1
|
Xu J, Ren F, Wang J, Liu J, Cui X, Hao J, Yang W, Zhang Y, Cao D, Li L, Wang H. Tubeimoside I induces mitophagy by activating the PINK1/Parkin/Mfn2 signaling pathway in acute myeloid leukemia cells. Transl Oncol 2025; 55:102355. [PMID: 40112502 PMCID: PMC11979407 DOI: 10.1016/j.tranon.2025.102355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 03/03/2025] [Accepted: 03/10/2025] [Indexed: 03/22/2025] Open
Abstract
Acute myeloid leukemia (AML) is the most prevalent kind of acute leukemia in adults. Despite the availability of new targeted therapies, AML remains connected with a poor prognosis and decreased rate of survival. Tubeimoside I (TBMS1), a critical compound extracted from Bolbostemma paniculatum, has demonstrated potential anticancer effects in lung and colorectal cancers. Nevertheless, the TBMS1 anticancer pathway against AML is still elusive. This study aimed to explore the potential role of TBMS1 in anti-AML and its molecular mechanism. In vitro, TBMS1 treatment suppressed AML cells proliferation, induced apoptosis, and mitochondrial damage, and elevated ROS levels. Network pharmacological analysis suggested, and subsequent studies confirmed, that TBMS1 induced mitophagy in AML cells by modulating the PINK1/Parkin/Mfnh2 signaling pathway, an effect that was effectively reversed following PINK1 knockdown. In vivo, TBMS1 treatment suppressed the proliferation of AML cells after 21 days, improved the survival rates of nude mice, and showed no evident organ toxicity. These evidences suggest that TBMS1 may have significant therapeutic potential in treating AML.
Collapse
Affiliation(s)
- Jing Xu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan 030001, China
| | - Fanggang Ren
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Jinjuan Wang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China
| | - Jianbing Liu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China
| | - Xiaohua Cui
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China
| | - Jianqing Hao
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China
| | - Wanfang Yang
- School of Basic Medicine, Shanxi University of Chinese Medicine, Jinzhong 030619, China
| | - Yaofang Zhang
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Dongmin Cao
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Zhongshan 528437, China.
| | - Li Li
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan 030001, China.
| | - Hongwei Wang
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan 030001, China; School of Basic Medicine, Shanxi University of Chinese Medicine, Jinzhong 030619, China.
| |
Collapse
|
2
|
Hu D, Cui L, Zhang S, He S, Zhuo Y, Li D, Zhang L, Wang Y, Yang L, Wang X. Antitumor effect of tubeimoside-I on murine colorectal cancers through PKM2-dependent pyroptosis and immunomodulation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4069-4087. [PMID: 38010398 DOI: 10.1007/s00210-023-02855-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023]
Abstract
Induction of cancer cell death is an established treatment strategy, but chemotherapy drug-mediated apoptosis can be evaded by many tumors. Pyroptosis is a type of inflammatory programmed cell death (PCD) that is important for organism immunity. Tubeimoside-I (TBMS1) is a plant-derived component that exhibits antitumor activity. However, it is unclear how TBMS1 induces pyroptosis to inhibit colorectal cancer (CRC). In this study, we demonstrated that TBMS1 is able to induce pyroptosis in murine CRC cells and releases pro-inflammatory cytokines. Mechanistically, we found that TBMS1 inhibits CRC cell proliferation and migration and induces pyroptosis by activating caspase-3 and cleaving gasdermin E (GSDME) through the inhibition of PKM2. In the animal experiments, TBMS1 attenuated the weight of solid tumors, increased the proportion of CD8+ cytotoxic T cells, and reduced the content of M2-type macrophages in the spleen of tumor-bearing mice. Furthermore, TBMS1 inhibited M2-type polarization by blocking STAT6 pathway activation in RAW 264.7 cells. To sum up, our findings suggest that TBMS1 triggers pyroptosis in CRC by acting on the PKM2/caspase-3/GSDME signaling pathway. Additionally, it modulates the antitumor immune response in CRC murine models. This study provides a promising basis for the potential use of TBMS1 in treating CRC.
Collapse
Affiliation(s)
- Dongsheng Hu
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Lingzhi Cui
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Sijia Zhang
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Siqi He
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Yuzhen Zhuo
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Nankai Hospital, Tianjin, China
| | - Dihua Li
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Nankai Hospital, Tianjin, China
| | - Lanqiu Zhang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Nankai Hospital, Tianjin, China
| | - Yanli Wang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Nankai Hospital, Tianjin, China
| | - Lei Yang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Nankai Hospital, Tianjin, China.
| | - Ximo Wang
- Graduate School, Tianjin Medical University, Tianjin, China.
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin Nankai Hospital, Tianjin, China.
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin University, Tianjin, China.
| |
Collapse
|
3
|
Liu F, Liao B, Ling YL, Meng XZ, Wang JL, Hu LL, Luo XQ, Yang FL. Icariin protects testicular damage in streptozotocin-induced diabetic rats through regulation of glycolysis pathway. Int J Immunopathol Pharmacol 2024; 38:3946320241279525. [PMID: 39180223 PMCID: PMC11344256 DOI: 10.1177/03946320241279525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024] Open
Abstract
OBJECTIVE This study aims to investigate potential beneficial actions of icariin (ICA) on testicular spermatogenic function in male rats with streptozotocin (STZ)-induced diabetes and to explore the underlying mechanisms. Background: ICA was found to reduce blood glucose, regulate the endocrine function of the reproductive system, and improve testicular spermatogenic function. METHODS Adult rats were intraperitoneally injected with STZ (65 mg/kg) to induce type 1 diabetes mellitus (T1DM). Diabetic rats were randomly classified intoT1DM (n = 6) and T1DM + ICA (n = 6) groups. Rats without STZ and ICA treatment were assigned as control group (n = 6). The morphology of testicular tissues was examined by histological staining. The mRNA and protein expression levels were determined by quantitative real-time PCR, Western blot and immunostaining, respectively. RESULTS Rats from T1DM group showed a reduction in epididymis and testis weight, and a decrease in sperm count when compared to control group (p < 0.01), which was attenuated by ICA treatment (p < 0.05) Diabetic rats from T1DM group also exhibited reduced diameter and area of seminiferous tubules, along with decreased spermatogonia and primary spermatocytes number when compared to control group (p < 0.01), which was partially reversed by ICA treatment (p < 0.05) Rats from T1DM group exhibited down-regulation of PCNA mRNA and protein in the testis when compared to control group (p < 0.01); while ICA treatment up-regulated PCNA expression in the testis of diabetic rats compared to T1DM group (p < 0.05). Rats from T1DM group showed up-regulation of Bax and capase-3 and down-regulation of Bcl-2, PKM2, HK2 and lactate dehydrogenase A in the testes when compared to control group (p < 0.05), which was reversed by ICA treatment (p < 0.05). CONCLUSION These findings suggest that ICA may exert its protective effects on testicular damage in diabetic rats through modulation of glycolysis pathway and suppression of apoptosis.
Collapse
Affiliation(s)
- Fang Liu
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Reproductive Medicine, Guangxi Medical and Health Key Discipline Construction Project, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Department of Histology and Embryology, School of Basic Medical Sciences, Hunan University of Medicine, Huaihua, Hunan, China
| | - Biyun Liao
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Reproductive Medicine, Guangxi Medical and Health Key Discipline Construction Project, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Key Laboratory of Environment and Population Health of Ecological Aluminum Industry base of Education, Departmen tof Guangxi Zhuang Autonomous Region, Youjiang Medical University for Nationalities, Baise, China
| | - Yan-Lan Ling
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Reproductive Medicine, Guangxi Medical and Health Key Discipline Construction Project, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Xian-Zong Meng
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Reproductive Medicine, Guangxi Medical and Health Key Discipline Construction Project, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Jun-Li Wang
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Reproductive Medicine, Guangxi Medical and Health Key Discipline Construction Project, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Industrial College of Biomedicine and Health Industry, Youjiang Medical University for Nationalities, Baise, Guangxi, China
- Key Laboratory of Environmental Pollution and Health Risk Assessment, Youjiang Medical University for Nationalities, Baise, China
| | - Lin-Lin Hu
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Reproductive Medicine, Guangxi Medical and Health Key Discipline Construction Project, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Key Laboratory of Environment and Population Health of Ecological Aluminum Industry base of Education, Departmen tof Guangxi Zhuang Autonomous Region, Youjiang Medical University for Nationalities, Baise, China
| | - Xiao-Qiong Luo
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Reproductive Medicine, Guangxi Medical and Health Key Discipline Construction Project, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Feng-Lian Yang
- Key Laboratory of Research on Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Reproductive Medicine, Guangxi Medical and Health Key Discipline Construction Project, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Key Laboratory of Environment and Population Health of Ecological Aluminum Industry base of Education, Departmen tof Guangxi Zhuang Autonomous Region, Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
4
|
Fathy MA, Anbaig A, Aljafil R, El-Sayed SF, Abdelnour HM, Ahmed MM, Abdelghany EMA, Alnasser SM, Hassan SMA, Shalaby AM. Effect of Liraglutide on Osteoporosis in a Rat Model of Type 2 Diabetes Mellitus: A Histological, Immunohistochemical, and Biochemical Study. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:2053-2067. [PMID: 37832035 DOI: 10.1093/micmic/ozad102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/04/2023] [Accepted: 09/02/2023] [Indexed: 10/15/2023]
Abstract
Diabetic osteoporosis (DOP) is a diabetic complication associated with a significant disability rate. Liraglutide, a glucagon-like peptide-1 receptor agonist, is a promising and innovative drug for type 2 diabetes mellitus (T2DM), with potential therapeutic implications for bone disorders. This investigation examined the impact of liraglutide on osteoporosis in rats with T2DM and studied the influence of vitamin D receptor Bsm1 polymorphism on liraglutide-induced outcomes. Thirty rats were divided into control, T2DM induced by a combination of a high-fat diet and 25 mg/kg streptozotocin, and T2DM-liraglutide (T2DM treated with 0.4 mg/kg/day liraglutide) groups. After 8 weeks of liraglutide treatment, femurs and blood samples were obtained from all rats for subsequent investigations. Diabetes induced a remarkable rise in the serum levels of receptor activator of nuclear factor kappa B ligand (RANKL) and C-telopeptide of type I collagen (CTX-1) associated with a remarkable decline in osteocalcin and osteoprotegerin (OPG). Impaired bone architecture was also demonstrated by light and scanning electron microscopic study. The immune expression of OPG was down-regulated, while RANKL was up-regulated. Interestingly, the administration of liraglutide ameliorated the previous changes induced by diabetes mellitus. In conclusion, liraglutide can prevent DOP, mostly due to liraglutide's ability to increase bone growth, while inhibiting bone resorption.
Collapse
Affiliation(s)
- Maha Abdelhamid Fathy
- Department of Medical Physiology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Amal Anbaig
- Department of Pathology, Faculty of Medicine, Benghazi University, Benghazi 16063, Libya
| | - Raja Aljafil
- Department of Pathology, Faculty of Medicine, Benghazi University, Benghazi 16063, Libya
| | - Sherein F El-Sayed
- Department of Medical Physiology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Hanim Magdy Abdelnour
- Department of Medical Biochemistry, Faculty of Human Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mona Mostafa Ahmed
- Department of Pathology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Eman M A Abdelghany
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Sulaiman Mohammed Alnasser
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Buraydah 52571, Saudi Arabia
| | - Shaimaa Mohamed Abdelfattah Hassan
- Department of Histology and Cell Biology, Faculty of Medicine, Menoufi University, Shebin El Koum 32511, Egypt
- Department of Histology, College of Medicine, Batterjee Medical College, Abha 61961, Saudi Arabia
| | - Amany Mohamed Shalaby
- Department of Histology and Cell Biology, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
5
|
Zhou Y, Liu J, Zhang J, Xu Y, Li W, Gao P, Xing Y, Huang L, Qin X, Jin S. Chinese endemic medicinal plant Bolbostemma paniculatum (Maxim.) Franquet: A comprehensive review. Front Pharmacol 2022; 13:974054. [PMID: 36160391 PMCID: PMC9490187 DOI: 10.3389/fphar.2022.974054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/08/2022] [Indexed: 11/24/2022] Open
Abstract
Bolbostemma paniculatum (Maxim.) Franquet is a unique species in China with a long history of medicinal use, which has the effects of detoxifying, dissolving lumps and dispersing swellings. And it is commonly used to treat many diseases, such as carbuncle and sore, acute mastitis, mammary cancer, scrofula and subcutaneous nodule traditionally. Modern clinical studies have found that B. paniculatum and its compounds can be used for the treatment of a variety of cancers, mastitis, hyperplasia of mammary glands, chronic lymphadenitis, cervical lymph tuberculosis and surgical wart skin diseases, and the curative effect is positive. At present, a variety of Chinese patent medicines containing B. paniculatum have been exploited and marketed in China for the treatment of cancers, breast diseases and flat warts. This review article comprehensively discussed the traditional application, botany, chemical components, pharmacological activities, and quality control of B. paniculatum, put forward some noteworthy issues and suggestions in current studies, and briefly discussed the possible development potential of this plant as well as future research perspectives. 96 compounds have been isolated from B. paniculatum, including triterpenoids, sterols, alkaloids and other components, of which triterpenoid saponins are the main bioactive components. The crude extracts and monomer compounds of B. paniculatum have a wide range of pharmacological activities, such as anti-tumor, antiviral, anti-inflammatory, immunoregulatory, and so on. Moreover, its anti-tumor mechanism involves many aspects, including inhibiting cell proliferation, promoting cell apoptosis, blocking the cell cycle, interfering with cell invasion and metastasis, suppressing angiogenesis, and regulating autophagy. While there is a lack of systematic and in-depth research on its anti-tumor active components and mechanism of action at the moment; and a tight connection between the chemical composition and pharmacological activity of B. paniculatum has also not been established. Besides, a systematic quality determination standard for B. paniculatum should also be built, in order to carry out further research.
Collapse
Affiliation(s)
- Yujiao Zhou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junyu Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianqiong Zhang
- Pediatric Department, Ya’an City Hospital of Traditional Chinese Medicine, Ya’an, Sichuan, China
| | - Yi Xu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wangni Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Pang Gao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanghuan Xing
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lehong Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xuhua Qin
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xuhua Qin, ; Shenrui Jin,
| | - Shenrui Jin
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xuhua Qin, ; Shenrui Jin,
| |
Collapse
|
6
|
Zhuo Y, Li M, Jiang Q, Ke H, Liang Q, Zeng LF, Fang J. Evolving Roles of Natural Terpenoids From Traditional Chinese Medicine in the Treatment of Osteoporosis. Front Endocrinol (Lausanne) 2022; 13:901545. [PMID: 35651977 PMCID: PMC9150774 DOI: 10.3389/fendo.2022.901545] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoporosis (OP) is a systemic metabolic skeletal disease which can lead to reduction in bone mass and increased risk of bone fracture due to the microstructural degradation. Traditional Chinese medicine (TCM) has been applied in the prevention and treatment of osteoporosis for a long time. Terpenoids, a class of natural products that are rich in TCM, have been widely studied for their therapeutic efficacy on bone resorption, osteogenesis, and concomitant inflammation. Terpenoids can be classified in four categories by structures, monoterpenoids, sesquiterpenoids, diterpenoids, and triterpenoids. In this review, we comprehensively summarize all the currently known TCM-derived terpenoids in the treatment of OP. In addition, we discuss the possible mechanistic-of-actions of all four category terpenoids in anti-OP and assess their therapeutic potential for OP treatment.
Collapse
Affiliation(s)
- Yue Zhuo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Meng Li
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Women and Children’s Medical Center, Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Guangzhou Medical University, Guangzhou, China
| | - Qiyao Jiang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hanzhong Ke
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Qingchun Liang
- The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Ling-Feng Zeng
- The 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiansong Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
7
|
Poleboina S, Sheth VG, Sharma N, Sihota P, Kumar N, Tikoo K. Selenium nanoparticles stimulate osteoblast differentiation via BMP-2/MAPKs/β-catenin pathway in diabetic osteoporosis. Nanomedicine (Lond) 2022; 17:607-625. [DOI: 10.2217/nnm-2021-0401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To evaluate whether selenium nanoparticles (SeNPs) can stimulate bone formation and inhibit the bone loss involved in hyperglycemia-induced osteoporosis. Methods: Rat osteoblastic UMR-106 cells were used for in vitro studies and female Sprague–Dawley rats were used for type 2 diabetes-associated osteoporosis in vivo study. Results: In vitro studies show that SeNPs promote osteoblast differentiation via modulating alkaline phosphatase (ALP) activity, and promoting calcium nodule formation and collagen content. The authors also provide evidence regarding the involvement of the BMP-2/MAPKs/β-catenin pathway in preventing diabetic osteoporosis. Further, in vivo and ex vivo studies suggested that SeNPs can preserve mechanical and microstructural properties of bone. Conclusion: To the best of our knowledge, this study provides the first evidence regarding the therapeutic benefits of SeNPs in preventing diabetes-associated bone fragility.
Collapse
Affiliation(s)
- Sumathi Poleboina
- Department of Pharmacology & Toxicology, Laboratory of Epigenetics & Diseases, National Institute of Pharmaceutical Education & Research, Sector-67, S.A.S. Nagar, Punjab, 160062, India
| | - Vaibhav G Sheth
- Department of Pharmacology & Toxicology, Laboratory of Epigenetics & Diseases, National Institute of Pharmaceutical Education & Research, Sector-67, S.A.S. Nagar, Punjab, 160062, India
| | - Nisha Sharma
- Department of Pharmacology & Toxicology, Laboratory of Epigenetics & Diseases, National Institute of Pharmaceutical Education & Research, Sector-67, S.A.S. Nagar, Punjab, 160062, India
| | - Praveer Sihota
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, 14000, India
| | - Navin Kumar
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, 14000, India
| | - Kulbhushan Tikoo
- Department of Pharmacology & Toxicology, Laboratory of Epigenetics & Diseases, National Institute of Pharmaceutical Education & Research, Sector-67, S.A.S. Nagar, Punjab, 160062, India
| |
Collapse
|
8
|
Liu YD, Liu JF, Liu B. N,N-Dimethylformamide inhibits high glucose-induced osteoporosis via attenuating MAPK and NF-κB signalling. Bone Joint Res 2022; 11:200-209. [PMID: 35369730 PMCID: PMC9057521 DOI: 10.1302/2046-3758.114.bjr-2020-0308.r2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Aims The role of N,N-dimethylformamide (DMF) in diabetes-induced osteoporosis (DM-OS) progression remains unclear. Here, we aimed to explore the effect of DMF on DM-OS development. Methods Diabetic models of mice, RAW 264.7 cells, and bone marrow macrophages (BMMs) were established by streptozotocin stimulation, high glucose treatment, and receptor activator of nuclear factor-κB ligand (RANKL) treatment, respectively. The effects of DMF on DM-OS development in these models were examined by micro-CT analysis, haematoxylin and eosin (H&E) staining, osteoclast differentiation of RAW 264.7 cells and BMMs, H&E and tartrate-resistant acid phosphatase (TRAP) staining, enzyme-linked immunosorbent assay (ELISA) of TRAP5b and c-terminal telopeptides of type 1 (CTX1) analyses, reactive oxygen species (ROS) analysis, quantitative reverse transcription polymerase chain reaction (qRT-PCR), Cell Counting Kit-8 (CCK-8) assay, and Western blot. Results The established diabetic mice were more sensitive to ovariectomy (OVX)-induced osteoporosis, and DMF treatment inhibited the sensitivity. OVX-treated diabetic mice exhibited higher TRAP5b and c-terminal telopeptides of type 1 (CTX1) levels, and DMF treatment inhibited the enhancement. DMF reduced RAW 264.7 cell viability. Glucose treatment enhanced the levels of TRAP5b, cathepsin K, Atp6v0d2, and H+-ATPase, ROS, while DMF reversed this phenotype. The glucose-increased protein levels were inhibited by DMF in cells treated with RANKL. The expression levels of antioxidant enzymes Gclc, Gclm, Ho-1, and Nqo1 were upregulated by DMF. DMF attenuated high glucose-caused osteoclast differentiation by targeting mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) signalling in BMMs. Conclusion DMF inhibits high glucose-induced osteoporosis by targeting MAPK and NF-κB signalling. Cite this article: Bone Joint Res 2022;11(4):200–209.
Collapse
Affiliation(s)
- Ya Dong Liu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Jian Feng Liu
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, China
| | - Bin Liu
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
Chen Y, Zhou Y, Lin J, Zhang S. Challenges to Improve Bone Healing Under Diabetic Conditions. Front Endocrinol (Lausanne) 2022; 13:861878. [PMID: 35418946 PMCID: PMC8996179 DOI: 10.3389/fendo.2022.861878] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/02/2022] [Indexed: 12/17/2022] Open
Abstract
Diabetes mellitus (DM) can affect bone metabolism and the bone microenvironment, resulting in impaired bone healing. The mechanisms include oxidative stress, inflammation, the production of advanced glycation end products (AGEs), etc. Improving bone healing in diabetic patients has important clinical significance in promoting fracture healing and improving bone integration. In this paper, we reviewed the methods of improving bone healing under diabetic conditions, including drug therapy, biochemical cues, hyperbaric oxygen, ultrasound, laser and pulsed electromagnetic fields, although most studies are in preclinical stages. Meanwhile, we also pointed out some shortcomings and challenges, hoping to provide a potential therapeutic strategy for accelerating bone healing in patients with diabetes.
Collapse
Affiliation(s)
- Yiling Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yue Zhou
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jie Lin
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Jie Lin, ; Shiwen Zhang,
| | - Shiwen Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Jie Lin, ; Shiwen Zhang,
| |
Collapse
|
10
|
Bellavia D, Caradonna F, Dimarco E, Costa V, Carina V, De Luca A, Raimondi L, Gentile C, Alessandro R, Fini M, Giavaresi G. Terpenoid treatment in osteoporosis: this is where we have come in research. Trends Endocrinol Metab 2021; 32:846-861. [PMID: 34481733 DOI: 10.1016/j.tem.2021.07.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 01/30/2023]
Abstract
Lower bone resistance to load is due to the imbalance of bone homeostasis, where excessive bone resorption, compared with bone formation, determines a progressive osteopenia, leading to a high risk of fractures and consequent pain and functional limitations. Terpenoids, with their activities against bone resorption, have recently received increased attention from researchers. They are potentially more suitable for long-term use compared with traditional therapeutics. In this review of the literature of the past 5 years, we provide comprehensive information on terpenoids, with their anti-osteoporotic effects, highlighting molecular mechanisms that are often in epigenetic key and a possible pharmacological use in osteoporosis prevention and treatment.
Collapse
Affiliation(s)
- Daniele Bellavia
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche - SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, Bologna, Italy.
| | - Fabio Caradonna
- University of Palermo, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Section of Cellular Biology, Palermo, Italy
| | - Eufrosina Dimarco
- University of Palermo, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Section of Cellular Biology, Palermo, Italy
| | - Viviana Costa
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche - SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, Bologna, Italy
| | - Valeria Carina
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche - SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, Bologna, Italy
| | - Angela De Luca
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche - SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, Bologna, Italy
| | - Lavinia Raimondi
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche - SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, Bologna, Italy
| | - Carla Gentile
- University of Palermo, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Section of Cellular Biology, Palermo, Italy
| | - Riccardo Alessandro
- University of Palermo, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, Palermo, Italy; Istituto per la Ricerca e l'Innovazione Biomedica (IRIB), Consiglio Nazionale delle Ricerche (CNR), Palermo, Italy
| | - Milena Fini
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche - SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, Bologna, Italy
| | - Gianluca Giavaresi
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche - SS Piattaforma Scienze Omiche per Ortopedia Personalizzata, Bologna, Italy
| |
Collapse
|
11
|
Cheng Z, Lv D, Luo M, Wang R, Guo Y, Yang X, Huang L, Li X, Li C, Shang FF, Huang B, Shen J, Luo S, Yan J. Tubeimoside I protects against sepsis-induced cardiac dysfunction via SIRT3. Eur J Pharmacol 2021; 905:174186. [PMID: 34033817 DOI: 10.1016/j.ejphar.2021.174186] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/06/2021] [Accepted: 05/12/2021] [Indexed: 12/31/2022]
Abstract
Sepsis-induced cardiac dysfunction (SICD) is one of the key complications in sepsis and it is associated with adverse outcomes and increased mortality. There is no effective drug to treat SICD. Previously, we reported that tubeimoside I (TBM) improved survival of septic mice. The aim of this study is to figure out whether TBM ameliorates SICD. Also, SIRT3 was reported to protects against SICD. Our second aim is to confirm whether SIRT3 plays essential roles in TBM's protective effects against SICD. Our results demonstrated that TBM could alleviate SICD and SICD's key pathological factor, inflammation, oxidative stress, and apoptosis were all reduced by TBM. Notably, SICD induced a significant decrease in cardiac SIRT3 expression, while TBM treatment could reverse SIRT3 expression. To clarify whether TBM provides protection via SIRT3, we injected a specific SIRT3 inhibitor 3-(1H-1,2,3-triazol-4-yl) pyridine (3-TYP) into mice before TBM treatment. Then the cardioprotective effects of TBM were largely abolished by 3-TYP. This suggests that SIRT3 plays an essential role in TBM's cardioprotective effects. In vitro, TBM also protected H9c2 cells against LPS-induced injury, and siSIRT3 diminished these protective effects. Taken together, our results demonstrate that TBM protects against SICD via SIRT3. TBM might be a potential drug candidate for SICD treatment.
Collapse
Affiliation(s)
- Zhe Cheng
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Dingyi Lv
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Minghao Luo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Ruiyu Wang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Yongzheng Guo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Xiyang Yang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Longxiang Huang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Xingbing Li
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Chang Li
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Fei-Fei Shang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Bi Huang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Jian Shen
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Suxin Luo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Jianghong Yan
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
12
|
Yang X, Li X, Luo M, Guo Y, Li C, Lv D, Cheng Z, Huang L, Shang FF, Huang B, Shen J, Luo S, Yan J. Tubeimoside I promotes angiogenesis via activation of eNOS-VEGF signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113642. [PMID: 33264658 DOI: 10.1016/j.jep.2020.113642] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tubeimoside I (TBM) is a triterpenoid saponin purified from tubeimu (tuber of Bolbostemma paniculatum (Maxim.) Franquet). In traditional Chinese medicine, tubeimu had been used to treat acute mastitis, snake bites, detoxication, inflammatory diseases, and tumors for over 1000 years. AIM OF THE STUDY This study aimed to investigate whether TBM could promote angiogenesis and how to promote angiogenesis. MATERIALS AND METHODS In vivo, the pro-angiogenic effects of TBM were examined using the hindlimb ischemia model. After the ischemia operation, 1 mg/kg/day TBM was given via intraperitoneal injection for 28 days and the recovery of blood flow was monitored by Doppler scanner every 7 days. The capillary density in gastrocnemius muscle was detected by immunofluorescence. Expression of related proteins were determined by western blotting. In vitro, the pro-angiogenic effects of TBM on HUVECs were examined by Cell Counting Kit-8, scratch assay, endothelial cell tube formation assay and western blotting. RESULTS TBM improved recovery from hindlimb ischemia in C57BL/6 mice. TBM promoted endothelial cell viability, migration and tube formation in HUVECs. TBM could activate eNOS-VEGF signaling pathway by enhancing expression of eNOS. And TBM's pro-angiogenesis effects could be abolished by L-NAME (an inhibitor of eNOS). CONCLUSIONS TBM promoted angiogenesis via the activation of eNOS-VEGF signaling pathway and TBM could be a novel agent for therapeutic angiogenesis in ischemic diseases.
Collapse
Affiliation(s)
- Xiyang Yang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Xingbing Li
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Minghao Luo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Yongzheng Guo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Chang Li
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Dingyi Lv
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Zhe Cheng
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Longxiang Huang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Fei-Fei Shang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Bi Huang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Jian Shen
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Suxin Luo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China.
| | - Jianghong Yan
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
13
|
Ju L, Hu P, Chen P, Wu J, Li Z, Qiu Z, Cheng J, Huang F. Corydalis Saxicola Bunting Total Alkaloids Attenuate Walker 256-Induced Bone Pain and Osteoclastogenesis by Suppressing RANKL-Induced NF-κB and c-Fos/NFATc1 Pathways in Rats. Front Pharmacol 2021; 11:609119. [PMID: 33574755 PMCID: PMC7870471 DOI: 10.3389/fphar.2020.609119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/17/2020] [Indexed: 12/18/2022] Open
Abstract
Metastatic bone pain is characterized by insufferable bone pain and abnormal bone structure. A major goal of bone cancer treatment is to ameliorate osteolytic lesion induced by tumor cells. Corydalis saxicola Bunting total alkaloids (CSBTA), the alkaloid compounds extracted from the root of C. saxicola Bunting, have been shown to possess anticancer and analgesic properties. In this study, we aimed to verify whether CSBTA could relieve cancer induced bone pain and inhibit osteoclastogenesis. The in vivo results showed that CSBTA ameliorated Walker 256 induced bone pain and osteoporosis in rats. Histopathological changes also supported that CSBTA inhibited Walker 256 cell-mediated osteolysis. Further in vitro analysis confirmed that CSBTA reduced the expression of RANKL and downregulate the level of RANKL/OPG ratio in breast cancer cells. Moreover, CSBTA could inhibit osteoclastogenesis by suppressing RANKL-induced NF-κB and c-Fos/NFATc1 pathways. Collectively, this study demonstrated that CSBTA could attenuate cancer induced bone pain via a novel mechanism. Therefore, CSBTA might be a promising candidate drug for metastatic bone pain patients.
Collapse
Affiliation(s)
- Linjie Ju
- Department of Chinese Pharmacology and Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, China
| | - Peipei Hu
- Department of Chinese Pharmacology and Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, China
| | - Ping Chen
- Department of Chinese Pharmacology and Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, China
| | - Jiejie Wu
- Department of Chinese Pharmacology and Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, China
| | - Zhuoqun Li
- Department of Chinese Pharmacology and Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, China.,Nanjing Zhongshan Pharmaceutical Co, Ltd., Nanjing Economic and Technological Development Zone, Nanjing, China
| | - Zhixia Qiu
- Department of Chinese Pharmacology and Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, China
| | - Jun Cheng
- Nanjing Zhongshan Pharmaceutical Co, Ltd., Nanjing Economic and Technological Development Zone, Nanjing, China
| | - Fang Huang
- Department of Chinese Pharmacology and Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
14
|
Lu R, Zheng Z, Yin Y, Jiang Z. Genistein prevents bone loss in type 2 diabetic rats induced by streptozotocin. Food Nutr Res 2021; 64:3666. [PMID: 33447176 PMCID: PMC7778425 DOI: 10.29219/fnr.v64.3666] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 04/02/2020] [Accepted: 06/12/2020] [Indexed: 01/03/2023] Open
Abstract
Background Diabetic osteoporosis has become a severe public health problem in the aging societies. Genistein has been reported to play an important role in preventing and treating metabolic diseases via its anti-inflammatory, antioxidant, anti-estrogenic, and estrogen-like functions. Objective We aimed to investigate whether genistein exerts bone-protective effect on diabetic rats induced by 35 mg/kg streptozotocin (STZ) plus a 4-week high-fat diet. Design Sprague–Dawley rats were randomly divided into four groups: (1) control group, (2) type 2 diabetes mellitus (T2DM) model group, (3) T2DM with 10 mg/kg genistein, and (4) T2DM with 30 mg/kg genistein. After an 8-week treatment with genistein, the femurs, tibias, and blood were collected from all rats for further analysis. Results Genistein at 10 mg/kg showed little effect on diabetic osteoporosis, whereas genistein at 30 mg/kg significantly improved glucose and bone metabolisms compared with diabetic rats. Our results showed that 30 mg/kg genistein significantly increased bone mineral density, serum osteocalcin, and bone alkaline phosphatase. Genistein also effectively lowered fasting blood glucose, tartrate-resistant acid phosphatase 5b, tumor necrosis factor-α, interleukin-6, and numbers of adipocytes and osteoclasts. Compared with the T2DM group, protein levels of receptor activator of nuclear factor κB ligand (RANKL) and peroxisome proliferator-activated receptor-γ (PPAR-γ) were decreased, while protein levels of osteoprotegerin (OPG), β-catenin, and runt-related transcription factor 2 (Runx-2) were increased after genistein intervention. Conclusion Genistein could effectively improve abnormal bone metabolism in STZ-induced diabetic rats; the underlying molecular mechanisms might be related to OPG/RANKL, PPAR-γ, and β-catenin/Runx-2 pathways.
Collapse
Affiliation(s)
- Rongrong Lu
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Zicong Zheng
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Yimin Yin
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Zhuoqin Jiang
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, People's Republic of China
| |
Collapse
|