, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China.
| |
Collapse
|
5
|
Hushmandi K, Reiter RJ, Farahani N, Cho WC, Alimohammadi M, Khoshnazar SM. Pyroptosis; igniting neuropsychiatric disorders from mild depression to aging-related neurodegeneration. Prog Neuropsychopharmacol Biol Psychiatry 2025; 138:111325. [PMID: 40081561 DOI: 10.1016/j.pnpbp.2025.111325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 03/16/2025]
Abstract
Neuropsychiatric disorders significantly impact global health and socioeconomic well-being, highlighting the urgent need for effective treatments. Chronic inflammation, often driven by the innate immune system, is a key feature of many neuropsychiatric conditions. NOD-like receptors (NLRs), which are intracellular sensors, detect danger signals and trigger inflammation. Among these, NLR protein (NLRP) inflammasomes play a crucial role by releasing pro-inflammatory cytokines and inducing a particular cell death process known as pyroptosis. Pyroptosis is defined as a proinflammatory form of programmed cell death executed by cysteine-aspartic proteases, also known as caspases. Currently, the role of pyroptotic flux has emerged as a critical factor in innate immunity and the pathogenesis of multiple diseases. Emerging evidence suggests that the induction of pyroptosis, primarily due to NLRP inflammasome activation, is involved in the pathophysiology of various neuropsychiatric disorders, including depression, stress-related issues, schizophrenia, autism spectrum disorders, and neurodegenerative diseases. Within this framework, the current review explores the complex relationship between pyroptosis and neuropsychiatric diseases, aiming to identify potential therapeutic targets for these challenging conditions.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, TX, USA
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyedeh Mahdieh Khoshnazar
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
6
|
Zeng Z, Liao X, Zhao X. O-GlcNAc transferase mediates O-GlcNAcylation of NLRP3 regulates pyroptosis in spinal cord injury. Brain Res Bull 2025; 222:111233. [PMID: 39892583 DOI: 10.1016/j.brainresbull.2025.111233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/19/2025] [Accepted: 01/27/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND Spinal cord injury (SCI) represents a severe disorder of the nervous system, imposing significant physical, psychological, and socioeconomic burdens on affected individuals and society. OBJECTIVE We investigated the implication of O-linked β-N-acetylglucosamine (O-GlcNAcylation) in regulating pyroptosis related proteins at the posttranslational level. MATERIALS AND METHODS PC12 cells were stimulated with lipopolysaccharide (LPS). The O-GlcNAcylation pathway was modified by manipulating the expression of O-GlcNAc transferase (OGT) or O-GlcNAcase (OGA). Pro-inflammatory cytokine levels and cell pyroptosis were assessed. Co-immunoprecipitation (Co-IP) assays were employed to investigate the interaction between NLRP3 and OGT. For in vivo studies, an established SCI rat model was utilized. Levels of pro-inflammatory factors, NLRP3 inflammasome components, and proteins associated with pyroptosis were measured. RESULTS Both O-GlcNAc levels and OGT expression were significantly elevated in the SCI model cells. Inhibition of OGT led to a marked reduction in the levels of pro-inflammatory cytokines and a suppression of pyroptosis. Furthermore, inhibition of OGT resulted in downregulation of NLRP3 and its O-GlcNAcylation, while overexpression of OGT produced the opposite effect. We verified the endogenous and exogenous interactions between NLRP3 and OGT. Importantly, knockout of OGT mitigated the progression of SCI in an animal model, suggesting a protective role of OGT inhibition in SCI. DISCUSSION AND CONCLUSION This study preliminarily proved that the mechanism of OGT mediated O-GlcNAcylation of NLRP3 participates in the action of pyroptosis in SCI. Targeting OGT and NLRP3 may be novel therapy method in SCI.
Collapse
Affiliation(s)
- Zhichao Zeng
- Department of Orthopedics, First People's Hospital of Foshan, No.81 Lingnan Avenue North, Foshan City 528000, China
| | - Xuqiang Liao
- Department of Orthopedics, First People's Hospital of Foshan, No.81 Lingnan Avenue North, Foshan City 528000, China
| | - Xinjian Zhao
- Department of Orthopedics, First People's Hospital of Foshan, No.81 Lingnan Avenue North, Foshan City 528000, China.
| |
Collapse
|
7
|
Gong J, Sun H, Wang K, Zhao Y, Huang Y, Chen Q, Qiao H, Gao Y, Zhao J, Ling Y, Cao R, Tan J, Wang Q, Ma Y, Li J, Luo J, Wang S, Wang J, Zhang G, Xu S, Qian F, Zhou F, Tang H, Li D, Sedlazeck FJ, Jin L, Guan Y, Fan S. Long-read sequencing of 945 Han individuals identifies structural variants associated with phenotypic diversity and disease susceptibility. Nat Commun 2025; 16:1494. [PMID: 39929826 PMCID: PMC11811171 DOI: 10.1038/s41467-025-56661-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 01/22/2025] [Indexed: 02/13/2025] Open
Abstract
Genomic structural variants (SVs) are a major source of genetic diversity in humans. Here, through long-read sequencing of 945 Han Chinese genomes, we identify 111,288 SVs, including 24.56% unreported variants, many with predicted functional importance. By integrating human population-level phenotypic and multi-omics data as well as two humanized mouse models, we demonstrate the causal roles of two SVs: one SV that emerges at the common ancestor of modern humans, Neanderthals, and Denisovans in GSDMD for bone mineral density and one modern-human-specific SV in WWP2 impacting height, weight, fat, craniofacial phenotypes and immunity. Our results suggest that the GSDMD SV could serve as a rapid and cost-effective biomarker for assessing the risk of cisplatin-induced acute kidney injury. The functional conservation from human to mouse and widespread signals of positive natural selection suggest that both SVs likely influence local adaptation, phenotypic diversity, and disease susceptibility across diverse human populations.
Collapse
Affiliation(s)
- Jiao Gong
- State Key Laboratory of Genetic Engineering, Lab for Evolutionary Synthesis, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Huiru Sun
- State Key Laboratory of Genetic Engineering, Lab for Evolutionary Synthesis, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Kaiyuan Wang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yanhui Zhao
- State Key Laboratory of Genetic Engineering, Lab for Evolutionary Synthesis, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Yechao Huang
- State Key Laboratory of Genetic Engineering, Lab for Evolutionary Synthesis, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Qinsheng Chen
- State Key Laboratory of Genetic Engineering, Lab for Evolutionary Synthesis, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Hui Qiao
- State Key Laboratory of Genetic Engineering, Lab for Evolutionary Synthesis, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Yang Gao
- State Key Laboratory of Genetic Engineering, Lab for Evolutionary Synthesis, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Jialin Zhao
- State Key Laboratory of Genetic Engineering, Lab for Evolutionary Synthesis, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Yunchao Ling
- Bio-Med Big Data Center, Chinese Academy of Sciences Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ruifang Cao
- Bio-Med Big Data Center, Chinese Academy of Sciences Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jingze Tan
- State Key Laboratory of Genetic Engineering, Lab for Evolutionary Synthesis, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Qi Wang
- State Key Laboratory of Genetic Engineering, Lab for Evolutionary Synthesis, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Yanyun Ma
- Department of Anthropology and Human Genetics, Institute for Six-sector Economy, and MOE Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai, China
| | - Jing Li
- State Key Laboratory of Genetic Engineering, Lab for Evolutionary Synthesis, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Jingchun Luo
- State Key Laboratory of Genetic Engineering, Lab for Evolutionary Synthesis, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Sijia Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, Lab for Evolutionary Synthesis, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
- Research Unit of dissecting the population genetics and developing new technologies for treatment and prevention of skin phenotypes and dermatological diseases (2019RU058), Chinese Academy of Medical Sciences, Shanghai, China
| | - Guoqing Zhang
- Bio-Med Big Data Center, Chinese Academy of Sciences Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shuhua Xu
- State Key Laboratory of Genetic Engineering, Lab for Evolutionary Synthesis, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Feng Qian
- State Key Laboratory of Genetic Engineering, Lab for Evolutionary Synthesis, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Fang Zhou
- School of Data Science and Engineering, East China Normal University, Shanghai, China
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, Lab for Evolutionary Synthesis, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Dali Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Lab for Evolutionary Synthesis, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China.
- Research Unit of dissecting the population genetics and developing new technologies for treatment and prevention of skin phenotypes and dermatological diseases (2019RU058), Chinese Academy of Medical Sciences, Shanghai, China.
| | - Yuting Guan
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| | - Shaohua Fan
- State Key Laboratory of Genetic Engineering, Lab for Evolutionary Synthesis, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China.
| |
Collapse
|
8
|
He X, Deng B, Zhang C, Zhang G, Yang F, Zhu D, Yang Y, Ma B, Hu X, Wang Y, Kang X. HSPA1A inhibits pyroptosis and neuroinflammation after spinal cord injury via DUSP1 inhibition of the MAPK signaling pathway. Mol Med 2025; 31:53. [PMID: 39924492 PMCID: PMC11809008 DOI: 10.1186/s10020-025-01086-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/16/2025] [Indexed: 02/11/2025] Open
Abstract
BACKGROUND Inflammation and proinflammatory programmed cell death, referred to as pyroptosis, are important causes of poor functional recovery after traumatic spinal cord injury (TSCI). Heat shock protein family A member 1A (HSPA1A) is a molecular chaperone protein that is highly expressed after TSCI and is thought to be neuroprotective. However, the mechanisms underlying the protective effects of HSPA1A after TSCI are unclear. METHODS The levels of pyroptosis and inflammation after TSCI were determined by enzyme-linked immunosorbent assay (ELISA) and western blotting analysis. The role of HSPA1A in regulating pyroptosis and inflammation in TSCI was verified by in vivo and in vitro experiments. The molecular mechanism of the effects of HSPA1A in TSCI was elucidated by bioinformatics and coimmunoprecipitation analyses. RESULTS Pyroptosis and inflammation are significantly increased after TSCI. HSPA1A overexpression in microglia attenuated nigericin- and lipopolysaccharide (LPS)-induced pyroptosis and inflammation in vitro, whereas knockdown of HSPA1A aggravated pyroptosis and inflammation. In vivo, overexpression of HSPA1A reduced tissue damage, nerve cell death, pyroptosis, and inflammation in TSCI rats and promoted functional recovery. Mechanistically, we identified that HSPA1A interacts with dual specificity phosphatase 1 (DUSP1) and inhibits activation of the mitogen-activated protein kinase (MAPK) pathway, thereby attenuating pyroptosis and inflammation. CONCLUSION HSPA1A reduces pyroptosis and inflammation after TSCI by upregulating DUSP1 and inhibiting MAPK pathway activation. HSPA1A activation has potential as a therapeutic approach to promote functional recovery after TSCI.
Collapse
Affiliation(s)
- Xuegang He
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Bo Deng
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China
- Orthopedics Key Laboratory of Gansu Province, Lanzhou, 730000, Gansu, China
| | - Cangyu Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China
- Orthopedics Key Laboratory of Gansu Province, Lanzhou, 730000, Gansu, China
| | - Guangzhi Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China
- Orthopedics Key Laboratory of Gansu Province, Lanzhou, 730000, Gansu, China
| | - Fengguang Yang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China
- Orthopedics Key Laboratory of Gansu Province, Lanzhou, 730000, Gansu, China
| | - Daxue Zhu
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China
- Orthopedics Key Laboratory of Gansu Province, Lanzhou, 730000, Gansu, China
| | - Yong Yang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China
- Orthopedics Key Laboratory of Gansu Province, Lanzhou, 730000, Gansu, China
| | - Bing Ma
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China
- Orthopedics Key Laboratory of Gansu Province, Lanzhou, 730000, Gansu, China
| | - Xuchang Hu
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China.
- Orthopedics Key Laboratory of Gansu Province, Lanzhou, 730000, Gansu, China.
| | - Yonggang Wang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China.
- Orthopedics Key Laboratory of Gansu Province, Lanzhou, 730000, Gansu, China.
| | - Xuewen Kang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China.
- Orthopedics Key Laboratory of Gansu Province, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
9
|
Lei H, Ruan Y, Ding R, Li H, Zhang X, Ji X, Wang Q, Lv S. The role of celastrol in inflammation and diseases. Inflamm Res 2025; 74:23. [PMID: 39862265 DOI: 10.1007/s00011-024-01983-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/04/2024] [Accepted: 10/18/2024] [Indexed: 01/27/2025] Open
Abstract
Celastrol is one of the main active ingredients extracted from the plant Tripterygium wilfordii Hook F. A growing number of studies have shown that celastrol has various pharmacological effects, including anti-inflammation, anti-rheumatism, treatment of neurodegenerative diseases, and anti-tumor. This article systematically summarized the mechanism and role of celastrol in lipid metabolism and obesity, rheumatoid arthritis (RA), osteoarthritis (OA), gouty arthritis, inflammatory bowel disease, neurodegenerative diseases, and cancer and other diseases (such as diabetes, respiratory-related diseases, atherosclerosis, psoriasis, hearing loss, etc.). The celastrol played roles in inflammation response, cell apoptosis, autophagy, ferroptosis, and lipid metabolism mainly by acting on chondrocytes, macrophages, mitochondria, and endoplasmic reticulum (ER) through NF-κB, STAT, MAPK, TLR, PI3K-AKT-mTOR, and other signal pathways. This review could provide a reference for the clinical application and further development and utilization of celastrol.
Collapse
Affiliation(s)
- Han Lei
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Yantian Ruan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Ruidong Ding
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Haotian Li
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Xiaoguang Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, 475001, Henan, China
| | - Xinying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China
- Center for Molecular Medicine, Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Mazhai, Erqi District, Zhengzhou, 450064, Henan, China
| | - Qi Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China.
| | - Shuangyu Lv
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China.
- Department of Neurosurgery, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, 475001, Henan, China.
| |
Collapse
|
10
|
Shi C, Wang B, Zhai T, Zhang C, Ma J, Guo Y, Yang Y, Chen C, Gao J, Zhao L. Exploring Ubiquitination in Spinal Cord Injury Therapy: Multifaceted Targets and Promising Strategies. Neurochem Res 2025; 50:82. [PMID: 39833619 DOI: 10.1007/s11064-025-04332-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/02/2025] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
Spinal cord injury (SCI) is a severely debilitating neurological condition that often results in significant functional impairment and is associated with poor long-term prognosis. Edema, oxidative stress, inflammatory responses, and cell death are the primary factors contributing to secondary injury following spinal cord damage. Ubiquitination is a crucial intracellular mechanism for protein regulation that has garnered significant attention as a therapeutic target in a variety of diseases. Numerous studies have shown that ubiquitination plays a key role in modulating processes such as inflammatory responses, apoptosis, and nerve regeneration following SCI, thereby influencing injury repair. Accordingly, targeting ubiquitination has the potential for mitigating harmful inflammatory responses, inhibiting dysregulated programmed cell death, and protecting the integrity of the blood-spinal cord barrier, thereby providing a novel therapeutic strategy for SCI. In this review, we discuss the role of ubiquitination and its potential as a therapeutic target in SCI, aiming to offer a foundation for developing ubiquitination-targeted therapies for this condition.
Collapse
Affiliation(s)
- Caizhen Shi
- Medical School of Yan'an University, Yan'an, Shaanxi, China
| | - Bingbing Wang
- Medical School of Yan'an University, Yan'an, Shaanxi, China
| | - Tianyu Zhai
- Medical School of Yan'an University, Yan'an, Shaanxi, China
| | - Can Zhang
- Medical School of Yan'an University, Yan'an, Shaanxi, China
| | - Jiarui Ma
- Medical School of Yan'an University, Yan'an, Shaanxi, China
| | - Yanjie Guo
- Medical School of Yan'an University, Yan'an, Shaanxi, China
| | - Yanling Yang
- Medical School of Yan'an University, Yan'an, Shaanxi, China
| | - Chen Chen
- Yulin First People's Hospital, Yulin, Shaanxi, China
| | - Jianzhong Gao
- Yulin First People's Hospital, Yulin, Shaanxi, China.
| | - Lin Zhao
- Medical School of Yan'an University, Yan'an, Shaanxi, China.
| |
Collapse
|
11
|
Li D, Liu S, Lu X, Gong Z, Wang H, Xia X, Lu F, Jiang J, Zhang Y, Xu G, Zou F, Ma X. The Circadian Clock Gene Bmal1 Regulates Microglial Pyroptosis After Spinal Cord Injury via NF-κB/MMP9. CNS Neurosci Ther 2024; 30:e70130. [PMID: 39648661 PMCID: PMC11625957 DOI: 10.1111/cns.70130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/07/2024] [Accepted: 10/17/2024] [Indexed: 12/10/2024] Open
Abstract
BACKGROUND The treatment of spinal cord injury (SCI) is usually ineffective, because neuroinflammatory secondary injury is an important cause of the continuous development of spinal cord injury, and microglial pyroptosis is an important step of neuroinflammation. Recently, Bmal1, a core component of circadian clock genes (CCGs), has been shown to play a regulatory role in various tissues and cells. However, it is still unclear whether Bmal1 regulates microglial pyroptosis after SCI. METHODS In this study, we established an in vivo mouse model of SCI using Bmal1 knockout (KO) mice and wild-type (WT) mice, and lipopolysaccharide (LPS)-induced pyroptosis in BV2 cells as an in vitro model. A series of molecular and histological methods were used to detect the level of pyroptosis and explore the regulatory mechanism in vivo and in vitro respectively. RESULTS Both in vitro and in vivo results showed that Bmal1 inhibited NLRP3 inflammasome activation and microglial pyroptosis after SCI. Further analysis showed that Bmal1 inhibited pyroptosis-related proteins (NLRP3, Caspase-1, ASC, GSDMD-N) and reduced the release of IL-18 and IL-1β by inhibiting the NF-κB /MMP9 pathway. It was important that NF-κB was identified as a transcription factor that promotes the expression of MMP9, which in turn regulates microglial pyroptosis after SCI. CONCLUSIONS Our study initially identified that Bmal1 regulates the NF-κB /MMP9 pathway to reduce microglial pyroptosis and thereby reduce secondary spinal cord injury, providing a new promising therapeutic target for SCI.
Collapse
Affiliation(s)
- Dachuan Li
- Department of Orthopedics, Huashan HospitalFudan UniversityShanghaiChina
| | - Siyang Liu
- Department of Orthopedics, Huashan HospitalFudan UniversityShanghaiChina
| | - Xiao Lu
- Department of Orthopedics, Huashan HospitalFudan UniversityShanghaiChina
| | - Zhaoyang Gong
- Department of Orthopedics, Huashan HospitalFudan UniversityShanghaiChina
| | - Hongli Wang
- Department of Orthopedics, Huashan HospitalFudan UniversityShanghaiChina
| | - Xinlei Xia
- Department of Orthopedics, Huashan HospitalFudan UniversityShanghaiChina
| | - Feizhou Lu
- Department of Orthopedics, Huashan HospitalFudan UniversityShanghaiChina
| | - Jianyuan Jiang
- Department of Orthopedics, Huashan HospitalFudan UniversityShanghaiChina
| | - Yuxuan Zhang
- Department of Orthopedics, Huashan HospitalFudan UniversityShanghaiChina
| | - Guangyu Xu
- Department of Orthopedics, Huashan HospitalFudan UniversityShanghaiChina
| | - Fei Zou
- Department of Orthopedics, Huashan HospitalFudan UniversityShanghaiChina
| | - Xiaosheng Ma
- Department of Orthopedics, Huashan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
12
|
Song Q, Cui Q, Sun S, Wang Y, Yuan Y, Zhang L. Crosstalk Between Cell Death and Spinal Cord Injury: Neurology and Therapy. Mol Neurobiol 2024; 61:10271-10287. [PMID: 38713439 DOI: 10.1007/s12035-024-04188-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/12/2024] [Indexed: 05/08/2024]
Abstract
Spinal cord injury (SCI) often leads to neurological dysfunction, and neuronal cell death is one of the main causes of neurological dysfunction. After SCI, in addition to necrosis, programmed cell death (PCD) occurs in nerve cells. At first, studies recognized only necrosis, apoptosis, and autophagy. In recent years, researchers have identified new forms of PCD, including pyroptosis, necroptosis, ferroptosis, and cuproptosis. Related studies have confirmed that all of these cell death modes are involved in various phases of SCI and affect the direction of the disease through different mechanisms and pathways. Furthermore, regulating neuronal cell death after SCI through various means has been proven to be beneficial for the recovery of neural function. In recent years, emerging therapies for SCI have also provided new potential methods to restore neural function. Thus, the relationship between SCI and cell death plays an important role in the occurrence and development of SCI. This review summarizes and generalizes the relevant research results on neuronal necrosis, apoptosis, autophagy, pyroptosis, necroptosis, ferroptosis, and cuproptosis after SCI to provide a new understanding of neuronal cell death after SCI and to aid in the treatment of SCI.
Collapse
Affiliation(s)
- Qifeng Song
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, 110134, Liaoning, China
| | - Qian Cui
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, 110134, Liaoning, China
| | - Shi Sun
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, 110134, Liaoning, China
| | - Yashi Wang
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, 110134, Liaoning, China
| | - Yin Yuan
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, 110134, Liaoning, China
| | - Lixin Zhang
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, 110134, Liaoning, China.
| |
Collapse
|
13
|
Bu X, Guo H, Gao W, Zhang L, Hou J, Li B, Xia Z, Wang W. Neuroprotection of celastrol against postoperative cognitive dysfunction through dampening cGAS-STING signaling. Exp Neurol 2024; 382:114987. [PMID: 39369806 DOI: 10.1016/j.expneurol.2024.114987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/04/2024] [Accepted: 10/02/2024] [Indexed: 10/08/2024]
Abstract
Neuroinflammation is a central player in postoperative cognitive dysfunction (POCD), an intractable and highly confounding neurological complication with finite therapeutic options. Celastrol, a quinone methide triterpenoid, is a bioactive ingredient extracted from Tripterygium wilfordii with talented anti-inflammatory capacity. However, it is unclear whether celastrol can prevent anesthesia/surgery-evoked cognitive deficits in an inflammation-specific manner. The STING agonist 5,6-dimethylxanthenone-4-acetic acid (DMXAA) was used to determine whether celastrol possesses neuroprotection dependent on the STING pathway in vivo and in vitro. Isoflurane and laparotomy triggered cGAS-STING activation, caspase-3/GSDME-dependent pyroptosis, and enhanced Iba-1 immunoreactivity. Celastrol improved cognitive performance and decreased the levels of cGAS, 2'3'-cGAMP, STING, NF-κB phosphorylation, Iba-1, TNF-α, IL-6, and IFN-β. Downregulation of cleaved caspase-3 and N-GSDME was observed in the hippocampus of POCD mice and HT22 cells after celastrol administration, accompanied by limited secretion of pyroptosis-pertinent pro-inflammatory cytokines IL-1β and IL-18. DMXAA neutralized the favorable influences of celastrol on cognitive function, as confirmed by the activation of the STING/caspase-3/GSDME axis. These findings implicate celastrol as a therapeutic agent for POCD through anti-inflammation and anti-pyroptosis.
Collapse
Affiliation(s)
- Xueshan Bu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China
| | - Hui Guo
- Department of Anesthesiology, General Hospital of Central Theater Command of PLA, Wuhan, Hubei Province 430070, China
| | - Wenwei Gao
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China
| | - Lei Zhang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China
| | - Jiabao Hou
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China
| | - Bixi Li
- Department of Anesthesiology, General Hospital of Central Theater Command of PLA, Wuhan, Hubei Province 430070, China.
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China.
| | - Wei Wang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China.
| |
Collapse
|
14
|
Lv Z, Zhao C, Wu X, Chen Y, Zheng C, Zhang X, Xu Y, Zhu L, Wang H, Xie G, Zheng W. Facile engineered macrophages-derived exosomes-functionalized PLGA nanocarrier for targeted delivery of dual drug formulation against neuroinflammation by modulation of microglial polarization in a post-stroke depression rat model. Biomed Pharmacother 2024; 179:117263. [PMID: 39243431 DOI: 10.1016/j.biopha.2024.117263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/09/2024] Open
Abstract
Post-stroke depression (POSD) is a common difficulty and most predominant emotional syndrome after stroke often consequences in poor outcomes. In the present investigation, we have designed and studied the neurologically active celastrol/minocycline encapsulated with macrophages-derived exosomes functionalized PLGA nanoformulations (CMC-EXPL) to achieve enhanced anti-inflammatory behaviour and anti-depressant like activity in a Rat model of POSD. The animal model of POSD was established through stimulating process with chronic unpredictable mild stress (CUM) stimulations after procedure of middle cerebral artery occlusion (MCAO). Neuronal functions and Anti-inflammation behaviours were observed by histopathological (H&E) examination and Elisa analyses, respectively. The anti-depressive activity of the nanoformulations treated Rat models were evaluated by open-field and sucrose preference test methods. Microglial polarization was evaluated via flow-cytometry and qRT-PCR observations. The observed results exhibited that prepared nanoformulations reduced the POSD-stimulated depressive-like activities in rat models as well alleviated the neuronal damages and inflammatory responses in the cerebral hippocampus. Importantly, prepared CMC-EXPL nanoformulation effectively prevented the M1 pro-inflammatory polarization and indorsed M2 anti-inflammatory polarization, which indicates iNOS and CD86 levels significantly decreased and upsurged Arg-1 and CD206 levels. CMC-EXPL nanoformulation suggestively augmented anti-depressive activities and functional capability and also alleviated brain inflammation in POSD rats, demonstrating its therapeutic potential for POSD therapy.
Collapse
Affiliation(s)
- Zhongyue Lv
- Department of Neurology,Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315040, China
| | - Cui Zhao
- Department of Neurology,Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315040, China
| | - Xiping Wu
- Department of Neurology,Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315040, China
| | - Yinqi Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Cheng Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaoling Zhang
- Department of Neurology,Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315040, China
| | - Yifei Xu
- Department of Neurology,Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315040, China
| | - Lujia Zhu
- Department of Neurology,Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315040, China
| | - Haifeng Wang
- Department of Neurology,Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315040, China.
| | - Guomin Xie
- Department of Neurology,Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315040, China.
| | - Wu Zheng
- Department of Neurology,Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315040, China.
| |
Collapse
|
15
|
Dong J, Gong Z, Bi H, Yang J, Wang B, Du K, Zhang C, Chen L. BMSC-derived exosomal miR-219-5p alleviates ferroptosis in neuronal cells caused by spinal cord injury via the UBE2Z/NRF2 pathway. Neuroscience 2024; 556:73-85. [PMID: 39084457 DOI: 10.1016/j.neuroscience.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/05/2024] [Accepted: 06/15/2024] [Indexed: 08/02/2024]
Abstract
OBJECTIVE The aim of this study was to investigate the molecular mechanism of exosomal miR-219-5p derived from bone marrow mesenchymal stem cells (BMSCs) in the treatment of spinal cord injury (SCI). METHODS Basso Beattie Bresnahan (BBB) score and tissue staining were used to assess SCI and neuronal survival in rats. The contents of Fe2+, malondialdehyde (MDA), glutathione (GSH), and superoxide dismutase (SOD) were detected by a kit. The expression levels of ubiquitin-conjugating enzyme E2 Z (UBE2Z), nuclear factor erythroid 2-related Factor 2 (NRF2) and ferroptosis-related proteins were detected by Western blotting. In addition, the ability of BMSC-derived exosomes to inhibit ferroptosis in neuronal cells in rats with SCI was validated by in vivo injection of ferroptosis inhibitors/inducers. RESULTS In this study, we found that miR-219-5p-rich BMSC-derived exosomes inhibited ferroptosis in SCI rats and that the alleviating effect of BMSC-Exos on SCI was achieved by inhibiting the ferroptosis signaling pathway and that NRF2 played a key role in this process. Our study confirmed that BMSC exosome-specific delivery of miR-219-5p can target UBE2Z to regulate its stability and that overexpression of UBE2Z reverses miR-219-5p regulation of NRF2. In addition, in vivo experiments showed that BMSC exosomes alleviated ferroptosis in neuronal SCI progression, and inhibiting the expression of miR-219-5p in BMSCs reduced the alleviating effect of exosomes on ferroptosis in neuronal cells and SCI. CONCLUSION miR-219-5p in BMSC-derived exosomes can repair the injured spinal cord. In addition, miR-219-5p alleviates ferroptosis in neuronal cells induced by SCI through the UBE2Z/NRF2 pathway.
Collapse
Affiliation(s)
- Junjie Dong
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Zhiqiang Gong
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Hangchuan Bi
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Jin Yang
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Bing Wang
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Kaili Du
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Chunqiang Zhang
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China
| | - Lingqiang Chen
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China.
| |
Collapse
|
16
|
Song H, Pang R, Chen Z, Wang L, Hu X, Feng J, Wang W, Liu J, Zhang A. Every-other-day fasting inhibits pyroptosis while regulating bile acid metabolism and activating TGR5 signaling in spinal cord injury. Front Mol Neurosci 2024; 17:1466125. [PMID: 39328272 PMCID: PMC11424537 DOI: 10.3389/fnmol.2024.1466125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/02/2024] [Indexed: 09/28/2024] Open
Abstract
Every-other-day fasting (EODF) is a form of caloric restriction that alternates between periods of normal eating and fasting, aimed at preventing and treating diseases. This approach has gained widespread usage in basic research on neurological conditions, including spinal cord injury, and has demonstrated significant neuroprotective effects. Additionally, EODF is noted for its safety and feasibility, suggesting broad potential for application. This study aims to evaluate the therapeutic effects of EODF on spinal cord injury and to investigate and enhance its underlying mechanisms. Initially, the SCI rat model was utilized to evaluate the effects of EODF on pathological injury and motor function. Subsequently, considering the enhancement of metabolism through EODF, bile acid metabolism in SCI rats was analyzed using liquid chromatography-mass spectrometry (LC-MS), and the expression of the bile acid receptor TGR5 was further assessed. Ultimately, it was confirmed that EODF influences the activation of microglia and NLRP3 inflammasomes associated with the TGR5 signaling, along with the expression of downstream pyroptosis pathway related proteins and inflammatory cytokines, as evidenced by the activation of the NLRP3/Caspase-1/GSDMD pyroptosis pathway in SCI rats. The results demonstrated that EODF significantly enhanced the recovery of motor function and reduced pathological damage in SCI rats while controlling weight gain. Notably, EODF promoted the secretion of bile acid metabolites, activated TGR5, and inhibited the NLRP3/Caspase-1/GSDMD pyroptosis pathway and inflammation in these rats. In summary, EODF could mitigate secondary injury after SCI and foster functional recovery by improving metabolism, activating the TGR5 signaling and inhibiting the NLRP3 pyroptosis pathway.
Collapse
Affiliation(s)
- Honghu Song
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Rizhao Pang
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Zhixuan Chen
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Linjie Wang
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Xiaomin Hu
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Jingzhi Feng
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Wenchun Wang
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Jiancheng Liu
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Anren Zhang
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital Affiliated to Tongji University, Shanghai, China
| |
Collapse
|
17
|
Feng L, Yuan J, Li L, Tang J. Identification of Pyroptosis-Related Molecular Subtypes and Diagnostic Model development in Major Depressive Disorder. Mol Biotechnol 2024:10.1007/s12033-024-01252-0. [PMID: 39177862 DOI: 10.1007/s12033-024-01252-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/07/2024] [Indexed: 08/24/2024]
Abstract
Major depressive disorder (MDD) is a prevalent psychological disorder associated with inflammation, with complex pathological mechanisms. Pyroptosis has been suggested to contribute to inflammation in central nervous system diseases. Little research, however, has examined what role pyroptosis played in MDD. In the present study, the differential expression pyroptosis-related genes (DE-PRGs) in MDD were identified from the GEO database (GSE98793 and GSE19738). Then, consensus clustering analysis was used to evaluate differences in MDD molecular subtypes characteristics based on PRGs. The characteristic diagnostic biomarkers for MDD were identified by Weighted Correlation Network Analysis (WGCNA) and multiple machine learning algorithms. Three intersection genes (GZMA, AKR1C3, and CD52) were obtained, which are expected to become potential biomarkers for MDD with excellent reliability and accuracy. Subsequently, the immune infiltration characteristics result indicated that the development of MDD is mediated by immune-related function, where three DE-PRGs were strongly related to the immune infiltration landscape of MDD. The biological experiments in vitro further proved that three unique PRGs are emerging as important players in MDD diagnosis. Our research aimed to provide novel ideas and biomarkers targeting MDD.
Collapse
Affiliation(s)
- Lin Feng
- Harbin Sport University, Harbin, Heilongjiang, China
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Jiabo Yuan
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Li Li
- Harbin Sport University, Harbin, Heilongjiang, China.
| | - Junze Tang
- Harbin Sport University, Harbin, Heilongjiang, China.
| |
Collapse
|
18
|
Wu Q, Du J, Bae EJ, Choi Y. Pyroptosis in Skeleton Diseases: A Potential Therapeutic Target Based on Inflammatory Cell Death. Int J Mol Sci 2024; 25:9068. [PMID: 39201755 PMCID: PMC11354934 DOI: 10.3390/ijms25169068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Skeletal disorders, including fractures, osteoporosis, osteoarthritis, rheumatoid arthritis, and spinal degenerative conditions, along with associated spinal cord injuries, significantly impair daily life and impose a substantial burden. Many of these conditions are notably linked to inflammation, with some classified as inflammatory diseases. Pyroptosis, a newly recognized form of inflammatory cell death, is primarily triggered by inflammasomes and executed by caspases, leading to inflammation and cell death through gasdermin proteins. Emerging research underscores the pivotal role of pyroptosis in skeletal disorders. This review explores the pyroptosis signaling pathways and their involvement in skeletal diseases, the modulation of pyroptosis by other signals in these conditions, and the current evidence supporting the therapeutic potential of targeting pyroptosis in treating skeletal disorders, aiming to offer novel insights for their management.
Collapse
Affiliation(s)
- Qian Wu
- Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea (J.D.)
| | - Jiacheng Du
- Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea (J.D.)
| | - Eun Ju Bae
- School of Pharmacy, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Yunjung Choi
- Division of Rheumatology, Department of Internal Medicine, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| |
Collapse
|
19
|
Câmara JS, Perestrelo R, Ferreira R, Berenguer CV, Pereira JAM, Castilho PC. Plant-Derived Terpenoids: A Plethora of Bioactive Compounds with Several Health Functions and Industrial Applications-A Comprehensive Overview. Molecules 2024; 29:3861. [PMID: 39202940 PMCID: PMC11357518 DOI: 10.3390/molecules29163861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Terpenoids are a large class of natural secondary plant metabolites which are highly diverse in structure, formed from isoprene units (C-5), associated with a wide range of biological properties, including antioxidant, antimicrobial, anti-inflammatory, antiallergic, anticancer, antimetastatic, antiangiogenesis, and apoptosis induction, and are considered for potential application in the food, cosmetics, pharmaceutical, and medical industries. In plants, terpenoids exert a variety of basic functions in growth and development. This review gives an overview, highlighting the current knowledge of terpenoids and recent advances in our understanding of the organization, regulation, and diversification of core and specialized terpenoid metabolic pathways and addressing the most important functions of volatile and non-volatile specialized terpenoid metabolites in plants. A comprehensive description of different aspects of plant-derived terpenoids as a sustainable source of bioactive compounds, their biosynthetic pathway, the several biological properties attributed to these secondary metabolites associated with health-promoting effects, and their potential industrial applications in several fields will be provided, and emerging and green extraction methods will also be discussed. In addition, future research perspectives within this framework will be highlighted. Literature selection was carried out using the National Library of Medicine, PubMed, and international reference data for the period from 2010 to 2024 using the keyword "terpenoids". A total of 177,633 published papers were found, of which 196 original and review papers were included in this review according to the criteria of their scientific reliability, their completeness, and their relevance to the theme considered.
Collapse
Affiliation(s)
- José S. Câmara
- CQM—Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (R.F.); (C.V.B.); (J.A.M.P.); (P.C.C.)
- Departamento de Química, Faculdade de Ciências Exatas e da Engenharia da Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Rosa Perestrelo
- CQM—Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (R.F.); (C.V.B.); (J.A.M.P.); (P.C.C.)
| | - Rui Ferreira
- CQM—Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (R.F.); (C.V.B.); (J.A.M.P.); (P.C.C.)
| | - Cristina V. Berenguer
- CQM—Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (R.F.); (C.V.B.); (J.A.M.P.); (P.C.C.)
| | - Jorge A. M. Pereira
- CQM—Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (R.F.); (C.V.B.); (J.A.M.P.); (P.C.C.)
| | - Paula C. Castilho
- CQM—Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (R.F.); (C.V.B.); (J.A.M.P.); (P.C.C.)
- Departamento de Química, Faculdade de Ciências Exatas e da Engenharia da Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| |
Collapse
|
20
|
Ni Z, Shi Y, Liu Q, Wang L, Sun X, Rao Y. Degradation-Based Protein Profiling: A Case Study of Celastrol. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308186. [PMID: 38664976 PMCID: PMC11220716 DOI: 10.1002/advs.202308186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/28/2024] [Indexed: 07/04/2024]
Abstract
Natural products, while valuable for drug discovery, encounter limitations like uncertainty in targets and toxicity. As an important active ingredient in traditional Chinese medicine, celastrol exhibits a wide range of biological activities, yet its mechanism remains unclear. In this study, they introduced an innovative "Degradation-based protein profiling (DBPP)" strategy, which combined PROteolysis TArgeting Chimeras (PROTAC) technology with quantitative proteomics and Immunoprecipitation-Mass Spectrometry (IP-MS) techniques, to identify multiple targets of natural products using a toolbox of degraders. Taking celastrol as an example, they successfully identified its known targets, including inhibitor of nuclear factor kappa B kinase subunit beta (IKKβ), phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PI3Kα), and cellular inhibitor of PP2A (CIP2A), as well as potential new targets such as checkpoint kinase 1 (CHK1), O-GlcNAcase (OGA), and DNA excision repair protein ERCC-6-like (ERCC6L). Furthermore, the first glycosidase degrader is developed in this work. Finally, by employing a mixed PROTAC toolbox in quantitative proteomics, they also achieved multi-target identification of celastrol, significantly reducing costs while improving efficiency. Taken together, they believe that the DBPP strategy can complement existing target identification strategies, thereby facilitating the rapid advancement of the pharmaceutical field.
Collapse
Affiliation(s)
- Zhihao Ni
- MOE Key Laboratory of Protein SciencesSchool of Pharmaceutical SciencesMOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical BiologyTsinghua UniversityBeijing100084China
| | - Yi Shi
- MOE Key Laboratory of Protein SciencesSchool of Pharmaceutical SciencesMOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical BiologyTsinghua UniversityBeijing100084China
| | - Qianlong Liu
- MOE Key Laboratory of Protein SciencesSchool of Pharmaceutical SciencesMOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical BiologyTsinghua UniversityBeijing100084China
| | - Liguo Wang
- MOE Key Laboratory of Protein SciencesSchool of Pharmaceutical SciencesMOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical BiologyTsinghua UniversityBeijing100084China
| | | | - Yu Rao
- MOE Key Laboratory of Protein SciencesSchool of Pharmaceutical SciencesMOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical BiologyTsinghua UniversityBeijing100084China
- Changping LaboratoryBeijing102206China
| |
Collapse
|
21
|
Khoshnavay Foumani M, Amirshahrokhi K, Namjoo Z, Niapour A. Carvedilol attenuates inflammatory reactions of lipopolysaccharide-stimulated BV2 cells and modulates M1/M2 polarization of microglia via regulating NLRP3, Notch, and PPAR-γ signaling pathways. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4727-4736. [PMID: 38133658 DOI: 10.1007/s00210-023-02914-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Microglial cells coordinate immune responses in the central nervous system. Carvedilol (CVL) is a non-selective β-blocker with anti-inflammatory and anti-oxidant effects. This study aims to investigate the anti-inflammatory effects and the underlying mechanisms of CVL on lipopolysaccharide (LPS)-induced inflammation in microglial BV2 cells. BV2 cells were stimulated with LPS, and the protective effects of CVL were investigated via measurement of cell viability, reactive oxygen species (ROS), and interleukin (IL)-1β liberation. The protein levels of some inflammatory cascade, Notch, and peroxisome proliferator-activated receptor (PPAR)-γ pathways and relative markers of M1/M2 microglial phenotypes were assessed. Neuroblastoma SH-SY5Y cells were cultured with a BV2-conditioned medium (CM), and the capacity of CVL to protect cell viability was evaluated. CVL displayed a protective effect against LPS stress through reducing ROS and down-regulating of nuclear factor kappa B (NF-κB) p65, NLR family pyrin domain containing-3 (NLRP3), and IL-1β proteins. LPS treatment significantly increased the levels of the M1 microglial marker inducible nitric oxide synthase (iNOS) and M1-associated cleaved-NOTCH1 and hairy and enhancer of split-1 (HES1) proteins. Conversely, LPS treatment reduced the levels of the M2 marker arginase-1 (Arg-1) and PPAR-γ proteins. CVL pre-treatment reduced the protein levels of iNOS, cleaved-NOTCH1, and HES1, while increased Arg-1 and PPAR-γ. CM of CVL-primed BV2 cells significantly improved SH-SY5Y cell viability as compared with the LPS-induced cells. CVL suppressed ROS production and alleviated the expression of inflammatory markers in LPS-stimulated BV2 cells. Our results demonstrated that targeting Notch and PPAR-γ pathways as well as directing BV2 cell polarization toward the M2 phenotype may provide a therapeutic strategy to suppress neuroinflammation by CVL.
Collapse
Affiliation(s)
- Mohammadjavad Khoshnavay Foumani
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Keyvan Amirshahrokhi
- Department of Pharmacology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Zeinab Namjoo
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Ali Niapour
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
22
|
Jiang T, Wang A, Wen G, Qi H, Gu Y, Tang W, Xu C, Ren S, Zhang S, Liu S, He Y. Calycosin promotes axon growth by inhibiting PTPRS and alleviates spinal cord injury. J Mol Neurosci 2024; 74:60. [PMID: 38904846 DOI: 10.1007/s12031-024-02235-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 06/01/2024] [Indexed: 06/22/2024]
Abstract
Our former studies have identified the alleviating effect of Calycosin (CA) on spinal cord injury (SCI). In this study, our purpose is to explore the influence of CA on SCI from the perspective of promoting axon growth. The SCI animal model was constructed by spinal cord compression, wherein rat primary cortex neuronal isolation was performed, and the axonal growth restriction cell model was established via chondroitin sulfate proteoglycan (CSPG) treatment. The expressions of axon regeneration markers were measured via immunofluorescent staining and western blot, and the direct target of CA was examined using silver staining. Finally, the expression of the protein tyrosine phosphatase receptor type S (PTPRS) was assessed using western blot. CA treatment increased neuronal process outgrowth and the expressions of axon regeneration markers, such as neurofilament H (NF-H), vesicular glutamate transporter 1 (vGlut1), and synaptophysin (Syn) in both SCI model rats and CSPG-treated primary cortical neurons, and PTPRS levels were elevated after SCI induction. In addition, PTPRS was the direct target of CA, and according to in vivo findings, exposure to CA reduced the PTPRS content. Furthermore, PTPRS overexpression inhibited CA's enhancement of axon regeneration marker content and neuronal axon lengths. CA improves SCI by increasing axon development through regulating PTPRS expression.
Collapse
Affiliation(s)
- Tianqi Jiang
- Department of Spine Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570216, Hainan Province, China
- Graduate School of Inner Mongolia Medical University, Hohhot, 010000, Inner Mongolia Autonomous Region, China
| | - Aitao Wang
- Department of Anesthesiology, Hohhot First Hospital, Hohhot, 010030, Inner Mongolia Autonomous Region, China
| | - Guangyu Wen
- Department of Spine Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570216, Hainan Province, China
| | - Hao Qi
- Department of Spine Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570216, Hainan Province, China
| | - Yuntao Gu
- Department of Spine Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570216, Hainan Province, China
| | - Wenhai Tang
- Department of Spine Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570216, Hainan Province, China
| | - Chunzhao Xu
- Department of Spine Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570216, Hainan Province, China
| | - Shanwu Ren
- Department of Spine Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570216, Hainan Province, China
| | - Shunli Zhang
- Department of Spine Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570216, Hainan Province, China
| | - Shengxing Liu
- Department of Spine Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570216, Hainan Province, China.
| | - Yongxiong He
- Department of Spine Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570216, Hainan Province, China.
| |
Collapse
|
23
|
Lou Y, Li Z, Zheng H, Yuan Z, Li W, Zhang J, Shen W, Gao Y, Ran N, Kong X, Feng S. New strategy to treat spinal cord injury: Nafamostat mesilate suppressed NLRP3-mediated pyroptosis during acute phase. Int Immunopharmacol 2024; 134:112190. [PMID: 38703569 DOI: 10.1016/j.intimp.2024.112190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/19/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Spinal cord injury (SCI) is a devastating condition for which effective clinical treatment is currently lacking. During the acute phase of SCI, myriad pathological changes give rise to subsequent secondary injury. The results of our previous studies indicated that treating rats post-SCI with nafamostat mesilate (NM) protected the blood-spinal cord barrier (BSCB) and exerted an antiapoptotic effect. However, the optimal dosage for mice with SCI and the underlying mechanisms potentially contributing to recovery, especially during the acute phase of SCI, have not been determined. In this study, we first determined the optimal dosage of NM for mice post-SCI (5 mg/kg/day). Subsequently, our RNA-seq findings revealed that NM has the potential to inhibit pyroptosis after SCI. These findings were further substantiated by subsequent Western blot (WB) and Immunofluorescence (IF) analyses in vivo. These results indicate that NM can alleviate NLRP3 (NOD-like receptor thermal protein domain associated protein 3)-mediated pyroptosis by modulating the NF-κB signaling pathway and reducing the protein expression levels of NIMA-related kinase 7 (NEK7) and cathepsin B (CTSB). In vitro experimental results supported our in vivo findings, revealing the effectiveness of NM in suppressing pyroptosis induced by adenosine triphosphate (ATP) and lipopolysaccharide (LPS) in BV2 cells. These results underscore the potential of NM to regulate NLRP3-mediated pyroptosis following SCI. Notably, compared with other synthetic compounds, NM exhibits greater versatility, suggesting that it is a promising clinical treatment option for SCI.
Collapse
Affiliation(s)
- Yongfu Lou
- Department of Orthopedics, The Second Hospital, Cheeloo College of Medicine, Shandong University, Shandong, China; Shandong University Centre for Orthopaedics, Cheeloo College of Medicine, Shandong University, Shandong, China
| | - Zonghao Li
- Shandong University Centre for Orthopaedics, Cheeloo College of Medicine, Shandong University, Shandong, China; Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University, Shandong, China
| | - Han Zheng
- Shandong University Centre for Orthopaedics, Cheeloo College of Medicine, Shandong University, Shandong, China; Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University, Shandong, China
| | - Zhongze Yuan
- Shandong University Centre for Orthopaedics, Cheeloo College of Medicine, Shandong University, Shandong, China; Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University, Shandong, China
| | - Wenxiang Li
- Shandong University Centre for Orthopaedics, Cheeloo College of Medicine, Shandong University, Shandong, China; Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University, Shandong, China
| | - Jianping Zhang
- Division of Surgery and Interventional Science, University College London, London HA7 4LP, United Kingdom
| | - Wenyuan Shen
- Department of Orthopedics, The Second Hospital, Cheeloo College of Medicine, Shandong University, Shandong, China; Shandong University Centre for Orthopaedics, Cheeloo College of Medicine, Shandong University, Shandong, China
| | - Yiming Gao
- Shandong University Centre for Orthopaedics, Cheeloo College of Medicine, Shandong University, Shandong, China; Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University, Shandong, China
| | - Ning Ran
- Department of Orthopedics, The Second Hospital, Cheeloo College of Medicine, Shandong University, Shandong, China; Shandong University Centre for Orthopaedics, Cheeloo College of Medicine, Shandong University, Shandong, China.
| | - Xiaohong Kong
- Shandong University Centre for Orthopaedics, Cheeloo College of Medicine, Shandong University, Shandong, China; Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University, Shandong, China.
| | - Shiqing Feng
- Department of Orthopedics, The Second Hospital, Cheeloo College of Medicine, Shandong University, Shandong, China; Shandong University Centre for Orthopaedics, Cheeloo College of Medicine, Shandong University, Shandong, China; Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University, Shandong, China.
| |
Collapse
|
24
|
Shen W, Li C, Liu Q, Cai J, Wang Z, Pang Y, Ning G, Yao X, Kong X, Feng S. Celastrol inhibits oligodendrocyte and neuron ferroptosis to promote spinal cord injury recovery. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155380. [PMID: 38507854 DOI: 10.1016/j.phymed.2024.155380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/01/2024] [Accepted: 01/17/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Spinal cord injury (SCI) is a traumatic injury to the central nervous system and can cause lipid peroxidation in the spinal cord. Ferroptosis, an iron-dependent programmed cell death, plays a key role in the pathophysiology progression of SCI. Celastrol, a widely used antioxidant drug, has potential therapeutic value for nervous system. PURPOSE To investigate whether celastrol can be a reliable candidate for ferroptosis inhibitor and the molecular mechanism of celastrol in repairing SCI by inhibiting ferroptosis. METHODS First, a rat SCI model was constructed, and the recovery of motor function was observed after treatment with celastrol. The regulatory effect of celastrol on ferroptosis pathway Nrf2-xCT-GPX4 was detected by Western blot and immunofluorescence. Finally, the ferroptosis model of neurons and oligodendrocytes was constructed in vitro to further verify the mechanism of inhibiting ferroptosis by celastrol. RESULTS Our results demonstrated that celastrol promoted the recovery of spinal cord tissue and motor function in SCI rats. Further in vitro and in vivo studies showed that celastrol significantly inhibited ferroptosis in neurons and oligodendrocytes and reduced the accumulation of ROS. Finally, we found that celastrol could inhibit ferroptosis by up-regulating the Nrf2-xCT-GPX4 axis to repair SCI. CONCLUSION Celastrol effectively inhibits ferroptosis after SCI by upregulating the Nrf2-xCT-GPX4 axis, reducing the production of lipid ROS, protecting the survival of neurons and oligodendrocytes, and improving the functional recovery.
Collapse
Affiliation(s)
- Wenyuan Shen
- Spine Surgery Department of the Second Hospital, Cheeloo College of Medicine, Shandong University, 247 Beiyuan Street, Jinan, Shandong 250033, PR China; Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, PR China; Orthopedic Research Center of Shandong University & Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250063, PR China
| | - Chuanhao Li
- Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, PR China
| | - Quan Liu
- Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, PR China
| | - Jun Cai
- Tianjin Medicine and Health Research Center, Tianjin Institute of Medical & Pharmaceutical Sciences, Tianjin, 300020, PR China
| | - Zhishuo Wang
- Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, PR China
| | - Yilin Pang
- Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, PR China
| | - Guangzhi Ning
- Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, PR China
| | - Xue Yao
- Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, PR China; Orthopedic Research Center of Shandong University & Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250063, PR China.
| | - Xiaohong Kong
- Orthopedic Research Center of Shandong University & Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250063, PR China.
| | - Shiqing Feng
- Spine Surgery Department of the Second Hospital, Cheeloo College of Medicine, Shandong University, 247 Beiyuan Street, Jinan, Shandong 250033, PR China; Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, PR China; Orthopedic Research Center of Shandong University & Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250063, PR China.
| |
Collapse
|
25
|
Li X, Liu W, Jiang G, Lian J, Zhong Y, Zhou J, Li H, Xu X, Liu Y, Cao C, Tao J, Cheng J, Zhang JH, Chen G. Celastrol Ameliorates Neuronal Mitochondrial Dysfunction Induced by Intracerebral Hemorrhage via Targeting cAMP-Activated Exchange Protein-1. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307556. [PMID: 38482725 PMCID: PMC11109624 DOI: 10.1002/advs.202307556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/08/2024] [Indexed: 05/23/2024]
Abstract
Mitochondrial dysfunction contributes to the development of secondary brain injury (SBI) following intracerebral hemorrhage (ICH) and represents a promising therapeutic target. Celastrol, the primary active component of Tripterygium wilfordii, is a natural product that exhibits mitochondrial and neuronal protection in various cell types. This study aims to investigate the neuroprotective effects of celastrol against ICH-induced SBI and explore its underlying mechanisms. Celastrol improves neurobehavioral and cognitive abilities in mice with autologous blood-induced ICH, reduces neuronal death in vivo and in vitro, and promotes mitochondrial function recovery in neurons. Single-cell nuclear sequencing reveals that the cyclic adenosine monophosphate (cAMP)/cAMP-activated exchange protein-1 (EPAC-1) signaling pathways are impacted by celastrol. Celastrol binds to cNMP (a domain of EPAC-1) to inhibit its interaction with voltage-dependent anion-selective channel protein 1 (VDAC1) and blocks the opening of mitochondrial permeability transition pores. After neuron-specific knockout of EPAC1, the neuroprotective effects of celastrol are diminished. In summary, this study demonstrates that celastrol, through its interaction with EPAC-1, ameliorates mitochondrial dysfunction in neurons, thus potentially improving SBI induced by ICH. These findings suggest that targeting EPAC-1 with celastrol can be a promising therapeutic approach for treating ICH-induced SBI.
Collapse
Affiliation(s)
- Xiang Li
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow University188 Shizi StreetSuzhou215006China
- Institute of Stroke ResearchSoochow University188 Shizi StreetSuzhou215006China
| | - Wen Liu
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing University168 Xianlin AvenueNanjing210023China
| | - Guannan Jiang
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow University188 Shizi StreetSuzhou215006China
- Institute of Stroke ResearchSoochow University188 Shizi StreetSuzhou215006China
| | - Jinrong Lian
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow University188 Shizi StreetSuzhou215006China
- Institute of Stroke ResearchSoochow University188 Shizi StreetSuzhou215006China
| | - Yi Zhong
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow University188 Shizi StreetSuzhou215006China
- Institute of Stroke ResearchSoochow University188 Shizi StreetSuzhou215006China
| | - Jialei Zhou
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow University188 Shizi StreetSuzhou215006China
- Institute of Stroke ResearchSoochow University188 Shizi StreetSuzhou215006China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow University188 Shizi StreetSuzhou215006China
- Institute of Stroke ResearchSoochow University188 Shizi StreetSuzhou215006China
| | - Xingshun Xu
- Department of NeurologyThe First Affiliated Hospital of Soochow University188 Shizi StreetSuzhou215006China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of NeuroscienceSoochow UniversitySuzhou215123China
| | - Yaobo Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of NeuroscienceSoochow UniversitySuzhou215123China
| | - Cong Cao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of NeuroscienceSoochow UniversitySuzhou215123China
| | - Jin Tao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of NeuroscienceSoochow UniversitySuzhou215123China
- Department of Physiology and NeurobiologyMedical College of Soochow UniversitySuzhou215123China
| | - Jian Cheng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of NeuroscienceSoochow UniversitySuzhou215123China
| | - John H Zhang
- Department of Physiology and PharmacologySchool of MedicineLoma Linda UniversityLoma LindaCA92350USA
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow University188 Shizi StreetSuzhou215006China
- Institute of Stroke ResearchSoochow University188 Shizi StreetSuzhou215006China
| |
Collapse
|
26
|
Liu T, Ma Z, Liu L, Pei Y, Wu Q, Xu S, Liu Y, Ding N, Guan Y, Zhang Y, Chen X. Conditioned medium from human dental pulp stem cells treats spinal cord injury by inhibiting microglial pyroptosis. Neural Regen Res 2024; 19:1105-1111. [PMID: 37862215 PMCID: PMC10749599 DOI: 10.4103/1673-5374.385309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 05/05/2023] [Accepted: 07/12/2023] [Indexed: 10/22/2023] Open
Abstract
Human dental pulp stem cell transplantation has been shown to be an effective therapeutic strategy for spinal cord injury. However, whether the human dental pulp stem cell secretome can contribute to functional recovery after spinal cord injury remains unclear. In the present study, we established a rat model of spinal cord injury based on impact injury from a dropped weight and then intraperitoneally injected the rats with conditioned medium from human dental pulp stem cells. We found that the conditioned medium effectively promoted the recovery of sensory and motor functions in rats with spinal cord injury, decreased expression of the microglial pyroptosis markers NLRP3, GSDMD, caspase-1, and interleukin-1β, promoted axonal and myelin regeneration, and inhibited the formation of glial scars. In addition, in a lipopolysaccharide-induced BV2 microglia model, conditioned medium from human dental pulp stem cells protected cells from pyroptosis by inhibiting the NLRP3/caspase-1/interleukin-1β pathway. These results indicate that conditioned medium from human dental pulp stem cells can reduce microglial pyroptosis by inhibiting the NLRP3/caspase-1/interleukin-1β pathway, thereby promoting the recovery of neurological function after spinal cord injury. Therefore, conditioned medium from human dental pulp stem cells may become an alternative therapy for spinal cord injury.
Collapse
Affiliation(s)
- Tao Liu
- Department of Orthopedic Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Ziqian Ma
- Department of Orthopedic Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Liang Liu
- Department of Orthopedic Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yilun Pei
- Department of Orthopedic Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Qichao Wu
- Department of Orthopedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Songjie Xu
- Department of Orthopedic Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yadong Liu
- Department of Orthopedic Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Nan Ding
- Department of Stomatology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Neurological Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Yan Zhang
- Department of Orthopedic Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Xueming Chen
- Department of Orthopedic Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
27
|
Ju J, Li Z, Jia X, Peng X, Wang J, Gao F. Interleukin-18 in chronic pain: Focus on pathogenic mechanisms and potential therapeutic targets. Pharmacol Res 2024; 201:107089. [PMID: 38295914 DOI: 10.1016/j.phrs.2024.107089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
Chronic pain has been proven to be an independent disease, other than an accompanying symptom of certain diseases. Interleukin-18 (IL-18), a pro-inflammatory cytokine with pleiotropic biological effects, participates in immune modulation, inflammatory response, tumor growth, as well as the process of chronic pain. Compelling evidence suggests that IL-18 is upregulated in the occurrence of chronic pain. Antagonism or inhibition of IL-18 expression can alleviate the occurrence and development of chronic pain. And IL-18 is located in microglia, while IL-18R is mostly located in astrocytes in the spinal cord. This indicates that the interaction between microglia and astrocytes mediated by the IL-18/IL-18R axis is involved in the occurrence of chronic pain. In this review, we described the role and mechanism of IL-18 in different types of chronic pain. This review provides strong evidence that IL-18 is a potential therapeutic target in pain management.
Collapse
Affiliation(s)
- Jie Ju
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Li
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoqian Jia
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoling Peng
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jihong Wang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Gao
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
28
|
Li M, Huan Y, Jiang T, He Y, Gao Z. Rehabilitation training enhanced the therapeutic effect of calycosin on neurological function recovery of rats following spinal cord injury. J Chem Neuroanat 2024; 136:102384. [PMID: 38154570 DOI: 10.1016/j.jchemneu.2023.102384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/13/2023] [Accepted: 12/24/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND Calycosin (CA), a flavonoids component, has demonstrated potential neuroprotection effects by inhibiting oxidative stress in spinal cord injury (SCI) models. This study aims to investigate the impact of combined rehabilitation training (RT) and calycosin therapy on neurological function following SCI, primarily by assessing changes in motor function recovery, neuronal survival, neuronal oxidative stress levels, and neural proliferation, in order to provide novel insights for the treatment of SCI. MATERIALS AND METHODS The SCI model was constructed by compressing the spinal cord using vascular clamps. Calycosin was injected intraperitoneally into the SCI model rats, and a group of 5 rats underwent RT. The motor function of rats after SCI was evaluated using the Basso Beattle Bresnaha (BBB) score and the inclined plate test. Histopathological changes were evaluated by NeuN immunohistochemistry, HE and Nissl staining. Apoptosis was detected by TUNEL staining. The antioxidant effect of combined treatment was assessed by measuring changes in oxidative stress markers after SCI. Western blot analysis was conducted to examine changes in Hsp90-Akt/ASK1-p38 pathway-related proteins. Finally, cell proliferation was detected by BrdU and Ki67 assays. RESULTS RT significantly improved the BBB score and angle of incline promoted by calycosin, resulting in enhanced motor function recovery in rats with SCI. Combining rehabilitation training with calycosin has a positive effect on morphological recovery. Similarly, combined RT enhanced the Nissl and NeuN staining signals of spinal cord neurons increased by calycosin, thereby increasing the number of neurons. TUNEL staining results indicated that calycosin treatment reduced the apoptosis signal in SCI, and the addition of RT further reduced the apoptosis. Moreover, RT combined with calycosin reduced oxidative stress by increasing SOD and GSH levels, while decreasing MDA, NO, ROS, and LDH expressions compared to the calycosin alone. RT slightly enhanced the effect of calycosin in activating Hsp90 and Akt and inhibiting the activation of ASK1 and p38, leading to enhanced inhibition of oxidative stress by calycosin. Additionally, the proliferation indexes (Ki67 and BrdU) assays showed that calycosin treatment alone increased both, whereas the combination treatment further promoted cell proliferation. CONCLUSION Our research findings demonstrate that rehabilitation training enhances the ability of calycosin to reduce oxidative stress, resulting in a decrease in neuronal apoptosis and an increase in proliferation, ultimately promoting neuronal survival.
Collapse
Affiliation(s)
- Mingdong Li
- Department of Spine Surgery, Zhongda Hospital, Southeast University, Nanjing 210009, China; Department of Orthopaedics and Traumatology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, China
| | - Yanqiang Huan
- Department of Spine Surgery, Inner Mongolia People's Hospital, Hohhot 010017, China
| | - Tianqi Jiang
- Department of Spine Surgery, Inner Mongolia People's Hospital, Hohhot 010017, China
| | - Yongxiong He
- Department of Spine Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou 570216, China
| | - Zengxin Gao
- Department of Spine Surgery, Zhongda Hospital, Southeast University, Nanjing 210009, China; Department of Orthopedics, Nanjing Lishui People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing 211200, China.
| |
Collapse
|
29
|
Lv S, Zhao K, Li R, Meng C, Li G, Yin F. EGFR-Activated JAK2/STAT3 Pathway Confers Neuroprotection in Spinal Cord Ischemia-Reperfusion Injury: Evidence from High-Throughput Sequencing and Experimental Models. Mol Neurobiol 2024; 61:646-661. [PMID: 37656314 DOI: 10.1007/s12035-023-03548-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/24/2023] [Indexed: 09/02/2023]
Abstract
This study aimed to investigate the molecular mechanisms underlying spinal cord ischemia-reperfusion (SCI/R) injury. Through RNA-Seq high-throughput sequencing and bioinformatics analysis, we found that EGFR was downregulated in the spinal cord of SCI/R mice and may function via mediating the JAK2/STAT3 signaling pathway. In vitro cell experiments indicated that overexpression of EGFR activated the JAK2/STAT3 signaling pathway and reduced neuronal apoptosis levels. In vivo animal experiments further confirmed this conclusion, suggesting that EGFR inhibits SCI/R-induced neuronal apoptosis by activating the JAK2/STAT3 signaling pathway, thereby improving SCI/R-induced spinal cord injury in mice. This study revealed the molecular mechanisms of SCI/R injury and provided new therapeutic strategies for treating neuronal apoptosis.
Collapse
Affiliation(s)
- Shijie Lv
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, No. 126, Xiantai Street, Changchun, 130033, People's Republic of China
| | - Kunchi Zhao
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, No. 126, Xiantai Street, Changchun, 130033, People's Republic of China
| | - Ran Li
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, No. 126, Xiantai Street, Changchun, 130033, People's Republic of China
| | - Chunyang Meng
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, No. 126, Xiantai Street, Changchun, 130033, People's Republic of China
| | - Guangchun Li
- Department of Orthopedics, Jilin Province People's Hospital, Changchun, 130021, People's Republic of China
| | - Fei Yin
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, No. 126, Xiantai Street, Changchun, 130033, People's Republic of China.
| |
Collapse
|
30
|
Mokhtari T, Uludag K. Role of NLRP3 Inflammasome in Post-Spinal-Cord-Injury Anxiety and Depression: Molecular Mechanisms and Therapeutic Implications. ACS Chem Neurosci 2024; 15:56-70. [PMID: 38109051 DOI: 10.1021/acschemneuro.3c00596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023] Open
Abstract
The majority of research on the long-term effects of spinal cord injury (SCI) has primarily focused on neuropathic pain (NP), psychological issues, and sensorimotor impairments. Among SCI patients, mood disorders, such as anxiety and depression, have been extensively studied. It has been found that chronic stress and NP have negative consequences and reduce the quality of life for individuals living with SCI. Our review examined both human and experimental evidence to explore the connection between mood changes following SCI and inflammatory pathways, with a specific focus on NLRP3 inflammasome signaling. We observed increased proinflammatory factors in the blood, as well as in the brain and spinal cord tissues of SCI models. The NLRP3 inflammasome plays a crucial role in various diseases by controlling the release of proinflammatory molecules like interleukin 1β (IL-1β) and IL-18. Dysregulation of the NLRP3 inflammasome in key brain regions associated with pain processing, such as the prefrontal cortex and hippocampus, contributes to the development of mood disorders following SCI. In this review, we summarized recent research on the expression and regulation of components related to NLRP3 inflammasome signaling in mood disorders following SCI. Finally, we discussed potential therapeutic approaches that target the NLRP3 inflammasome and regulate proinflammatory cytokines as a way to treat mood disorders following SCI.
Collapse
Affiliation(s)
- Tahmineh Mokhtari
- Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, People's Republic of China
- Department of Histology and Embryology, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, People's Republic of China
| | - Kadir Uludag
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, People's Republic of China
| |
Collapse
|
31
|
Dwivedi SD, Yadav K, Bhoi A, Sahu KK, Sangwan N, Singh D, Singh MR. Targeting Pathways and Integrated Approaches to Treat Rheumatoid Arthritis. Crit Rev Ther Drug Carrier Syst 2024; 41:87-102. [PMID: 38305342 DOI: 10.1615/critrevtherdrugcarriersyst.2023044719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic symmetrical systemic disorder that not only affects joints but also other organs such as heart, lungs, kidney, and liver. Approximately there is 0.5%-1% of the total population affected by RA. RA pathogenesis still remains unclear due to which its appropriate treatment is a challenge. Further, multitudes of factors have been reported to affect its progression i.e. genetic factor, environmental factor, immune factor, and oxidative factor. Therapeutic approaches available for the treatment of RA include NSAIDs, DMARDs, enzymatic, hormonal, and gene therapies. But most of them provide the symptomatic relief without treating the core of the disease. This makes it obligatory to explore and reach the molecular targets for cure and long-term relief from RA. Herein, we attempt to provide extensive overlay of the new targets for RA treatment such as signaling pathways, proteins, and receptors affecting the progression of the disease and its severity. Precise modification in these targets such as suppressing the notch signaling pathway, SIRT 3 protein, Sphingosine-1-phosphate receptor and stimulating the neuronal signals particularly efferent vagus nerve and SIRT 1 protein may offer long term relief and potentially diminish the chronicity. To target or alter the novel molecules and signaling pathway a specific delivery system is required such as liposome, nanoparticles and micelles and many more. Present review paper discusses in detail about novel targets and delivery systems for treating RA.
Collapse
Affiliation(s)
- Shradha Devi Dwivedi
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur 492 010, India
| | - Krishna Yadav
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur (C.G), 492010, India
| | - Anita Bhoi
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur 492 010, India
| | - Keshav Kant Sahu
- School of studies in biotechnology, Pt. Ravishankar Shukla University, Raipur (C.G), 492010, India
| | - Neelam Sangwan
- Department of Biochemistry, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, 123031, India
| | - Deependra Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, 492010, India; National Centre for Natural Resources, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, 492010, India
| | - Manju Rawat Singh
- University Institute of pharmacy, Pt.Ravishankar Shukla University, Raipur.(C.G.) 2. National centre for natural resources, Pt. Ravishankar Shukla University, Raipur
| |
Collapse
|
32
|
Mulla J, Katti R, Scott MJ. The Role of Gasdermin-D-Mediated Pyroptosis in Organ Injury and Its Therapeutic Implications. Organogenesis 2023; 19:2177484. [PMID: 36967609 PMCID: PMC9980590 DOI: 10.1080/15476278.2023.2177484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 02/03/2023] [Indexed: 02/25/2023] Open
Abstract
Gasdermin-D (GSDMD) belongs to the Gasdermin family (GSDM), which are pore-forming effector proteins that facilitate inflammatory cell death, also known as pyroptosis. This type of programmed cell death is dependent on inflammatory caspase activation, which cleaves gasdermin-D (GSDMD) to form membrane pores and initiates the release of pro-inflammatory cytokines. Pyroptosis plays an important role in achieving immune regulation and homeostasis within various organ systems. The role of GSDMD in pyroptosis has been extensively studied in recent years. In this review, we summarize the role of GSDMD in cellular and organ injury mediated by pyroptosis. We will also provide an outlook on GSDMD therapeutic targets in various organ systems.
Collapse
Affiliation(s)
- Joud Mulla
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rohan Katti
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Melanie J. Scott
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
33
|
Xu T, Zhu Q, Huang Q, Gu Q, Zhu Y, Tang M, Tian S, Wang L, Yan F, Ge J, Sha W, Lin X. FGF21 prevents neuronal cell ferroptosis after spinal cord injury by activating the FGFR1/β-Klotho pathway. Brain Res Bull 2023; 202:110753. [PMID: 37660729 DOI: 10.1016/j.brainresbull.2023.110753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/12/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
Spinal cord injury (SCI) is a kind of traumatic nervous system disease caused by neuronal death, causing symptoms like sensory, motor, and autonomic nerve dysfunction. The recovery of neurological function has always been a intractable problem that has greatly distressed individuals and society. Although the involvement of iron-dependent lipid peroxidation leading to nerve cell ferroptosis in SCI progression has been reported, the underlying mechanisms remain unaddressed. Thus, this study aimed to investigate the potential of recombinant human FGF21 (rhFGF21) in inhibiting ferroptosis of nerve cells and improving limb function after SCI, along with its underlying mechanisms. In vivo animal model showed that FGFR1, p-FGFR1, and β-Klotho protein gradually increased over time after injury, reaching a peak on the third day. Moreover, rhFGF21 treatment significantly reduced ACSL4, increased GPX4 expression, reduced iron deposition, and inhibited ferroptosis. Meanwhile, rhFGF21 decreased cell apoptosis following acute spinal cord damage. In contrast, FGFR1 inhibitor PD173074 partially reversed the rhFGF21-induced therapeutic effects. Overall, this work revealed that rhFGF21 activates the FGFR1/β-Klotho pathway to decrease ferroptosis of nerve cells, suggesting that FGF21 could be a new therapeutic target for SCI neurological rehabilitation.
Collapse
Affiliation(s)
- Tianli Xu
- Department of Orthopaedic Surgery, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, China; Orthopaedics Laboratory, The First People's Hospital of Zhangjiagang City, Suzhou 215600, China
| | - Qiancheng Zhu
- Department of Orthopaedic Surgery, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, China; Orthopaedics Laboratory, The First People's Hospital of Zhangjiagang City, Suzhou 215600, China
| | - Qun Huang
- Department of Orthopaedic Surgery, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, China; Orthopaedics Laboratory, The First People's Hospital of Zhangjiagang City, Suzhou 215600, China
| | - Qi Gu
- Department of Orthopaedic Surgery, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, China; Orthopaedics Laboratory, The First People's Hospital of Zhangjiagang City, Suzhou 215600, China
| | - Yi Zhu
- Department of Orthopaedic Surgery, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, China; Orthopaedics Laboratory, The First People's Hospital of Zhangjiagang City, Suzhou 215600, China
| | - Mengjie Tang
- Orthopaedics Laboratory, The First People's Hospital of Zhangjiagang City, Suzhou 215600, China; Department of Endocrinology, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, China
| | - Shoujin Tian
- Department of Orthopaedic Surgery, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, China; Orthopaedics Laboratory, The First People's Hospital of Zhangjiagang City, Suzhou 215600, China
| | - Liming Wang
- Department of Orthopaedic Surgery, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, China
| | - Fei Yan
- Department of Orthopaedic Surgery, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, China
| | - Jianfei Ge
- Department of Orthopaedic Surgery, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, China; Orthopaedics Laboratory, The First People's Hospital of Zhangjiagang City, Suzhou 215600, China
| | - Weiping Sha
- Department of Orthopaedic Surgery, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, China; Orthopaedics Laboratory, The First People's Hospital of Zhangjiagang City, Suzhou 215600, China.
| | - Xiaolong Lin
- Department of Orthopaedic Surgery, Zhangjiagang Hospital Affiliated to Soochow University, Suzhou, China; Orthopaedics Laboratory, The First People's Hospital of Zhangjiagang City, Suzhou 215600, China.
| |
Collapse
|
34
|
Li C, Shen W, Xu Z, Li C, Liu Q, Pang Y, Li J, Wang X, Wang Z, Feng S. The discovery of the new mechanism: Celastrol improves spinal cord injury by increasing cAMP through VIP-ADCYAP1R1-GNAS pathway. Biomed Pharmacother 2023; 165:115250. [PMID: 37531781 DOI: 10.1016/j.biopha.2023.115250] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/04/2023] Open
Abstract
Spinal cord injury (SCI) is a debilitating condition that results in significant impairment of motor function and sensation. Despite the ongoing efforts to develop effective treatments, there are currently very limited options available for patients with SCI. Celastrol, a natural anti-inflammatory compound extracted from Tripterygium wilfordii, has been shown to exhibit anti-inflammatory and anti-apoptotic properties. In this study, we aimed to explore the therapeutic potential of celastrol for SCI and elucidate the underlying molecular mechanisms involved. We found that local tissue often experiences a significant decrease in cAMP content and occurrs apoptosis after SCI. However, the treatment of celastrol could promote the production of cAMP by up-regulating the VIP-ADCYAP1R1-GNAS pathway. This could effectively inhibit the phosphorylation of JNK and prevent apoptosis, ultimately improving the exercise ability after SCI. Together, our results reveal celastrol may be a promising therapeutic agent for the treatment of SCI.
Collapse
Affiliation(s)
- Chuanhao Li
- Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China
| | - Wenyuan Shen
- Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China; Spine Surgery Department of the Second Hospital, Cheeloo College of Medicine, Shandong University, 247 Beiyuan Street, Jinan, Shandong 250033, China
| | - Zhengyu Xu
- Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China
| | - Chao Li
- Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China
| | - Quan Liu
- Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China
| | - Yilin Pang
- Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China
| | - Junjin Li
- Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China
| | - Xiaoyu Wang
- Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China
| | - Zhishuo Wang
- Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China
| | - Shiqing Feng
- Department of Orthopedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin 300052, China; Spine Surgery Department of the Second Hospital, Cheeloo College of Medicine, Shandong University, 247 Beiyuan Street, Jinan, Shandong 250033, China; Orthopedic Research Center of Shandong University &Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250063, China.
| |
Collapse
|
35
|
Xu Y, Geng Y, Wang H, Zhang H, Qi J, Li F, Hu X, Chen Y, Si H, Li Y, Wang X, Xu H, Kong J, Cai Y, Wu A, Ni W, Xiao J, Zhou K. Cyclic helix B peptide alleviates proinflammatory cell death and improves functional recovery after traumatic spinal cord injury. Redox Biol 2023; 64:102767. [PMID: 37290302 DOI: 10.1016/j.redox.2023.102767] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/10/2023] Open
Abstract
BACKGROUND Necroptosis and pyroptosis, two types of proinflammatory programmed cell death, were recently found to play important roles in spinal cord injury (SCI). Moreover, cyclic helix B peptide (CHBP) was designed to maintain erythropoietin (EPO) activity and protect tissue against the adverse effects of EPO. However, the protective mechanism of CHBP following SCI is still unknown. This research explored the necroptosis- and pyroptosis-related mechanism underlying the neuroprotective effect of CHBP after SCI. METHODS Gene Expression Omnibus (GEO) datasets and RNA sequencing were used to identify the molecular mechanisms of CHBP for SCI. A mouse model of contusion SCI was constructed, and HE staining, Nissl staining, Masson staining, footprint analysis and the Basso Mouse Scale (BMS) were applied for histological and behavioural analyses. qPCR, Western blot analysis, immunoprecipitation and immunofluorescence were utilized to analyse the levels of necroptosis, pyroptosis, autophagy and molecules associated with the AMPK signalling pathway. RESULTS The results revealed that CHBP significantly improved functional restoration, elevated autophagy, suppressed pyroptosis, and mitigated necroptosis after SCI. 3-Methyladenine (3-MA), an autophagy inhibitor, attenuated these beneficial effects of CHBP. Furthermore, CHBP-triggered elevation of autophagy was mediated by the dephosphorylation and nuclear translocation of TFEB, and this effect was due to stimulation of the AMPK-FOXO3a-SPK2-CARM1 and AMPK-mTOR signalling pathways. CONCLUSION CHBP acts as a powerful regulator of autophagy that improves functional recovery by alleviating proinflammatory cell death after SCI and thus might be a prospective therapeutic agent for clinical application.
Collapse
Affiliation(s)
- Yu Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China; Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Yibo Geng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Hui Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Haojie Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Jianjun Qi
- Department of Clinical Laboratory, The First Affiliated Hospital of Wannan Medical College (Yi jishan Hospital of Wannan Medical College), Wuhu, 241001, China
| | - Feida Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Xinli Hu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Yituo Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Haipeng Si
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Yao Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Huazi Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Jianzhong Kong
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Yuepiao Cai
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Aimin Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Wenfei Ni
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China.
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, China.
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China.
| |
Collapse
|
36
|
Shan W, Li S, Yin Z. Identification of canonical pyroptosis-related genes, associated regulation axis, and related traditional Chinese medicine in spinal cord injury. Front Aging Neurosci 2023; 15:1152297. [PMID: 37273650 PMCID: PMC10232751 DOI: 10.3389/fnagi.2023.1152297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/02/2023] [Indexed: 06/06/2023] Open
Abstract
Neuroinflammation plays an important role in spinal cord injury (SCI), and pyroptosis is inflammatory-related programmed cell death. Although neuroinflammation induced by pyroptosis has been reported in SCI, there is a lack of systematic research on SCI pyroptosis and its regulation mechanism. The purpose of this study was to systematically analyze the expression of pyroptosis-related genes (PRGs) in different SCI models and associated regulation axis by bioinformatics methods. We downloaded raw counts data of seven high-throughput sequencings and two microarray datasets from the GEO database, classified by species (rat and mouse) and SCI modes (moderate contusive model, aneurysm clip impact-compression model, and hemisection model), including mRNAs, miRNAs, lncRNAs, and circRNAs, basically covering the acute, subacute and chronic stages of SCI. We performed differential analysis by R (DEseq2) or GEO2R and found that the AIM2/NLRC4/NLRP3 inflammasome-related genes, GSDMD, IL1B, and IL18, were highly expressed in SCI. Based on the canonical NLRP3 inflammasome-mediated pyroptosis-related genes (NLRP3/PRGs), we constructed transcription factors (TFs)-NLRP3/PRGs, miRNAs- Nlrp3/PRGs and lncRNAs/circRNAs/mRNAs-miRNA- Nlrp3/PRGs (ceRNA) networks. In addition, we also predicted Traditional Chinese medicine (TCM) and small, drug-like molecules with NLRP3/PRGs as potential targets. Finally, 39 up-regulated TFs were identified, which may regulate at least two of NLRP3/PRGs. A total of 7 down-regulated miRNAs were identified which could regulate Nlrp3/PRGs. ceRNA networks were constructed including 23 lncRNAs, 3 cicrRNAs, 6 mRNAs, and 44 miRNAs. A total of 24 herbs were identified which may with two NLRP3/PRGs as potential targets. It is expected to provide new ideas and therapeutic targets for the treatment of SCI.
Collapse
Affiliation(s)
- Wenshan Shan
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Shuang Li
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, Anhui, China
| | - Zongsheng Yin
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
37
|
Song YQ, Lin WJ, Hu HJ, Wu SH, Jing L, Lu Q, Zhu W. Sodium tanshinone IIA sulfonate attenuates sepsis-associated brain injury via inhibiting NOD-like receptor 3/caspase-1/gasdermin D-mediated pyroptosis. Int Immunopharmacol 2023; 118:110111. [PMID: 37028275 DOI: 10.1016/j.intimp.2023.110111] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/19/2023] [Accepted: 03/26/2023] [Indexed: 04/08/2023]
Abstract
BACKGROUND Sodium tanshinone IIA sulfonate (STS) has been reported to protect organ function in sepsis. However, the attenuation of sepsis-associated brain injury and its underlying mechanisms by STS has not been established. METHODS C57BL/6 mice were used to establish the cecal ligation perforation (CLP) model, and STS was injected intraperitoneally 30 min before the surgery. The BV2 cells were stimulated by lipopolysaccharide after being pre-treated with STS for 4 h. The STS protective effects against brain injury and in vivo anti-neuroinflammatory effects were investigated using the 48-hour survival rate and body weight changes, brain water content, histopathological staining, immunohistochemistry, ELISA, RT-qPCR, and transmission electron microscopy. The pro-inflammatory cytokines of BV2 cells were detected by ELISA and RT-qPCR. At last, the levels of NOD-like receptor 3 (NLRP3) inflammasome activation and pyroptosis in brain tissues of the CLP model and BV2 cells were detected using western blotting. RESULTS STS increased the survival rate, decreased brain water content, and improved brain pathological damage in the CLP models. STS increased the expressions of tight junction proteins ZO-1 and Claudin5 while reducing the expressions of tumor necrosis factor α (TNF-α), interleukin-1β(IL-1β), and interleukin-18 (IL-18) in the brain tissues of the CLP models. Meanwhile, STS inhibited microglial activation and M1-type polarization in vitro and in vivo. The NLRP3/caspase-1/ gasdermin D (GSDMD)-mediated pyroptosis was activated in the brain tissues of the CLP models and lipopolysaccharide (LPS)-treated BV2 cells, which was significantly inhibited by STS. CONCLUSIONS The activation of NLRP3/caspase-1/GSDMD-mediated pyroptosis and subsequent secretion of proinflammatory cytokines may be the underlying mechanisms of STS against sepsis-associated brain injury and neuroinflammatory response.
Collapse
Affiliation(s)
- Ya-Qin Song
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei-Ji Lin
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong-Jie Hu
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shu-Hui Wu
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liang Jing
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qing Lu
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Zhu
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
38
|
Zhuo Y, Li X, He Z, Lu M. Pathological mechanisms of neuroimmune response and multitarget disease-modifying therapies of mesenchymal stem cells in Parkinson's disease. Stem Cell Res Ther 2023; 14:80. [PMID: 37041580 PMCID: PMC10091615 DOI: 10.1186/s13287-023-03280-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 03/13/2023] [Indexed: 04/13/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by the degeneration of dopaminergic neurons in the substantia nigra (SN); the etiology and pathological mechanism of the disease are still unclear. Recent studies have shown that the activation of a neuroimmune response plays a key role in the development of PD. Alpha-synuclein (α-Syn), the primary pathological marker of PD, can gather in the SN and trigger a neuroinflammatory response by activating microglia which can further activate the dopaminergic neuron's neuroimmune response mediated by reactive T cells through antigen presentation. It has been shown that adaptive immunity and antigen presentation processes are involved in the process of PD and further research on the neuroimmune response mechanism may open new methods for its prevention and therapy. While current therapeutic regimens are still focused on controlling clinical symptoms, applications such as immunoregulatory strategies can delay the symptoms and the process of neurodegeneration. In this review, we summarized the progression of the neuroimmune response in PD based on recent studies and focused on the use of mesenchymal stem cell (MSC) therapy and challenges as a strategy of disease-modifying therapy with multiple targets.
Collapse
Affiliation(s)
- Yi Zhuo
- Department of Neurosurgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410000, Hunan, China
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410006, Hunan, China
| | - Xuan Li
- Department of Neurosurgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410000, Hunan, China
| | - Zhengwen He
- Department of Neurosurgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410000, Hunan, China.
| | - Ming Lu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410006, Hunan, China.
- Hunan Provincial Key Laboratory of Neurorestoratology, The Second Affiliated Hospital (the 921st Hospital of PLA), Hunan Normal University, Changsha, 410003, Hunan, China.
| |
Collapse
|
39
|
Celastrol inhibits necroptosis by attenuating the RIPK1/RIPK3/MLKL pathway and confers protection against acute pancreatitis in mice. Int Immunopharmacol 2023; 117:109974. [PMID: 37012867 DOI: 10.1016/j.intimp.2023.109974] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/17/2023] [Accepted: 02/28/2023] [Indexed: 03/17/2023]
Abstract
Necroptosis is a necrotic form of regulated cell death, which is primarily mediated by the receptor-interacting protein kinase 1 (RIPK1), RIPK3, and mixed lineage kinase domain-like (MLKL) pathway in a caspase-independent manner. Necroptosis has been found to occur in virtually all tissues and diseases evaluated, including pancreatitis. Celastrol, a pentacyclic triterpene extracted from the roots of Tripterygium wilfordii (thunder god vine), possesses potent anti-inflammatory and anti-oxidative activities. Yet, it is unclear whether celastrol has any effects on necroptosis and necroptotic-related diseases. Here we showed that celastrol significantly suppressed necroptosis induced by lipopolysaccharide (LPS) plus pan-caspase inhibitor (IDN-6556) or by tumor-necrosis factor-α in combination with LCL-161 (Smac mimetic) and IDN-6556 (TSI). In these in vitro cellular models, celastrol inhibited the phosphorylation of RIPK1, RIPK3, and MLKL and the formation of necrosome during necroptotic induction, suggesting its possible action on upstream signaling of the necroptotic pathway. Consistent with the known role of mitochondrial dysfunction in necroptosis, we found that celastrol significantly rescued TSI-induced loss of mitochondrial membrane potential. TSI-induced intracellular and mitochondrial reactive oxygen species (mtROS), which are involved in the autophosphorylation of RIPK1 and recruitment of RIPK3, were significantly attenuated by celastrol. Moreover, in a mouse model of acute pancreatitis that is associated with necroptosis, celastrol administration significantly reduced the severity of caerulein-induced acute pancreatitis accompanied by decreased phosphorylation of MLKL in pancreatic tissues. Collectively, celastrol can attenuate the activation of RIPK1/RIPK3/MLKL signaling likely by attenuating mtROS production, thereby inhibiting necroptosis and conferring protection against caerulein-induced pancreatitis in mice.
Collapse
|
40
|
Li D, Lu X, Xu G, Liu S, Gong Z, Lu F, Xia X, Jiang J, Wang H, Zou F, Ma X. Dihydroorotate dehydrogenase regulates ferroptosis in neurons after spinal cord injury via the P53-ALOX15 signaling pathway. CNS Neurosci Ther 2023. [PMID: 36942513 DOI: 10.1111/cns.14150] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Spinal cord injury (SCI) is a highly disabling condition in spinal surgery that leads to neuronal damage and secondary inflammation. Ferroptosis is a non-apoptotic type of cell death that has only recently been identified, which is marked primarily by iron-dependent and lipid-derived reactive oxygen species accumulation, and accompanied by morphological modifications such as mitochondrial atrophy and increase in membrane density. Dihydroorotate dehydrogenase (DHODH) is a powerful inhibitor of ferroptosis and has been demonstrated to inhibit cellular ferroptosis in tumor cells, but whether it can inhibit neuronal injury following spinal cord injury remains ambiguous. METHODS In this study, the effect of DHODH on neuronal ferroptosis was observed in vivo and in vitro using a rat spinal cord injury model and erastin-induced PC12 cells, respectively. A combination of molecular and histological approaches was performed to assess ferroptosis and explore the possible mechanisms in vivo and in vitro. RESULTS First, we confirmed the existence of neuronal ferroptosis after spinal cord injury and that DHODH attenuates neuronal damage after spinal cord injury. Second, we showed molecular evidence that DHODH inhibits the activation of ferroptosis-related molecules and reduces lipid peroxide production and mitochondrial damage, thereby reducing neuronal ferroptosis. Further analysis suggests that P53/ALOX15 may be one of the mechanisms regulated by DHODH. Importantly, we determined that DHODH inhibits ALOX15 expression by inhibiting P53. CONCLUSIONS Our findings reveal a novel function for DHODH in neuronal ferroptosis after spinal cord injury, suggesting a unique therapeutic target to alleviate the disease process of spinal cord injury.
Collapse
Affiliation(s)
- Dachuan Li
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiao Lu
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Guangyu Xu
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Siyang Liu
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhaoyang Gong
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Feizhou Lu
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Xinlei Xia
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianyuan Jiang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Hongli Wang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Fei Zou
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaosheng Ma
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
41
|
González-Cofrade L, P Green J, Cuadrado I, Amesty Á, Oramas-Royo S, David Brough, Estévez-Braun A, Hortelano S, de Las Heras B. Phenolic and quinone methide nor-triterpenes as selective NLRP3 inflammasome inhibitors. Bioorg Chem 2023; 132:106362. [PMID: 36657273 DOI: 10.1016/j.bioorg.2023.106362] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/30/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Dysregulated inflammasome activity, particularly of the NLRP3 inflammasome, is associated with the development of several inflammatory diseases. The study of molecules directly targeting NLRP3 is an emerging field in the discovery of new therapeutic compounds for the treatment of inflammatory disorders. Friedelane triterpenes are biologically active phytochemicals having a wide range of activities including anti-inflammatory effects. In this work, we evaluated the potential anti-inflammatory activity of phenolic and quinonemethide nor-triterpenes (1-11) isolated from Maytenus retusa and some semisynthetic derivatives (12-16) through inhibition of the NLRP3 inflammasome in macrophages. Among them, we found that triterpenes 6 and 14 were the most potent, showing markedly reduced caspase-1 activity, IL-1β secretion (IC50 = 1.15 µM and 0.19 µM, respectively), and pyroptosis (IC50 = 2.21 µM and 0.13 µM, respectively). Further characterization confirmed their selective inhibition of NLRP3 inflammasome in both canonical and non-canonical activation pathways with no effects on AIM2 or NLRC4 inflammasome activation.
Collapse
Affiliation(s)
- Laura González-Cofrade
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Jack P Green
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Irene Cuadrado
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Ángel Amesty
- Departamento de Química Orgánica, Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain
| | - Sandra Oramas-Royo
- Departamento de Química Orgánica, Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain
| | - David Brough
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Ana Estévez-Braun
- Departamento de Química Orgánica, Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain.
| | - Sonsoles Hortelano
- Unidad de Terapias Farmacológicas, Área de Genética Humana, Instituto de Investigación de, Enfermedades Raras (IIER), Instituto de Salud Carlos III, Carretera de Majadahonda-Pozuelo Km 2, 28220 Madrid, Spain.
| | - Beatriz de Las Heras
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| |
Collapse
|
42
|
Kaur J, Mojumdar A. A mechanistic overview of spinal cord injury, oxidative DNA damage repair and neuroprotective therapies. Int J Neurosci 2023; 133:307-321. [PMID: 33789065 DOI: 10.1080/00207454.2021.1912040] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Despite substantial development in medical treatment strategies scientists are struggling to find a cure against spinal cord injury (SCI) which causes long term disability and paralysis. The prime rationale behind it is the enlargement of primary lesion due to an initial trauma to the spinal cord which spreads to the neighbouring spinal tissues It begins from the time of traumatic event happened and extends to hours and even days. It further causes series of biological and functional alterations such as inflammation, excitotoxicity and ischemia, and promotes secondary lesion to the cord which worsens the life of individuals affected by SCI. Oxidative DNA damage is a stern consequence of oxidative stress linked with secondary injury causes oxidative base alterations and strand breaks, which provokes cell death in neurons. It is implausible to stop primary damage however it is credible to halt the secondary lesion and improve the quality of the patient's life to some extent. Therefore it is crucial to understand the hidden perspectives of cell and molecular biology affecting the pathophysiology of SCI. Thus the focus of the review is to connect the missing links and shed light on the oxidative DNA damages and the functional repair mechanisms, as a consequence of the injury in neurons. The review will also probe the significance of neuroprotective strategies in the present scenario. HIGHLIGHTSSpinal cord injury, a pernicious condition, causes excitotoxicity and ischemia, ultimately leading to cell death.Oxidative DNA damage is a consequence of oxidative stress linked with secondary injury, provoking cell death in neurons.Base excision repair (BER) is one of the major repair pathways that plays a crucial role in repairing oxidative DNA damages.Neuroprotective therapies curbing SCI and boosting BER include the usage of pharmacological drugs and other approaches.
Collapse
Affiliation(s)
- Jaspreet Kaur
- Department of Neuroscience, University of Copenhagen, Copenhagen N, Denmark
| | - Aditya Mojumdar
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
43
|
Upregulation of RAB7 is related to neuronal pyroptosis after spinal cord injury in rats. J Chem Neuroanat 2023; 128:102229. [PMID: 36592695 DOI: 10.1016/j.jchemneu.2022.102229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/19/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022]
Abstract
Rab7 belongs to the Ras small GTPase superfamily, and abnormal expression of Rab7 can cause neuropathy and lipid metabolism diseases. Studies have shown that Rab7 plays a crucial role in the inner membrane translocase. However, the role of Rab7 in the regulatory mechanisms of cell survival in spinal cord injury remains unknown. We used a rat spinal cord injury (SCI) model to explore the cellular localization and expression of Rab7 after SCI in this study. Western blot analysis showed that Rab7 was expressed in the spinal cord tissue. On the first day, it significantly increased and peaked after SCI on the third day. Furthermore, western blotting also demonstrated that pyroptosis-related protein Gasdermin D (GSDMD), Caspase-1, apoptosis-associated speck-like protein (ASC) expression peaked after the third-day post-injury. Importantly, the immunohistochemistry analysis revealed that Rab7 was completely colocalized with ASC in neurons after SCI. These results suggested that Rab7 was colocalized with NeuN and ASC, involved in the pyroptosis of neurons, and closely related to the spinal cord after injury.
Collapse
|
44
|
Role of Transcription Factor Nrf2 in Pyroptosis in Spinal Cord Injury by Regulating GSDMD. Neurochem Res 2023; 48:172-187. [PMID: 36040608 DOI: 10.1007/s11064-022-03719-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 07/26/2022] [Accepted: 08/01/2022] [Indexed: 02/07/2023]
Abstract
Spinal cord injury (SCI) is a prevalent disease that debilitates millions of people. Nuclear factor E2-related factor 2 (Nrf2) is an important regulator of SCI. The current study sought to elaborate on the effects of Nrf2 on gasdermin D (GSDMD)-mediated microglia pyroptosis to repair SCI. The SCI rat model was established via the percussion of the T10 spinal cord and in vitro SCI model was established on BV-2 cells via lipopolysaccharide (LPS)/adenosine triphosphate (ATP) treatment. Nrf2 expression in SCI rats and BV-2 cells was overexpressed via pcDNA3.1-Nrf2 injection. Functional assays were carried out to evaluate SCI rat pathological injury, BV-2 cell viability, the release of lactate dehydrogenase (LDH), and pyroptotic factors. The binding relations of Nrf2 and microRNA (miR)-146a and miR-146a and GSDMD were verified. BV-2 pyroptosis was analyzed after the combined experiment of miR-146a-inhibitor and pcDNA3.1-GSDMD. Our experiments revealed that Nrf2 was downregulated in SCI, and Nrf2 overexpression relieved SCI pathological injury, promoted BV-2 cell viability, inhibited the release of LDH, and repressed pyroptosis. Mechanically, Nrf2 bound to the miR-146a promoter and promoted miR-146a expression, and miR-146a targeted GSDMD transcription. Rescue experiments revealed that miR-146a knockdown or GSDMD overexpression annulled the inhibitory function of Nrf2 overexpression in LPS/ATP-induced microglia pyroptosis. Overall, our findings initially highlighted that Nrf2 inhibited GSDMD-mediated microglia pyroptosis and accelerated SCI repair by repressing miR-146a.
Collapse
|
45
|
Li M, Hasiqiqige, Huan Y, Wang X, Tao M, Jiang T, Xie H, Jisiguleng W, Xing W, Zhu Z, Wang A, He Y. Calycosin ameliorates spinal cord injury by targeting Hsp90 to inhibit oxidative stress and apoptosis of nerve cells. J Chem Neuroanat 2023; 127:102190. [PMID: 36402284 DOI: 10.1016/j.jchemneu.2022.102190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/09/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Zhenbao pill is effective in protecting against spinal cord injury (SCI). We attempt to explore the characteristics of calycosin (a main monomer of Zhenbao pill) in SCI and its relative mechanism. METHODS The target of calycosin was screened using pharmacological network analysis. The SCI cell model was constructed using hydrogen peroxide (H2O2), and the animal model was developed by compressing spinal cord with a vascular clamp. Flow cytometry was conducted to test reactive oxygen species (ROS) levels and cell apoptosis. Detection of malondialdehyde (MDA) activity and Superoxide dismutase (SOD) activity were performed using relative kits. Heat shock protein 90 (HSP90) was examined using western blot and quantitative real-time PCR. Motor function tests were carried out. The hematoxylin-eosin and Nissl staining were conducted. RESULTS In SCI models, ROS, MDA, and cell apoptosis were elevated, SOD and HSP90 levels were restrained, while calycosin addition reversed the above results. Besides, calycosin application or HSP90 overexpression enhanced phosphorylation of protein kinase B (Akt) but weakened that of apoptosis signal-regulating kinase 1 (ASK1) and p38, while HSP90 inhibitor 17-AAG treatment restrained the above results. Meanwhile, the injection of calycosin improved the motor function in SCI model rats. Furthermore, the pathologic results also clarified the positive effect of calycosin on SCI. CONCLUSION HSP90 was lowly expressed in SCI models. Calycosin alleviated SCI by promoting HSP90 up-regulation and inhibiting oxidative stress and apoptosis of nerve cells.
Collapse
Affiliation(s)
- Mingdong Li
- Department of Orthopaedics and Traumatology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311 Hainan Province, China
| | - Hasiqiqige
- Inner Mongolia innovative Engineering Research Center, Hohhot, 010060 Inner Mongolia, China
| | - Yanqiang Huan
- Department of Spine Surgery, Inner Mongolia People's Hospital, Hohhot, 010017 Inner Mongolia, China
| | - Xiaolei Wang
- Department of Spine Surgery, Inner Mongolia People's Hospital, Hohhot, 010017 Inner Mongolia, China
| | - Mingkai Tao
- Department of Spine Surgery, Inner Mongolia People's Hospital, Hohhot, 010017 Inner Mongolia, China
| | - Tianqi Jiang
- Department of Spine Surgery, Inner Mongolia People's Hospital, Hohhot, 010017 Inner Mongolia, China
| | - Hongbin Xie
- Department of Spine Surgery, Inner Mongolia People's Hospital, Hohhot, 010017 Inner Mongolia, China
| | - Wu Jisiguleng
- Department of Spine Surgery, Inner Mongolia People's Hospital, Hohhot, 010017 Inner Mongolia, China
| | - Wei Xing
- Department of Spine Surgery, Inner Mongolia People's Hospital, Hohhot, 010017 Inner Mongolia, China
| | - Zhibo Zhu
- Department of Spine Surgery, Inner Mongolia People's Hospital, Hohhot, 010017 Inner Mongolia, China
| | - Aitao Wang
- Department of Anesthesiology, Inner Mongolia People's Hospital, Hohhot, 010017 Inner Mongolia, China.
| | - Yongxiong He
- Department of Spine Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570216 Hainan Province, China.
| |
Collapse
|
46
|
Yin J, Gong G, Wan W, Liu X. Pyroptosis in spinal cord injury. Front Cell Neurosci 2022; 16:949939. [PMID: 36467606 PMCID: PMC9715394 DOI: 10.3389/fncel.2022.949939] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/03/2022] [Indexed: 10/21/2023] Open
Abstract
Spinal cord injury (SCI) often brings devastating consequences to patients and their families. Pathophysiologically, the primary insult causes irreversible damage to neurons and glial cells and initiates the secondary damage cascade, further leading to inflammation, ischemia, and cells death. In SCI, the release of various inflammatory mediators aggravates nerve injury. Pyroptosis is a new pro-inflammatory pattern of regulated cell death (RCD), mainly mediated by caspase-1 or caspase-11/4/5. Gasdermins family are pore-forming proteins known as the executor of pyroptosis and the gasdermin D (GSDMD) is best characterized. Pyroptosis occurs in multiple central nervous system (CNS) cell types, especially plays a vital role in the development of SCI. We review here the evidence for pyroptosis in SCI, and focus on the pyroptosis of different cells and the crosstalk between them. In addition, we discuss the interaction between pyroptosis and other forms of RCD in SCI. We also summarize the therapeutic strategies for pyroptosis inhibition, so as to provide novel ideas for improving outcomes following SCI.
Collapse
Affiliation(s)
- Jian Yin
- Department of Orthopedics, The Affiliated Jiangning Hospital With Nanjing Medical University, Nanjing, China
- Department of Orthopedics, Shanghai General Hospital of Nanjing Medical University, Shanghai, China
| | - Ge Gong
- Department of Geriatrics, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wenhui Wan
- Department of Geriatrics, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xinhui Liu
- Department of Orthopedics, The Affiliated Jiangning Hospital With Nanjing Medical University, Nanjing, China
| |
Collapse
|
47
|
Ye D, Xu Y, Shi Y, Fan M, Lu P, Bai X, Feng Y, Hu C, Cui K, Tang X, Liao J, Huang W, Xu F, Liang X, Huang J. Anti-PANoptosis is involved in neuroprotective effects of melatonin in acute ocular hypertension model. J Pineal Res 2022; 73:e12828. [PMID: 36031799 DOI: 10.1111/jpi.12828] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/12/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022]
Abstract
Acute ocular hypertension (AOH) is the most important characteristic of acute glaucoma, which can lead to retinal ganglion cell (RGC) death and permanent vision loss. So far, approved effective therapy is still lacking in acute glaucoma. PANoptosis (pyroptosis, apoptosis, and necroptosis), which consists of three key modes of programmed cell death-apoptosis, necroptosis, and pyroptosis-may contribute to AOH-induced RGC death. Previous studies have demonstrated that melatonin (N-acetyl-5-methoxytryptamine) exerts a neuroprotective effect in many retinal degenerative diseases. However, whether melatonin is anti-PANoptotic and neuroprotective in the progression of acute glaucoma remains unclear. Thus, this study aimed to explore the role of melatonin in AOH retinas and its underlying mechanisms. The results showed that melatonin treatment attenuated the loss of ganglion cell complex thickness, retinal nerve fiber layer thickness, and RGC after AOH injury, and improved the amplitudes of a-wave, b-wave, and oscillatory potentials in the electroretinogram. Additionally, the number of terminal deoxynucleotidyl transferase dUTP nick-end labeling-positive cells was decreased, and the upregulation of cleaved caspase-8, cleaved caspase-3, Bax, and Bad and downregulation of Bcl-2 and p-Bad were inhibited after melatonin administration. Meanwhile, both the expression and activation of MLKL, RIP1, and RIP3, along with the number of PI-positive cells, were reduced in melatonin-treated mice, and p-RIP3 was in both RGC and microglia/macrophage after AOH injury. Furthermore, melatonin reduced the expression of NLRP3, ASC, cleaved caspase-1, gasdermin D (GSDMD), and cleaved GSDMD, and decreased the number of Iba1/interleukin-1β-positive cells. In conclusion, melatonin ameliorated retinal structure, prevented retinal dysfunction after AOH, and exerted a neuroprotective effect via inhibition of PANoptosis in AOH retinas.
Collapse
Affiliation(s)
- Dan Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yue Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yuxun Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Matthew Fan
- Yale College, Yale University, New Haven, Connecticut, USA
| | - Peng Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xue Bai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yanlin Feng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Chenyang Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Kaixuan Cui
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xiaoyu Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jing Liao
- Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, China
| | - Wei Huang
- Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, China
| | - Fan Xu
- Institute of Ophthalmic Diseases, Guangxi Academy of Medical Sciences & Department of Ophthalmology, the People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology, Nanning, China
| | - Xiaoling Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jingjing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
48
|
Qiang R, Li Y, Dai X, Lv W. NLRP3 inflammasome in digestive diseases: From mechanism to therapy. Front Immunol 2022; 13:978190. [PMID: 36389791 PMCID: PMC9644028 DOI: 10.3389/fimmu.2022.978190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/12/2022] [Indexed: 09/05/2023] Open
Abstract
Digestive system diseases remain a formidable challenge to human health. NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome is the most characteristic multimeric protein complex and is involved in a wide range of digestive diseases as intracellular innate immune sensors. It has emerged as a research hotspot in recent years. In this context, we provide a comprehensive review of NLRP3 inflammasome priming and activation in the pathogenesis of digestive diseases, including clinical and preclinical studies. Moreover, the scientific evidence of small-molecule chemical drugs, biologics, and phytochemicals, which acts on different steps of the NLRP3 inflammasome, is reviewed. Above all, deep interrogation of the NLRP3 inflammasome is a better insight of the pathomechanism of digestive diseases. We believe that the NLRP3 inflammasome will hold promise as a novel valuable target and research direction for treating digestive disorders.
Collapse
Affiliation(s)
- Rui Qiang
- *Correspondence: Rui Qiang, ; Yanbo Li, ; Wenliang Lv,
| | - Yanbo Li
- *Correspondence: Rui Qiang, ; Yanbo Li, ; Wenliang Lv,
| | | | - Wenliang Lv
- *Correspondence: Rui Qiang, ; Yanbo Li, ; Wenliang Lv,
| |
Collapse
|
49
|
Cui Y, Jiang X, Feng J. The therapeutic potential of triptolide and celastrol in neurological diseases. Front Pharmacol 2022; 13:1024955. [PMID: 36339550 PMCID: PMC9626530 DOI: 10.3389/fphar.2022.1024955] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/07/2022] [Indexed: 12/01/2022] Open
Abstract
Neurological diseases are complex diseases affecting the brain and spinal cord, with numerous etiologies and pathogenesis not yet fully elucidated. Tripterygium wilfordii Hook. F. (TWHF) is a traditional Chinese medicine with a long history of medicinal use in China and is widely used to treat autoimmune and inflammatory diseases such as systemic lupus erythematosus and rheumatoid arthritis. With the rapid development of modern technology, the two main bioactive components of TWHF, triptolide and celastrol, have been found to have anti-inflammatory, immunosuppressive and anti-tumor effects and can be used in the treatment of a variety of diseases, including neurological diseases. In this paper, we summarize the preclinical studies of triptolide and celastrol in neurological diseases such as neurodegenerative diseases, brain and spinal cord injury, and epilepsy. In addition, we review the mechanisms of action of triptolide and celastrol in neurological diseases, their toxicity, related derivatives, and nanotechnology-based carrier system.
Collapse
Affiliation(s)
- Yueran Cui
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xuejiao Jiang
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
- *Correspondence: Juan Feng,
| |
Collapse
|
50
|
Mu X, Wu X, He W, Liu Y, Wu F, Nie X. Pyroptosis and inflammasomes in diabetic wound healing. Front Endocrinol (Lausanne) 2022; 13:950798. [PMID: 35992142 PMCID: PMC9389066 DOI: 10.3389/fendo.2022.950798] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/19/2022] [Indexed: 12/12/2022] Open
Abstract
Diabetic wound is one of the complications of diabetes and is not easy to heal. It often evolves into chronic ulcers, and severe patients will face amputation. Compared with normal wounds, diabetic wounds have an increased proportion of pro-inflammatory cytokines that are detrimental to the normal healing response. The burden of this disease on patients and healthcare providers is overwhelming, and practical solutions for managing and treating diabetic wounds are urgently needed. Pyroptosis, an inflammatory type of programmed cell death, is usually triggered by the inflammasome. The pyroptosis-driven cell death process is primarily mediated by the traditional signaling pathway caused by caspase -1 and the non-classical signaling pathways induced by caspase -4/5/11. Growing evidence that pyroptosis promotes diabetic complications, including diabetic wounds. In addition, inflammation is thought to be detrimental to wound healing. It is worth noting that the activation of the NLRP3 inflammasome plays a crucial role in the recovery of diabetic wounds. This review has described the mechanisms of pyroptosis-related signaling pathways and their impact on diabetic wounds. It has discussed new theories and approaches to promote diabetic wound healing, as well as some potential compounds targeting pyroptosis and inflammasome signaling pathways that could be new approaches to treating diabetic wounds.
Collapse
Affiliation(s)
- Xingrui Mu
- College of Pharmacy, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacalogy of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi, China
| | - Xingqian Wu
- College of Pharmacy, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacalogy of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi, China
| | - Wenjie He
- College of Pharmacy, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacalogy of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi, China
| | - Ye Liu
- College of Pharmacy, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacalogy of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi, China
| | - Faming Wu
- College of Pharmacy, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacalogy of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi, China
| | - Xuqiang Nie
- College of Pharmacy, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacalogy of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi, China
| |
Collapse
|