1
|
Cao C, Yang L, Song J, Liu Z, Li H, Li L, Fu J, Liu J. Cardiomyocyte regeneration after infarction: changes, opportunities and challenges. Mol Cell Biochem 2025:10.1007/s11010-025-05251-w. [PMID: 40097887 DOI: 10.1007/s11010-025-05251-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/08/2025] [Indexed: 03/19/2025]
Abstract
Myocardial infarction is a cardiovascular disease that poses a serious threat to human health. The traditional view is that adult mammalian cardiomyocytes have almost no regenerative ability, but recent studies have shown that they have regenerative potential under specific conditions. This article comprehensively describes the research progress of post-infarction cardiomyocyte regeneration, including the characteristics of cardiomyocytes and post-infarction changes, regeneration mechanisms, influencing factors, potential therapeutic strategies, challenges and future development directions, and deeply discusses the specific pathways and targets included in the regeneration mechanism, aiming to provide new ideas and methods for the treatment of myocardial infarction.
Collapse
Affiliation(s)
- Ce Cao
- Beijing Key Laboratory of Chinese Materia Pharmacology, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, 100091, China
| | - Lili Yang
- Beijing Key Laboratory of Chinese Materia Pharmacology, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, 100091, China
| | - Jianshu Song
- Beijing Key Laboratory of Chinese Materia Pharmacology, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, 100091, China
| | - Zixin Liu
- Beijing Key Laboratory of Chinese Materia Pharmacology, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, 100091, China
| | - Haoran Li
- Beijing Key Laboratory of Chinese Materia Pharmacology, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, 100091, China
| | - Lei Li
- Beijing Key Laboratory of Chinese Materia Pharmacology, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, 100091, China
| | - Jianhua Fu
- Beijing Key Laboratory of Chinese Materia Pharmacology, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, 100091, China
| | - Jianxun Liu
- Beijing Key Laboratory of Chinese Materia Pharmacology, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, 100091, China.
| |
Collapse
|
2
|
Yu Y, Liu X, Liu W, Yuan H, Han Q, Shi J, Xue Y, Li Y. Decoding the cytokine code for heart failure based on bioinformatics, machine learning and Bayesian networks. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167701. [PMID: 39909085 DOI: 10.1016/j.bbadis.2025.167701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/29/2024] [Accepted: 01/27/2025] [Indexed: 02/07/2025]
Abstract
BACKGROUND Despite maximal pharmacological treatment guided by clinical guidelines, the prognosis of heart failure (HF) remains poor, posing a significant public health burden. This necessitates uncovering novel pathological and cardioprotective pathways. Targeting cytokines presents a promising therapeutic strategy for HF, yet their intricate mechanisms in HF progression remain obscure. METHODS HF datasets were obtained from the GEO database. Cytokine-related genes were identified through WGCNA and the CytReg database. GO and KEGG enrichment analyses were conducted using the clusterProfiler package. Reactome pathway enrichment analysis and Bayesian regulatory network construction were performed using the CBNplot package. Key genes were identified via LASSO regression and RF algorithms, with diagnostic accuracy evaluated by ROC curves. Potential therapeutic drugs were predicted using the DSigDB database, and immune cell infiltration was assessed with the CIBERSORT package. RESULTS We identified 13 cytokine-related genes associated with HF. Enrichment analyses indicated these genes mediate inflammatory responses and immune cell recruitment. Bayesian network analysis revealed two cytokine regulatory chains: IL34-CCL5-CCL4 and IL34-CCL5-CXCL12. Machine learning algorithms identified five key cytokine genes: CCL4, CCL5, CXCL12, CXCL14, and IL34. The DSigDB database predicted 47 potential therapeutic drugs, including Proscillaridin. Immune infiltration analysis showed significant differences in seven immune cell types between HF and healthy samples. CONCLUSION Our study provides insights into cytokines' molecular mechanisms in HF pathophysiology and highlights potential immunomodulatory strategies, gene therapies, and candidate drugs. Future research should validate these findings in clinical settings to develop effective HF therapies.
Collapse
Affiliation(s)
- Yiding Yu
- Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Xiujuan Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Wenwen Liu
- Traditional Chinese Medicine Hospital of Jimo District, Qingdao 266200, China
| | - Huajing Yuan
- Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Quancheng Han
- Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Jingle Shi
- Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Yitao Xue
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Yan Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| |
Collapse
|
3
|
Jiang Z, Wen X, Mao Q, Wang G, Wang Z, Yan Y, Gao S, Sun X, Zhang M, Liu J, Zhang R, Yang B. 13-Methylpalmatine improves myocardial infarction injury by inhibiting CHOP-mediated cross-talk between endoplasmic reticulum and mitochondria. Biomed Pharmacother 2024; 179:117342. [PMID: 39182321 DOI: 10.1016/j.biopha.2024.117342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024] Open
Abstract
Myocardial infarction (MI) is a leading cause of morbidity and mortality worldwide, and endoplasmic reticulum stress (ERS) and mitochondrial Ca2+ overload have been involved in apoptotic cardiomyocyte death during MI. 13-Methylpalmatine (13-Me-PLT) is a natural isoquinoline alkaloid isolated from Coptis chinensis and has not been systematically studied for their potential pharmacological effects in cardiovascular diseases. We conducted the present study to elucidate whether 13-Me-PLT modulates MI pathology in animal MI and cellular hypoxic models, employing state-of-the-art molecular techniques. The results demonstrated that 13-Me-PLT preserved post-ischemic cardiac function and alleviated cardiomyocyte apoptosis. 13-Me-PLT decreased ERS and the communication between ER and mitochondria, which serves as a protective mechanism against mitochondrial Ca2+ overload and structural and functional injuries to mitochondria. Our data revealed mitigating mitochondrial Ca2+ overload and apoptosis by inhibiting CHOP-mediated Ca2+ transfer between inositol 1,4,5-trisphosphate receptor (IP3R) in ER and VDAC1 in mitochondria as an underlying mechanism for 13-Me-PLT action. Furthermore, 13-Me-PLT produced superior effects in alleviating cardiac dysfunction and apoptosis post-MI to diltiazem and palmatine. Collectively, our research suggests that the CHOP/IP3R/VDAC1 signaling pathway mediates ER-mitochondrial Ca2+ transfer and 13-Me-PLT activates this axis to maintain cellular and organellar Ca2+ homeostasis, protecting against ischemic myocardial injury. These findings may offer an opportunity to develop new agents for the therapy of ischemic heart disease.
Collapse
Affiliation(s)
- Zefeng Jiang
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaowei Wen
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qin Mao
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Gang Wang
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhuo Wang
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yu Yan
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Shan Gao
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaoqian Sun
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Miao Zhang
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jiajing Liu
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Rong Zhang
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China.
| | - Baofeng Yang
- College of Traditional Chinese Medicine and Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China.
| |
Collapse
|
4
|
Sajeev A, Sailo B, Unnikrishnan J, Talukdar A, Alqahtani MS, Abbas M, Alqahtani A, Sethi G, Kunnumakkara AB. Unlocking the potential of Berberine: Advancing cancer therapy through chemosensitization and combination treatments. Cancer Lett 2024; 597:217019. [PMID: 38849013 DOI: 10.1016/j.canlet.2024.217019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/07/2024] [Accepted: 06/02/2024] [Indexed: 06/09/2024]
Abstract
Despite considerable progress in cancer treatment options, resistance to chemotherapeutic drugs remains a significant challenge. This review focuses on Berberine (BBR), an isoquinoline alkaloid found in various medicinal plants, which has garnered attention in the field of oncology for its anticancer potential either alone or in combination with other compounds and its ability to modulate chemoresistance, acting as a natural chemosensitizer. BBR's ability to modulate chemoresistance is attributed to its diverse mechanisms of action, including inducing DNA breaks, inhibition of drug efflux pumps, modulation of apoptosis and necroptosis, downregulating multidrug resistance genes, enhancing immune response, suppressing angiogenesis and targeting multiple pathways within cancer cells, including protein kinase B/mammalian target of rapamycin (Akt/mTOR), epidermal growth factor receptor (EGFR), mitogen-activated protein kinase (MAPK), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), poly(ADP-ribose) polymerase (PARP1), janus kinase/signal transducers and activators of transcription (JAK-STAT), Wnt/β-catenin etc. Moreover, BBR, in combination with other compounds, also offers a promising approach to cancer therapy, enforcing its broad-spectrum anticancer effects. Therefore, this review aims to elucidate the intricate mechanism of action of BBR in combinatorial therapy as a potential chemosensitizer to increase the efficiency of several drugs, including cisplatin, doxorubicin, lapatinib, tamoxifen, irinotecan, niraparib, etc. in various cancers. Additionally, this review briefly covers the origin and biological activities of BBR, exploring the specific actions underlying its anticancer effects. Further, pharmacokinetic properties of BBR are also discussed, providing insight into its therapeutic potential and optimization of its use in cancer treatment.
Collapse
Affiliation(s)
- Anjana Sajeev
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Bethsebie Sailo
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Jyothsna Unnikrishnan
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Ayesha Talukdar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia; BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
| | - Athba Alqahtani
- Research Centre, King Fahad Medical City. P.O. Box: 59046, Riyadh, 11525, Saudi Arabia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, 117600, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India.
| |
Collapse
|
5
|
Kuang Z, Ge Y, Cao L, Wang X, Liu K, Wang J, Zhu X, Wu M, Li J. Precision Treatment of Anthracycline-Induced Cardiotoxicity: An Updated Review. Curr Treat Options Oncol 2024; 25:1038-1054. [PMID: 39066853 PMCID: PMC11329674 DOI: 10.1007/s11864-024-01238-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2024] [Indexed: 07/30/2024]
Abstract
OPINION STATEMENT Anthracycline (ANT)-induced cardiotoxicity (AIC) is a particularly prominent form of cancer therapy-related cardiovascular toxicity leading to the limitations of ANTs in clinical practice. Even though AIC has drawn particular attention, the best way to treat it is remaining unclear. Updates to AIC therapy have been made possible by recent developments in research on the underlying processes of AIC. We review the current molecular pathways leading to AIC: 1) oxidative stress (OS) including enzymatic-induced and other mechanisms; 2) topoisomerase; 3) inflammatory response; 4) cardiac progenitor cell damage; 5) epigenetic changes; 6) renin-angiotensin-aldosterone system (RAAS) dysregulation. And we systematically discuss current prevention and treatment strategies and novel pathogenesis-based therapies for AIC: 1) dose reduction and change; 2) altering drug delivery methods; 3) antioxidants, dexrezosen, statina, RAAS inhibitors, and hypoglycemic drugs; 4) miRNA, natural phytochemicals, mesenchymal stem cells, and cardiac progenitor cells. We also offer a fresh perspective on the management of AIC by outlining the current dilemmas and challenges associated with its prevention and treatment.
Collapse
Affiliation(s)
- Ziyu Kuang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 10053, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, 10029, China
| | - Yuansha Ge
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 10053, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, 10029, China
| | - Luchang Cao
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 10053, China
| | - Xinmiao Wang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 10053, China
| | - Kexin Liu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 10053, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, 10029, China
| | - Jiaxi Wang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 10053, China
| | - Xiaojuan Zhu
- The 3rd affiliated hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, China.
| | - Min Wu
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 10053, China.
| | - Jie Li
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 10053, China.
| |
Collapse
|
6
|
Song H, Ren J, Yang L, Sun H, Yan G, Han Y, Wang X. Elucidation for the pharmacological effects and mechanism of Shen Bai formula in treating myocardial injury based on energy metabolism and serum metabolomic approaches. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117670. [PMID: 38160867 DOI: 10.1016/j.jep.2023.117670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/24/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shen Bai formula (SBF) is a proven effective traditional Chinese medicine for treating viral myocarditis (VMC) sequelae in clinic, and myocardial injury is the pathological basis of VMC sequelae. However, the pharmacological action and mechanism of SBF have not been systematically elucidated. AIM OF THE STUDY In present research, the doxorubicin-induced myocardial injury rat model was used to evaluate the efficacy of SBF, and energy metabolism and metabolomics approaches were applied to elucidate the effects of SBF on myocardial injury. MATERIALS AND METHODS Through energy metabolism measurement system and UPLC-Q-TOF-MS/MS oriented blood metabolomics, directly reflected the therapeutic effect of SBF at a macro level, and identified biomarkers of myocardial injury in microcosmic, revealing its metabolomic mechanism. RESULTS Results showed that SBF significantly improved the electrocardiogram (ECG), heart rate (HR), extent of myocardial tissue lesion, and ratio of heart and spleen. In addition, the serum levels of AST, CK, LDH, α-HBDH, cTnI, BNP, and MDA decreased, whereas SOD and ATP activity and content increased. Moreover, SBF increased locomotor activity and basic daily metabolism in rats with myocardial injury, restoring their usual level of energy metabolism. A total of 45 potential metabolomic biomarkers were identified. Among them, 44 biomarkers were significantly recalled by SBF, including representative biomarkers arachidonic acid (AA), 12-HETE, prostaglandin J2 (PGJ2), 15-deoxy-Δ-12,14-PGJ2, 15-keto-PGE2, 15(S)-HPETE, 15(S)-HETE, 8,11,14-eicosatrienoic acid and 9(S)-HODE, which involved AA metabolism, biosynthesis of unsaturated fatty acids and linoleic acid metabolism. CONCLUSION We successfully replicated a myocardial injury rat model with the intraperitoneal injection of doxorubicin, and elucidated the mechanism of SBF in treating myocardial injury. This key mechanism may be achieved by targeting action on COX, Alox, CYP, and 15-PGDH to increase or decrease the level of myocardial injury biomarker, and then emphatically interven in AA metabolism, biosynthesis of unsaturated fatty acids and linoleic acid metabolism, and participate in regulating purine metabolism, sphingolipid metabolism, primary bile acid biosynthesis, and steroid hormone synthesis.
Collapse
Affiliation(s)
- Hongwei Song
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Junling Ren
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
| | - Le Yang
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China
| | - Hui Sun
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China.
| | - Guangli Yan
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Ying Han
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Xijun Wang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau; State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China.
| |
Collapse
|
7
|
Fu Z, Zhang Y, Jin T, Wang Z, Zhao C, Zhao M. A comprehensive quality evaluation strategy of Shensong Yangxin capsules based on qualitative, fingerprint and quantitative analyses. Biomed Chromatogr 2024; 38:e5832. [PMID: 38317273 DOI: 10.1002/bmc.5832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/06/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024]
Abstract
Shensong Yangxin capsule (SSYXC), an effective Chinese patent medicine, has been recorded in the Chinese Pharmacopeia, mainly for the treatment of coronary heart disease and ventricular premature beat. To further complete the quality evaluation of SSYXC, a comprehensive analysis strategy was established. Firstly, the components of SSYXC were qualitatively analysed using ultra-high- performance liquid chromatography-Fourier transform ion cyclotron resonance mass spectrometry. A total of 134 compounds were identified or tentatively characterized. Additionally, the fingerprint of SSYXC was established by HPLC, and the similarity of 10 batches of SSYXC was elucidated by similarity analysis. The result indicated that the consistency of chemical composition is good. Finally, to enhance the quality control of SSYXC, according to the results of the fingerprint analysis, the contents of the seven active components was determined, comprising morroniside, loganin, paeoniflorin, salvianolic acid B, palmatine hydrochloride, berberine hydrochloride and tanshinone IIA. In conclusion, the established method, comprising identification of components, fingerprint analysis and quantification of multicomponents, can be sensitively and comprehensively applied to the quality evaluation of SSYXC, which can provide chemical ingredients bases for quality control and the pharmacodynamic mechanism of SSYXC, which could serve as a benchmark for controlling the quality of other Chinese patent medicines.
Collapse
Affiliation(s)
- Zixuan Fu
- School of Pharmacy, Shenyang, Liaoning Province, China
| | - Yumeng Zhang
- School of Pharmacy, Shenyang, Liaoning Province, China
| | - Tong Jin
- School of Pharmacy, Shenyang, Liaoning Province, China
| | - Zheyong Wang
- School of Pharmacy, Shenyang, Liaoning Province, China
| | - Chunjie Zhao
- School of Pharmacy, Shenyang, Liaoning Province, China
| | - Min Zhao
- School of Pharmacy, Shenyang, Liaoning Province, China
| |
Collapse
|
8
|
Wang D, Qin L, Jing C, Wang G, Zhou H, Deng P, Zhang S, Wang Y, Ding Y, Zhang Z, Wu Z, Liu Y. Biologically active isoquinoline alkaloids covering 2019-2022. Bioorg Chem 2024; 145:107252. [PMID: 38437763 DOI: 10.1016/j.bioorg.2024.107252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/04/2024] [Accepted: 02/28/2024] [Indexed: 03/06/2024]
Abstract
Isoquinoline alkaloids are an important class of natural products that are abundant in the plant kingdom and exhibit a wide range of structural diversity and biological activities. With the deepening of research in recent years, more and more isoquinoline alkaloids have been isolated and identified and proved to contain a variety of biological activities and pharmacological effects. In this review, we introduce the research progress of isoquinoline alkaloids from 2019 to 2022, mainly in the part of biological activities, including antitumor, antimicrobial, antidiabetic, antiviral, anti-inflammatory, antioxidant, neuroprotective, hepatoprotective, analgesic, and other activities. This study provides a clear direction for the rational development and utilization of isoquinoline alkaloids, suggesting that these alkaloids have great potential in the field of drug research.
Collapse
Affiliation(s)
- Dengtuo Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
| | - Lulu Qin
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Chenxin Jing
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Guanghan Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Han Zhou
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Peng Deng
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Shaoyong Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
| | - Yirong Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yanyan Ding
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zhijun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zhengrong Wu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yingqian Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China; State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
9
|
Lin S, Zhang S, Zhan A, Feng J, Yang Q, Li T, Liu Z, Mo Q, Fan H, Wang K, Wang L. Palmatine alleviates cardiac fibrosis by inhibiting fibroblast activation through the STAT3 pathway. Eur J Pharmacol 2024; 967:176395. [PMID: 38350592 DOI: 10.1016/j.ejphar.2024.176395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 02/15/2024]
Abstract
Cardiac fibrosis, the hallmark of cardiovascular disease, is characterized by excessive deposition of extracellular matrix in the heart. Emerging evidence indicates that cardiac fibroblasts (CFs) play pivotal roles in driving cardiac fibrosis. However, due to incomplete insights into CFs, there are limited effective approaches to prevent or reverse cardiac fibrosis currently. Palmatine, a protoberberine alkaloid extracted from traditional Chinese botanical remedies, possesses diverse biological effects. This study investigated the potential therapeutic value and mechanism of palmatine against cardiac fibrosis. Adult male C57BL/6 mice were treated with vehicle, isoproterenol (ISO), or ISO plus palmatine for one week. After echocardiography assessment, mice hearts were collected for histopathology, real-time polymerase chain reaction, and Western blot analyses. Primary rat CFs were utilized in vitro. Compared to control, ISO-treated mice exhibited cardiac hypertrophy and structural abnormalities; however, treatment with palmatine ameliorated these effects of ISO. Moreover, palmatine treatment mitigated ISO-induced cardiac fibrosis. Network pharmacology and molecular docking analysis showed that palmatine strongly binds the regulators of cardiac fibrosis including signal transducer and activator of transcription 3 (STAT3) and mammalian target of rapamycin. Furthermore, palmatine reduced the elevated fibrotic factor expressions and overactivated STAT3 induced by ISO, Transformed growth factor β1 (TGF-β1), or interleukin-6 both in vivo and in vitro. Additionally, blocking STAT3 suppressed the TGF-β1-induced CF activation. Collectively, these data demonstrated that palmatine attenuated cardiac fibrosis partly by inhibiting fibroblast activation through the STAT3 pathway. This provides an experimental basis for the clinical treatment of cardiac fibrosis with palmatine.
Collapse
Affiliation(s)
- Shaoling Lin
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glycolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Key Unit of Modulating Liver to Treat Hyperlipemia, State Administration of Traditional Chinese Medicine, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Shengxi Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glycolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Key Unit of Modulating Liver to Treat Hyperlipemia, State Administration of Traditional Chinese Medicine, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Hydropower Group Hospital, Guangzhou, 511340, China
| | - Angyu Zhan
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glycolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Key Unit of Modulating Liver to Treat Hyperlipemia, State Administration of Traditional Chinese Medicine, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jiaojiao Feng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glycolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Key Unit of Modulating Liver to Treat Hyperlipemia, State Administration of Traditional Chinese Medicine, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Qianqian Yang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glycolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Key Unit of Modulating Liver to Treat Hyperlipemia, State Administration of Traditional Chinese Medicine, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Tongjun Li
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glycolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Key Unit of Modulating Liver to Treat Hyperlipemia, State Administration of Traditional Chinese Medicine, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zijian Liu
- Department of Emergency, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China; NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Guangzhou, 510080, China
| | - Quqian Mo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glycolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Key Unit of Modulating Liver to Treat Hyperlipemia, State Administration of Traditional Chinese Medicine, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Hui Fan
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glycolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Key Unit of Modulating Liver to Treat Hyperlipemia, State Administration of Traditional Chinese Medicine, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Keke Wang
- Department of Emergency, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China; NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-sen University), Guangzhou, 510080, China.
| | - Lexun Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glycolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Key Unit of Modulating Liver to Treat Hyperlipemia, State Administration of Traditional Chinese Medicine, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
10
|
Yang J, Zhang Z, Liu H, Wang J, Xie S, Li P, Wen J, Wei S, Li R, Ma X, Zhao Y. Network Pharmacology and Experimental Validation of Qingwen Baidu Decoction Therapeutic Potential in COVID-19-related Lung Injury. Comb Chem High Throughput Screen 2024; 27:1286-1302. [PMID: 37957903 DOI: 10.2174/0113862073236899230919062725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 07/15/2023] [Accepted: 08/04/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND AND PURPOSE Coronavirus disease 2019 (COVID-19) is a lifethreatening disease worldwide due to its high infection and serious outcomes resulting from acute lung injury. Qingwen Baidu decoction (QBD), a well-known herbal prescription, has shown significant efficacy in patients with Coronavirus disease 2019. Hence, this study aims to uncover the molecular mechanism of QBD in treating COVID-19-related lung injury. METHODS Traditional Chinese Medicine Systems Pharmacology database (TCMSP), DrugBanks database, and Chinese Knowledge Infrastructure Project (CNKI) were used to retrieve the active ingredients of QBD. Drug and disease targets were collected using UniProt and Online Mendelian Inheritance in Man databases (OMIM). The core targets of QBD for pneumonia were analyzed by the Protein-Protein Interaction Network (PPI), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) to reveal the underlying molecular mechanisms. The analysis of key targets using molecular docking and animal experiments was also validated. RESULTS A compound-direct-acting target network mainly containing 171 compounds and 110 corresponding direct targets was constructed. The key targets included STAT3, c-JUN, TNF-α, MAPK3, MAPK1, FOS, PPARG, MAPK8, IFNG, NFκB1, etc. Moreover, 117 signaling pathways mainly involved in cytokine storm, inflammatory response, immune stress, oxidative stress and glucose metabolism were found by KEGG. The molecular docking results showed that the quercetin, alanine, and kaempferol in QBD demonstrated the strongest affinity to STAT3, c- JUN, and TNF-α. Experimental results displayed that QBD could effectively reduce the pathological damage to lung tissue by LPS and significantly alleviate the expression levels of the three key targets, thus playing a potential therapeutic role in COVID-19. CONCLUSION QBD might be a promising therapeutic agent for COVID-19 via ameliorating STAT3-related signals.
Collapse
Affiliation(s)
- Ju Yang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Department of Pharmacy, 302 Military Hospital of China, Beijing, 100039, China
| | - Zhao Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Department of Pharmacy, 302 Military Hospital of China, Beijing, 100039, China
| | - Honghong Liu
- Department of Pharmacy, 302 Military Hospital of China, Beijing, 100039, China
| | - Jiawei Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Department of Pharmacy, 302 Military Hospital of China, Beijing, 100039, China
| | - Shuying Xie
- Department of Pharmacy, 302 Military Hospital of China, Beijing, 100039, China
| | - Pengyan Li
- Department of Pharmacy, 302 Military Hospital of China, Beijing, 100039, China
| | - Jianxia Wen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Department of Pharmacy, 302 Military Hospital of China, Beijing, 100039, China
| | - Shizhang Wei
- Department of Pharmacy, 302 Military Hospital of China, Beijing, 100039, China
| | - Ruisheng Li
- Department of Pharmacy, 302 Military Hospital of China, Beijing, 100039, China
| | - Xiao Ma
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yanling Zhao
- Department of Pharmacy, 302 Military Hospital of China, Beijing, 100039, China
| |
Collapse
|
11
|
Wang Y, Pei H, Chen W, Du R, Li J, He Z. Palmatine Protects PC12 Cells and Mice from Aβ25-35-Induced Oxidative Stress and Neuroinflammation via the Nrf2/HO-1 Pathway. Molecules 2023; 28:7955. [PMID: 38138445 PMCID: PMC10745955 DOI: 10.3390/molecules28247955] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Alzheimer's disease is a common degenerative disease which has a great impact on people's daily lives, but there is still a certain market gap in the drug research about it. Palmatine, one of the main components of Huangteng, the rattan stem of Fibraurea recisa Pierre (Menispermaceae), has potential in the treatment of Alzheimer's disease. The aim of this study was to evaluate the neuroprotective effect of palmatine on amyloid beta protein 25-35-induced rat pheochromocytoma cells and AD mice and to investigate its mechanism of action. CCK8 assays, ELISA, the Morris water maze assay, fluorescent probes, calcein/PI staining, immunofluorescent staining and Western blot analysis were used. The experimental results show that palmatine can increase the survival rate of Aβ25-35-induced PC12 cells and mouse hippocampal neurons, reduce apoptosis, reduce the content of TNF-α, IL-1β, IL-6, GSH, SOD, MDA and ROS, improve the learning and memory ability of AD mice, inhibit the expression of Keap-1 and Bax, and promote the expression of Nrf2, HO-1 and Bcl-2. We conclude that palmatine can ameliorate oxidative stress and neuroinflammation produced by Aβ25-35-induced PC12 cells and mice by modulating the Nrf2/HO-1 pathway. In conclusion, our results suggest that palmatine may have a potential therapeutic effect on AD and could be further investigated as a promising therapeutic agent for AD. It provides a theoretical basis for the development of related drugs.
Collapse
Affiliation(s)
- Yu Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (H.P.); (W.C.); (R.D.)
| | - Hongyan Pei
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (H.P.); (W.C.); (R.D.)
| | - Weijia Chen
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (H.P.); (W.C.); (R.D.)
| | - Rui Du
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (H.P.); (W.C.); (R.D.)
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Jianming Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (H.P.); (W.C.); (R.D.)
| | - Zhongmei He
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (H.P.); (W.C.); (R.D.)
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
12
|
Li X. Doxorubicin-mediated cardiac dysfunction: Revisiting molecular interactions, pharmacological compounds and (nano)theranostic platforms. ENVIRONMENTAL RESEARCH 2023; 234:116504. [PMID: 37356521 DOI: 10.1016/j.envres.2023.116504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/17/2023] [Accepted: 06/23/2023] [Indexed: 06/27/2023]
Abstract
Although chemotherapy drugs are extensively utilized in cancer therapy, their administration for treatment of patients has faced problems that regardless of chemoresistance, increasing evidence has shown concentration-related toxicity of drugs. Doxorubicin (DOX) is a drug used in treatment of solid and hematological tumors, and its function is based on topoisomerase suppression to impair cancer progression. However, DOX can also affect the other organs of body and after chemotherapy, life quality of cancer patients decreases due to the side effects. Heart is one of the vital organs of body that is significantly affected by DOX during cancer chemotherapy, and this can lead to cardiac dysfunction and predispose to development of cardiovascular diseases and atherosclerosis, among others. The exposure to DOX can stimulate apoptosis and sometimes, pro-survival autophagy stimulation can ameliorate this condition. Moreover, DOX-mediated ferroptosis impairs proper function of heart and by increasing oxidative stress and inflammation, DOX causes cardiac dysfunction. The function of DOX in mediating cardiac toxicity is mediated by several pathways that some of them demonstrate protective function including Nrf2. Therefore, if expression level of such protective mechanisms increases, they can alleviate DOX-mediated cardiac toxicity. For this purpose, pharmacological compounds and therapeutic drugs in preventing DOX-mediated cardiotoxicity have been utilized and they can reduce side effects of DOX to prevent development of cardiovascular diseases in patients underwent chemotherapy. Furthermore, (nano)platforms are used comprehensively in treatment of cardiovascular diseases and using them for DOX delivery can reduce side effects by decreasing concentration of drug. Moreover, when DOX is loaded on nanoparticles, it is delivered into cells in a targeted way and its accumulation in healthy organs is prevented to diminish its adverse impacts. Hence, current paper provides a comprehensive discussion of DOX-mediated toxicity and subsequent alleviation by drugs and nanotherapeutics in treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaofeng Li
- Department of Emergency, Shanghai Tenth People's Hospital, School of Medicine Tongji University, Shanghai, 200072, China.
| |
Collapse
|
13
|
Study on quality control of Zuojin pill by HPLC fingerprint with quantitative analysis of multi-components by single marker method and antioxidant activity analysis. J Pharm Biomed Anal 2023; 225:115075. [PMID: 36603393 DOI: 10.1016/j.jpba.2022.115075] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/06/2022]
Abstract
Current quality control methods for Zuojin Pill (ZJP) lack comprehensiveness and practicability. This study aimed to develop a comprehensive strategy for the quality evaluation of ZJP and the prediction of potential bioactive components in ZJP. First, an HPLC method with excellent separation of main components was developed and was used to establish the chromatographic fingerprint of ZJP. Similarities were calculated by comparing 28 batches of ZJPs with the reference fingerprint and the resulting similarity values were all greater than 0.976. The 28 samples were classified into different groups according to their origins by Hierarchical Cluster Analysis, Principal component analysis, and orthogonal partial least squares discriminant analysis. Based on the classification, eight quality markers (Q-Markers) affecting the quality of ZJP were discovered. Then, using berberine as an internal standard substance, quantitative analysis of multi-components by single marker method (QAMS) for the determination of eight Q-markers was developed. The results showed that there was no significant difference between QAMS and external standard method (P>0.05). Finally, using an off-line antioxidant system and partial least-squares model (PLS), the fingerprint-efficacy relationship of ZJP was constructed to explore and predict the bioactive components in ZJP. The present study strategy could be also applied to comprehensive quality study of other TCMs.
Collapse
|
14
|
Tubeimoside I Ameliorates Doxorubicin-Induced Cardiotoxicity by Upregulating SIRT3. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:9966355. [PMID: 36691640 PMCID: PMC9867588 DOI: 10.1155/2023/9966355] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 01/15/2023]
Abstract
Cardiotoxicity linked to doxorubicin (DOX) is primarily caused by inflammation, oxidative stress, and apoptosis. The role of tubeimoside I (TBM) in DOX-induced cardiotoxicity remains ambiguous, despite growing evidence that it could reduce inflammation, oxidative stress, and apoptosis in various diseases. This study was designed to investigate the role of TBM in DOX-induced cardiotoxicity and uncover the underlying mechanisms. H9c2 cell line and C57BL/6 mice were used to construct an in vitro and in vivo model of DOX-induced myocardial injury, respectively. We observed that DOX treatment provoked inflammation, oxidative stress, and cardiomyocyte apoptosis, which were significantly alleviated by TBM administration. Mechanistically, TBM attenuated DOX-induced downregulation of sirtuin 3 (SIRT3), and SIRT3 inhibition abrogated the beneficial effects of TBM both in vitro and in vivo. In conclusion, TBM eased inflammation, oxidative stress, and apoptosis in DOX-induced cardiotoxicity by increasing the expression of SIRT3, suggesting that it holds great promise for treating DOX-induced cardiac injury.
Collapse
|
15
|
Yin Y, Niu Q, Hou H, Que H, Mi S, Yang J, Li Z, Wang H, Yu Y, Zhu M, Zhan H, Wang Q, Li P. PAE ameliorates doxorubicin-induced cardiotoxicity via suppressing NHE1 phosphorylation and stimulating PI3K/AKT phosphorylation. Int Immunopharmacol 2022; 113:109274. [DOI: 10.1016/j.intimp.2022.109274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/31/2022] [Accepted: 09/20/2022] [Indexed: 11/05/2022]
|
16
|
Omaveloxolone attenuates the sepsis-induced cardiomyopathy via activating the nuclear factor erythroid 2-related factor 2. Int Immunopharmacol 2022; 111:109067. [PMID: 35908503 DOI: 10.1016/j.intimp.2022.109067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 12/14/2022]
Abstract
Sepsis-induced cardiomyopathy (SIC) is a common complication of sepsis and is the main reason for the high mortality in sepsis patients. More recent studies have indicated that activating nuclear factor erythroid 2-related factor 2 (Nrf2) signaling plays a protective role in SIC. As a potent activator of Nrf2, Omaveloxolone plays a pivotal role in defending against oxidative stress and the inflammatory response. Thus, we examined the efficacy of omaveloxolone in SIC. In the present study, the mice were injected intraperitoneally with a single dose of LPS (10 mg/kg) for 12 h to induce SIC. The data in our study indicated that omaveloxolone administration significantly improved cardiac injury and dysfunction in LPS-induced SIC. In addition, omaveloxolone administration reduced SIC-related cardiac oxidative stress, the inflammatory response and cardiomyocyte apoptosis in mice. In addition, omaveloxolone administration also improved LPS-induced cardiomyocyte injury in an in vitro model using H9C2 cells. Moreover, knockdown of Nrf2 by si-Nrf2 abolished the omaveloxolone-mediated cardioprotective effects. In conclusion, omaveloxolone has potent cardioprotective potential in treating sepsis and SIC via activation of the Nrf2 signaling pathway.
Collapse
|