1
|
Zhou T, Zhang XQ, Qiao WH, Shao XD, Li XX, Dong JF, Shao LD, Hu WY, Zhang RP, Chen XL. Characterization and Isolation of Ginger Phenols from Zingiber officinale Rhizomes through in Silico-Based Reverse Annotation and Molecular Networking. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:11764-11779. [PMID: 40314166 DOI: 10.1021/acs.jafc.5c01166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Ginger is a rich source of ginger phenols with an anti-inflammatory property. Antineuroinflammatory pathways represent a promising therapeutic strategy for neurodegenerative diseases. Ginger was selected as our research object to discover bioactive constituents responsible for the antineuroinflammatory effect. An in silico-based reverse annotation strategy, in conjunction with molecular networking, was employed for the large-scale annotation of ginger phenols from ginger. A total of 174 ginger phenols and 235 ginger phenol dimers were annotated. Five new ginger phenols (1-5) and 18 known ginger phenols (6-23) were isolated following this proposed strategy, among which compound 1 was a new natural product and compounds 2-3 were novel ginger phenol dimers. Their structures were elucidated using extensive spectroscopic data and semisynthesis methods. Compounds 2, 8, 12, 18, and 19 exhibited a capacity to inhibit nitric oxide (NO) production and demonstrated antineuroinflammatory activity in lipopolysaccharide (LPS)-induced BV2 cells at the concentrations of 10, 20, and 40 μM. Enzyme-linked immunosorbent assay (ELISA) showed that compounds 2, 18, and 19 could significantly reduce the expression levels of cyclooxygenase-2 (COX-2) and interleukin-1β (IL-1β). In addition, compounds 2 and 18 displayed a certain inhibitory effect on the expressions of interleukin-10 (IL-10) and interleukin-6 (IL-6). The Western blot analysis revealed that compounds 18 and 19 effectively attenuated the expression of IL-1β, while only compound 2 inhibited the expression of phosphorylated nuclear factor kappa B (p-NF-κB) in BV2 cells. This study demonstrates the great potential and prospect of the proposed strategy in the utilization of ginger resources. Additionally, it reveals that ginger contains diverse ginger phenols with antineuroinflammation activity.
Collapse
Affiliation(s)
- Tang Zhou
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming 650500, P. R. China
| | - Xiu-Qiong Zhang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, P. R. China
| | - Wen-Hao Qiao
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming 650500, P. R. China
| | - Xiao-Dan Shao
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming 650500, P. R. China
| | - Xing-Xi Li
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming 650500, P. R. China
| | - Jun-Fang Dong
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, P. R. China
| | - Li-Dong Shao
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming 650500, P. R. China
| | - Wei-Yan Hu
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, P. R. China
| | - Rong-Ping Zhang
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming 650500, P. R. China
| | - Xing-Long Chen
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming 650500, P. R. China
| |
Collapse
|
2
|
Goel R, Tomar A, Bawari S. Insights to the role of phytoconstituents in aiding multi drug resistance - Tuberculosis treatment strategies. Microb Pathog 2025; 198:107116. [PMID: 39536840 DOI: 10.1016/j.micpath.2024.107116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/10/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
Multidrug resistant tuberculosis (MDR-TB) have emerged as a global challenge. There are several underlying mechanisms which are involved in causing mycobacterial resistance towards antitubercular agents including post translational modifications, efflux pumps and gene mutations. This resistance necessitates the investigation of complementary therapeutic options including the use of bioactive compounds from plants. Recent studies have focused on recognising and isolating the characteristics of these compounds to assess their potential against MDR-TB. Phytoconstituents such as alkaloids, flavonoids, terpenoids, glycosides, and essential oils have shown promising antimicrobial activity against Mycobacterium tuberculosis. These compounds can either directly kill or inhibit the growth of M. tuberculosis or enhance the immune system's ability to fight against the infection. Some studies suggest that combining phytoconstituents with standard antitubercular medications works synergistically by enhancing the efficacy of drug, potentially lowering the associated risk of side effects and eventually combating resistance development. This review attempts to elucidate the potential of phytoconstituents in combating resistance in MDR-TB which hold a promise to change the course of treatment strategies in tuberculosis.
Collapse
Affiliation(s)
- Richi Goel
- Amity Institute of Pharmacy, Amity University Campus, Sector-125, Noida, 201301, Gautam Buddha Nagar, Uttar Pradesh, India
| | - Anush Tomar
- Center for Pharmacometrics & Systems Pharmacology, Department of Pharmaceutics, Lake Nona, College of Pharmacy, University of Florida, 6550 Sanger Road, Orlando, FL, 32827, USA
| | - Sweta Bawari
- Amity Institute of Pharmacy, Amity University Campus, Sector-125, Noida, 201301, Gautam Buddha Nagar, Uttar Pradesh, India.
| |
Collapse
|
3
|
Sulaiman M, Ebehairy L, Nissapatorn V, Rahmatullah M, Villegas J, Dupa HJ, Verzosa RC, Dolma KG, Shabaz M, Lanting S, Rusdi NA, Abdullah NH, Bin Break MK, Khoo T, Wang W, Wiart C. Antibacterial phenolic compounds from the flowering plants of Asia and the Pacific: coming to the light. PHARMACEUTICAL BIOLOGY 2024; 62:713-766. [PMID: 39392281 PMCID: PMC11486068 DOI: 10.1080/13880209.2024.2407530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024]
Abstract
CONTEXT The emergence of pan-resistant bacteria requires the development of new antibiotics and antibiotic potentiators. OBJECTIVE This review identifies antibacterial phenolic compounds that have been identified in Asian and Pacific Angiosperms from 1945 to 2023 and analyzes their strengths and spectra of activity, distributions, molecular masses, solubilities, modes of action, structures-activities, as well as their synergistic effects with antibiotics, toxicities, and clinical potential. METHODS All data in this review was compiled from Google Scholar, PubMed, Science Direct, Web of Science, and library search; other sources were excluded. We used the following combination of keywords: 'Phenolic compound', 'Plants', and 'Antibacterial'. This produced 736 results. Each result was examined and articles that did not contain information relevant to the topic or coming from non-peer-reviewed journals were excluded. Each of the remaining 467 selected articles was read critically for the information that it contained. RESULTS Out of ∼350 antibacterial phenolic compounds identified, 44 were very strongly active, mainly targeting the cytoplasmic membrane of Gram-positive bacteria, and with a molecular mass between 200 and 400 g/mol. 2-Methoxy-7-methyljuglone, [6]-gingerol, anacardic acid, baicalin, vitexin, and malabaricone A and B have the potential to be developed as antibacterial leads. CONCLUSIONS Angiosperms from Asia and the Pacific provide a rich source of natural products with the potential to be developed as leads for treating bacterial infections.
Collapse
Affiliation(s)
- Mazdida Sulaiman
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Layane Ebehairy
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Mohammed Rahmatullah
- Department of Biotechnology, University of Development Alternative, Dhaka, Bangladesh
| | - Jhonnel Villegas
- Faculty of Education and Teacher Training, Davao Oriental State University, Mati, Philippines
| | - Helina Jean Dupa
- Faculty of Education and Teacher Training, Davao Oriental State University, Mati, Philippines
| | - Ricksterlie C. Verzosa
- Faculty of Agriculture and Life Science, Davao Oriental State University, Mati, Philippines
| | - Karma G. Dolma
- Department of Microbiology, Sikkim Manipal University, Gangtok, India
| | - Muhamad Shabaz
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Scholastica Lanting
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Nor Azizun Rusdi
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Nor Hayati Abdullah
- Natural Product Division, Forest Research Institute of Malaysia, Kepong, Malaysia
| | - Mohammed Khaled Bin Break
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Ha’il, Ha’il, Saudi Arabia
| | - Teng Jin Khoo
- School of Pharmacy, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Wei Wang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Christophe Wiart
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| |
Collapse
|
4
|
Raqib R, Sarker P. Repurposed Drugs and Plant-Derived Natural Products as Potential Host-Directed Therapeutic Candidates for Tuberculosis. Biomolecules 2024; 14:1497. [PMID: 39766204 PMCID: PMC11673177 DOI: 10.3390/biom14121497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/15/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
Tuberculosis (TB) is one of the leading causes of death due to infectious disease. It is a treatable disease; however, conventional treatment requires a lengthy treatment regimen with severe side effects, resulting in poor compliance among TB patients. Intermittent drug use, the non-compliance of patients, and prescription errors, among other factors, have led to the emergence of multidrug-resistant TB, while the mismanagement of multidrug-resistant TB (MDR-TB) has eventually led to the development of extensively drug-resistant tuberculosis (XDR-TB). Thus, there is an urgent need for new drug development, but due to the enormous expenses and time required (up to 20 years) for new drug research and development, new therapeutic approaches to TB are required. Host-directed therapies (HDT) could be a most attractive strategy, as they target the host defense processes instead of the microbe and thereby may prevent the alarming rise of MDR- and XDR-TB. This paper reviews the progress in HDT for the treatment of TB using repurposed drugs which have been investigated in clinical trials (completed or ongoing) and plant-derived natural products that are in clinical or preclinical trial stages. Additionally, this review describes the existing challenges to the development and future research directions in the implementation of HDT.
Collapse
Affiliation(s)
- Rubhana Raqib
- Immunobiology, Nutrition and Toxicology Unit, Nutrition Research Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh;
| | | |
Collapse
|
5
|
Okonkwo CE, Onyeaka H, Olaniran AF, Isaac-Bamgboye FJ, Nwaiwu O, Ukwuru M, Adeyanju AA, Nwonuma CO, Alejolowo OO, Inyinbor AA, Akinsemolu A, Zhou C. Changes in flavor profile of vegetable seasonings by innovative drying technologies: A review. J Food Sci 2024; 89:6818-6838. [PMID: 39349974 DOI: 10.1111/1750-3841.17346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/26/2024] [Accepted: 08/14/2024] [Indexed: 11/13/2024]
Abstract
Seasonings like garlic, ginger, and scallion provide spicy and masking flavor or aroma in vegetables. However, the method or technique used for drying these spices can affect the flavor profile. Therefore, this review focuses on vegetable seasonings like ginger, garlic, and scallion, the characteristic flavor of fresh and dehydrated vegetable seasoning, and how drying methods (freeze-drying [FD], convective hot air drying [HAD], infrared drying, microwave drying [MW]), and other recent dryers (swirling fluidized bed [SFB], pulsed-vacuum dryer, relative humidity-convective dryer, etc.) affect the flavor profile of the common vegetable seasonings. HAD increases α-zingiberene, reduces gingerol, and forms β-citral and citral in fresh ginger. FD increased sesquiterpenes, retained terpenoids, sulfides, and other volatiles in fresh ginger, and did not produce new volatile compounds (VOCs) in garlic. SFB drying better preserves 6-gingerol than FD and HAD. MW increases trisulfides and cyclic sulfur compounds in garlic. In general, drying, especially thermal drying reduces the VOCs in fresh garlic, ginger, and scallion and causes the formation of new VOCs.
Collapse
Affiliation(s)
- Clinton E Okonkwo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Abiola F Olaniran
- Department of Food Science and Microbiology, College of Pure and Applied Science, Landmark University, Omu-Aran, Kwara State, Nigeria
| | | | - Ogueri Nwaiwu
- School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Michael Ukwuru
- Department of Food Science and Technology, Federal Polytechnic Idah, Idah, Nigeria
| | - Adeyemi A Adeyanju
- Department of Food Science and Microbiology, College of Pure and Applied Science, Landmark University, Omu-Aran, Kwara State, Nigeria
| | - Charles Obiora Nwonuma
- Department of Biochemistry, College of Pure and Applied Sciences, Landmark University, Omu-Aran, Kwara State, Nigeria
| | - Omokolade Oluwaseyi Alejolowo
- Department of Biochemistry, College of Pure and Applied Sciences, Landmark University, Omu-Aran, Kwara State, Nigeria
| | - Adejumoke A Inyinbor
- Industrial Chemistry Programme, Physical Sciences Department, Landmark University, Omu-Aran, Kwara State, Nigeria
| | | | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
6
|
Zhang T, Wang Z, Muaibati M, Huang F, Li K, Abasi A, Tong Q, Wang D, Jin L, Huang X, Zhuang L. Natural small molecule compounds targeting Wnt signaling pathway inhibit HPV infection. Microb Pathog 2024; 196:106960. [PMID: 39313132 DOI: 10.1016/j.micpath.2024.106960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 08/28/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND High-risk human papillomavirus (HPV) infection is a major risk factor of HPV-related tumors, especially cervical cancer. To date, there is no specific drug for the treatment of HPV infection. PURPOSE To explore the role of canonical Wnt signaling pathway in HPV16 infection and to screen inhibitors against HPV16 infection from natural small molecule compounds targeting the canonicalWnt pathway. METHODS Wnt pathway inhibitor IWP-2 and FH535 were used to inhibit Wnt/β-catenin signaling pathway. HPV16-GFP pseudovirus infectivity were analyzed by fluorescence microscopy and fluorescence activated cell sorting. A small molecule screening of a total of CFDA-approved 29 natural compounds targeting the Wnt pathway was performed. RESULTS Wnt signaling pathway inhibitor suppressed HPV16-GFP pseudovirus infection in HaCat cells. Natural small molecule compounds screening identified 6-Gingerol, gossypol, tanshinone II2A, and EGCG as inhibitors of HPV16-GFP pseudovirus infection. CONCLUSION Wnt signaling pathway is involved in the process of HPV infection of host cells. 6-Gingerol, gossypol, tanshinone II2A, and EGCG inhibited HPV16-GFP pseudovirus infection and suppressed Wnt/β-catenin pathway in HaCat cells.
Collapse
Affiliation(s)
- Tao Zhang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518057, China
| | - Ze Wang
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, China
| | - Munawaer Muaibati
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, China
| | - Fanwei Huang
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, China
| | - Kexin Li
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, China
| | - Abuduyilimu Abasi
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, China
| | - Qing Tong
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, China
| | - Dan Wang
- Department of Ophthalmology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Jin
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, China
| | - Xiaoyuan Huang
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, China
| | - Liang Zhuang
- Department of Oncology, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, China.
| |
Collapse
|
7
|
Pahuja I, Ghoshal A, Okieh AA, Verma A, Negi K, Agarwal M, Chandra NS, Sharma SK, Bhaskar A, Dwivedi VP. Immunoinhibitory effects of anti-tuberculosis therapy induce the host vulnerability to tuberculosis recurrence. Microbiol Spectr 2024; 12:e0041224. [PMID: 38809023 PMCID: PMC11218458 DOI: 10.1128/spectrum.00412-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/10/2024] [Indexed: 05/30/2024] Open
Abstract
The host immune responses play a pivotal role in the establishment of long-term memory responses, which effectively aids in infection clearance. However, the prevailing anti-tuberculosis therapy, while aiming to combat tuberculosis (TB), also debilitates innate and adaptive immune components of the host. In this study, we explored how the front-line anti-TB drugs impact the host immune cells by modulating multiple signaling pathways and subsequently leading to disease relapse. Administration of these drugs led to a reduction in innate immune activation and also the cytokines required to trigger protective T cell responses. Moreover, these drugs led to activation-induced cell death in the mycobacterial-specific T cell leading to a reduced killing capacity. Furthermore, these drugs stalled the T cell differentiation into memory subsets by modulating the activation of STAT3, STAT4, FOXO1, and NFκB transcription factors and hampering the Th1 and Th17-mediated long-term host protective memory responses. These findings suggest the urgent need to augment directly observed treatment, short-course (DOTS) therapy with immunomodulatory agents to mitigate the adverse effects linked to the treatment.IMPORTANCEAs a central component of TB eradication initiatives, directly observed treatment, short-course (DOTS) therapy imparts immune-dampening effects during the course of treatment. This approach undermines the host immune system by delaying the activation process and lowering the immune response. In our investigation, we have unveiled the impact of DOTS on specific immune cell populations. Notably, the signaling pathways involving STAT3 and STAT4 critical for memory responses and NFκβ associated with pro-inflammation were substantially declined due to the therapy. Consequently, these drugs exhibit limited effectiveness in preventing recurrence of the disease. These observations highlight the imperative integration of immunomodulators to manage TB infection.
Collapse
Affiliation(s)
- Isha Pahuja
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Department of Molecular Medicine, Jamia Hamdard University, New Delhi, India
| | - Antara Ghoshal
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ahmed Abdallah Okieh
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Akanksha Verma
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Kriti Negi
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Meetu Agarwal
- Department of Molecular Medicine, Jamia Hamdard University, New Delhi, India
| | - Nidhi Subhash Chandra
- Department of Microbiology, Ram Lal Anand College, University of Delhi, New Delhi, India
| | - Saurabh Kumar Sharma
- School of Computer & Systems Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ashima Bhaskar
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ved Prakash Dwivedi
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
8
|
Mi J, Wu X, Liang J. The advances in adjuvant therapy for tuberculosis with immunoregulatory compounds. Front Microbiol 2024; 15:1380848. [PMID: 38966394 PMCID: PMC11222340 DOI: 10.3389/fmicb.2024.1380848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/10/2024] [Indexed: 07/06/2024] Open
Abstract
Tuberculosis (TB) is a chronic bacterial disease, as well as a complex immune disease. The occurrence, development, and prognosis of TB are not only related to the pathogenicity of Mycobacterium tuberculosis (Mtb), but also related to the patient's own immune state. The research and development of immunotherapy drugs can effectively regulate the body's anti-TB immune responses, inhibit or eliminate Mtb, alleviate pathological damage, and facilitate rehabilitation. This paper reviews the research progress of immunotherapeutic compounds for TB, including immunoregulatory compounds and repurposing drugs, and points out the existing problems and future research directions, which lays the foundation for studying new agents for host-directed therapies of TB.
Collapse
Affiliation(s)
- Jie Mi
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Xueqiong Wu
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute of Tuberculosis Research, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Jianqin Liang
- Department of Tuberculosis, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
9
|
Elfaky MA, Okairy HM, Abdallah HM, Koshak AE, Mohamed GA, Ibrahim SR, Alzain AA, Hegazy WA, Khafagy ES, Seleem NM. Assessing the antibacterial potential of 6-gingerol: Combined experimental and computational approaches. Saudi Pharm J 2024; 32:102041. [PMID: 38558886 PMCID: PMC10981156 DOI: 10.1016/j.jsps.2024.102041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
The rise of antibiotic resistance in bacteria is becoming a global concern, particularly due to the dwindling supply of new antibiotics. This situation mandates the discovery of new antimicrobial candidates. Plant-derived natural compounds have historically played a crucial role in the development of antibiotics, serving as a rich source of substances possessing antimicrobial properties. Numerous studies have supported the reputation of 6-gingerol, a prominent compound found in the ginger family, for its antibacterial properties. In this study, the antibacterial activities of 6-gingerol were evaluated against Gram-negative bacteria, Acinetobacter baumannii and Klebsiella pneumoniae, with a particular focus on the clinically significant Gram-negative Pseudomonas aeruginosa and Gram-positive bacteria Staphylococcus aureus. Furthermore, the anti-virulence activities were assessed in vitro, in vivo, and in silico. The current findings showed that 6-gingerol's antibacterial activity is due to its significant effect on the disruption of the bacterial cell membrane and efflux pumps, as it significantly decreased the efflux and disrupted the cell membrane of S. aureus and P. aeruginosa. Furthermore, 6-gingerol significantly decreased the biofilm formation and production of virulence factors in S. aureus and P. aeruginosa in concentrations below MICs. The anti-virulence properties of 6-gingerol could be attributed to its capacity to disrupt bacterial virulence-regulating systems; quorum sensing (QS). 6-Gingerol was found to interact with QS receptors and downregulate the genes responsible for QS. In addition, molecular docking, and molecular dynamics (MD) simulation results indicated that 6-gingerol showed a comparable binding affinity to the co-crystalized ligands of different P. aeruginosa QS targets as well as stable interactions during 100 ns MD simulations. These findings suggest that 6-gingerol holds promise as an anti-virulence agent that can be combined with antibiotics for the treatment of severe infections.
Collapse
Affiliation(s)
- Mahmoud A. Elfaky
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hassan M. Okairy
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hossam M. Abdallah
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdulrahman E. Koshak
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Gamal A. Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sabrin R.M. Ibrahim
- Preparatory Year Program, Department of Chemistry, Batterjee Medical College, Jeddah 21442, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Abdulrahim A. Alzain
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Wad Madani 21111, Sudan
| | - Wael A.H. Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Pharmacy Program, Department of Pharmaceutical Sciences, Oman College of Health Sciences, Muscat 113, Oman
| | - El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Noura M. Seleem
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
10
|
Sharma R, Muthu SA, Agarwal M, Mehto NK, Pahuja I, Grover A, Dwivedi VP, Ahmad B, Grover S. Atosiban and Rutin exhibit anti-mycobacterial activity - An integrated computational and biophysical insight toward drug repurposing strategy against Mycobacterium tuberculosis targeting its essential enzyme HemD. Int J Biol Macromol 2023; 253:127208. [PMID: 37816464 DOI: 10.1016/j.ijbiomac.2023.127208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/18/2023] [Accepted: 09/30/2023] [Indexed: 10/12/2023]
Abstract
With the advancements of high throughput computational screening procedures, drug repurposing became the privileged framework for drug discovery. The structure-based drug discovery is the widely used method of drug repurposing, consisting of computational screening of compounds and testing them in-vitro. This current method of repurposing leaves room for mechanistic insights into how these screened hits interact with and influence their targets. We addressed this gap in the current study by integrating highly sensitive biophysical methods into existing computational repurposing methods. We also corroborated our computational and biophysical findings on H37Rv for the anti-mycobacterial action of selected drugs in-vitro and ex-vivo conditions. Atosiban and Rutin were screened as highly interacting hits against HemD through multi-stage docking and were cross-validated in biophysical studies. The affinity of these drugs (K ~ 106 M-1) was quantified using fluorescence quenching studies. Differential Scanning Fluorimetry (DSF) and urea-based chemical denaturation studies revealed a destabilizing effect of these drugs on target which was further validated using MD simulations. Conformational rearrangements of secondary structures were established using CD spectra and intrinsic fluorescence. Furthermore, Atosiban and Rutin inhibited M.tb growth in-vitro and ex-vivo while remaining non-toxic to mice peritoneal macrophages.
Collapse
Affiliation(s)
- Rahul Sharma
- Department of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Shivani A Muthu
- Department of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Meetu Agarwal
- Department of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | | | - Isha Pahuja
- Department of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Abhinav Grover
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ved Prakash Dwivedi
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Basir Ahmad
- Protein Assembly Lab, Department of Medical Elementology and Toxicology, Jamia Hamdard, New Delhi 110062, India.
| | - Sonam Grover
- Department of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
11
|
Dos Santos EAR, Tadielo LE, Schmiedt JA, Possebon FS, Pereira MO, Pereira JG, Dos Santos Bersot L. Effect of ginger essential oil and 6-gingerol on a multispecies biofilm of Listeria monocytogenes, Salmonella Typhimurium, and Pseudomonas aeruginosa. Braz J Microbiol 2023; 54:3041-3049. [PMID: 37668830 PMCID: PMC10689688 DOI: 10.1007/s42770-023-01075-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/20/2023] [Indexed: 09/06/2023] Open
Abstract
The objective of this study was to evaluate the potential antimicrobial and antibiofilm effect of ginger essential oil (GEO) and 6-gingerol on a multispecies biofilm formed by Listeria monocytogenes, Salmonella Typhimurium, and Pseudomonas aeruginosa on a polypropylene surface. The minimum inhibitory concentration concentrations obtained for GEO were 100 and 50 mg/mL and for 6-gingerol 1.25 mg/mL. Sessile cell counts ranged within 5.35-7.35 log CFU/cm2 in the control biofilm, with the highest sessile growth at 72 h. GEO treatments acted on the total population regardless of concentration at 1 and 48 h. L. monocytogenes behaved similarly to the total population, showing GEO action at 1 h and keeping the same pattern at 48, 72, and 96 h. Better action on S. Typhimurium was obtained at times of 1, 72, and 96 h. P. aeruginosa showed logarithmic reduction only when treated with GEO 50 mg at 24 h. As for 6-gingerol, in general, there was no significant action (p > 0.05) on the evaluated sessile cells. GEO showed antimicrobial activity against L. monocytogenes, S. Typhimurium, and P. aeruginosa, acting as an inhibitor of biofilm formation. As for 6-gingerol, it was considered a possible antimicrobial agent but without efficacy during biofilm formation.
Collapse
Affiliation(s)
| | - Leonardo Ereno Tadielo
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Distrito de Rubião Jr, BotucatuSão Paulo, SN, 18618-970, Brazil
| | - Jhennifer Arruda Schmiedt
- Department of Veterinary Sciences, Federal University of Paraná, Palotina Campus, Rua Pioneiro, Jardim Dallas, Palotina, PR, 215385950-000, Brazil
| | - Fábio Sossai Possebon
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Distrito de Rubião Jr, BotucatuSão Paulo, SN, 18618-970, Brazil
| | - Maria Olivia Pereira
- Biological Engineering Center, University of Minho, Gualtar Campus, 4710-057, Braga, Portugal
| | - Juliano Gonçalves Pereira
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Distrito de Rubião Jr, BotucatuSão Paulo, SN, 18618-970, Brazil
| | - Luciano Dos Santos Bersot
- Department of Veterinary Sciences, Federal University of Paraná, Palotina Campus, Rua Pioneiro, Jardim Dallas, Palotina, PR, 215385950-000, Brazil.
| |
Collapse
|
12
|
Noor G, Badruddeen, Akhtar J, Singh B, Ahmad M, Khan MI. An outlook on the target-based molecular mechanism of phytoconstituents as immunomodulators. Phytother Res 2023; 37:5058-5079. [PMID: 37528656 DOI: 10.1002/ptr.7969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 08/03/2023]
Abstract
The immune system is one of the essential defense mechanisms. Immune system inadequacy increases the risk of infections and cancer diseases, whereas over-activation of the immune system causes allergies or autoimmune disorders. Immunomodulators have been used in the treatment of immune-related diseases. There is growing interest in using herbal medicines as multicomponent agents to modulate the complex immune system in immune-related diseases. Many therapeutic phytochemicals showed immunomodulatory effects by various mechanisms. This mechanism includes stimulation of lymphoid cell, phagocytosis, macrophage, and cellular immune function enhancement. In addition increased antigen-specific immunoglobulin production, total white cell count, and inhibition of TNF-α, IFN-γ, NF-kB, IL-2, IL-6, IL-1β, and other cytokines that influenced the immune system. This review aims to overview, widely investigated plant-derived phytoconstituents by targeting cells to modulate cellular and humoral immunity in in vivo and in vitro. However, further high-quality research is needed to confirm the clinical efficacy of plant-based immunomodulators.
Collapse
Affiliation(s)
- Gazala Noor
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Badruddeen
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Juber Akhtar
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Bhuwanendra Singh
- Department of Pharmacognosy, S.D. College of Pharmacy and Vocational Studies, Muzaffarnagar, India
| | - Mohammad Ahmad
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Mohammad Irfan Khan
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| |
Collapse
|
13
|
He W, Liang L, Zhang Y. Pungency Perception and the Interaction with Basic Taste Sensations: An Overview. Foods 2023; 12:2317. [PMID: 37372528 DOI: 10.3390/foods12122317] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/17/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The perception of pungency can be attributed to the combination of pain and heat, and it has critical impacts on food flavor and food consumption preferences. Many studies have reported a variety of pungent ingredients with different Scoville heat units (SHU), and the mechanism of pungent perception was revealed in vivo and in vitro. The worldwide use of spices containing pungent ingredients has led to an increasing awareness of their effects on basic tastes. However, the interaction between basic tastes and pungency perception based on structure-activity relationship, taste perception mechanism and neurotransmission lacks review and summary, considering its brighter prospects in food flavor. Thus, in this review, common pungency substances and pungency evaluation methods, and the mechanism of pungency perception is presented, and the interaction between basic tastes and pungency perception and the possible factors of their interaction are reviewed in detail. Pungent stimuli are mainly transduced through transient receptor potential vanilloid 1 (TRPV1) and transient receptor potential fixed hormone isoform (TRPA1) activated by stimulants. Using modern detection techniques combined with sensory standards, different substances produce different degrees of pungent stimulation, ranging from 104 to 107 SHU/g. Pungent stimuli can affect taste receptor or channel protein conformation and regulate taste bud cell sensitivity by producing neurotransmission products. The products of neurotransmission and taste receptor cell activation in turn act on taste perception. When there are simultaneous effects of taste perception, pungency stimulation may enhance the perception of salty at a certain concentration, with a mutual inhibition effect with sour, sweet, and bitter taste, while its interaction with umami taste is not obvious. However, due to the complexity of perception and the uncertainty of many perceptual receptors or channels, the current studies of interactions are still controversial. Based on the understanding of the mechanism and influencing factors, the availability of pungency substances is proposed in the perspective of food industry in order to achieve new development.
Collapse
Affiliation(s)
- Wei He
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Li Liang
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Yuyu Zhang
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
14
|
Ayodele S, Kumar P, van Eyk A, Choonara YE. Advances in immunomodulatory strategies for host-directed therapies in combating tuberculosis. Biomed Pharmacother 2023; 162:114588. [PMID: 36989709 DOI: 10.1016/j.biopha.2023.114588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/14/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Tuberculosis (TB) maintains its infamous status regarding its detrimental effect on global health, causing the highest mortality by a single infectious agent. The presence of resistance and immune compromising disease favours the disease in maintaining its footing in the health care burden despite various anti-TB drugs used to fight it. Main factors contributing to resistance and difficulty in treating disease include prolonged treatment duration (at least 6 months) and severe toxicity, which further leads to patient non-compliance, and thus a ripple effect leading to therapeutic non-efficacy. The efficacy of new regimens demonstrates that targeting host factors concomitantly with the Mycobacterium tuberculosis (M.tb) strain is urgently required. Due to the huge expenses and time required of up to 20 years for new drug research and development, drug repurposing may be the most economical, circumspective, and conveniently faster journey to embark on. Host-directed therapy (HDT) will dampen the burden of the disease by acting as an immunomodulator, allowing it to defend the body against antibiotic-resistant pathogens whilst minimizing the possibility of developing new resistance to susceptible drugs. Repurposed drugs in TB act as host-directed therapies, acclimatizing the host immune cell to the presence of TB, improving its antimicrobial activity and time taken to get rid of the disease, whilst minimizing inflammation and tissue damage. In this review, we, therefore, explore possible immunomodulatory targets, HDT immunomodulatory agents, and their ability to improve clinical outcomes whilst minimizing the risk of drug resistance, through various pathway targeting and treatment duration reduction.
Collapse
|
15
|
Liu Y, Li D, Wang S, Peng Z, Tan Q, He Q, Wang J. 6-Gingerol Ameliorates Hepatic Steatosis, Inflammation and Oxidative Stress in High-Fat Diet-Fed Mice through Activating LKB1/AMPK Signaling. Int J Mol Sci 2023; 24:ijms24076285. [PMID: 37047258 PMCID: PMC10094681 DOI: 10.3390/ijms24076285] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/18/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023] Open
Abstract
6-Gingerol, one of the major pharmacologically active ingredients extracted from ginger, has been reported experimentally to exert hepatic protection in non-alcoholic fatty liver disease (NAFLD). However, the molecular mechanism remains largely elusive. RNA sequencing indicated the significant involvement of the AMPK signaling pathway in 6-gingerol-induced alleviation of NAFLD in vivo. Given the significance of the LKB1/AMPK pathway in metabolic homeostasis, this study aims to investigate its role in 6-gingerol-induced mitigation on NAFLD. Our study showed that 6-gingerol ameliorated hepatic steatosis, inflammation and oxidative stress in vivo and in vitro. Further experiment validation suggested that 6-gingerol activated an LKB1/AMPK pathway cascade in vivo and in vitro. Co-immunoprecipitation analysis demonstrated that the 6-gingerol-elicited activation of an LKB1/AMPK pathway cascade was related to the enhanced stability of the LKB1/STRAD/MO25 complex. Furthermore, radicicol, an LKB1 destabilizer, inhibited the activating effect of 6-gingerol on an LKB1/AMPK pathway cascade via destabilizing LKB1/STRAD/MO25 complex stability in vitro, thus reversing the 6-gingerol-elicited ameliorative effect. In addition, molecular docking analysis further predicated the binding pockets of LKB1 necessary for binding with 6-gingerol. In conclusion, our results indicate that 6-gingerol plays an important role in regulating the stability of the LKB1/STRAD/MO25 complex and the activation of LKB1, which might weigh heavily in the 6-gingerol alleviation of NAFLD.
Collapse
Affiliation(s)
- Yuzhe Liu
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Dong Li
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Shang Wang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Ze Peng
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Qi Tan
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Qifeng He
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Jianwei Wang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China
- Correspondence:
| |
Collapse
|
16
|
Pahuja I, Negi K, Kumari A, Agarwal M, Mukhopadhyay S, Mathew B, Chaturvedi S, Maras JS, Bhaskar A, Dwivedi VP. Berberine governs NOTCH3/AKT signaling to enrich lung-resident memory T cells during tuberculosis. PLoS Pathog 2023; 19:e1011165. [PMID: 36881595 PMCID: PMC9990925 DOI: 10.1371/journal.ppat.1011165] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/30/2023] [Indexed: 03/08/2023] Open
Abstract
Stimulation of naïve T cells during primary infection or vaccination drives the differentiation and expansion of effector and memory T cells that mediate immediate and long-term protection. Despite self-reliant rescue from infection, BCG vaccination, and treatment, long-term memory is rarely established against Mycobacterium tuberculosis (M.tb) resulting in recurrent tuberculosis (TB). Here, we show that berberine (BBR) enhances innate defense mechanisms against M.tb and stimulates the differentiation of Th1/Th17 specific effector memory (TEM), central memory (TCM), and tissue-resident memory (TRM) responses leading to enhanced host protection against drug-sensitive and drug-resistant TB. Through whole proteome analysis of human PBMCs derived from PPD+ healthy individuals, we identify BBR modulated NOTCH3/PTEN/AKT/FOXO1 pathway as the central mechanism of elevated TEM and TRM responses in the human CD4+ T cells. Moreover, BBR-induced glycolysis resulted in enhanced effector functions leading to superior Th1/Th17 responses in human and murine T cells. This regulation of T cell memory by BBR remarkably enhanced the BCG-induced anti-tubercular immunity and lowered the rate of TB recurrence due to relapse and re-infection. These results thus suggest tuning immunological memory as a feasible approach to augment host resistance against TB and unveil BBR as a potential adjunct immunotherapeutic and immunoprophylactic against TB.
Collapse
Affiliation(s)
- Isha Pahuja
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
- Department of Molecular Medicine, Jamia Hamdard University, New Delhi, India
| | - Kriti Negi
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Anjna Kumari
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Meetu Agarwal
- Department of Molecular Medicine, Jamia Hamdard University, New Delhi, India
| | - Suparba Mukhopadhyay
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Babu Mathew
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Shivam Chaturvedi
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Jaswinder Singh Maras
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Ashima Bhaskar
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
- * E-mail: (AB); (VPD)
| | - Ved Prakash Dwivedi
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
- * E-mail: (AB); (VPD)
| |
Collapse
|
17
|
Veerapandi G, Meenakshi S, Sekar C. Rapid detection of gingerol and thymol in medicinal foods based on Fe2O3 nanoparticles modified glassy carbon electrode. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01793-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
18
|
Chauhan S, Saini D, Madan K. Screening of Phytoconstituents from Traditional Plants against SARSCoV-
2 using Molecular Docking Approach. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180819666220307163058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The emergence of COVID-19 as a fatal viral disease encourages researchers to
develop effective and efficient therapeutic agents. The intervention of in silico studies has led to revolutionary
changes in the conventional method of testing the bioactivity of plant constituents.
Objective:
The current study deals with the investigation of some traditional immunomodulators of plant
origin to combat this ailment.
Materials and Methods:
A total of 151 phytomolecules of 12 immunomodulatory plants were evaluated
for their inhibitory action against the main protease (PDB ID: 7D1M) and NSP15 endoribonuclease (PDB
ID: 6WLC) by structure-based virtual screening. In addition, the promising molecules with ligand efficiency
of more than -0.3(kcal/mol)/heavy atoms were further predicted for pharmacokinetic properties
and druggability using the SwissADME web server, and their toxicity was also evaluated using Protox-II.
Result:
Myricetin-3-O-arabinofuranoside of cranberry plant was found to be the most potential candidate
against both enzymes: main protease (–14.2 kcal/mol) and NSP15 endoribonuclease (–12.2 kcal/mol).
Conclusion:
The promising outcomes of the current study may be implemented in future drug development
against coronavirus. The findings also help in the development of lead candidates of plant origin
with a better ADMET profile in the future.
Collapse
Affiliation(s)
- Shilpi Chauhan
- Department of Pharmacy, Lloyd Institute of Management and Technology, Plot No.-11, Knowledge Park-I1, Greater
Noida, Uttar Pradesh 201306, India
| | - Deepika Saini
- Department of Pharmacy, Lloyd Institute of Management and Technology, Plot No.-11, Knowledge Park-I1, Greater
Noida, Uttar Pradesh 201306, India
| | - Kumud Madan
- Department of Pharmacy, Lloyd Institute of Management and Technology, Plot No.-11, Knowledge Park-I1, Greater
Noida, Uttar Pradesh 201306, India
| |
Collapse
|
19
|
Tompros A, Wilber MQ, Fenton A, Carter ED, Gray MJ. Efficacy of Plant-Derived Fungicides at Inhibiting Batrachochytrium salamandrivorans Growth. J Fungi (Basel) 2022; 8:1025. [PMID: 36294589 PMCID: PMC9605044 DOI: 10.3390/jof8101025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 11/21/2022] Open
Abstract
The emerging fungal amphibian pathogen, Batrachochytrium salamandrivorans (Bsal), is currently spreading across Europe and given its estimated invasion potential, has the capacity to decimate salamander populations worldwide. Fungicides are a promising in situ management strategy for Bsal due to their ability to treat the environment and infected individuals. However, antifungal drugs or pesticides could adversely affect the environment and non-target hosts, thus identifying safe, effective candidate fungicides for in situ treatment is needed. Here, we estimated the inhibitory fungicidal efficacy of five plant-derived fungicides (thymol, curcumin, allicin, 6-gingerol, and Pond Pimafix®) and one chemical fungicide (Virkon® Aquatic) against Bsal zoospores in vitro. We used a broth microdilution method in 48-well plates to test the efficacy of six concentrations per fungicide on Bsal zoospore viability. Following plate incubation, we performed cell viability assays and agar plate growth trials to estimate the minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of each fungicide. All six fungicides exhibited inhibitory and fungicidal effects against Bsal growth, with estimated MIC concentrations ranging from 60 to 0.156 μg/mL for the different compounds. Allicin showed the greatest efficacy (i.e., lowest MIC and MFC) against Bsal zoospores followed by curcumin, Pond Pimafix®, thymol, 6-gingerol, and Virkon® Aquatic, respectively. Our results provide evidence that plant-derived fungicides are effective at inhibiting and killing Bsal zoospores in vitro and may be useful for in situ treatment. Additional studies are needed to estimate the efficacy of these fungicides at inactivating Bsal in the environment and treating Bsal-infected amphibians.
Collapse
Affiliation(s)
- Adrianna Tompros
- Center for Wildlife Health, Department of Forestry, Wildlife, and Fisheries, University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA
| | - Mark Q. Wilber
- Center for Wildlife Health, Department of Forestry, Wildlife, and Fisheries, University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA
| | - Andy Fenton
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7ZB, UK
| | - Edward Davis Carter
- Center for Wildlife Health, Department of Forestry, Wildlife, and Fisheries, University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA
| | - Matthew J. Gray
- Center for Wildlife Health, Department of Forestry, Wildlife, and Fisheries, University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA
| |
Collapse
|
20
|
Yücel Ç, Karatoprak GŞ, Açıkara ÖB, Akkol EK, Barak TH, Sobarzo-Sánchez E, Aschner M, Shirooie S. Immunomodulatory and anti-inflammatory therapeutic potential of gingerols and their nanoformulations. Front Pharmacol 2022; 13:902551. [PMID: 36133811 PMCID: PMC9483099 DOI: 10.3389/fphar.2022.902551] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Ginger (Zingiber officinale Roscoe), a member of the Zingiberaceae family, is one of the most popular spices worldwide, known since ancient times, and used both as a spice and a medicinal plant. The phenolic compounds found in ginger are predominantly gingerols, shogaols, and paradols. Gingerols are the major phenolic compounds found in fresh ginger and contain mainly 6-gingerol as well as 4-, 5-, 8-, 10-, and 12-gingerols. Gingerols possess a wide array of bioactivities, such as antioxidant and anticancer, among others. Regarding the different array of biological activities and published data on the mechanisms underlying its action, the complex interaction between three key events, including inflammation, oxidative stress, and immunity, appears to contribute to a plethora of pharmacological activities of this compound. Among these, the immunomodulatory properties of these compounds, which attract attention due to their effects on the immune system, have been the focus of many studies. Gingerols can alleviate inflammation given their ability to inhibit the activation of protein kinase B (Akt) and nuclear factor kappa B (NF-κB) signaling pathways, causing a decrease in proinflammatory and an increase in anti-inflammatory cytokines. However, given their low bioavailability, it is necessary to develop new and more effective strategies for treatment with gingerols. In order to overcome this problem, recent studies have addressed new drug delivery systems containing gingerols. In this review, the immunomodulatory activities of gingerol and its underlying mechanisms of action combined with the contributions of developed nanodrug delivery systems to this activity will be examined.
Collapse
Affiliation(s)
- Çiğdem Yücel
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | | | | | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Turkey
- *Correspondence: Esra Küpeli Akkol, ; Eduardo Sobarzo-Sánchez,
| | - Timur Hakan Barak
- Department of Pharmacognosy, Faculty of Pharmacy, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Turkey
| | - Eduardo Sobarzo-Sánchez
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago, Chile
- *Correspondence: Esra Küpeli Akkol, ; Eduardo Sobarzo-Sánchez,
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Park Avenue Bronx, NY, United States
| | - Samira Shirooie
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
21
|
|
22
|
Bioactive Compounds from the Zingiberaceae Family with Known Antioxidant Activities for Possible Therapeutic Uses. Antioxidants (Basel) 2022; 11:antiox11071281. [PMID: 35883772 PMCID: PMC9311506 DOI: 10.3390/antiox11071281] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
The Zingiberaceae family is a rich source of diverse bioactive phytochemicals. It comprises about 52 genera and 1300 species of aromatic flowering perennial herbs with characteristic creeping horizontal or tuberous rhizomes. Notable members of this family include ginger (Zingiber officinale Roscoe), turmeric (Curcuma longa L.), Javanese ginger (Curcuma zanthorrhiza Roxb.), and Thai ginger (Alpinia galanga L.). This review focuses on two main classes of bioactive compounds: the gingerols (and their derivatives) and the curcuminoids. These compounds are known for their antioxidant activity against several maladies. We highlight the centrality of their antioxidant activities with notable biological activities, including anti-inflammatory, antidiabetic, hepatoprotective, neuroprotective, antimicrobial, and anticancer effects. We also outline various strategies that have been applied to enhance these activities and make suggestions for research areas that require attention.
Collapse
|
23
|
Comparison of Different Drying Methods on the Volatile Components of Ginger ( Zingiber officinale Roscoe) by HS-GC-MS Coupled with Fast GC E-Nose. Foods 2022; 11:foods11111611. [PMID: 35681361 PMCID: PMC9180836 DOI: 10.3390/foods11111611] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/21/2022] [Accepted: 05/27/2022] [Indexed: 02/05/2023] Open
Abstract
Ginger (Zingiber officinale Roscoe) is one of the most popular spices in the world, with its unique odor. Due to its health benefits, ginger is also widely used as a dietary supplement and herbal medicine. In this study, the main flavor components of gingers processed by different drying methods including hot air drying, vacuum drying, sun-drying, and vacuum-freeze drying, were identified on the basis of headspace-gas chromatography coupled with mass spectrometry (HS-GC-MS) and fast gas chromatography electronic-nose (fast GC e-nose) techniques. The results showed that the ginger dried by hot air drying exhibited high contents of volatile compounds and retained the richest odor in comparison with those dried by other methods, which indicated that hot air drying is more suitable for the production of dried ginger. Sensory description by fast GC e-nose exhibited that ginger flavor was mainly concentrated in the spicy, sweet, minty, fruity, and herbaceous odor. The relative content of the zingiberene was significantly higher in the hot air drying sample than those by other methods, suggesting that dried ginger by hot air drying can retain more unique spicy and pungent odorants. Furthermore, the results of chemometrics analyses showed that the main variance components among the samples by different drying methods were α-naginatene, (+)-cyclosativene, and sulcatone in HS-GC-MS analysis, and α-terpinen-7-al, dimethyl sulfide, and citronellal in fast GC e-nose analysis. For comparison of fresh and dried gingers, terpinolene, terpinen-4-ol, 2,4-decadienal, (E, Z)-, and linalool were considered the main variance components. This study generated a better understanding of the flavor characteristics of gingers by different drying methods and could provide a guide for drying and processing of ginger.
Collapse
|
24
|
Ozkur M, Benlier N, Takan I, Vasileiou C, Georgakilas AG, Pavlopoulou A, Cetin Z, Saygili EI. Ginger for Healthy Ageing: A Systematic Review on Current Evidence of Its Antioxidant, Anti-Inflammatory, and Anticancer Properties. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4748447. [PMID: 35585878 PMCID: PMC9110206 DOI: 10.1155/2022/4748447] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/11/2022] [Indexed: 12/24/2022]
Abstract
The world's population is ageing at an accelerated pace. Ageing is a natural, physiological but highly complex and multifactorial process that all species in the Tree of Life experience over time. Physical and mental disabilities, and age-related diseases, would increase along with the increasing life expectancy. Ginger (Zingiber officinale) is a plant that belongs to the Zingiberaceae family, native to Southeast Asia. For hundreds of years, ginger has been consumed in various ways by the natives of Asian countries, both as culinary and medicinal herb for the treatment of many diseases. Mounting evidence suggests that ginger can promote healthy ageing, reduce morbidity, and prolong healthy lifespan. Ginger, a well-known natural product, has been demonstrated to possess antioxidant, anti-inflammatory, anticancer, and antimicrobial properties, as well as an outstanding antiviral activity due to a high concentration of antiviral compounds. In this review, the current evidence on the potential role of ginger and its active compounds in the prevention of ageing is discussed.
Collapse
Affiliation(s)
- Mehtap Ozkur
- Department of Medical Pharmacology, Faculty of Medicine, SANKO University, Gaziantep, Turkey
| | - Necla Benlier
- Department of Medical Pharmacology, Faculty of Medicine, SANKO University, Gaziantep, Turkey
| | - Işıl Takan
- Izmir Biomedicine and Genome Center, Balcova, Izmir 35340, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Balcova, Izmir 35220, Turkey
| | - Christina Vasileiou
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, 157 80 Athens, Greece
| | - Alexandros G. Georgakilas
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, 157 80 Athens, Greece
| | - Athanasia Pavlopoulou
- Izmir Biomedicine and Genome Center, Balcova, Izmir 35340, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Balcova, Izmir 35220, Turkey
| | - Zafer Cetin
- Department of Medical Biology, School of Medicine, SANKO University, Gaziantep, Turkey
- Department of Biological and Biomedical Sciences, Graduate Education Institute, SANKO University, Gaziantep, Turkey
| | - Eyup Ilker Saygili
- Department of Medical Biochemistry, School of Medicine, SANKO University, Gaziantep, Turkey
- Department of Molecular Medicine, Graduate Education Institute, SANKO University, Gaziantep, Turkey
| |
Collapse
|
25
|
Balkrishna A, Lochab S, Joshi M, Srivastava J, Varshney A. Divya-Herbal-Peya Decoction Harmonizes the Inflammatory Response in Lipopolysaccharide-Induced Zebrafish Model. J Exp Pharmacol 2021; 13:937-955. [PMID: 34880683 PMCID: PMC8648330 DOI: 10.2147/jep.s328864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 11/02/2021] [Indexed: 11/30/2022] Open
Abstract
Background Divya-Herbal-Peya (DHP) is a plant-based decoction containing fourteen herbs in precise quantities; usually prescribed by the practitioners in Ayurveda to alleviate stress and minimize the exasperating symptoms of recurring infections. Our study aims to provide an experimental validation to the immunomodulatory properties of DHP. Methods Physico-chemical analysis of DHP was performed to evaluate the presence of secondary metabolites. The phytochemicals were then identified and quantitated through HPTLC, UHPLC, and GC-MS techniques. To address the scientific rationale behind DHP, lipopolysaccharide (LPS) was intraperitoneally injected in adult zebrafish to develop inflammatory response. Following LPS-induction, abnormality in locomotory behaviour was determined by evaluating the relative swim velocity and the rate of turning in experimental zebrafish. Pathophysiological effects were determined through opercular frequency, behavioural fever, and caudal fin damage. LPS-mediated inflammation was measured of pro-inflammatory cytokines, TNFα, IL-6, and IL-1β expression in the serum of study animals, by RT-PCR. Results Our study phytochemically characterized and ascertained the presence of glycyrrhizin, rosmarinic acid, gingerol, cinnamic acid, protocatechuic acid, gallic acid, ellagic acid, piperine and cinnamaldehyde in DHP decoction. LPS induced aberrant locomotory patterns, behavioural fever and caudal fin damage in zebrafish. A significant increase in gene expression levels of pro-inflammatory cytokines, TNFα, IL-6, and IL-1β was also determined. However, these locomotory deviations and behavioural fever were negligible in zebrafish groups pre-administered either with DHP in a dose dependent manner or dexamethasone (DEX). The altered opercular rate, caudal fin damage and elevated transcription levels of pro-inflammatory genes upon LPS-induction were averted in groups pre-treated with DHP and DEX. Conclusion DHP prophylactically prevented the LPS-induced abnormal behaviour and inflammation-related pathophysiology in zebrafish. Immunomodulatory properties of DHP may not have therapeutic intervention, but do confer nutraceutical health benefits against mild infections.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, 249405, Uttarakhand, India.,Department of Allied and Applied Sciences, University of Patanjali, Patanjali Yog Peeth, Haridwar, 249405, Uttarakhand, India.,Patanjali Yog Peeth (UK) Trust, Glasgow, G41 1AU, UK
| | - Savita Lochab
- Department of Biology, Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, 249405, Uttarakhand, India
| | - Monali Joshi
- Department of Chemistry, Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, 249405, Uttarakhand, India
| | - Jyotish Srivastava
- Department of Chemistry, Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, 249405, Uttarakhand, India
| | - Anurag Varshney
- Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, 249405, Uttarakhand, India.,Department of Allied and Applied Sciences, University of Patanjali, Patanjali Yog Peeth, Haridwar, 249405, Uttarakhand, India.,Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
26
|
Fatima S, Kumari A, Dwivedi VP. Advances in adjunct therapy against tuberculosis: Deciphering the emerging role of phytochemicals. MedComm (Beijing) 2021; 2:494-513. [PMID: 34977867 PMCID: PMC8706769 DOI: 10.1002/mco2.82] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 12/14/2022] Open
Abstract
Eastern countries are a major source of medicinal plants, which set up a rich source of ethnopharmacologically known medicines used in the treatment of various diseases. These traditional medicines have been known as complementary, alternative, or nonconventional therapy across globe for ages. Tuberculosis (TB) poses a huge global burden and leads to maximum number of deaths due to an infectious agent. Treatment of TB using Directly Observed Treatment Short-course (DOTS) therapy comprises multiple antibiotics is quite lengthy and causes serious side-effects in different organs. The length of the TB treatment leads to withdrawal from the patients, which paves the way for the emergence of drug resistance in the bacterial population. These concerns related to therapy need serious and immediate interventions. Traditional medicines using phytochemicals has shown to provide tremendous potential in TB treatment, mainly in the eradication of Mycobacterium tuberculosis (M.tb), increasing natural immunity, and managing the side effects of anti-TB drugs. This review describes the antituberculosis potential of selected ethnopharmacologically important phytochemicals as potential immune-modulator and as an adjunct-therapy in TB. This review will be a useful reference for researchers working on ethnopharmacology and will open the door for the discovery of novel agents as an adjunct-therapy to tuberculosis.
Collapse
Affiliation(s)
- Samreen Fatima
- Immunobiology GroupInternational Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| | - Anjna Kumari
- Immunobiology GroupInternational Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| | - Ved Prakash Dwivedi
- Immunobiology GroupInternational Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| |
Collapse
|
27
|
Yahyazadeh R, Baradaran Rahimi V, Yahyazadeh A, Mohajeri SA, Askari VR. Promising effects of gingerol against toxins: A review article. Biofactors 2021; 47:885-913. [PMID: 34418196 DOI: 10.1002/biof.1779] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/04/2021] [Indexed: 12/11/2022]
Abstract
Ginger is a medicinal and valuable culinary plant. Gingerols, as an active constituent in the fresh ginger rhizomes of Zingiber officinale, exhibit several promising pharmacological properties. This comprehensive literature review was performed to assess gingerol's protective and therapeutic efficacy against the various chemical, natural, and radiational stimuli. Another objective of this study was to investigate the mechanism of anti-inflammatory, antioxidant, and antiapoptotic properties of gingerol. It should be noted that the data were gathered from in vivo and in vitro experimental studies. Gingerols can exert their protective activity through different mechanisms and cell signaling pathways. For example, these are mitogen-activated protein kinase (MAPK), nuclear factor-kappa B (NF-kB), Wnt/β-catenin, nuclear factor erythroid 2-related factor 2/antioxidant response element (Nrf2/ARE), transforming growth factor beta1/Smad3 (TGF-β1/Smad3), and extracellular signal-related kinase/cAMP-response element-binding protein (ERK/CREB). We hope that more researchers can benefit from this review to conduct preclinical and clinical studies, treat cancer, inflammation, and attenuate the side effects of drugs and industrial pollutants.
Collapse
Affiliation(s)
- Roghayeh Yahyazadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ahmad Yahyazadeh
- Department of Histology and Embryology, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - Seyed Ahmad Mohajeri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Sciences in Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
28
|
Jafarzadeh A, Jafarzadeh S, Nemati M. Therapeutic potential of ginger against COVID-19: Is there enough evidence? JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2021. [PMCID: PMC8492833 DOI: 10.1016/j.jtcms.2021.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In addition to the respiratory system, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strikes other systems, including the digestive, circulatory, urogenital, and even the central nervous system, as its receptor angiotensin-converting enzyme 2 (ACE2) is expressed in various organs, such as lungs, intestine, heart, esophagus, kidneys, bladder, testis, liver, and brain. Different mechanisms, in particular, massive virus replication, extensive apoptosis and necrosis of the lung-related epithelial and endothelial cells, vascular leakage, hyper-inflammatory responses, overproduction of pro-inflammatory mediators, cytokine storm, oxidative stress, downregulation of ACE2, and impairment of the renin-angiotensin system contribute to the COVID-19 pathogenesis. Currently, COVID-19 is a global pandemic with no specific anti-viral treatment. The favorable capabilities of the ginger were indicated in patients suffering from osteoarthritis, neurodegenerative disorders, rheumatoid arthritis, type 2 diabetes, respiratory distress, liver diseases and primary dysmenorrheal. Ginger or its compounds exhibited strong anti-inflammatory and anti-oxidative influences in numerous animal models. This review provides evidence regarding the potential effects of ginger against SARS-CoV-2 infection and highlights its antiviral, anti-inflammatory, antioxidative, and immunomodulatory impacts in an attempt to consider this plant as an alternative therapeutic agent for COVID-19 treatment.
Collapse
|
29
|
Fatima S, Kumari A, Agarwal M, Pahuja I, Yadav V, Dwivedi VP, Bhaskar A. Epigenetic code during mycobacterial infections: therapeutic implications for tuberculosis. FEBS J 2021; 289:4172-4191. [PMID: 34453865 DOI: 10.1111/febs.16170] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/23/2021] [Accepted: 08/26/2021] [Indexed: 12/21/2022]
Abstract
Epigenetics involves changing the gene function without any change in the sequence of the genes. In the case of tuberculosis (TB) infections, the bacilli, Mycobacterium tuberculosis (M.tb), uses epigenetics as a tool to protect itself from the host immune system. TB is a deadly disease-causing maximum death per year due to a single infectious agent. In the case of TB, there is an urgent need for novel host-directed therapies which can effectively target the survival and long-term persistence of the bacteria without developing drug resistance in the bacterial strains while also reducing the duration and toxicity associated with the mainstream anti-TB drugs. Recent studies have suggested that TB infection has a significant effect on the host epigenome thereby manipulating the host immune response in the favor of the pathogen. M.tb alters the activation status of key genes involved in the immune response against TB to promote its survival and subvert the antibacterial strategies of the host. These changes are reversible and can be exploited to design very efficient host-directed therapies to fight against TB. This review has been written with the purpose of discussing the role of epigenetic changes in TB pathogenesis and the therapeutic approaches involving epigenetics, which can be utilized for targeting the pathogen.
Collapse
Affiliation(s)
- Samreen Fatima
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Anjna Kumari
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Meetu Agarwal
- Department of Biosciences, Jamia Hamdard University, New Delhi, India
| | - Isha Pahuja
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Vinod Yadav
- Department of Microbiology, Central University of Haryana, Mahendragarh, India
| | - Ved Prakash Dwivedi
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ashima Bhaskar
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
30
|
|
31
|
Rahman F, Tabrez S, Ali R, Akand SK, Zahid M, Alaidarous MA, Alsaweed M, Alshehri BM, Banawas S, Bin Dukhyil AA, Rub A. Virtual screening of natural compounds for potential inhibitors of Sterol C-24 methyltransferase of Leishmania donovani to overcome leishmaniasis. J Cell Biochem 2021; 122:1216-1228. [PMID: 33955051 DOI: 10.1002/jcb.29944] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/05/2021] [Accepted: 04/12/2021] [Indexed: 12/23/2022]
Abstract
Leishmaniasis is a neglected tropical disease caused by trypanosomatid parasite belonging to the genera Leishmania. Leishmaniasis is transmitted from one human to other through the bite of sandflies. It is endemic in around 98 countries including tropical and subtropical regions of Asia, Africa, Southern America, and the Mediterranean region. Sterol C-24 methyltransferase (LdSMT) of Leishmania donovani (L. donovani) mediates the transfer of CH3-group from S-adenosyl methionine to C-24 position of sterol side chain which makes the ergosterol different from cholesterol. Absence of ortholog in human made it potential druggable target. Here, we performed virtual screening of library of natural compounds against LdSMT to identify the potential inhibitor for it and to fight leishmaniasis. Gigantol, flavan-3-ol, and parthenolide showed the best binding affinity towards LdSMT. Further, based on absorption, distribution, metabolism, and excretion properties and biological activity prediction, gigantol showed the best lead-likeness and drug-likeness properties. Therefore, we further elucidated its antileishmanial properties. We found that gigantol inhibited the growth and proliferation of promastigotes as well as intra-macrophagic amastigotes. Gigantol exerted its antileishmanial action through the induction of reactive oxygen species in dose-dependent manner. Our study, suggested the possible use of gigantol as antileishmanial drug after further validations to overcome leishmaniasis.
Collapse
Affiliation(s)
- Fazlur Rahman
- Department of Biotechnology, Infection and Immunity Lab (414), Jamia Millia Islamia (A Central University), New Delhi, India
| | - Shams Tabrez
- Department of Biotechnology, Infection and Immunity Lab (414), Jamia Millia Islamia (A Central University), New Delhi, India
| | - Rahat Ali
- Department of Biotechnology, Infection and Immunity Lab (414), Jamia Millia Islamia (A Central University), New Delhi, India
| | - Sajjadul Kadir Akand
- Department of Biotechnology, Infection and Immunity Lab (414), Jamia Millia Islamia (A Central University), New Delhi, India
| | - Mariya Zahid
- Department of Biotechnology, Infection and Immunity Lab (414), Jamia Millia Islamia (A Central University), New Delhi, India
| | - Mohammed A Alaidarous
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
- Department of Vice Rector for Graduate Studies and Scientific Research, Health and Basic Sciences Research Center, Majmaah University, Al Majmaah, Saudi Arabia
| | - Mohammed Alsaweed
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
| | - Bader Mohammed Alshehri
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
| | - Saeed Banawas
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
- Department of Vice Rector for Graduate Studies and Scientific Research, Health and Basic Sciences Research Center, Majmaah University, Al Majmaah, Saudi Arabia
| | - Abdul Aziz Bin Dukhyil
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
| | - Abdur Rub
- Department of Biotechnology, Infection and Immunity Lab (414), Jamia Millia Islamia (A Central University), New Delhi, India
| |
Collapse
|
32
|
Ma RH, Ni ZJ, Zhu YY, Thakur K, Zhang F, Zhang YY, Hu F, Zhang JG, Wei ZJ. A recent update on the multifaceted health benefits associated with ginger and its bioactive components. Food Funct 2021; 12:519-542. [PMID: 33367423 DOI: 10.1039/d0fo02834g] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Due to recent lifestyle shifts and health discernments among consumers, synthetic drugs are facing the challenge of controlling disease development and progression. Various medicinal plants and their constituents are recognized for their imminent role in disease management via modulation of biological activities. At present, research scholars have diverted their attention on natural bioactive entities with health-boosting perception to combat the lifestyle-related disarrays. In particular, Zingiber officinale is a medicinal herb that has been commonly used in food and pharmaceutical products. Its detailed chemical composition and high value-added active components have been extensively studied. In this review, we have summarized the pharmacological potential of this well-endowed chemo preventive agent. It was revealed that its functionalities are attributed to several inherent chemical constituents, including 6-gingerol, 8-gingerol, 10-gingerol, 6-shogaol, 6-hydroshogaol, and oleoresin, which were established through many studies (in vitro, in vivo, and cell lines). In this review, we also focused on the therapeutic effects of ginger and its constituents for their effective antioxidant properties. Their consumption may reduce or delay the progression of related diseases, such as cancer, diabetes, and obesity, via modulation of genetic and metabolic activities. The updated data could elucidate the relationship of the extraction processes with the constituents and biological manifestations. We have collated the current knowledge (including the latest clinical data) about the bioactive compounds and bioactivities of ginger. Their detailed mechanisms, which can lay foundation for their food and medical applications are also discussed.
Collapse
Affiliation(s)
- Run-Hui Ma
- School of Biological Science and Engineering, Collaborative Innovation Center for Food Production and Safety, North Minzu University, Yinchuan 750021, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Zhang Y, Wang Z, Zhang Y, Tong H, Zhang Y, Lu T. Potential Mechanisms for Traditional Chinese Medicine in Treating Airway Mucus Hypersecretion Associated With Coronavirus Disease 2019. Front Mol Biosci 2020; 7:577285. [PMID: 33381519 PMCID: PMC7768030 DOI: 10.3389/fmolb.2020.577285] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/27/2020] [Indexed: 01/08/2023] Open
Abstract
Background The rapid development of coronavirus disease 2019 (COVID-19) pandemic has become a great threat to global health. Its mortality is associated with inflammation-related airway mucus hypersecretion and dysfunction of expectoration, and the subsequent mucus blockage of the bronchioles at critical stage is attributed to hypoxemia, complications, and even death. Traditional Chinese medicine (TCM) has rich experience in expectorant, including treatment of COVID-19 patients with airway mucus dysfunction, yet little is known about the mechanisms. This study is aiming to explore the potential biological basis of TCM herbal expectorant for treating COVID-19. Objective To get core herbs with high used frequency applications in the actions of expectoration by using association rule algorithm and to investigate the multitarget mechanisms of core herbs in expectorant formulae for COVID-19 therapies. Methods Forty prescriptions for expectorant were retrieved from TCM Formulae. The ingredient compounds and targets of core herbs were collected from the TCMSP database, Gene-Cards, and NCBI. The protein interaction network (PPI) was constructed by SRING, and the network analysis was done by Cytoscape software. Bioconductor was applied for functional enrichment analysis of targets. Results The core herbs of expectorant could regulate core pathways (MAP kinase activity, cytokine receptor binding, G-protein-coupled receptor binding, etc.) via interactions of ingredients (glycyrol, citromitin, etc.) on mucin family to eliminate phlegm. Conclusion TCM herbal expectorant could regulate MAPK and cytokine-related pathways, thereby modulating Mucin-family to affect mucus generation and clearance and eventually retarding the deterioration of COVID-19 disease.
Collapse
Affiliation(s)
- Yuanfeng Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Zheyi Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.,Department of Encephalopathy, Dongzhimen Hospital, Affiliated to BUCM, Beijing, China
| | - Yue Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Hongxuan Tong
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yiling Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Tao Lu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|