1
|
Xu W, Ma W, Yue J, Hu Y, Zhang Y, Wang H, Tai S, Chen J, Liang C. Juglone alleviates pelvic pain and prostatic inflammation via inhibiting the activation of NLRP3 inflammasome and alleviating oxidative stress in EAP mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 142:156732. [PMID: 40250034 DOI: 10.1016/j.phymed.2025.156732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 04/20/2025]
Abstract
BACKGROUND Juglone, a naphthoquinone compound that occurs naturally, is present predominantly in the fruits, leaves, and roots of walnut plants. Although its antioxidant and anti-inflammatory effects have been demonstrated in various diseases, its therapeutic potential remains unexplored in patients with chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS). PURPOSE Our objective was to investigate the therapeutic effectiveness of juglone in treating CP/CPPS and elucidate the potential mechanism involved. METHODS To establish experimental autoimmune prostatitis (EAP) mouse models and macrophage pyroptosis models, the therapeutic impact of juglone on CP/CPPS was evaluated. Molecular docking analysis, a cellular thermal shift assay (CETSA), and consultation with the Human Protein Atlas database were conducted to further explore the target molecules involved in juglone treatment for CP/CPPS. In addition, we utilized immunohistochemistry, immunofluorescence, Western blotting, and flow cytometry to assess macrophage pyroptosis and related pathway protein expressions. The evaluation of oxidative stress (OxS) was conducted through malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione peroxidase (GPx) assays. BzATP, an agonist of the NLRP3 pyroptosis pathway, was utilized for recovery experiments both in vitro and in vivo. RESULTS Administration of juglone to EAP model mice ameliorated prostatic inflammation, reduced pain symptoms, and decreased proinflammatory cytokine levels. Molecular docking analysis and CETSA, in conjunction with data from the Human Protein Atlas database, indicated that NLRP3, caspase-1, and GSDMD, along with their effects on macrophage pyroptosis, may serve as key targets for the effects of juglone. Furthermore, juglone inhibited the expression of these proteins. Assays of OxS demonstrated that the administration of juglone mitigated OxS in both animal and cellular experiments. These results were reversed with BzATP treatment. CONCLUSION In conclusion, juglone can alleviate EAP by suppressing the pyroptosis of macrophages mediated by NLRP3/GSDMD and alleviating OxS; therefore, juglone has the potential as a therapeutic for CP/CPPS. Furthermore, our studies confirmed that juglone can bind stably to NLRP3, caspase-1, and GSDMD. These findings validate the mechanism of action of juglone and offer valuable insights for the treatment of other diseases mediated by these proteins, such as inflammatory bowel disease, nonalcoholic steatohepatitis, and multiple sclerosis.
Collapse
Affiliation(s)
- Wenlong Xu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, and Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Hefei 230022, Anhui, PR China
| | - Wenming Ma
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, and Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Hefei 230022, Anhui, PR China
| | - Jiabin Yue
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, and Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Hefei 230022, Anhui, PR China
| | - Yongtao Hu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, and Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Hefei 230022, Anhui, PR China
| | - Yi Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, and Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Hefei 230022, Anhui, PR China
| | - Haojie Wang
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, Guangdong, PR China
| | - Sheng Tai
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, and Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Hefei 230022, Anhui, PR China.
| | - Jing Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, and Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Hefei 230022, Anhui, PR China.
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, and Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Hefei 230022, Anhui, PR China.
| |
Collapse
|
2
|
Gao C, Yang Z, Song R, Sheng H, Zhu L. Nanotechnology-based drug delivery system for targeted therapy of ulcerative colitis from traditional Chinese medicine: A review. Int J Pharm 2025; 673:125375. [PMID: 39965734 DOI: 10.1016/j.ijpharm.2025.125375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/27/2025] [Accepted: 02/15/2025] [Indexed: 02/20/2025]
Abstract
Ulcerative colitis (UC) is a chronic autoimmune disease and seriously affects the normal life of patients. Conventional therapeutic drugs are difficult to meet clinical needs. Traditional Chinese medicine (TCM) ingredients could effectively alleviate the symptoms of UC by anti-inflammatory, anti-oxidative, regulating the gut microbiota, and repairing the colonic epithelial barrier, but their low solubility and bioavailability severely limit their clinical application. Nano-drug delivery systems (NDDS) combined with TCM ingredients is a promising option for treating UC, and they could significantly enhance the stability, solubility, and bioavailability of TCM ingredients. The review describes the anti-UC mechanisms of TCM ingredients, systematically summarizes various kinds of NDDS for TCM ingredients according to different routes of administration, and highlights the advantages of NDDS for TCM ingredients in the treatmentof UC. In addition, we discuss the limitations of existing NDDS for TCM ingredients and the development direction in the future. This review will provide a basis for the future development of anti-UC NDDS for TCM ingredients.
Collapse
Affiliation(s)
- Chengcheng Gao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zerun Yang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ruirui Song
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Huagang Sheng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Liqiao Zhu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
3
|
Zhao D, Ge A, Yan C, Liu X, Yang K, Yan Y, Hao M, Chen J, Daga P, Dai CC, Li C, Cao H. T helper cell 17/regulatory T cell balance regulates ulcerative colitis and the therapeutic role of natural plant components: a review. Front Med (Lausanne) 2025; 11:1502849. [PMID: 40196424 PMCID: PMC11973383 DOI: 10.3389/fmed.2024.1502849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/23/2024] [Indexed: 04/09/2025] Open
Abstract
Ulcerative colitis (UC) is a chronic relapsing inflammatory disease characterized by progressive mucosal damage. The incidence rate of UC is rising rapidly, which makes the burden of medical resources aggravated. In UC, due to various pathogenic factors such as mucosal immune system disorders, gene mutations and environmental factors disrupting the mucosal barrier function, the midgut pathogenic bacteria and exogenous antigens translocate into the lamina propria, thereby aggravating the inflammatory response and further damages the mucosal barrier. During the progression of UC, Th17 populations that cause inflammation generally increase, while Tregs that suppress Th17 activity decrease. Among them, Th17 mediates immune response, Treg mediates immunosuppression, and the coordinated balance of the two plays a key role in the inflammation and immune process of UC. Natural plant components can regulate biological processes such as immune inflammation from multiple levels of proinflammatory cytokines and signaling pathways. These characteristics have unique advantages and broad prospects in the treatment of UC. In immunomodulation, there is substantial clinical and experimental evidence for the modulatory role of natural plant products in restoring balance between Th17/Treg disturbances in UC. This review summarizes the previous studies on the regulation of Th17/Treg balance in UC by natural plant active ingredients, extracts, and traditional Chinese medicine prescriptions, and provides new evidence for the development and design of lead compounds and natural new drugs for the regulation of Th17/Treg balance in the future, and then provides ideas and evidence for future clinical intervention in the treatment of UC immune disorders and clinical trials.
Collapse
Affiliation(s)
- Da Zhao
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Anqi Ge
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Cong Yan
- Department of Urology, The Affiliated Children’s Hospital of Xiangya School of Medicine, Central South University (Hunan Children’s Hospital), Changsha, China
| | - Xingci Liu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Kailin Yang
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
- Department of Psychology, Daqing Hospital of Traditional Chinese Medicine, Daqing, China
- Tong Jiecheng Studio, Hunan University of Science and Technology, Xiangtan, China
| | - Yexing Yan
- Department of Psychology, Daqing Hospital of Traditional Chinese Medicine, Daqing, China
| | - Moujia Hao
- Department of Psychology, Daqing Hospital of Traditional Chinese Medicine, Daqing, China
| | - Junpeng Chen
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, United States
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, United States
- Center for Cardiometabolic Science, Division of Environmental Medicine, Christina Lee Brown Envirome Insttitute, University of Louisville, Louisville, KY, United States
| | - Pawan Daga
- Department of Internal Medicine, University of Louisville, Louisville, KY, United States
| | - Charles C. Dai
- Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Maryland Baltimore, Baltimore, MD, United States
- Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, James Clark Hall, College Park, MD, United States
| | - Changping Li
- School of Mechanical Engineering and Automation, Fuyao University of Science and Technology, Fuzhou, China
| | - Hui Cao
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
4
|
Sai Priya T, Ramalingam V, Suresh Babu K. Natural products: A potential immunomodulators against inflammatory-related diseases. Inflammopharmacology 2024:10.1007/s10787-024-01562-4. [PMID: 39196458 DOI: 10.1007/s10787-024-01562-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
The incidence and prevalence of inflammatory-related diseases (IRDs) are increasing worldwide. Current approved treatments for IRDs in the clinic are combat against inhibiting the pro-inflammatory cytokines. Though significant development in the treatment in the IRDs has been achieved, the severe side effects and inefficiency of currently practicing treatments are endless challenge. Drug discovery from natural sources is efficacious over a resurgence and also natural products are leading than the synthetic molecules in both clinical trials and market. The use of natural products against IRDs is a conventional therapeutic approach since it is a reservoir of unique structural chemistry, accessibility and bioactivities with reduced side effects and low toxicity. In this review, we discuss the cause of IRDs, treatment of options for IRDs and the impact and adverse effects of currently practicing clinical drugs. As well, the significant role of natural products against various IRDs, the limitations in the clinical development of natural products and thus pave the way for development of natural products as immunomodulators against IRDs are also discussed.
Collapse
Affiliation(s)
- Telukuntla Sai Priya
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vaikundamoorthy Ramalingam
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Katragadda Suresh Babu
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
5
|
Huang Y, Wu Q, Li S, Lin X, Yang S, Zhu R, Fu C, Zhang Z. Harnessing nature's pharmacy: investigating natural compounds as novel therapeutics for ulcerative colitis. Front Pharmacol 2024; 15:1394124. [PMID: 39206263 PMCID: PMC11349575 DOI: 10.3389/fphar.2024.1394124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/01/2024] [Indexed: 09/04/2024] Open
Abstract
Backgrounds Ulcerative colitis (UC) is a form of chronic inflammatory bowel disease, and UC diagnosis rates continue to rise throughout the globe. The research and development of new drugs for the treatment of UC are urgent, and natural compounds are an important source. However, there is a lack of systematic summarization of natural compounds and their mechanisms for the treatment of UC. Methods We reviewed the literature in the databases below from their inception until July 2023: Web of Science, PubMed, China National Knowledge Infrastructure, and Wanfang Data, to obtain information on the relationship between natural compounds and UC. Results The results showed that 279 natural compounds treat UC through four main mechanisms, including regulating gut microbiota and metabolites (Mechanism I), protecting the intestinal mucosal barrier (Mechanism II), regulating intestinal mucosal immune response (Mechanism III), as well as regulating other mechanisms (Mechanism Ⅳ) such as cellular autophagy modulation and ferroptosis inhibition. Of these, Mechanism III is regulated by all natural compounds. The 279 natural compounds, including 62 terpenoids, 57 alkaloids, 52 flavonoids, 26 phenols, 19 phenylpropanoids, 9 steroids, 9 saponins, 8 quinonoids, 6 vitamins, and 31 others, can effectively ameliorate UC. Of these, terpenoids, alkaloids, and flavonoids have the greatest potential for treating UC. It is noteworthy to highlight that a total of 54 natural compounds exhibit their therapeutic effects by modulating Mechanisms I, II, and III. Conclusion This review serves as a comprehensive resource for the pharmaceutical industry, researchers, and clinicians seeking novel therapeutic approaches to combat UC. Harnessing the therapeutic potential of these natural compounds may significantly contribute to the improvement of the quality of life of patients with UC and promotion of disease-modifying therapies in the future.
Collapse
Affiliation(s)
- You Huang
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiuhong Wu
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sha Li
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xia Lin
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shasha Yang
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rui Zhu
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chaomei Fu
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhen Zhang
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
6
|
Dai K, Agarwal N, Rodriguez-Palacios A, Basson AR. Regulation of Intestinal Inflammation by Walnut-Derived Bioactive Compounds. Nutrients 2024; 16:2643. [PMID: 39203780 PMCID: PMC11357266 DOI: 10.3390/nu16162643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
Walnuts (Juglans regia L.) have shown promising effects in terms of ameliorating inflammatory bowel disease (IBD), attributed to their abundant bioactive compounds. This review comprehensively illustrates the key mechanisms underlying the therapeutic potential of walnuts in IBD management, including the modulation of intestinal mucosa permeability, the regulation of inflammatory pathways (such as NF-kB, COX/COX2, MAPCK/MAPK, and iNOS/NOS), relieving oxidative stress, and the modulation of gut microbiota. Furthermore, we highlight walnut-derived anti-inflammatory compounds, such as polyunsaturated fatty acids (PUFA; e.g., ω-3 PUFA), tocopherols, phytosterols, sphingolipids, phospholipids, phenolic compounds, flavonoids, and tannins. We also discuss unique anti-inflammatory compounds such as peptides and polysaccharides, including their extraction and preparation methods. Our review provides a theoretical foundation for dietary walnut supplementation in IBD management and provides guidance for academia and industry. In future, research should focus on the targeted isolation and purification of walnut-derived anti-inflammatory compounds or optimizing extraction methods to enhance their yields, thereby helping the food industry to develop dietary supplements or walnut-derived functional foods tailored for IBD patients.
Collapse
Affiliation(s)
- Kexin Dai
- Department of Biology, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4909, USA;
- Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4909, USA
| | - Neel Agarwal
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4909, USA;
| | - Alexander Rodriguez-Palacios
- Germfree Mouse Models Core, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4909, USA;
- University Hospitals Research and Education Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106-4909, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4909, USA
- Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4909, USA
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4909, USA
| | - Abigail Raffner Basson
- Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4909, USA
- Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4909, USA
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4909, USA
| |
Collapse
|
7
|
Edens R, Gutierrez A, Engevik MA. Exploring the use of panaxynol from American ginseng to combat intestinal inflammation and colon cancer. Am J Physiol Gastrointest Liver Physiol 2024; 327:G120-G122. [PMID: 38915278 DOI: 10.1152/ajpgi.00135.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/26/2024]
Affiliation(s)
- Rachel Edens
- Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Alyssa Gutierrez
- Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Melinda A Engevik
- Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina, Charleston, South Carolina, United States
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, United States
| |
Collapse
|
8
|
Yang C, Ma Y, Lu Q, Qu Y, Li Y, Cheng S, Xiao C, Chen J, Wang C, Wang F, Xiang AP, Huang W, Tang X, Zheng H. 2-Bromo-1,4-Naphthalenedione promotes CD8 + T cell expansion and limits Th1/Th17 to mitigate experimental autoimmune encephalomyelitis. J Neuroinflammation 2024; 21:181. [PMID: 39068463 PMCID: PMC11283727 DOI: 10.1186/s12974-024-03172-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024] Open
Abstract
Treating Multiple sclerosis (MS), a well-known immune-mediated disease characterized by axonal demyelination, is challenging due to its complex causes. Naphthalenedione, present in numerous plants, is being explored as a potential medicine for MS due to its immunomodulatory properties. However, its effects on lymphocytes can vary depending on factors such as the specific compound, concentration, and experimental conditions. In this study, we aim to explore the therapeutic potential of 2-bromo-1,4-naphthalenedione (BrQ), a derivative of naphthalenedione, in experimental autoimmune encephalomyelitis (EAE), an animal model of MS, and to elucidate its underlying mechanisms. We observed that mice treated with BrQ exhibited reduced severity of EAE symptoms, including lower clinical scores, decreased leukocyte infiltration, and less extensive demyelination in central nervous system. Furthermore, it was noted that BrQ does not directly affect the remyelination process. Through cell-chat analysis based on bulk RNA-seq data, coupled with validation of flow analysis, we discovered that BrQ significantly promotes the expansion of CD8+ T cells and their interactions with other immune cells in peripheral immune system in EAE mice. Subsequent CD8+ T cell depletion experiments confirmed that BrQ alleviates EAE in a CD8+ T cell-dependent manner. Mechanistically, expanded CD8+ cells were found to selectively reduce antigen-specific CD4+ cells and subsequently inhibit Th1 and Th17 cell development in vivo, ultimately leading to relief from EAE. In summary, our findings highlight the crucial role of BrQ in modulating the pathogenesis of MS, suggesting its potential as a novel drug candidate for treating MS and other autoimmune diseases.
Collapse
Affiliation(s)
- Cuixia Yang
- Central Laboratory, Chaozhou Central Hospital Affiliated to Southern Medical University, Chaozhou, Guangdong Province, China
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, China
| | - Yuanchen Ma
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiying Lu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, China
| | - Yuliang Qu
- Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Ministry of Education, Guangzhou, China
| | - Yuantao Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-Sen University, Ministry of Education, Guangzhou, China
| | - Shimei Cheng
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, China
| | - Chongjun Xiao
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, China
| | - Jinshuo Chen
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, China
| | - Chuangjia Wang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, China
| | - Feng Wang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-Sen University, Ministry of Education, Guangzhou, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Weijun Huang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-Sen University, Ministry of Education, Guangzhou, China.
| | - Xiaorong Tang
- Central Laboratory, Chaozhou Central Hospital Affiliated to Southern Medical University, Chaozhou, Guangdong Province, China.
| | - Haiqing Zheng
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, China.
| |
Collapse
|
9
|
Ou H, Ye X, Huang H, Cheng H. Constructing a screening model to obtain the functional herbs for the treatment of active ulcerative colitis based on herb-compound-target network and immuno-infiltration analysis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4693-4711. [PMID: 38117365 PMCID: PMC11166790 DOI: 10.1007/s00210-023-02900-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/09/2023] [Indexed: 12/21/2023]
Abstract
The therapeutic effect of most traditional Chinese medicines (TCM) on ulcerative colitis is unclear, The objective of this study was to develop a core herbal screening model aimed at facilitating the transition from active ulcerative colitis (UC) to inactive. We obtained the gene expression dataset GSE75214 for UC from the GEO database and analysed the differentially expressed genes (DEGs) between active and inactive groups. Gene modules associated with the active group were screened using WGCNA, and immune-related genes (IRGs) were obtained from the ImmPort database. The TCMSP database was utilized to acquire the herb-molecule-target network and identify the herb-related targets (HRT). We performed intersection operations on HRTs, DEGs, IRGs, and module genes to identify candidate genes and conducted enrichment analyses. Subsequently, three machine learning algorithms (SVM-REF analysis, Random Forest analysis, and LASSO regression analysis) were employed to refine the hubgene from the candidate genes. Based on the hub genes identified in this study, we conducted compound and herb matching and further screened herbs related to abdominal pain and blood in stool using the Symmap database.Besides, the stability between molecules and targets were assessed using molecular docking and molecular dynamic simulation methods. An intersection operation was performed on HRT, DEGs, IRGs, and module genes, leading to the identification of 23 candidate genes. Utilizing three algorithms (RandomForest, SVM-REF, and LASSO) for analyzing the candidate genes and identifying the intersection, we identified five core targets (CXCL2, DUOX2, LYZ, MMP9, and AGT) and 243 associated herbs. Hedysarum Multijugum Maxim. (Huangqi), Sophorae Flavescentis Radix (Kushen), Cotyledon Fimbriata Turcz. (Wasong), and Granati Pericarpium (Shiliupi) were found to be capable of relieving abdominal pain and hematochezia during active UC. Molecular docking demonstrated that the compounds of the four aforementioned herbs showed positive docking activity with their core targets. The results of molecular dynamic simulations indicated that well-docked active molecules had a more stable structure when bound to their target complexes. The study has shed light on the potential of TCMs in treating active UC from an immunomodulatory perspective, consequently, 5 core targets and 4 key herbs has been identified. These findings can provide a theoretical basis for subsequent management and treatment of active UC with TCM, as well as offer original ideas for further research and development of innovative drugs for alleviating UC.
Collapse
Affiliation(s)
- Haiya Ou
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xiaopeng Ye
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Hongshu Huang
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Honghui Cheng
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China.
| |
Collapse
|
10
|
Dai L, Cao X, Miao X, Yang X, Zhang J, Shang X. The chemical composition, protective effect of Rheum officinale leaf juice and its mechanism against dextran sulfate sodium-induced ulcerative colitis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155653. [PMID: 38688143 DOI: 10.1016/j.phymed.2024.155653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/18/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Rhubarb is widely distributed and cultivated worldwide, and its leaves presented antioxidant activity and could be used as food additive. However, the chemical ingredients, and protective effect of Rheum officinale leaf juice (JROL) on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) are still unclear. PURPOSE This paper sought to the characterization and functional properties of JROL, and explore the underlying mechanism on UC mice. METHODS UPLC-ESI-Q-TOF/MS and other analytical instruments were employed to determine the chemical ingredients of JROL. After inducing UC model using 3% DSS, multiple biological methods were used to evaluate its protective effect and the potential mechanism. RESULTS JROL is rich in proximate compositions and minerals and has high nutritional value, and contains reducing sugars, polysaccharides and pectin. Fifteen compounds were identified using UPLC-ESI-Q-TOF/MS. Among them, rutin has the highest content (2.22 %) in UPLC analysis. JROL presented protective effect on DSS-induced UC, and alleviated morphological alterations and ultra-structural feature of tissue, and the polysaccharides and flavonoids may contribute to its protective effect. JROL inhibited NF-κB/NLRP3 signaling pathway to alleviate inflammatory response, oxidative stress and intestinal injury by decreasing the expression of p-p65, p-IκBα, NLRP3, ASC, etc.. Moreover, it up-regulated the expression of tight junction proteins, and re-balanced the disturbance of gut microbiota to regulate the inflammatory response. Finally, a correlation among the inflammatory response, NF-κB/NLRP3 pathway and gut microbiota was established. Moreover, JROL presented the safety in the acute toxicity test. CONCLUSION JROL could be used as a potential new source for treating UC.
Collapse
Affiliation(s)
- Lixia Dai
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; College of Veterinary Medicine, Gansu Agricultural Univerisity, Lanzhou 730070, PR China
| | - Xinyuan Cao
- People's Hospital of Ningxia Hui Autonomous Region, Ningxia Medical University, Yingchuan 750011, PR China
| | - Xiaolou Miao
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Xiaorong Yang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Jiyu Zhang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; College of Veterinary Medicine, Gansu Agricultural Univerisity, Lanzhou 730070, PR China.
| | - Xiaofei Shang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; College of Veterinary Medicine, Gansu Agricultural Univerisity, Lanzhou 730070, PR China.
| |
Collapse
|
11
|
Wang Y, Li M, Zha A. mTOR promotes an inflammatory response through the HIF1 signaling pathway in ulcerative colitis. Int Immunopharmacol 2024; 134:112217. [PMID: 38718658 DOI: 10.1016/j.intimp.2024.112217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/17/2024] [Accepted: 05/03/2024] [Indexed: 06/03/2024]
Abstract
The imbalance between T helper cell 17 (Th17)and regulatory T cells (Treg) cells leading to inflammation has an important role in the pathogenesis of ulcerative colitis (UC). Mammalian target of rapamycin (mTOR) can regulate the differentiation of T cells, but the specific pathway leading mTOR to regulate Th17/Treg cells in UC remains unclear. Our aim with this study was to investigate the effects of mTOR overexpression and silencing on the hypoxia inducible factor-1α (HIF-1α) - Th17/Treg signaling pathway. To mimic a human study, we established a colon cancer epithelial cell line (HT-29) co-culture system with human CD4+ T cells, and we treated the cells with TNF-α. We observed the effects of mTOR on the HIF-Th17/Treg signaling pathway to determine whether mTOR is involved in the regulatory mechanism. Under the stimulation of TNF-α, the levels of HIF-1α in CD4+T cells were increased in the HT-29 co-culture with CD4+ T cells, promoting glycolysis, increasing the Th17 proportion, decreasing the Treg proportion, increasing the pro-inflammatory factors levels, and decreasing the anti-inflammatory factors levels. Moreover, after mTOR silencing, the HIF-1α level and cell glycolysis levels decreased, Th17 cell differentiation decreased, the pro-inflammatory factor levels decreased, and the anti-inflammatory factor levels increased. In contrast, mTOR overexpression lead to the opposite results.mTOR promotes inflammation by regulating the HIF signaling pathway during UC, and silencing mTOR may alleviate inflammation. An mTOR inhibitor is a potential therapeutic target for UC treatment.
Collapse
Affiliation(s)
- Yue Wang
- Department of Gastroenterology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, People's Republic of China; Graduate School of Anhui University of Chinese Medicine, Hefei 230031, People's Republic of China
| | - Ming Li
- Department of Rheumatology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, People's Republic of China
| | - AnSheng Zha
- Department of Gastroenterology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, People's Republic of China.
| |
Collapse
|
12
|
Xie Y, Liu F. The role of the gut microbiota in tumor, immunity, and immunotherapy. Front Immunol 2024; 15:1410928. [PMID: 38903520 PMCID: PMC11188355 DOI: 10.3389/fimmu.2024.1410928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/20/2024] [Indexed: 06/22/2024] Open
Abstract
In recent years, with the deepening understanding of the gut microbiota, it has been recognized to play a significant role in the development and progression of diseases. Particularly in gastrointestinal tumors, the gut microbiota influences tumor growth by dysbiosis, release of bacterial toxins, and modulation of host signaling pathways and immune status. Immune checkpoint inhibitors (ICIs) have greatly improved cancer treatment efficacy by enhancing immune cell responses. Current clinical and preclinical studies have demonstrated that the gut microbiota and its metabolites can enhance the effectiveness of immunotherapy. Furthermore, certain gut microbiota can serve as biomarkers for predicting immunotherapy responses. Interventions targeting the gut microbiota for the treatment of gastrointestinal diseases, especially colorectal cancer (CRC), include fecal microbiota transplantation, probiotics, prebiotics, engineered bacteria, and dietary interventions. These approaches not only improve the efficacy of ICIs but also hold promise for enhancing immunotherapy outcomes. In this review, we primarily discuss the role of the gut microbiota and its metabolites in tumors, host immunity, and immunotherapy.
Collapse
Affiliation(s)
| | - Fang Liu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
13
|
Yang Y, Huang S, Liao Y, Wu X, Zhang C, Wang X, Yang Z. Hippuric acid alleviates dextran sulfate sodium-induced colitis via suppressing inflammatory activity and modulating gut microbiota. Biochem Biophys Res Commun 2024; 710:149879. [PMID: 38579536 DOI: 10.1016/j.bbrc.2024.149879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease associated with metabolic disorder and gut dysbiosis. Decreased abundance of hippuric acid (HA) was found in patients with IBD. HA, metabolized directly from benzoic acid in the intestine and indirectly from polyphenols, serves as a marker of polyphenol catabolism. While polyphenols and benzoic acid have been shown to alleviate intestinal inflammation, the role of HA in this context remains unknown. Herein, we investigated the effects and mechanism of HA on DSS-induced colitis mice. The results revealed that HA alleviated clinical activity and intestinal barrier damage, decreased pro-inflammatory cytokine production. Metagenomic sequencing suggested that HA treatment restored the gut microbiota, including an increase in beneficial gut bacteria such as Adlercreutzia, Eubacterium, Schaedlerella and Bifidobacterium_pseudolongum. Furthermore, we identified 113 candidate genes associated with IBD that are potentially under HA regulation through network pharmacological analyses. 10 hub genes including ALB, IL-6, HSP90AA1, and others were identified using PPI analysis and validated using molecular docking and mRNA expression analysis. Additionally, KEGG analysis suggested that the renin-angiotensin system (RAS), NF-κB signaling and Rap1 signaling pathways were important pathways in the response of HA to colitis. Thus, HA may provide novel biotherapy options for IBD.
Collapse
Affiliation(s)
- Yan Yang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China; Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Changsha, 410008, China
| | - Shiqin Huang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China; Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Changsha, 410008, China
| | - Yangjie Liao
- Department of Gastroenterology, Changde Hospital, Xiangya School of Medicine, Central South University, Changde, 415000, China
| | - Xing Wu
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China; Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Changsha, 410008, China
| | - Chao Zhang
- Department of Gastroenterology, Zhuzhou Central Hospital, Zhuzhou, 412001, China
| | - Xiaoyan Wang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China; Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Changsha, 410008, China.
| | - Zhenyu Yang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China; Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Changsha, 410008, China.
| |
Collapse
|
14
|
Liu T, Asif IM, Liu L, Zhang M, Li B, Wang L. Laminarin ameliorates iodoacetamide-induced functional dyspepsia via modulation of 5-HT 3 receptors and the gut microbiota. Int J Biol Macromol 2024; 268:131640. [PMID: 38636750 DOI: 10.1016/j.ijbiomac.2024.131640] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/08/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
Visceral and somatic hypersensitivity is a common cause of functional dyspepsia. Marine bioactive components have been revealed to possess numerous valuable abilities. However, as a kind of polysaccharide extracted from brown algae, the study focused on the biological properties of laminarin is still limited, especially in gastrointestinal disorders. In our study, indicators associated with visceral sensational function and gastrointestinal microecology were determined to investigate the modulatory effects of laminarin on functional dyspepsia induced by iodoacetamide. Mice with visceral hypersensitivity were orally administrated with laminarin (50 and 100 mg per kg bw) for fourteen days. The results indicated that laminarin partly alleviated the dysfunction by regulating corticosterone secretion, the expression of 5HT3 receptors at both protein and mRNA levels, and mechanical transduction through the PIEZO2-EPAC1 axis. Furthermore, laminarin administration moderated the imbalanced gut microbial profile, including modulating the abundance of Bacteroidetes and Firmicutes. Our findings revealed that laminarin may restore the overexpression of 5HT3 receptors, the abnormal mechanical transduction, and impaired gut microecology. In conclusion, we provide evidence to support the utilization of laminarin as the ingredient of complementary and alternative medicine of regulating visceral and somatic hypersensitivity.
Collapse
Affiliation(s)
- Tianxu Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Key Laboratory of Environment Correlative Dietology Huazhong Agricultural University, Ministry of Education, Wuhan, 430070, Hubei, China.
| | - Ismail Muhammad Asif
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Key Laboratory of Environment Correlative Dietology Huazhong Agricultural University, Ministry of Education, Wuhan, 430070, Hubei, China.
| | - Lichong Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Key Laboratory of Environment Correlative Dietology Huazhong Agricultural University, Ministry of Education, Wuhan, 430070, Hubei, China.
| | - Minghui Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Key Laboratory of Environment Correlative Dietology Huazhong Agricultural University, Ministry of Education, Wuhan, 430070, Hubei, China.
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Key Laboratory of Environment Correlative Dietology Huazhong Agricultural University, Ministry of Education, Wuhan, 430070, Hubei, China.
| | - Ling Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China; Key Laboratory of Environment Correlative Dietology Huazhong Agricultural University, Ministry of Education, Wuhan, 430070, Hubei, China.
| |
Collapse
|
15
|
Li H, Pu X, Lin Y, Yu X, Li J, Bo L, Wang H, Xu Y, Li X, Zheng D. Sijunzi decoction alleviates inflammation and intestinal epithelial barrier damage and modulates the gut microbiota in ulcerative colitis mice. Front Pharmacol 2024; 15:1360972. [PMID: 38650625 PMCID: PMC11033371 DOI: 10.3389/fphar.2024.1360972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 03/18/2024] [Indexed: 04/25/2024] Open
Abstract
Ethnopharmacological relevance As a representative classical prescription, Sijunzi decoction has powerful therapeutic effects on spleen-stomach qi insufficiency. Ulcerative colitis (UC) is a chronic, diffuse, and non-specifically inflammatory disorder, the etiology of which still remains unclear. In the traditional Chinese medicine (TCM) perspective, splenic asthenia is the primary cause of UC. Based on this, Sijunzi decoction has been extensively used in TCM clinical practice to alleviate UC in recent years. However, the pharmacological mechanism of Sijunzi decoction in modern medicine is still not completely clear, which limits its clinical application. Aim of the study The purpose of this study was to investigate the Sijunzi decoction's curative effect on acute UC mice and probe into its potential pharmacological mechanism. Materials and methods The UC mouse model was set up by freely ingesting a 3% dextran sulfate sodium (DSS) solution. The relieving role of Sijunzi decoction on UC in mice was analyzed by evaluating the changes in clinical parameters, colon morphology, histopathology, inflammatory factor content, intestinal epithelial barrier protein expression level, and gut microbiota balance state. Finally, multivariate statistical analysis was conducted to elucidate the relationship between inflammatory factors, intestinal epithelial barrier proteins, and gut microbiota. Results First, the research findings revealed that Sijunzi decoction could visibly ease the clinical manifestation of UC, lower the DAI score, and attenuate colonic damage. Moreover, Sijunzi decoction could also significantly inhibit IL-6, IL-1β, and TNF-α while increasing occludin and ZO-1 expression levels. Subsequently, further studies showed that Sijunzi decoction could remodel gut microbiota homeostasis. Sijunzi decoction was beneficial in regulating the levels of Alistipes, Akkermansia, Lachnospiraceae_NK4A136_group, and other bacteria. Finally, multivariate statistical analysis demonstrated that key gut microbes were closely associated with inflammatory factors and intestinal epithelial barrier proteins. Conclusion Sijunzi decoction can significantly prevent and treat UC. Its mechanism is strongly associated with the improvement of inflammation and intestinal epithelial barrier damage by regulating the gut microbiota.
Collapse
Affiliation(s)
- Hailun Li
- Department of Nephrology, Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, Jiangsu, China
| | - Xing Pu
- Department of Nephrology, Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, Jiangsu, China
| | - Yongtao Lin
- School of Nursing and Midwifery, Jiangsu College of Nursing, Huai’an, Jiangsu, China
| | - Xinxin Yu
- Department of Nephrology, Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, Jiangsu, China
| | - Jing Li
- Department of Nephrology, Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, Jiangsu, China
| | - Lin Bo
- Department of Nephrology, Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, Jiangsu, China
| | - Hongwu Wang
- Department of Nephrology, Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, Jiangsu, China
| | - Yong Xu
- Department of Nephrology, Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, Jiangsu, China
| | - Xiang Li
- Department of Nephrology, Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, Jiangsu, China
| | - Donghui Zheng
- Department of Nephrology, Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, Jiangsu, China
| |
Collapse
|
16
|
Li XW, Qiu F, Liu Y, Yang JZ, Chen LJ, Li JH, Liu JL, Hsu C, Chen L, Zeng JH, Xie XL, Wang Q. Inulin alleviates perinatal 2-ethylhexyl diphenyl phosphate (EHDPHP) exposure-induced intestinal toxicity by reshaping the gut microbiota and suppressing the enteric-origin LPS/TLR4/NF-κb pathway in dams and pups. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123659. [PMID: 38417603 DOI: 10.1016/j.envpol.2024.123659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/18/2024] [Accepted: 02/24/2024] [Indexed: 03/01/2024]
Abstract
Organophosphorus flame retardants (OPFRs), such as 2-ethylhexyl diphenyl phosphate (EHDPHP), are ubiquitously used, leading to pervasive environmental contamination and human health risks. While associations between EHDPHP and health issues such as disruption of hormones, neurotoxic effects, and toxicity to reproduction have been recognized, exposure to EHDPHP during perinatal life and its implications for the intestinal health of dams and their pups have largely been unexplored. This study investigated the intestinal toxicity of EHDPHP and the potential for which inulin was effective. Dams were administered either an EHDPHP solution or a corn oil control from gestation day 7 (GD7) to postnatal day 21 (PND21), with inulin provided in their drinking water. Our results indicate that inulin supplementation mitigates damage to the intestinal epithelium caused by EHDPHP, restores mucus-secreting cells, suppresses intestinal hyperpermeability, and abates intestinal inflammation by curtailing lipopolysaccharide leakage through reshaping of the gut microbiota. A reduction in LPS levels concurrently inhibited the inflammation-associated TLR4/NF-κB pathway. In conclusion, inulin administration may ameliorate intestinal toxicity caused by EHDPHP in dams and pups by reshaping the gut microbiota and suppressing the LPS/TLR4/NF-κB pathway. These findings underscore the efficacy of inulin as a therapeutic agent for managing health risks linked to EHDPHP exposure.
Collapse
Affiliation(s)
- Xiu-Wen Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Feng Qiu
- Department of Laboratory Medicine, The Seventh Affiliated Hospital of Southern Medical University, Foshan, Guangdong 528244, China
| | - Yi Liu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jian-Zheng Yang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Li-Jian Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jia-Hao Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jia-Li Liu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Clare Hsu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Long Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jia-Hao Zeng
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Xiao-Li Xie
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou, Guangdong 510515, China
| | - Qi Wang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
17
|
Li S, Luo L, Wang S, Sun Q, Zhang Y, Huang K, Guan X. Regulation of gut microbiota and alleviation of DSS-induced colitis by vitexin. Eur J Nutr 2023; 62:3433-3445. [PMID: 37676484 DOI: 10.1007/s00394-023-03237-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 08/10/2023] [Indexed: 09/08/2023]
Abstract
PURPOSE Vitexin is one of the flavonoids in millet and has a variety of biological activities. However, the function of vitexin on colitis is not clear. This research studied the regulation of vitexin on colitis and investigated the possible mechanisms. METHODS An in vitro fermentation model was used to evaluate the regulation of vitexin on gut microbiota of patients with inflammatory bowel disease (IBD). At the same time, an acute colitis mice model induced by dextran sodium sulfate (DSS) was used to evaluate the effects of vitexin on intestinal inflammation, barrier and gut microbiota. RESULTS In this study, it was found that vitexin altered the structure of gut microbiota by decreasing harmful bacteria, such as Veillonella, Terrisporobacter, Klebsiella, Paeniclostridium, and increasing beneficial bacteria, such as Parabacteroides, Flavonifractor, Blautia after in vitro fermentation with the feces of colitis patients. Further, DSS-induced colitis mice models revealed that vitexin treatment significantly improved colitis symptoms, maintained intestinal barrier and down-regulated the expression of inflammatory factors, such as IL-1β and TNF-α. In addition, vitexin also improved the diversity of gut microbiota of colitis mice by decreasing the abundance of harmful bacteria. CONCLUSION This research suggested that vitexin could alleviate colitis by regulating gut microbiota and attenuated gut inflammation.
Collapse
Affiliation(s)
- Sen Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, 200093, China
| | - Lei Luo
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, 200093, China
| | - Shuo Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, 200093, China
| | - Qiqi Sun
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, 200093, China
| | - Yu Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, 200093, China
| | - Kai Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, 200093, China
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China.
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, 200093, China.
| |
Collapse
|
18
|
Fan Q, Dai W, Li M, Wang T, Li X, Deng Z, Li W, Li M. Inhibition of α2,6-sialyltransferase relieves symptoms of ulcerative colitis by regulating Th17 cells polarization. Int Immunopharmacol 2023; 125:111130. [PMID: 37897948 DOI: 10.1016/j.intimp.2023.111130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/08/2023] [Accepted: 10/22/2023] [Indexed: 10/30/2023]
Abstract
Ulcerative colitis (UC) is a chronic, relapsing inflammatory disease that affects human intestines. Immune imbalance is one of the important factors inducing UC. After the activation of CD4+ T cells, pro-inflammatory cytokines are produced to induce colonic inflammation. α2,6-Sialylation, catalyzed by α2,6-sialyltransferase (ST6GAL1), affects the proliferation, activation, and T cell receptor (TCR) signaling of CD4+ T cells, but its role in CD4+ T cell polarization, regulation of Th17 / Treg balance, and its role in UC are still unclear. We found the number of CD4+ T and Th17 cells increased in colonic tissue with UC. The level of α2,6-sialylation of CD4+ T cells in patients with UC was significantly increased. De-α2,6-sialylation significantly reduced the symptoms of UC in rats. ST6GAL1 gene knockout inhibited the polarization of CD4+ T cells to Th17 cells, and promoted the polarization of CD4+ T cells to Treg cells. ST6GAL1 knockout significantly inhibited the IL-17 signaling pathway in CD4+ T cells and inhibited the secretion of pro-inflammatory cytokine IL-17a. ST6GAL1 and IL-17a are highly expressed in patients with UC, and there is a positive correlation between them. In conclusion, reduced α2,6-sialylation inhibits the polarization of CD4+ T cells to Th17 cells, inhibits IL-17a signaling pathway and reduces the level of pro-inflammatory cytokine IL-17a to alleviate the symptoms of UC, which is a potential novel target for the clinical treatment of UC.
Collapse
Affiliation(s)
- Qingjie Fan
- College of Basic Medical Science, Dalian Medical University, 9-Western Section, Lvshun South Road, Dalian, Liaoning 116044, China
| | - Wenjie Dai
- Department of Gastroenterology, Xinhua Hospital Affiliated to Dalian University, No. 156, Wansui Street, Dalian, Liaoning 116044, China
| | - Mechou Li
- College of Basic Medical Science, Dalian Medical University, 9-Western Section, Lvshun South Road, Dalian, Liaoning 116044, China
| | - Tiantong Wang
- College of Basic Medical Science, Dalian Medical University, 9-Western Section, Lvshun South Road, Dalian, Liaoning 116044, China
| | - Xinran Li
- College of Basic Medical Science, Dalian Medical University, 9-Western Section, Lvshun South Road, Dalian, Liaoning 116044, China
| | - Zhaobin Deng
- Department of Gastroenterology, Xinhua Hospital Affiliated to Dalian University, No. 156, Wansui Street, Dalian, Liaoning 116044, China.
| | - Wenzhe Li
- Department of Thoracic Surgery, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China.
| | - Ming Li
- College of Basic Medical Science, Dalian Medical University, 9-Western Section, Lvshun South Road, Dalian, Liaoning 116044, China.
| |
Collapse
|
19
|
Xu X, Hu H, Zeng H, Li B, Yin Q, Jiang Y, Zang L, Zhao C, Qian G. Sinisan ameliorates colonic injury induced by water immersion restraint stress by enhancing intestinal barrier function and the gut microbiota structure. PHARMACEUTICAL BIOLOGY 2023; 61:598-609. [PMID: 37013944 PMCID: PMC10075512 DOI: 10.1080/13880209.2023.2191643] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/21/2023] [Accepted: 03/12/2023] [Indexed: 06/19/2023]
Abstract
CONTEXT Sinisan (SNS) has been used to treat psychosomatic diseases of the digestive system. But little is known about how SNS affects water immersion restraint stress (WIRS). OBJECTIVE To study the effects of SNS on colonic tissue injury in the WIRS model. MATERIALS AND METHODS Forty-eight Kunming (KM) mice were randomized into 6 groups (n = 8): The control and WIRS groups receiving deionized water; the SNS low-dose (SL, 3.12 g/kg/d), SNS middle-dose (SM, 6.24 g/kg/d), SNS high-dose (SH, 12.48 g/kg/d), and diazepam (DZ, 5 mg/kg/d) groups; each with two daily administrations for 5 consecutive days. The 5 treatment groups were subjected to WIRS for 24 h on day 6. The effects of SNS on colon tissue injury caused by WIRS were assessed by changes in colon histology, inflammatory cytokines, brain-gut peptides, and tight junction (TJ) proteins levels. 16S rRNA gene sequencing was used to detect the regulation of the gut microbiota. RESULTS SNS pretreatment significantly reduced TNF-α (0.75- to 0.81-fold), IL-6 (0.77-fold), and IFN-γ (0.69-fold) levels; and increased TJ proteins levels, such as ZO-1 (4.06- to 5.27-fold), claudin-1 (3.33- to 5.14-fold), and occludin (6.46- to 11.82-fold). However, there was no significant difference between the levels of substance P (SP) and vasoactive intestinal peptide (VIP) in the control and WIRS groups. SNS regulated the composition of gut microbiota in WIRS mice. CONCLUSION The positive effects of SNS on WIRS could provide a theoretical basis to treat stress-related gastrointestinal disorders.
Collapse
Affiliation(s)
- Xiaoying Xu
- School of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, P.R. China
| | - Huimei Hu
- School of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, P.R. China
| | - Haizhou Zeng
- School of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, P.R. China
| | - Boyi Li
- School of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, P.R. China
| | - Qiuxiong Yin
- School of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, P.R. China
| | - Yupeng Jiang
- School of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, P.R. China
| | - Linquan Zang
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, P.R. China
| | - Changlin Zhao
- Health Science College, Guangdong Pharmaceutical University, Guangzhou, P.R. China
| | - Guoqiang Qian
- School of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, P.R. China
| |
Collapse
|
20
|
Yu P, Xu F, Wu H, Wang X, Ding Q, Zhang M, Fang R, Qin P. Anti-Ulcerative Colitis Effects and Active Ingredients in Ethyl Acetate Extract from Decoction of Sargentodoxa cuneata. Molecules 2023; 28:7663. [PMID: 38005385 PMCID: PMC10675221 DOI: 10.3390/molecules28227663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Ulcerative colitis (UC) is an intractable disease prevalent worldwide. While ethyl acetate extract from decoction of Sargentodoxa cuneata (EAdSc) has potential anti-inflammatory activity, its effects on UC remain unknown. In this study, the constituent compounds discussed in the literature and identified by gas chromatography and mass spectrometry (GC-MS) were collected, and the blood-soluble components of EAdSc were identified by liquid chromatography-mass spectrometry. The network pharmacology analysis and molecular docking analysis were performed to explore the potential underlying mechanism and active ingredients of EAdSc against UC. Furthermore, mice with dextran sulfate sodium (DSS)-induced UC were used to study the therapeutic effects and validate the mechanism of EAdSc against UC. A total of 53 compounds from EAdSc were identified in the literature and by GC-MS, and 22 blood-soluble EAdSc components were recognized. Network pharmacology analysis revealed that multiple inflammatory signaling pathways are involved in EAdSc's anti-UC activity. Furthermore, molecular docking analysis showed that the eleutheroside A, liriodendrin, epicatechin, 2-methoxy-4-vinylphenol, catechin, androsin, coumaroyltyramine, and catechol may be active against UC through the TLR4/NF-κB/NLRP3 pathway. EAdSc reduced the disease activity, macroscopic colon damage, and histological damage indices, as well as inhibiting DSS-induced spleen enlargement and colon shortening. In addition, EAdSc decreased the levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, and IL-17, as well as the expression of TLR4, NF-κB p65, NLRP3, and Caspase-1 mRNA in colon tissues. These results provide insights into the anti-UC effects and underlying mechanisms of EAdSc and help elucidate the active ingredients of EAdSc in the treatment of UC.
Collapse
Affiliation(s)
- Piao Yu
- Department of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (P.Y.); (H.W.); (Q.D.); (M.Z.); (R.F.); (P.Q.)
| | - Feng Xu
- Department of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (P.Y.); (H.W.); (Q.D.); (M.Z.); (R.F.); (P.Q.)
| | - Hongmei Wu
- Department of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (P.Y.); (H.W.); (Q.D.); (M.Z.); (R.F.); (P.Q.)
| | - Xiangpei Wang
- School of Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang 550025, China;
| | - Qin Ding
- Department of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (P.Y.); (H.W.); (Q.D.); (M.Z.); (R.F.); (P.Q.)
| | - Mei Zhang
- Department of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (P.Y.); (H.W.); (Q.D.); (M.Z.); (R.F.); (P.Q.)
| | - Rongze Fang
- Department of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (P.Y.); (H.W.); (Q.D.); (M.Z.); (R.F.); (P.Q.)
| | - Ping Qin
- Department of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (P.Y.); (H.W.); (Q.D.); (M.Z.); (R.F.); (P.Q.)
| |
Collapse
|
21
|
Medof ME, Rieder SA, Shevach EM. Disabled C3ar1/C5ar1 Signaling in Foxp3+ T Regulatory Cells Leads to TSDR Demethylation and Long-Term Stability. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1359-1366. [PMID: 37756526 PMCID: PMC10591991 DOI: 10.4049/jimmunol.2300184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023]
Abstract
Demethylation of the T regulatory cell (Treg)-specific demethylation region (TSDR) of the Foxp3 gene is the hallmark of Foxp3+ Treg stability, but the cellular signaling that programs this epigenetic state remains undefined. In this article, we show that suppressed C3a and C5a receptor (C3ar1/C5ar1) signaling in murine Tregs plays an obligate role. Murine C3ar1-/-C5ar1-/- Foxp3+ cells showed increased suppressor of cytokine signaling 1/2/3 expression, vitamin C stabilization, and ten-eleven translocation (TET) 1, TET2, and TET3 expression, all of which are linked to Treg stability. C3ar1-/-C5ar1-/- Foxp3+ cells additionally were devoid of BRD4 signaling that primes Th17 cell lineage commitment. Orally induced OVA-specific C3ar1-/-C5ar1-/- Foxp3+ OT-II Tregs transferred to OVA-immunized wild-type recipients remained >90% Foxp3+ out to 4 mo, whereas identically generated CD55-/- (DAF-/-) Foxp3+ OT-II Tregs (in which C3ar1/C5ar1 signaling is potentiated) lost >75% of Foxp3 expression by 14 d. After 4 mo in vivo, the C3ar1-/-C5ar1-/- Foxp3+ OT-II Tregs fully retained Foxp3 expression even with OVA challenge and produced copious TGF-β and IL-10. Their TSDR was demethylated comparably with that of thymic Tregs. They exhibited nuclear translocation of NFAT and NF-κB reported to stabilize thymic Tregs by inducing hairpin looping of the TSDR to the Foxp3 promoter. Thus, disabled CD4+ cell C3ar1/C5ar1 signaling triggers the sequential cellular events that lead to demethylation of the Foxp3 TSDR.
Collapse
Affiliation(s)
- M. Edward Medof
- Institute of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Sadiye A. Rieder
- Laboratory of Immune System Biology, NIAID, National Institutes of Health, Bethesda MD USA
| | - Ethan M. Shevach
- Laboratory of Immune System Biology, NIAID, National Institutes of Health, Bethesda MD USA
| |
Collapse
|
22
|
Zhao M, Chu J, Feng S, Guo C, Xue B, He K, Li L. Immunological mechanisms of inflammatory diseases caused by gut microbiota dysbiosis: A review. Biomed Pharmacother 2023; 164:114985. [PMID: 37311282 DOI: 10.1016/j.biopha.2023.114985] [Citation(s) in RCA: 112] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/15/2023] Open
Abstract
The gut microbiota is indispensable for maintaining host health by enhancing the host's digestive capacity, safeguarding the intestinal epithelial barrier, and preventing pathogen invasion. Additionally, the gut microbiota exhibits a bidirectional interaction with the host immune system and promotes the immune system of the host to mature. Dysbiosis of the gut microbiota, primarily caused by factors such as host genetic susceptibility, age, BMI, diet, and drug abuse, is a significant contributor to inflammatory diseases. However, the mechanisms underlying inflammatory diseases resulting from gut microbiota dysbiosis lack systematic categorization. In this study, we summarize the normal physiological functions of symbiotic microbiota in a healthy state and demonstrate that when dysbiosis occurs due to various external factors, the normal physiological functions of the gut microbiota are lost, leading to pathological damage to the intestinal lining, metabolic disorders, and intestinal barrier damage. This, in turn, triggers immune system disorders and eventually causes inflammatory diseases in various systems. These discoveries provide fresh perspectives on how to diagnose and treat inflammatory diseases. However, the unrecognized variables that might affect the link between inflammatory illnesses and gut microbiota, need further studies and extensive basic and clinical research will still be required to investigate this relationship in the future.
Collapse
Affiliation(s)
- Min'an Zhao
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China; School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Jiayi Chu
- School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Shiyao Feng
- School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Chuanhao Guo
- The Second School of Clinical Medicine of Jilin University, Changchun, Jilin 130041, China
| | - Baigong Xue
- College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China.
| | - Kan He
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China.
| | - Lisha Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
23
|
Zhang J, Sun S, Chen H, Feng Y, Li Y, Dong Z. Advances in natural compound-based nanomedicine and the interaction with gut microbiota in ulcerative colitis therapy. Front Pharmacol 2023; 14:1197144. [PMID: 37521480 PMCID: PMC10372797 DOI: 10.3389/fphar.2023.1197144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disorder of the large intestine. Previous studies have indicated that the gut microbiota plays an important role in the triggers, development, and treatment response of UC. Natural active molecules and their nanoformulations show huge potential for treating UC. The nanoparticles can regulate the gut microbiota and metabolites, whereas gut microbiota-mediated effects on nanomedicines can also bring additional therapeutic benefits. Therefore, this review aims to integrate current research on natural active molecule-based nanomedicines for UC therapy and their interaction with the gut microbiota. Here, this discussion focuses on the effects and functions of gut microbiota and metabolites in UC. The use of active molecules and the nanoformulation from natural compounds for UC therapy have been provided. The interactions between the gut microbiota and nanomedicines are derived from natural products and elucidate the possible biological mechanisms involved. Finally, the challenges and future directions for enhancing the therapeutic efficacy of nanomedicine in treating UC are proposed.
Collapse
Affiliation(s)
- Jinlan Zhang
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shuhui Sun
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Huan Chen
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yifan Feng
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ying Li
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhengqi Dong
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
24
|
Zhu M, Song Y, Xu Y, Xu H. Manipulating Microbiota in Inflammatory Bowel Disease Treatment: Clinical and Natural Product Interventions Explored. Int J Mol Sci 2023; 24:11004. [PMID: 37446182 DOI: 10.3390/ijms241311004] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a complex multifactorial chronic inflammatory disease, that includes Crohn's disease (CD) and ulcerative colitis (UC), having progressively increasing global incidence. Disturbed intestinal flora has been highlighted as an important feature of IBD and offers promising strategies for IBD remedies. A brief overview of the variations occurring in intestinal flora during IBD is presented, and the role of the gut microbiota in intestinal barrier maintenance, immune and metabolic regulation, and the absorption and supply of nutrients is reviewed. More importantly, we review drug research on gut microbiota in the past ten years, including research on clinical and natural drugs, as well as adjuvant therapies, such as Fecal Microbiota Transplantation and probiotic supplements. We also summarize the interventions and mechanisms of these drugs on gut microbiota.
Collapse
Affiliation(s)
- Mengjie Zhu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yijie Song
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yu Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hongxi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
25
|
Liu T, Zhang M, Asif IM, Wu Y, Li B, Wang L. The regulatory effects of fucoidan and laminarin on functional dyspepsia mice induced by loperamide. Food Funct 2023. [PMID: 37377021 DOI: 10.1039/d3fo00936j] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Gastrointestinal dysmotility is a common cause of functional dyspepsia. As two kinds of polysaccharides derived from brown algae, fucoidan and laminarin possess many physiological properties; however, their relative abilities in regulating gastrointestinal motility have not been illustrated yet. In this study, we aimed to investigate the regulatory effect of fucoidan and laminarin on functional dyspepsia mice induced by loperamide. Mice with gastrointestinal dysmotility were treated with fucoidan (100 and 200 mg per kg bw) and laminarin (50 and 100 mg per kg bw). As a result, fucoidan and laminarin reversed the dysfunction mainly through regulating gastrointestinal hormones (motilin and ghrelin), the cholinergic pathway, the total bile acid level, c-kit protein expression, and gastric smooth muscle contraction-related gene expression (ANO1 and RYR3). Moreover, fucoidan and laminarin intervention modulated the gut microbiota profile including the altered richness of Muribaculaceae, Lachnospiraceae, and Streptococcus. The results indicated that fucoidan and laminarin may restore the rhythm of the migrating motor complex and regulate gut microecology. In conclusion, we provided evidence to support that fucoidan and laminarin might have potential abilities to regulate gastrointestinal motility.
Collapse
Affiliation(s)
- Tianxu Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070, Hubei, China
| | - Mengting Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070, Hubei, China
| | - Ismail Muhammad Asif
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070, Hubei, China
| | - Yonglin Wu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070, Hubei, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070, Hubei, China
| | - Ling Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070, Hubei, China
| |
Collapse
|
26
|
Zhu X, Li S. Nanomaterials in tumor immunotherapy: new strategies and challenges. Mol Cancer 2023; 22:94. [PMID: 37312116 PMCID: PMC10262535 DOI: 10.1186/s12943-023-01797-9] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 05/31/2023] [Indexed: 06/15/2023] Open
Abstract
Tumor immunotherapy exerts its anti-tumor effects by stimulating and enhancing immune responses of the body. It has become another important modality of anti-tumor therapy with significant clinical efficacy and advantages compared to chemotherapy, radiotherapy and targeted therapy. Although various kinds of tumor immunotherapeutic drugs have emerged, the challenges faced in the delivery of these drugs, such as poor tumor permeability and low tumor cell uptake rate, had prevented their widespread application. Recently, nanomaterials had emerged as a means for treatment of different diseases due to their targeting properties, biocompatibility and functionalities. Moreover, nanomaterials possess various characteristics that overcome the defects of traditional tumor immunotherapy, such as large drug loading capacity, precise tumor targeting and easy modification, thus leading to their wide application in tumor immunotherapy. There are two main classes of novel nanoparticles mentioned in this review: organic (polymeric nanomaterials, liposomes and lipid nanoparticles) and inorganic (non-metallic nanomaterials and metallic nanomaterials). Besides, the fabrication method for nanoparticles, Nanoemulsions, was also introduced. In summary, this review article mainly discussed the research progress of tumor immunotherapy based on nanomaterials in the past few years and offers a theoretical basis for exploring novel tumor immunotherapy strategies in the future.
Collapse
Affiliation(s)
- Xudong Zhu
- Department of General Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, People's Republic of China
| | - Shenglong Li
- Second Ward of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, People's Republic of China.
| |
Collapse
|
27
|
Liu M, Wang Z, Liu X, Xiao H, Liu Y, Wang J, Chen C, Wang X, Liu W, Xiang Z, Yue D. Therapeutic effect of Yiyi Fuzi Baijiang formula on TNBS-induced ulcerative colitis via metabolism and Th17/Treg cell balance. JOURNAL OF ETHNOPHARMACOLOGY 2023; 309:116301. [PMID: 36842724 DOI: 10.1016/j.jep.2023.116301] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yiyi Fuzi Baijiang formula (YFB) is a traditional Chinese medicine prescription composed of Coix seed, Radix Aconiti Lateralis and Patrinia villosa, which has been used to treat ulcerative colitis (UC) for thousands of years. AIM OF THE STUDY To investigate the therapeutic effect and metabolic analysis of YFB formula on UC in rats induced by 2,4,6-trinitro-benzene sulfonic acid (TNBS). MATERIALS AND METHODS Six main alkaloids in the YFB formula were determined by UPLC‒MS/MS. The rat UC model was induced by TNBS, and the therapeutic effect of YFB formula on UC was evaluated by disease activity index (DAI) score and hematoxylin-eosin (HE) staining. UPLC-QTRAP-MS metabolomics technology was used to screen potential biomarkers for YFB treatment of UC in combination with multivariate data statistics and further analyze related metabolic pathways. Western blotting was used to detect the protein levels of NLRP1, NLRP3, NLRC4, ASC, pro-caspase1 and Caspase-1 in rat liver tissues. ELISA and immunohistochemistry were used to detect the contents of interleukin (IL)-17A, IL-21, IL-22, IL-6, TNF-α, IL-1β and IL-18 in rat serum and liver tissues. RESULTS The DAI scores of the YFB groups were significantly reduced, and colon tissue injury was significantly improved (p < 0.01). The results of metabolomics analysis revealed 29 potential biomarkers in serum and 27 potential biomarkers in liver. YFB formula can treat UC by affecting glycerophospholipid metabolism, primary bile acid biosynthesis, glyoxylic acid and dicarboxylic acid metabolism, and arginine and proline metabolism. Compared with the model group, the contents of IL-17A, IL-21, IL-22, IL-6, TNF-α, IL-1β and IL-18 in the YFB groups were decreased in a dose-dependent manner (p < 0.01). Compared with those in the model group, the protein levels of NLRP1, NLRP3, NLRC4, ASC, pro-caspase1 and Caspase-1 in the YFB groups were significantly decreased in a dose-dependent manner (p < 0.01). CONCLUSIONS The therapeutic effect of YFB formula on UC rats was dose dependent, and the effect of the YFB (2.046 g/kg) group was close to that of the positive group. YFB formula has an anti-inflammatory effect on UC by regulating the balance of Th17/Treg cells in rats.
Collapse
Affiliation(s)
- Meihua Liu
- School of Pharmaceutical Science, Liaoning University, China
| | - Zhonghua Wang
- Rongtong Agricultural Development (Shenyang) Co., Ltd., China
| | - Xuan Liu
- Dezhou Xiangxuan Pharmaceutical Technology Co., Ltd., China
| | - Hang Xiao
- Basic Medical College, Shenyang Medical College, China
| | - Yangcheng Liu
- School of Pharmaceutical Science, Liaoning University, China
| | - Jiaqi Wang
- School of Pharmaceutical Science, Liaoning University, China
| | - Changlan Chen
- School of Pharmaceutical Science, Liaoning University, China
| | - Xin Wang
- School of Pharmaceutical Science, Liaoning University, China
| | - Wei Liu
- School of Pharmaceutical Science, Liaoning University, China
| | - Zheng Xiang
- School of Pharmaceutical Science, Liaoning University, China.
| | - Dongmei Yue
- Department of Pediatrics, Shengjing Hospital of China Medical University, China.
| |
Collapse
|
28
|
Han B, Zhai Y, Li X, Zhao H, Sun C, Zeng Y, Zhang W, Lu J, Kai G. Total flavonoids of Tetrastigma hemsleyanum Diels et Gilg inhibits colorectal tumor growth by modulating gut microbiota and metabolites. Food Chem 2023; 410:135361. [PMID: 36610085 DOI: 10.1016/j.foodchem.2022.135361] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/29/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022]
Abstract
Tetrastigma hemsleyanum Diels et Gilg is a dietary supplement in southern China. The total flavonoids of T. hemsleyanum (THTF) can be used for gastrointestinal disease treatment. Colorectal cancer (CRC) is associated with gut microbiota dysbiosis. This study was designed to investigate the effect of THTF on CRC from gut microbiota and fecal metabolomics. THTF (120 mg/kg) oral gavage reduced tumor growth and protected intestinal function (p-p65/p65, ZO-1) in HCT116 xenografts. THTF increased probiotics Bifidobacteriales, Bifidobacteriaceae, Bifidobacterium, Bifidobacterium pseudolongum, and decreased "harmful" bacteria Bacteroidota, Firmicutes, Bacteroidia, Rikenellaceae, Odoribacter, Alistipes richness. Furthermore, THTF restored abnormal fecal metabolite levels. It showed a strong correlation among gut microbiota, metabolites, and tumor weight. Finally, THTF promoted Bifidobacterium pseudolongum growth in vitro, whose cell-free supernatant further inhibited HCT116 cell proliferation and clonogenicity. Together, THTF delays CRC tumor growth by maintaining microbiota homeostasis, restoring fecal metabolites, and protecting intestinal function.
Collapse
Affiliation(s)
- Bing Han
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, College of Pharmaceutical Science, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yufei Zhai
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, College of Pharmaceutical Science, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xuan Li
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, College of Pharmaceutical Science, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Huan Zhao
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, College of Pharmaceutical Science, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Chengtao Sun
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, College of Pharmaceutical Science, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yuqing Zeng
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, College of Pharmaceutical Science, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Weiping Zhang
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, College of Pharmaceutical Science, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jinjian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Guoyin Kai
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, College of Pharmaceutical Science, The Third Affiliated Hospital, Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
29
|
Wei C, Zhu F, Yu J, Gao F, Yuan Y, Zhang Y, Liu X, Chu S, Cui D, Fan H, Wang W. Tongqiao Huoxue Decoction ameliorates traumatic brain injury-induced gastrointestinal dysfunction by regulating CD36/15-LO/NR4A1 signaling, which fails when CD36 and CX3CR1 are deficient. CNS Neurosci Ther 2023; 29 Suppl 1:161-184. [PMID: 37157929 PMCID: PMC10314107 DOI: 10.1111/cns.14247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/15/2022] [Accepted: 04/20/2023] [Indexed: 05/10/2023] Open
Abstract
AIMS Gastrointestinal (GI) dysfunction, as a common peripheral-organ complication after traumatic brain injury (TBI), is primarily characterized by gut inflammation and damage to the intestinal mucosal barrier (IMB). Previous studies have confirmed that TongQiao HuoXue Decoction (TQHXD) has strong anti-inflammatory properties and protects against gut injury. However, few have reported on the therapeutic effects of TQHXD in a TBI-induced GI dysfunction model. We aimed to explore the effects of TQHXD on TBI-induced GI dysfunction and the underlying mechanism thereof. METHODS We assessed the protective effects and possible mechanism of TQHXD in treating TBI-induced GI dysfunction via gene engineering, histological staining, immunofluorescence (IF), 16S ribosomal ribonucleic acid (rRNA) sequencing, real-time polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA), Western blot (WB), and flow cytometry (FCM). RESULTS TQHXD administration ameliorated TBI-induced GI dysfunction by modulating the abundance and structure of bacteria; reconstructing the destroyed epithelial and chemical barriers of the IMB; and improving M1/M2 macrophage, T-regulatory cell (Treg)/T helper 1 cell (Th1 ), as well as Th17 /Treg ratios to preserve homeostasis of the intestinal immune barrier. Notably, Cluster of Differentiation 36 (CD36)/15-lipoxygenase (15-LO)/nuclear receptor subfamily 4 group A member 1 (NR4A1) signaling was markedly stimulated in colonic tissue of TQHXD-treated mice. However, insufficiency of both CD36 and (C-X3-C motif) chemokine receptor 1 (CX3CR1) worsened GI dysfunction induced by TBI, which could not be rescued by TQHXD. CONCLUSION TQHXD exerted therapeutic effects on TBI-induced GI dysfunction by regulating the intestinal biological, chemical, epithelial, and immune barriers of the IMB, and this effect resulted from the stimulation of CD36/NR4A1/15-LO signaling; however, it could not do so when CX3CR1 and CD36 were deficient. TQHXD might therefore be a potential drug candidate for treating TBI-induced GI dysfunction.
Collapse
Affiliation(s)
- Chunzhu Wei
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Feng Zhu
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jintao Yu
- Department of Otolaryngology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Fei Gao
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yuyi Yuan
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yanlong Zhang
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xinjie Liu
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Si Chu
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Dandan Cui
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Heng Fan
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Wenzhu Wang
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
30
|
Cheng H, Zhang D, Wu J, Liu J, Tan Y, Feng W, Peng C. Atractylodes macrocephala Koidz. volatile oil relieves acute ulcerative colitis via regulating gut microbiota and gut microbiota metabolism. Front Immunol 2023; 14:1127785. [PMID: 37205093 PMCID: PMC10187138 DOI: 10.3389/fimmu.2023.1127785] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/24/2023] [Indexed: 05/21/2023] Open
Abstract
Background Atractylodes macrocephala Koidz. (AM) is a functional food with strong ant-colitis activity. AM volatile oil (AVO) is the main active ingredient of AM. However, no study has investigated the improvement effect of AVO on ulcerative colitis (UC) and the bioactivity mechanism also remains unknown. Here, we investigated whether AVO has ameliorative activity on acute colitis mice and its mechanism from the perspective of gut microbiota. Methods Acute UC was induced in C57BL/6 mice by dextran sulfate sodium and treated with the AVO. Body weight, colon length, colon tissue pathology, and so on were assessed. The gut microbiota composition was profiled using 16s rRNA sequencing and global metabolomic profiling of the feces was performed. The results showed that AVO can alleviate bloody diarrhea, colon damage, and colon inflammation in colitis mice. In addition, AVO decreased potentially harmful bacteria (Turicibacter, Parasutterella, and Erysipelatoclostridium) and enriched potentially beneficial bacteria (Enterorhabdus, Parvibacter, and Akkermansia). Metabolomics disclosed that AVO altered gut microbiota metabolism by regulating 56 gut microbiota metabolites involved in 102 KEGG pathways. Among these KEGG pathways, many metabolism pathways play an important role in maintaining intestine homeostasis, such as amino acid metabolism (especially tryptophan metabolism), bile acids metabolism, and retinol metabolism. Conclusion In conclusion, our study indicated that AVO can be expected as novel prebiotics to treat ulcerative colitis, and modulating the composition and metabolism of gut microbiota may be its pharmacological mechanism.
Collapse
Affiliation(s)
- Hao Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dandan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Juan Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuzhu Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wuwen Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
31
|
Ge C, Liang X, Wu X, Wang J, Wang H, Qin Y, Xue M. Yellow mealworm (Tenebrio Molitor) enhances intestinal immunity in largemouth bass (Micropterus salmoides) via the NFκB/survivin signaling pathway. FISH & SHELLFISH IMMUNOLOGY 2023; 136:108736. [PMID: 37054764 DOI: 10.1016/j.fsi.2023.108736] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/20/2023] [Accepted: 04/05/2023] [Indexed: 06/19/2023]
Abstract
This study aimed to elucidate the mechanisms of yellow mealworm (Tenebrio Molitor, YM) in intestinal immunity and health. Largemouth bass, as an enteritis modeling animal, were fed 3 diets containing YM at 0% (YM0), 24% (YM24) and 48% (YM48). The YM24 group had reduced levels of proinflammatory cytokines, while the YM48 group experienced a negative impact on intestinal health. Next, the Edwardsiella tarda (E. tarda) challenge test consisted of 4 YM diets, 0% (EYM0), 12% (EYM12), 24% (EYM24), and 36% (EYM36). The EYM0 and EYM12 groups exhibited intestinal damage and immunosuppression by the pathogenic bacteria. However, the above adverse phenotypes were attenuated in the EYM24 and EYM36 groups. Mechanistically, the EYM24 and EYM36 groups enhanced intestinal immunity in largemouth bass via activating NFκBp65 and further upregulating survivin expression to inhibit apoptosis. The results identify a protective mechanism of YM as a novel food or feed source by improving intestinal health.
Collapse
Affiliation(s)
- Chunyu Ge
- National Aquafeed Safety Assessment Center, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China; Institute of Animal Science, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Xiaofang Liang
- National Aquafeed Safety Assessment Center, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoliang Wu
- National Aquafeed Safety Assessment Center, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Wang
- National Aquafeed Safety Assessment Center, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hao Wang
- National Aquafeed Safety Assessment Center, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuchang Qin
- Institute of Animal Science, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Min Xue
- National Aquafeed Safety Assessment Center, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
32
|
Zhou Y, Wang D, Yan W. Treatment Effects of Natural Products on Inflammatory Bowel Disease In Vivo and Their Mechanisms: Based on Animal Experiments. Nutrients 2023; 15:nu15041031. [PMID: 36839389 PMCID: PMC9967064 DOI: 10.3390/nu15041031] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic, non-specific inflammatory disease of the intestine that can be classified as ulcerative colitis (UC) and Crohn's disease (CD). Currently, the incidence of IBD is still increasing in developing countries. However, current treatments for IBD have limitations and do not fully meet the needs of patients. There is a growing demand for new, safe, and highly effective alternative drugs for IBD patients. Natural products (NPs) are used in drug development and disease treatment because of their broad biological activity, low toxicity, and low side effects. Numerous studies have shown that some NPs have strong therapeutic effects on IBD. In this paper, we first reviewed the pathogenesis of IBD as well as current therapeutic approaches and drugs. Further, we summarized the therapeutic effects of 170 different sources of NPs on IBD and generalized their modes of action and therapeutic effects. Finally, we analyzed the potential mechanisms of NPs for the treatment of IBD. The aim of our review is to provide a systematic and credible summary, thus supporting the research on NPs for the treatment of IBD and providing a theoretical basis for the development and application of NPs in drugs and functional foods.
Collapse
Affiliation(s)
- Yaxi Zhou
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China
| | - Diandian Wang
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China
| | - Wenjie Yan
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China
- Correspondence: ; Tel.: +86-010-6238-8926
| |
Collapse
|
33
|
Zhang NN, Jiang ZM, Li SZ, Yang X, Liu EH. Evolving interplay between natural products and gut microbiota. Eur J Pharmacol 2023; 949:175557. [PMID: 36716810 DOI: 10.1016/j.ejphar.2023.175557] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 01/29/2023]
Abstract
Growing evidence suggests gut microbiota status affects human health, and microbiota imbalance will induce multiple disorders. Natural products are gaining increasing attention for their therapeutical effects and less side effects. The emerging studies support that the activities of many natural products are dependent on gut microbiota, meanwhile gut microbiota is modulated by natural products. In this review, we summarized the interplay between the gut microbiota and host disease, and the emerging molecular mechanisms of the interaction between natural products and gut microbiota. Focusing on gut microbiota metabolite of various natural products, and the effects of natural products on gut microbiota, we summarized the biotransformation pathways of natural products, and discussed the effect of natural products on the composition modulation of gut microbiota, protection of gut mucosal barrier and modulation of the gut microbiota metabolites. Dissecting the interplay between gut microbiota and natural products will help elucidate the therapeutic mechanisms of natural products.
Collapse
Affiliation(s)
- Ning-Ning Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Zheng-Meng Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Shang-Zhen Li
- Nanjing Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Xing Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - E-Hu Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
34
|
Chen L, Liu X, Wang X, Lu Z, Ye Y. Berberine Alleviates Acute Lung Injury in Septic Mice by Modulating Treg/Th17 Homeostasis and Downregulating NF-κB Signaling. Drug Des Devel Ther 2023; 17:1139-1151. [PMID: 37077411 PMCID: PMC10108910 DOI: 10.2147/dddt.s401293] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/06/2023] [Indexed: 04/21/2023] Open
Abstract
Purpose A common complication of sepsis is acute lung injury (ALI), which is associated with an acute onset, rapid disease changes, and high mortality. Regulatory T (Treg) and T helper 17 (Th17) cells comprise CD4+ T cell subsets, which strongly influence inflammation during ALI. In this study, we investigated the effect of berberine (BBR), an antioxidant, anti-inflammatory, and immunomodulatory drug, on the inflammatory response and immune state in mice with sepsis. Methods A mouse model of cecal ligation and puncture (CLP) was established. The mice were intragastrically administered 50 mg/kg BBR. We used histological techniques to evaluate inflammatory tissue injury and flow cytometry for analyzing Treg/Th17 levels. We also assessed NF-κB signaling pathways by Western blotting assays and immunofluorescence staining. Enzyme-linked immunosorbent assay (ELISA) was performed to measure the content of cytokines. Results Treatment with BBR considerably mitigated lung injury while improving survival, post-cecal ligation, and puncture (CLP). Treatment with BBR ameliorated pulmonary edema and hypoxemia in septic mice and inhibited the NF-κB signaling pathway. BBR also increased Treg cells and decreased Th17 proportions in the spleen and lung tissue of CLP-treated mice. Blocking Treg cells weakened the protective effect of BBR on sepsis-associated lung injury. Conclusion Overall, these results suggested that BBR is a potential therapeutic agent for sepsis.
Collapse
Affiliation(s)
- Longwang Chen
- Department of Emergency, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Xinyong Liu
- Department of Critical Care Medicine, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, People’s Republic of China
| | - Xuetao Wang
- Department of Intensive Care Unit, Wenzhou Longwan District First People’s Hospital, Wenzhou, Zhejiang, People’s Republic of China
| | - Zhongqiu Lu
- Department of Emergency, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Yumei Ye
- Department of Ultrasound Imaging, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
- Correspondence: Yumei Ye, Department of Ultrasound Imaging, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People’s Republic of China, Tel +860577-5557-9410, Email
| |
Collapse
|
35
|
Khalil RG, Ibrahim AM, Bakery HH. Juglone: “A novel immunomodulatory, antifibrotic, and schistosomicidal agent to ameliorate liver damage in murine schistosomiasis mansoni”. Int Immunopharmacol 2022; 113:109415. [DOI: 10.1016/j.intimp.2022.109415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/27/2022] [Accepted: 10/30/2022] [Indexed: 11/11/2022]
|
36
|
Wu Y, Pei C, Wang X, Wang Y, Huang D, Shi S, Shen Z, Li S, He Y, Wang Z, Wang J. Probiotics ameliorates pulmonary inflammation via modulating gut microbiota and rectifying Th17/Treg imbalance in a rat model of PM2.5 induced lung injury. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114060. [PMID: 36115151 DOI: 10.1016/j.ecoenv.2022.114060] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/30/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
The imbalance of intestinal microbiota and inflammatory response is crucial in the development of lung injury induced by PM2.5. In recent years, probiotics have attracted great attention for their health benefits in inflammatory diseases and regulating intestinal balance, but their intricate mechanisms need further experiments to elucidate. In our research, a rat lung damage model induced by PM2.5 exposure in real environment was established to explore the protective properties of probiotics on PM2.5 exposure injury and its related mechanism. The results indicated that compared with the AF control group, rats in the PM2.5 group gained weight slowly, ate less and had yellow hair. The results of pathological and immunohistochemical examinations showed that the inflammatory infiltration of lung tissue was alleviated after probiotic treatment. The Lung function results also showed the improvement effects of probiotics administration. In addition, probiotics could promote the balance of Th17 and Treg cells, inhibit cytokines expression (TNF-α, IL-6, IL-1β, IL-17A), and increase the concentration of anti-inflammatory factors (IL-10, TGF-β). In addition, 16 S rRNA sequence analysis showed that probiotic treatment could reduce microbiota abundance and diversity, increase the abundance of possible beneficial bacteria, and decrease the abundance of bacteria associated with inflammation. In general, probiotic intervention was found to have preventive effects on the occurrence of PM2.5 induced pathological injury, and the mechanism was associate with to the inhibition of inflammatory response, regulation of Th17/Treg balance and maintenance of intestinal internal environment stability.
Collapse
Affiliation(s)
- Yongcan Wu
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing Medical University, Chongqing 400016, PR China
| | - Caixia Pei
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610075, PR China
| | - Xiaomin Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610075, PR China
| | - Yilan Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610075, PR China
| | - Demei Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610075, PR China
| | - Shihua Shi
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610075, PR China
| | - Zherui Shen
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610075, PR China
| | - Shuiqin Li
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610075, PR China
| | - Yacong He
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166 Liutai Avenue, Chengdu 611137, PR China.
| | - Zhenxing Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610075, PR China.
| | - Jianwei Wang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
37
|
Song J, Hua Y, Pan C, Cui L, Fan X, Lu M, Zhang Z. Effects of oral administration and intravenous injection of polygalacturonic acid on the immunomodulation and gut microbiota in UC mice. Int J Biol Macromol 2022; 217:150-160. [PMID: 35830896 DOI: 10.1016/j.ijbiomac.2022.07.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 06/15/2022] [Accepted: 07/06/2022] [Indexed: 12/31/2022]
Abstract
This study aimed to compare the differences between oral administration and intravenous injection of polygalacturonic acid (PGA) in the regulation of immune and intestinal microflora in ulcerative colitis (UC) mice. PGA was administered orally or intravenously. PGA in the high-dose ig group was the most effective in treating UC by increasing colon length and downregulating disease activity index, histopathological score and proinflammatory cytokine levels. In spleen, the efficacy of PGA on restoring Th17/Treg balance in the high-dose iv group was better than that in the high-dose ig group, the opposite was observed in the lamina propria. The level of colonic IL-17A in the high-dose ig group was lower than that in the high-dose iv group, the opposite was observed for that of colonic IL-10. Western blot and immunohistochemistry analysis revealed that PGA in the high-dose ig group decreased the protein expression of RORγt, and increased that of FOXP3. Furthermore, PGA in the high-dose ig group was more effective than that in the high-dose iv group in improving the intestinal microflora structure. Our results suggest that in immune regulation, oral PGA is more effective in the lamina propria and gut microbiota while intravenous PGA is more effective in the spleen.
Collapse
Affiliation(s)
- Jie Song
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu, PR China
| | - Yongzhi Hua
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu, PR China
| | - Chengyu Pan
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu, PR China
| | - Li Cui
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu, PR China
| | - Xinyu Fan
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu, PR China
| | - Min Lu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu, PR China.
| | - Zhenhai Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu, PR China.
| |
Collapse
|
38
|
Zhu Y, Zhao Q, Huang Q, Li Y, Yu J, Zhang R, Liu J, Yan P, Xia J, Guo L, Liu G, Yang X, Zeng J. Nuciferine Regulates Immune Function and Gut Microbiota in DSS-Induced Ulcerative Colitis. Front Vet Sci 2022; 9:939377. [PMID: 35909691 PMCID: PMC9328756 DOI: 10.3389/fvets.2022.939377] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
Nuciferine, a major aporphine alkaloid obtained from the leaves of Nelumbo nucifera, exhibits anti-cancer and anti-inflammatory properties; however, its protective effects against inflammatory bowel diseases (IBD) has never been explored. In this study, an ulcerative colitis (UC) model was established in BALb/c mice by the continuous administration of 5% dextran sulfate sodium (DSS) in drinking water for 1 week. From day 8 to day 14, the DSS-treated mice were divided into a high-dose and a low-dose nuciferine treatment group and were intraperitoneally injected with the corresponding dose of the drug. Body weight loss, disease activity index (DAI), and colon length were measured. Histological changes were observed using hematoxylin and eosin staining. T lymphocyte proliferation was assessed by MTT assay. The ratio of CD3+, CD4+, CD8+, Th1, Th2, Th17, and Treg cells were estimated by flow cytometry. Finally, 16S rRNA sequencing was performed to compare the composition and relative abundance of the gut microbiota among the different treatment groups. The results showed that nuciferine treatment led to a significant improvement in symptoms, such as histological injury and colon shortening in mice with DSS-induced UC. Nuciferine treatment improved the Th1/Th2 and Treg/Th17 balance in the DSS-induced IBD model, as well as the composition of the intestinal microflora. At the phylum level, compared with the control group, the abundance of Firmicutes and Actinobacteriota was decreased in the model group, whereas that of Bacteroidetes increased. Meanwhile, at the genus level, compared with the control group, the numbers of the genera Lachnospiraceae_Clostridium, Bilophila and Halomonas reduced in the model group, while those of Bacteroides, Parabacteroides, and Paraprevotella increased. Notably, nuciferine administration reversed this DSS-induced gut dysbiosis. These results indicated that nuciferine modulates gut microbiota homeostasis and immune function in mice with DSS-induced UC.
Collapse
Affiliation(s)
- Yiling Zhu
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Qing Zhao
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Qi Huang
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Yana Li
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Jie Yu
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Rui Zhang
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Jiali Liu
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Pupu Yan
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Jinjin Xia
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Liwei Guo
- College of Animal Science, Yangtze University, Jingzhou, China
- *Correspondence: Liwei Guo
| | - Guoping Liu
- College of Animal Science, Yangtze University, Jingzhou, China
- Guoping Liu
| | - Xiaolin Yang
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Jianguo Zeng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| |
Collapse
|
39
|
Dong YJ, Lin MQ, Fang X, Xie ZY, Luo R, Teng X, Li B, Li B, Li LZ, Jin HY, Yu QX, Lv GY, Chen SH. Modulating effects of a functional food containing Dendrobium officinale on immune response and gut microbiota in mice treated with cyclophosphamide. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
40
|
Qiu D, Zhang W, Song Z, Xue M, Zhang Y, Yang Y, Tong C, Cai D. Berberine suppresses cecal ligation and puncture induced intestinal injury by enhancing Treg cell function. Int Immunopharmacol 2022; 106:108564. [DOI: 10.1016/j.intimp.2022.108564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/24/2021] [Accepted: 01/20/2022] [Indexed: 11/17/2022]
|