1
|
Tokhanbigli S, Salami Ghaleh S, Rahimian K, Mahmanzar M, Bayat S, Ahangarzadeh S, Moradi B, Mahmanzar R, Wang Y, Oliver BGG, Deng Y. Intersecting SARS-CoV-2 spike mutations and global vaccine efficacy against COVID-19. Front Immunol 2025; 16:1435873. [PMID: 40124365 PMCID: PMC11925781 DOI: 10.3389/fimmu.2025.1435873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 02/12/2025] [Indexed: 03/25/2025] Open
Abstract
In line with encountering the world with the emergence of vaccine-resistance variants of SARS-CoV-2, 15,669,529 samples that received COVID-19 vaccines until April 2023 were investigated as two doses in the first phase and booster vaccinations in the second phase. The analysis shows that D614G and P681 mutations occurred in both phases. The E484 and Y655 mutations significantly emerged during the second phase. The 762-889 and 254-381 regions are revealed as conserved parts and could be considered in vaccine design. The Kruskal-Wallis test revealed a significant reduction in single mutations between populations with 20%-50% and those with 70%-100% vaccination coverage (p=0.017). The Mann-Whitney U test proposes a link between vaccination and suppression of viral mutation rates. Dynamic modeling suggests that key mutations have facilitated the virus' evolution and immune escape. The study's findings are crucial for understanding virus genome mutations, especially E614 and P681 in Delta and E484 and H655 in Omicron. This highlights the need to adjust strategies and strengthen global efforts in combating the pandemic.
Collapse
Affiliation(s)
- Samaneh Tokhanbigli
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | | | - Karim Rahimian
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Mohammadamin Mahmanzar
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Saleha Bayat
- Department of Biology and Research Center for Animal Development Applied Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Shahrzad Ahangarzadeh
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahman Moradi
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Reza Mahmanzar
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Yunliang Wang
- Department of Neurology, The Second Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Brian Gregory George Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, Sydney, NSW, Australia
| | - Youping Deng
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, United States
| |
Collapse
|
2
|
Graciotti M, Kandalaft LE. Vaccines for cancer prevention: exploring opportunities and navigating challenges. Nat Rev Drug Discov 2025; 24:134-150. [PMID: 39622986 DOI: 10.1038/s41573-024-01081-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2024] [Indexed: 02/06/2025]
Abstract
Improved understanding of cancer immunology has gradually brought increasing attention towards cancer-preventive vaccines as an important tool in the fight against cancer. The aim of this approach is to reduce cancer occurrence by inducing a specific immune response targeting tumours at an early stage before they can fully develop. The great advantage of preventive cancer vaccines lies in the potential to harness a less-compromised immune system in vaccine recipients before their immune responses become affected by the advanced status of the disease itself or by aggressive treatments such as chemotherapy. Successful implementation of immunoprevention against oncogenic viruses such as hepatitis B and papillomavirus has led to a dramatic decrease in virally induced cancers. Extending this approach to other cancers holds great promise but remains a major challenge. Here, we provide a comprehensive review of preclinical evidence supporting this approach, encouraging results from pioneering clinical studies as well as a discussion on the key aspects and open questions to address in order to design potent prophylactic cancer vaccines in the near future.
Collapse
Affiliation(s)
- Michele Graciotti
- Center of Experimental Therapeutics, Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
| | - Lana E Kandalaft
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland.
- Department of Oncology, University of Lausanne (UNIL), Lausanne, Switzerland.
- AGORA Cancer Research Center, Lausanne, Lausanne, Switzerland.
- Swiss Medical Network, Genolier Innovation Network, Genolier Clinic, Genolier, Switzerland.
| |
Collapse
|
3
|
Monadhel H, Abbas A, Mohammed A. COVID-19 vaccinations and their side effects: a scoping systematic review. F1000Res 2024; 12:604. [PMID: 39512911 PMCID: PMC11541072 DOI: 10.12688/f1000research.134171.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/20/2024] [Indexed: 11/15/2024] Open
Abstract
Introduction: The COVID-19 virus has impacted people worldwide, causing significant changes in their lifestyles. Since the emergence of the epidemic, attempts have begun to prepare a vaccine that can eliminate the virus and restore balance to life in the entire world. Over the past two years, countries and specialized companies have competed to obtain a license from the World Health Organization for the vaccines that were discovered. After the appearance of vaccines in the health community, comparisons and fears of their side effects began, but people don't get an answer to the question of which is the best vaccine. Methods: IEEE Xplore, ScienceDirect, the New England Journal of Medicine, Google Scholar, and PubMed databases were searched for literature on the COVID-19 vaccine and its side effects. we surveyed the literature on the COVID-19 vaccine's side effects and the sorts of side effects observed after vaccination. Depending on data from the literature, we compared these vaccines in terms of side effects, then we analyzed the gaps and obstacles of previous studies and made proposals to process these gaps in future studies. Results: Overall, 17 studies were included in this scoping systematic review as they fulfilled the criteria specified, the majority of which were cross-sectional and retrospective cross-sectional studies. Most of the side effects were mild, self-limiting, and common. Thus, they usually resolve within 1-3 days after vaccination. Factors associated with higher side effects included advanced age, allergic conditions, those taking other medications (particularly immunosuppressive ones), those with a history of type II diabetes, heart disease, hypertension, COVID-19 infection, and female sex. Our meta-analyses also found that mRNA vaccines looked to be more effective, while inactivated vaccinations had fewer side effects. Conclusion: This review shows that the COVID-19 vaccine is safe to administer and induces protection.
Collapse
Affiliation(s)
- Hind Monadhel
- Computer Science, University of Technology-Iraq, Baghdad, 10053, Iraq
| | - Ayad Abbas
- Computer Science, University of Technology-Iraq, Baghdad, 10053, Iraq
| | - Athraa Mohammed
- Computer Science, University of Technology-Iraq, Baghdad, 10053, Iraq
| |
Collapse
|
4
|
Tortorice D, Rappuoli R, Bloom DE. The economic case for scaling up health research and development: Lessons from the COVID-19 pandemic. Proc Natl Acad Sci U S A 2024; 121:e2321978121. [PMID: 38885387 PMCID: PMC11214072 DOI: 10.1073/pnas.2321978121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/26/2024] [Indexed: 06/20/2024] Open
Abstract
In response to the COVID-19 pandemic, governments directly funded vaccine research and development (R&D), quickly leading to multiple effective vaccines and resulting in enormous health and economic benefits to society. We develop a simple economic model showing this feat could potentially be repeated for other health challenges. Based on inputs from the economic and medical literatures, the model yields estimates of optimal R&D spending on treatments and vaccines for known diseases. Taking a global and societal perspective, we estimate the social benefits of such spending and a corresponding rate of return. Applications to Streptococcus A vaccines and Alzheimer's disease treatments demonstrate the potential of enhanced research and development funding to unlock massive global health and health-related benefits. We estimate that these benefits range from 2 to 60 trillion (2020 US$) and that the corresponding rates of return on R&D spending range from 12% to 23% per year for 30 y. We discuss the current shortfall in R&D spending and public policies that can move current funding closer to the optimal level.
Collapse
Affiliation(s)
- Daniel Tortorice
- Department of Economics and Accounting, College of the Holy Cross, Worcester, MA01610
| | | | - David E. Bloom
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA02115
| |
Collapse
|
5
|
Sarvmeili J, Baghban Kohnehrouz B, Gholizadeh A, Shanehbandi D, Ofoghi H. Immunoinformatics design of a structural proteins driven multi-epitope candidate vaccine against different SARS-CoV-2 variants based on fynomer. Sci Rep 2024; 14:10297. [PMID: 38704475 PMCID: PMC11069592 DOI: 10.1038/s41598-024-61025-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/30/2024] [Indexed: 05/06/2024] Open
Abstract
The ideal vaccines for combating diseases that may emerge in the future require more than simply inactivating a few pathogenic strains. This study aims to provide a peptide-based multi-epitope vaccine effective against various severe acute respiratory syndrome coronavirus 2 strains. To design the vaccine, a library of peptides from the spike, nucleocapsid, membrane, and envelope structural proteins of various strains was prepared. Then, the final vaccine structure was optimized using the fully protected epitopes and the fynomer scaffold. Using bioinformatics tools, the antigenicity, allergenicity, toxicity, physicochemical properties, population coverage, and secondary and three-dimensional structures of the vaccine candidate were evaluated. The bioinformatic analyses confirmed the high quality of the vaccine. According to further investigations, this structure is similar to native protein and there is a stable and strong interaction between vaccine and receptors. Based on molecular dynamics simulation, structural compactness and stability in binding were also observed. In addition, the immune simulation showed that the vaccine can stimulate immune responses similar to real conditions. Finally, codon optimization and in silico cloning confirmed efficient expression in Escherichia coli. In conclusion, the fynomer-based vaccine can be considered as a new style in designing and updating vaccines to protect against coronavirus disease.
Collapse
Affiliation(s)
- Javad Sarvmeili
- Department of Plant Breeding and Biotechnology, University of Tabriz, Tabriz, 51666, Iran
| | | | - Ashraf Gholizadeh
- Department of Animal Biology, University of Tabriz, Tabriz, 51666, Iran
| | - Dariush Shanehbandi
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, 51666, Iran
| | - Hamideh Ofoghi
- Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran, 33131, Iran
| |
Collapse
|
6
|
Zheng Y, Li Y, Li M, Wang R, Jiang Y, Zhao M, Lu J, Li R, Li X, Shi S. COVID-19 cooling: Nanostrategies targeting cytokine storm for controlling severe and critical symptoms. Med Res Rev 2024; 44:738-811. [PMID: 37990647 DOI: 10.1002/med.21997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/16/2023] [Accepted: 10/29/2023] [Indexed: 11/23/2023]
Abstract
As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants continue to wreak havoc worldwide, the "Cytokine Storm" (CS, also known as the inflammatory storm) or Cytokine Release Syndrome has reemerged in the public consciousness. CS is a significant contributor to the deterioration of infected individuals. Therefore, CS control is of great significance for the treatment of critically ill patients and the reduction of mortality rates. With the occurrence of variants, concerns regarding the efficacy of vaccines and antiviral drugs with a broad spectrum have grown. We should make an effort to modernize treatment strategies to address the challenges posed by mutations. Thus, in addition to the requirement for additional clinical data to monitor the long-term effects of vaccines and broad-spectrum antiviral drugs, we can use CS as an entry point and therapeutic target to alleviate the severity of the disease in patients. To effectively combat the mutation, new technologies for neutralizing or controlling CS must be developed. In recent years, nanotechnology has been widely applied in the biomedical field, opening up a plethora of opportunities for CS. Here, we put forward the view of cytokine storm as a therapeutic target can be used to treat critically ill patients by expounding the relationship between coronavirus disease 2019 (COVID-19) and CS and the mechanisms associated with CS. We pay special attention to the representative strategies of nanomaterials in current neutral and CS research, as well as their potential chemical design and principles. We hope that the nanostrategies described in this review provide attractive treatment options for severe and critical COVID-19 caused by CS.
Collapse
Affiliation(s)
- Yu Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuke Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mao Li
- Health Management Centre, Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, China
| | - Rujing Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuhong Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Mengnan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rui Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sanjun Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
Mathew DS, Pandya T, Pandya H, Vaghela Y, Subbian S. An Overview of SARS-CoV-2 Etiopathogenesis and Recent Developments in COVID-19 Vaccines. Biomolecules 2023; 13:1565. [PMID: 38002247 PMCID: PMC10669259 DOI: 10.3390/biom13111565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/18/2023] [Accepted: 10/21/2023] [Indexed: 11/26/2023] Open
Abstract
The Coronavirus disease-2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has significantly impacted the health and socioeconomic status of humans worldwide. Pulmonary infection of SARS-CoV-2 results in exorbitant viral replication and associated onset of inflammatory cytokine storm and disease pathology in various internal organs. However, the etiopathogenesis of SARS-CoV-2 infection is not fully understood. Currently, there are no targeted therapies available to cure COVID-19, and most patients are treated empirically with anti-inflammatory and/or anti-viral drugs, based on the disease symptoms. Although several types of vaccines are currently implemented to control COVID-19 and prevent viral dissemination, the emergence of new variants of SARS-CoV-2 that can evade the vaccine-induced protective immunity poses challenges to current vaccination strategies and highlights the necessity to develop better and improved vaccines. In this review, we summarize the etiopathogenesis of SARS-CoV-2 and elaborately discuss various types of vaccines and vaccination strategies, focusing on those vaccines that are currently in use worldwide to combat COVID-19 or in various stages of clinical development to use in humans.
Collapse
Affiliation(s)
- Dona Susan Mathew
- Department of Microbiology, Amrita Institute of Medical Science and Research Centre, Amrita Vishwa Vidyapeetham, Kochi 608204, India;
| | - Tirtha Pandya
- Public Health Research Institute (PHRI) Center, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA; (T.P.); (H.P.); (Y.V.)
| | - Het Pandya
- Public Health Research Institute (PHRI) Center, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA; (T.P.); (H.P.); (Y.V.)
| | - Yuzen Vaghela
- Public Health Research Institute (PHRI) Center, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA; (T.P.); (H.P.); (Y.V.)
| | - Selvakumar Subbian
- Public Health Research Institute (PHRI) Center, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA; (T.P.); (H.P.); (Y.V.)
| |
Collapse
|
8
|
Kan AKC, Li PH. Inactivated COVID-19 vaccines: potential concerns of antibody-dependent enhancement and original antigenic sin. Immunol Lett 2023; 259:21-23. [PMID: 37230399 DOI: 10.1016/j.imlet.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/16/2023] [Accepted: 05/21/2023] [Indexed: 05/27/2023]
Abstract
Inactivated vaccine is one of the platforms employed in COVID-19 vaccines. Inactivated vaccines have been associated with concerns of antibody-dependent enhancement (ADE) and original antigenic sin (OAS), which are related to non-neutralising or poorly neutralising antibodies against the pathogen. Since inactivated COVID-19 vaccines use whole-SARS-CoV-2 virus as the immunogen, they are expected to generate antibodies against non-spike structural proteins, which are highly conservative across variants of SARS-CoV-2. These antibodies against non-spike structural proteins have found to be largely non-neutralising or poorly neutralising in nature. Hence, inactivated COVID-19 vaccines could possibly be associated with ADE and OAS, especially as novel variants emerge. This article explores the potential concern of ADE and OAS in the context of inactivated COVID-19 vaccine, and outlines the future research directions.
Collapse
Affiliation(s)
- Andy Ka Chun Kan
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong
| | - Philip Hei Li
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong.
| |
Collapse
|
9
|
Devaux CA, Camoin-Jau L. Molecular Mimicry of the Viral Spike in the SARS-CoV-2 Vaccine Possibly Triggers Transient Dysregulation of ACE2, Leading to Vascular and Coagulation Dysfunction Similar to SARS-CoV-2 Infection. Viruses 2023; 15:v15051045. [PMID: 37243131 DOI: 10.3390/v15051045] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/21/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
The benefits of SARS-CoV-2 spike mRNA vaccines are well known, including a significant decline in COVID-19 morbidity and a decrease in the mortality rate of SARS-CoV-2 infected persons. However, pharmacovigilance studies have revealed the existence of rare cases of cardiovascular complications after mass vaccination using such formulations. Cases of high blood pressure have also been reported but were rarely documented under perfectly controlled medical supervision. The press release of these warning signals triggered a huge debate over COVID-19 vaccines' safety. Thereby, our attention was quickly focused on issues involving the risk of myocarditis, acute coronary syndrome, hypertension and thrombosis. Rare cases of undesirable post-vaccine pathophysiological phenomena should question us, especially when they occur in young subjects. They are more likely to occur with inappropriate use of mRNA vaccine (e.g., at the time when the immune response is already very active during a low-noise infection in the process of healing), leading to angiotensin II (Ang II) induced inflammation triggering tissue damage. Such harmful effects observed after the COVID-19 vaccine evoke a possible molecular mimicry of the viral spike transiently dysregulating angiotensin converting enzyme 2 (ACE2) function. Although the benefit/risk ratio of SARS-CoV-2 spike mRNA vaccine is very favorable, it seems reasonable to suggest medical surveillance to patients with a history of cardiovascular diseases who receive the COVID-19 vaccine.
Collapse
Affiliation(s)
- Christian A Devaux
- Microbes Evolution Phylogeny and Infection (MEPHI) Laboratory, Aix-Marseille University, Institut de Recherche Pour le Développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, 13005 Marseille, France
- Centre National de la Recherche Scientifique (CNRS-SNC5039), 13000 Marseille, France
| | - Laurence Camoin-Jau
- Microbes Evolution Phylogeny and Infection (MEPHI) Laboratory, Aix-Marseille University, Institut de Recherche Pour le Développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, 13005 Marseille, France
- Laboratoire d'Hématologie, Hôpital de La Timone, APHM, Boulevard Jean-Moulin, 13005 Marseille, France
| |
Collapse
|
10
|
Miao G, Chen Z, Cao H, Wu W, Chu X, Liu H, Zhang L, Zhu H, Cai H, Lu X, Shi J, Liu Y, Feng T. From Immunogen to COVID-19 vaccines: Prospects for the post-pandemic era. Biomed Pharmacother 2023; 158:114208. [PMID: 36800265 PMCID: PMC9805901 DOI: 10.1016/j.biopha.2022.114208] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/30/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023] Open
Abstract
The COVID-19 pandemic has affected millions of people and posed an unprecedented burden on healthcare systems and economies worldwide since the outbreak of the COVID-19. A considerable number of nations have investigated COVID-19 and proposed a series of prevention and treatment strategies thus far. The pandemic prevention strategies implemented in China have suggested that the spread of COVID-19 can be effectively reduced by restricting large-scale gathering, developing community-scale nucleic acid testing, and conducting epidemiological investigations, whereas sporadic cases have always been identified in numerous places. Currently, there is still no decisive therapy for COVID-19 or related complications. The development of COVID-19 vaccines has raised the hope for mitigating this pandemic based on the intercross immunity induced by COVID-19. Thus far, several types of COVID-19 vaccines have been developed and released to into financial markets. From the perspective of vaccine use in globe, COVID-19 vaccines are beneficial to mitigate the pandemic, whereas the relative adverse events have been reported progressively. This is a review about the development, challenges and prospects of COVID-19 vaccines, and it can provide more insights into all aspects of the vaccines.
Collapse
Affiliation(s)
- Ganggang Miao
- Department of General Surgery, The People’s Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, China,Department of General Surgery, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing, China
| | - Zhiqiang Chen
- Department of Nuclear Medicine, The First Affiliated Hospital of Suzhou University, Suzhou, China
| | - Hengsong Cao
- Department of General Surgery, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing, China
| | - Wenhao Wu
- Department of Clinical Medicine, Nanjing Medical University The First School of Clinical Medicine, Nanjing, China
| | - Xi Chu
- Department of Radiology, Nanjing Medical University The Fourth School of Clinical Medicine, Nanjing, China
| | - Hanyuan Liu
- Department of General Surgery, The Affiliated Nanjing Hospital of Nanjing Medical University, Nanjing, China
| | - Leyao Zhang
- Department of Clinical Medicine, Nanjing Medical University The First School of Clinical Medicine, Nanjing, China
| | - Hongfei Zhu
- Department of Clinical Medicine, Nanjing Medical University The First School of Clinical Medicine, Nanjing, China
| | - Hongzhou Cai
- Department of Urology, Jiangsu Cancer Hospital &The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Nanjing, China.
| | - Xiaolan Lu
- Department of Clinical laboratory, Canglang Hospital of Suzhou, Suzhou, China.
| | - Junfeng Shi
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; Department of Molecular and Celluar Biochemistry, Markey Cancer Center, University of Kentucky, Lexington, KY, USA.
| | - Yuan Liu
- Department of Infectious Disease,The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Tingting Feng
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University, Suzhou, China.
| |
Collapse
|
11
|
Sharma E, Revinipati S, Bhandari S, Thakur S, Goyal S, Ghose A, Bajpai S, Muhammad W, Boussios S. Efficacy and Safety of COVID-19 Vaccines-An Update. Diseases 2022; 10:112. [PMID: 36547198 PMCID: PMC9777372 DOI: 10.3390/diseases10040112] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 11/24/2022] Open
Abstract
A few centuries ago, the first vaccine vial was formulated, and since then, they have resulted in an eminent reduction in infectious diseases associated morbidity and mortality. The discovery of the novel SARS-CoV-2 virus and the COVID-19 disease and its steady progression to a global pandemic with 603,711,760 confirmed cases and 6,484,136 reported deaths according to the World Health Organization (WHO) on 7 September 2022 was exceedingly catastrophic. This brought about an unexpected need for preventative and cost-effective measures to curb the devastating impact of the virus, followed by accelerated competition within the pharma giants to manufacture and dispense vaccines at an exponential rate. Non-pharmaceutical medications such as mandated face mask policies, the imposition of travel limitations and generalized disinfectant use were somewhat successful in mitigating the catastrophic effect, but the onus fell upon vaccination strategies and other medical interventions to counteract and subdue this international health threat. The need to ensure current and future pandemic preparedness, however, presents multiple hurdles, among which are equitable vaccine access and the rising trend of vaccine hesitancy at an individual and international level, which are beyond the scope of this discussion. With this review article, we seek to draw perspective on current COVID-19 virus variants, in-hand vaccine types with their mechanism of action along with their effectiveness and safety profile. We also aim to discuss substantial side effects while adding a segment on the booster dose controversy.
Collapse
Affiliation(s)
- Eshani Sharma
- Department of Internal Medicine, Kasturba Medical College, Mangalore 575001, India
| | | | - Saisha Bhandari
- Department of Internal Medicine, Kasturba Medical College, Mangalore 575001, India
- Department of Internal Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Sejal Thakur
- Department of Internal Medicine, Kasturba Medical College, Mangalore 575001, India
| | - Shubham Goyal
- Department of Infectious Diseases, Kasturba Medical College, Manipal 576104, India
| | - Aruni Ghose
- Department of Internal Medicine, Newham University Hospital, Barts Health NHS Trust, London E13 8SL, UK
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK
| | - Sukrit Bajpai
- Department of Respiratory Medicine, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK
| | - Waleed Muhammad
- Department of Internal Medicine, Newham University Hospital, Barts Health NHS Trust, London E13 8SL, UK
| | - Stergios Boussios
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK
- Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, King’s College London, London SE1 9RT, UK
- AELIA Organization, 9th KM Thessaloniki—Thermi, 57001 Thessaloniki, Greece
| |
Collapse
|
12
|
Shaik RA, Ahmad MS, Alzahrani M, Alzerwi NAN, Alnemare AK, Reyzah M, Albar HM, Alshagrawi S, Elkhalifa AME, Alzahrani R, Alrohaimi Y, Mahfoz TMB, Ahmad RK, Alahmdi RA, Al-baradie NRS. Comprehensive Highlights of the Universal Efforts towards the Development of COVID-19 Vaccine. Vaccines (Basel) 2022; 10:1689. [PMID: 36298554 PMCID: PMC9611897 DOI: 10.3390/vaccines10101689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/24/2022] Open
Abstract
The world has taken proactive measures to combat the pandemic since the coronavirus disease 2019 (COVID-19) outbreak, which was caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). These measures range from increasing the production of personal protective equipment (PPE) and highlighting the value of social distancing to the emergency use authorization (EUA) of therapeutic drugs or antibodies and their appropriate use; nonetheless, the disease is still spreading quickly and is ruining people's social lives, the economy, and public health. As a result, effective vaccines are critical for bringing the pandemic to an end and restoring normalcy in society. Several potential COVID-19 vaccines are now being researched, developed, tested, and reviewed. Since the end of June 2022, several vaccines have been provisionally approved, whereas others are about to be approved. In the upcoming years, a large number of new medications that are presently undergoing clinical testing are anticipated to hit the market. To illustrate the advantages and disadvantages of their technique, to emphasize the additives and delivery methods used in their creation, and to project potential future growth, this study explores these vaccines and the related research endeavors, including conventional and prospective approaches.
Collapse
Affiliation(s)
- Riyaz Ahamed Shaik
- Department of Family and Community Medicine, College of Medicine, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Mohammed Shakil Ahmad
- Department of Family and Community Medicine, College of Medicine, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Mansour Alzahrani
- Department of Family and Community Medicine, College of Medicine, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Nasser A. N. Alzerwi
- Department of Surgery, College of Medicine, Majmaah University, Ministry of Education, Al Majmaah 11952, Saudi Arabia
| | - Ahmad K. Alnemare
- Otolaryngology Department, College of Medicine, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Musaed Reyzah
- Department of Surgery, College of Medicine, Majmaah University, Ministry of Education, Al Majmaah 11952, Saudi Arabia
| | - Haitham M. Albar
- Department of Surgery, College of Medicine, Majmaah University, Ministry of Education, Al Majmaah 11952, Saudi Arabia
| | - Salah Alshagrawi
- Department of Public Health, College of Health Sciences, Saudi Electronic University, Riyadh 11673, Saudi Arabia
| | - Ahmed M. E. Elkhalifa
- Department of Public Health, College of Health Sciences, Saudi Electronic University, Riyadh 11673, Saudi Arabia
- Department of Haematology, Faculty of Medical Laboratory Sciences, University of El Imam El Mahdi, Kosti 1158, Sudan
| | - Raed Alzahrani
- Department of Basic Medical Sciences, College of Medicine, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Yousef Alrohaimi
- Department of Pediatrics, College of Medicine, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Turki M. Bin Mahfoz
- Department of Otolaryngology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13317, Saudi Arabia
| | - Ritu Kumar Ahmad
- Applied Medical Sciences, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
| | - Riyadh Ahmed Alahmdi
- Department of Family Medicine, King Abdullah Bin Abdulaziz University Hospital (KAAUH), Princess Nourah Bin Abdulrahman University, Riyadh 11671, Saudi Arabia
| | | |
Collapse
|
13
|
Di Spirito F, Amato A, Di Palo MP, Contaldo M, D’Ambrosio F, Lo Giudice R, Amato M. Oral Lesions Following Anti-SARS-CoV-2 Vaccination: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10228. [PMID: 36011863 PMCID: PMC9408767 DOI: 10.3390/ijerph191610228] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/15/2022] [Accepted: 08/15/2022] [Indexed: 05/14/2023]
Abstract
Increasing evidence relate anti-SARS-CoV-2 vaccinations to orofacial adverse reactions, therefore, the present systematic review aimed to evaluate primary oral lesions diagnosed in adult subjects, following the WHO Emergency Use Listing approved and EMA authorized vaccines, also in relation to cases' age, gender, comorbidities, and history of COVID-19, and in relation to vaccine type and doses. The study protocol, registered on PROSPERO (CRD42022339032) and compliant with the PRISMA statement, included an electronic search across Scopus, MEDLINE/PubMed, BioMed Central databases, and PROSPERO, ended on 18 June 2022 and succeeded by a manual search, an independent data extraction, and arisk of bias evaluation through ROBINS-I tool. Qualitatively synthesized data from the 13studies included showed an overall low prevalence (16 cases), though higher in females (68.8%), of oral lesions, mainly erosions and ulcers (34.5%). Nine cases were diagnosed following Pfizer-BioNTech, two Moderna, and one AstraZeneca, Serum Institute of India, Sinopharm, and Johnson&Johnson vaccines, respectively; specifically, eight after the first dose and seven after the second. In one case, vaccine type and dose were not specified. Considering newly developing vaccines, presented findings may be updated and further studies needed to highlight factors affecting oral lesion occurrence and specific macro-microscopic phenotypes in relation to cases' and vaccines' characteristics.
Collapse
Affiliation(s)
- Federica Di Spirito
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84084 Salerno, Italy
| | - Alessandra Amato
- Department of Neuroscience, Reproductive Science and Dentistry, University of Naples Federico II, 80138 Naples, Italy
| | - Maria Pia Di Palo
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84084 Salerno, Italy
| | - Maria Contaldo
- Multidisciplinary Department of Medical-Surgical and Odontostomatological Specialities, University of Campania “Luigi Vanvitelli”, 81100 Naples, Italy
| | - Francesco D’Ambrosio
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84084 Salerno, Italy
| | - Roberto Lo Giudice
- Department of Human Pathology in Adulthood and Childhood “G. Barresi”, University Hospital “G. Martino” of Messina, Via Consolare Valeria 1, 98123 Messina, Italy
| | - Massimo Amato
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84084 Salerno, Italy
| |
Collapse
|
14
|
Wang Z, Cui K, Costabel U, Zhang X. Nanotechnology-facilitated vaccine development during the coronavirus disease 2019 (COVID-19) pandemic. EXPLORATION (BEIJING, CHINA) 2022; 2:20210082. [PMID: 35941992 PMCID: PMC9349967 DOI: 10.1002/exp.20210082] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 05/11/2022] [Indexed: 12/11/2022]
Abstract
Coronavirus disease 2019 (COVID-19) continually poses a significant threat to the human race, and prophylactic vaccination is the most potent approach to end this pandemic. Nanotechnology is widely adopted during COVID-19 vaccine development, and the engineering of nanostructured materials such as nanoparticles has opened new possibilities in innovative vaccine development by improving the design and accelerating the development process. This review aims to comprehensively understand the current situation and prospects of nanotechnology-enabled vaccine development against the COVID-19 pandemic, with an emphasis on the interplay between nanotechnology and the host immune system.
Collapse
Affiliation(s)
- Ziqi Wang
- Department of Respiratory and Critical Care MedicineZhengzhou University People's HospitalHenan Provincial People's HospitalZhengzhouHenanP. R. China
| | - Kai Cui
- Department of Respiratory and Critical Care MedicineZhengzhou University People's HospitalHenan Provincial People's HospitalZhengzhouHenanP. R. China
- Academy of Medical ScienceZhengzhou UniversityZhengzhouHenanP. R. China
| | - Ulrich Costabel
- Department of Respiratory and Critical Care MedicineZhengzhou University People's HospitalHenan Provincial People's HospitalZhengzhouHenanP. R. China
- Department of PneumologyRuhrlandklinikUniversity Medicine EssenEssenGermany
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care MedicineZhengzhou University People's HospitalHenan Provincial People's HospitalZhengzhouHenanP. R. China
| |
Collapse
|
15
|
Pondé RAA. Physicochemical effect of the N501Y, E484K/Q, K417N/T, L452R and T478K mutations on the SARS-CoV-2 spike protein RBD and its influence on agent fitness and on attributes developed by emerging variants of concern. Virology 2022; 572:44-54. [PMID: 35580380 PMCID: PMC9096574 DOI: 10.1016/j.virol.2022.05.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/26/2022] [Accepted: 05/06/2022] [Indexed: 01/17/2023]
Abstract
The spike protein comprises one of the main structural components of SARS-CoV-2 because it is directly involved in the infection process and viral transmission, and also because of its immunogenic properties, as an inducer of the protective antibodies production and as a vaccine component. The occurrence of mutations in this region or in other the virus genome regions, comprises a natural phenomenon in its evolution. However, they also occur due to the selective immune pressure, to which the agent is continuously subjected, especially in the spike protein immunodominant regions, such as the RBD. Mutations in the spike protein can change the virus' fitness, increasing its affinity for target cells, its transmissibility and its virulence. In addition, these mutations can giving it the potential ability to evade the protective antibodies action obtained from convalescent sera or vaccine origin, as well as those used in therapy, which may favor the virus expansion and compromise the infection control. Five mutations N501Y, E484K/Q, K417N/T, L452R and T478K, located in the spike protein RBD, have had a greater impact because they are associated with new attributes developed by the virus, which characterize the emerging variants of concern (VOCs) of SARS-Cov-2 identified so far. The occurrence of these mutations induces complex physicochemical effects that can alter the spike protein's structure and its function, which in turn, lead to changes in the agents' fitness. This manuscript discusses the attributes of VOCs associated with the physicochemical effects caused by the aforementioned mutations.
Collapse
Affiliation(s)
- R A A Pondé
- State Department of Health SES/Superintendence of Health Surveillance SUVISA/GO, Management of Epidemiological Surveillance-GVE/Coordination of Analysis and Research-CAP, Goiânia, Goiás, Brazil; Laboratory of Human Virology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
16
|
Coccia M. COVID-19 pandemic over 2020 (withlockdowns) and 2021 (with vaccinations): similar effects for seasonality and environmental factors. ENVIRONMENTAL RESEARCH 2022; 208:112711. [PMID: 35033552 PMCID: PMC8757643 DOI: 10.1016/j.envres.2022.112711] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 05/19/2023]
Abstract
How is the dynamics of Coronavirus Disease 2019 (COVID-19) in 2020 with an health policy of full lockdowns and in 2021 with a vast campaign of vaccinations? The present study confronts this question here by developing a comparative analysis of the effects of COVID-19 pandemic between April-September 2020 (based upon strong control measures) and April-September 2021 (focused on health policy of vaccinations) in Italy, which was one of the first European countries to experience in 2020 high numbers of COVID-19 related infected individuals and deaths and in 2021 Italy has a high share of people fully vaccinated against COVID-19 (>89% of population aged over 12 years in January 2022). Results suggest that over the period under study, the arithmetic mean of confirmed cases, hospitalizations of people and admissions to Intensive Care Units (ICUs) in 2020 and 2021 is significantly equal (p-value<0.01), except fatality rate. Results suggest in December 2021 lower hospitalizations, admissions to ICUs, and fatality rate of COVID-19 than December 2020, though confirmed cases and mortality rates are in 2021 higher than 2020, and likely converging trends in the first quarter of 2022. These findings reveal that COVID-19 pandemic is driven by seasonality and environmental factors that reduce the negative effects in summer period, regardless control measures and/or vaccination campaigns. These findings here can be of benefit to design health policy responses of crisis management considering the growth of COVID-19 pandemic in winter months having reduced temperatures and low solar radiations ( COVID-19 has a behaviour of influenza-like illness). Hence, findings here suggest that strategies of prevention and control of infectious diseases similar to COVID-19 should be set up in summer months and fully implemented during low-solar-irradiation periods (autumn and winter period).
Collapse
Affiliation(s)
- Mario Coccia
- CNR, National Research Council of Italy - Via Real Collegio, n. 30 (Collegio Carlo Alberto), 10024, Moncalieri (TO), Italy.
| |
Collapse
|
17
|
Alagheband Bahrami A, Azargoonjahromi A, Sadraei S, Aarabi A, Payandeh Z, Rajabibazl M. An overview of current drugs and prophylactic vaccines for coronavirus disease 2019 (COVID-19). Cell Mol Biol Lett 2022; 27:38. [PMID: 35562685 PMCID: PMC9100302 DOI: 10.1186/s11658-022-00339-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/21/2022] [Indexed: 02/06/2023] Open
Abstract
Designing and producing an effective vaccine is the best possible way to reduce the burden and spread of a disease. During the coronavirus disease 2019 (COVID-19) pandemic, many large pharmaceutical and biotechnology companies invested a great deal of time and money in trying to control and combat the disease. In this regard, due to the urgent need, many vaccines are now available earlier than scheduled. Based on their manufacturing technology, the vaccines available for COVID-19 (severe acute respiratory syndrome coronavirus 2 (SAR-CoV2)) infection can be classified into four platforms: RNA vaccines, adenovirus vector vaccines, subunit (protein-based) vaccines, and inactivated virus vaccines. Moreover, various drugs have been deemed to negatively affect the progression of the infection via various actions. However, adaptive variants of the SARS-CoV-2 genome can alter the pathogenic potential of the virus and increase the difficulty of both drug and vaccine development. In this review, along with drugs used in COVID-19 treatment, currently authorized COVID-19 vaccines as well as variants of the virus are described and evaluated, considering all platforms.
Collapse
Affiliation(s)
- Armina Alagheband Bahrami
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Samin Sadraei
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aryan Aarabi
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Payandeh
- Department Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden
| | - Masoumeh Rajabibazl
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Rabail R, Ahmed W, Ilyas M, Rajoka MSR, Hassoun A, Khalid AR, Khan MR, Aadil RM. The Side Effects and Adverse Clinical Cases Reported after COVID-19 Immunization. Vaccines (Basel) 2022; 10:488. [PMID: 35455237 PMCID: PMC9031559 DOI: 10.3390/vaccines10040488] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/09/2022] [Accepted: 03/16/2022] [Indexed: 12/23/2022] Open
Abstract
COVID-19 remains a deadly disease that poses a serious threat to humanity. COVID-19 vaccines protect the public and limit viral spread. However, public acceptance is significantly dependent on the efficacy and side effects (SEs) of the vaccinations being produced. Four important mechanisms have been examined for COVID-19 vaccines: DNA-based, mRNA-based, protein-based, and inactivated viruses. Vaccination safety research was formerly limited to manufacturer-sponsored studies, but numerous additional cross-sectional survey-based studies conducted globally have contributed to the generation of vaccine-related safety data reports. Twenty-seven studies and twenty-four case reports published-up till 2021 were overviewed for the presentation of SEs and their severity. Injection site pain remained the most dominant localized SE, while headache and fatigue were the most prevalent systemic SEs. Most studies reported that all vaccinations were safe, with very little or no adverse effects, but the nature of SEs was reported to be more persistent in DNA- and mRNA-based vaccines, while inactivated viral vaccines were associated with longer-duration SEs. Overall, SEs were found to be more dominant in women and youngsters. Case reports of adverse reactions have also been documented, but there is still a need to find out their pathological linkage with the COVID-19 vaccination.
Collapse
Affiliation(s)
- Roshina Rabail
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan; (R.R.); (W.A.); (M.R.K.)
| | - Waqar Ahmed
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan; (R.R.); (W.A.); (M.R.K.)
| | - Madiha Ilyas
- Department of Nutritional Sciences, Government College Women University, Madina Town, Faisalabad 38000, Pakistan;
| | - Muhammad Shahid Riaz Rajoka
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan;
| | - Abdo Hassoun
- Sustainable AgriFoodtech Innovation & Research (SAFIR), 62000 Arras, France;
- Syrian Academic Expertise (SAE), Gaziantep 27200, Turkey
| | - Abdur Rauf Khalid
- Department of Livestock and Poultry Production, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Moazzam Rafiq Khan
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan; (R.R.); (W.A.); (M.R.K.)
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan; (R.R.); (W.A.); (M.R.K.)
| |
Collapse
|
19
|
Explorative Supercooling Technology for Prevention of Freeze Damages in Vaccines. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12063173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Most freeze-sensitive vaccines are stored between 2 °C and 8 °C upon manufacturing and until they are eventually administered in intermediate vaccine stores and health facilities. This so-called “cold chain” of vaccine distribution is strictly regulated at these specific temperatures to avoid freeze damage. Liquid formulations of particular vaccines (e.g., aluminum-adsorbed tetanus toxoid (TT)) will irreversibly lose their immunogenicity once frozen. Using an oscillating magnetic field (OMF), supercooling can inhibit ice crystal nucleation effectively; water is susceptible to influence by a strong magnetic field, allowing normal water dynamics even in subzero freezing conditions. This recently developed technology—composed of a custom-designed electromagnet unit producing an optimal field strength (50 mT) at a specific frequency (1 Hz)—was successfully used to inhibit the formation of ice crystals in aluminum adjuvant TT vaccines, therefore preventing any visible damage in the vaccines’ microscopic structure. Despite being subject to temperatures far below their freezing point (up to −14 °C) for up to seven days, the TT vaccines showed no freeze damage on physical appearances. Results were further validated using shake tests and light microscopy. As storage and freeze-protection become more critical during times of increased vaccination efforts—particularly against COVID-19—this supercooling technology can be a promising solution to distribution problems by removing concern for temperature abuse or shock-induced freezing.
Collapse
|
20
|
Tan TH, Patton E, Munro CA, Corzo-Leon DE, Porter AJ, Palliyil S. Monoclonal Human Antibodies That Recognise the Exposed N and C Terminal Regions of the Often-Overlooked SARS-CoV-2 ORF3a Transmembrane Protein. Viruses 2021; 13:2201. [PMID: 34835009 PMCID: PMC8624585 DOI: 10.3390/v13112201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/15/2021] [Accepted: 10/29/2021] [Indexed: 11/23/2022] Open
Abstract
ORF3a has been identified as a viroporin of SARS-CoV-2 and is known to be involved in various pathophysiological activities including disturbance of cellular calcium homeostasis, inflammasome activation, apoptosis induction and disruption of autophagy. ORF3a-targeting antibodies may specifically and favorably modulate these viroporin-dependent pathological activities. However, suitable viroporin-targeting antibodies are difficult to generate because of the well-recognized technical challenge associated with isolating antibodies to complex transmembrane proteins. Here we exploited a naïve human single chain antibody phage display library, to isolate binders against carefully chosen ORF3a recombinant epitopes located towards the extracellular N terminal and cytosolic C terminal domains of the protein using peptide antigens. These binders were subjected to further characterization using enzyme-linked immunosorbent assays and surface plasmon resonance analysis to assess their binding affinities to the target epitopes. Binding to full-length ORF3a protein was evaluated by western blot and fluorescent microscopy using ORF3a transfected cells and SARS-CoV-2 infected cells. Co-localization analysis was also performed to evaluate the "pairing potential" of the selected binders as possible alternative diagnostic or prognostic biomarkers for COVID-19 infections. Both ORF3a N and C termini, epitope-specific monoclonal antibodies were identified in our study. Whilst the linear nature of peptides might not always represent their native conformations in the context of full protein, with carefully designed selection protocols, we have been successful in isolating anti-ORF3a binders capable of recognising regions of the transmembrane protein that are exposed either on the "inside" or "outside" of the infected cell. Their therapeutic potential will be discussed.
Collapse
Affiliation(s)
- Tyng Hwey Tan
- Scottish Biologics Facility, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZP, UK; (T.H.T.); (E.P.)
- Aberdeen Fungal Group, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; (C.A.M.); (D.E.C.-L.)
| | - Elizabeth Patton
- Scottish Biologics Facility, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZP, UK; (T.H.T.); (E.P.)
| | - Carol A. Munro
- Aberdeen Fungal Group, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; (C.A.M.); (D.E.C.-L.)
| | - Dora E. Corzo-Leon
- Aberdeen Fungal Group, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; (C.A.M.); (D.E.C.-L.)
| | - Andrew J. Porter
- Scottish Biologics Facility, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZP, UK; (T.H.T.); (E.P.)
| | - Soumya Palliyil
- Scottish Biologics Facility, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZP, UK; (T.H.T.); (E.P.)
| |
Collapse
|