1
|
Bai Q, Wang C, Ding N, Wang Z, Liu R, Li L, Piao H, Song Y, Yan G. Eupalinolide B targets DEK and PANoptosis through E3 ubiquitin ligases RNF149 and RNF170 to negatively regulate asthma. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156657. [PMID: 40120540 DOI: 10.1016/j.phymed.2025.156657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/27/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025]
Abstract
PURPOSE We investigated the mechanism by which eupalinolide B (EB) regulates DEK protein ubiquitination and degradation, and its impact on DEK-mediated receptor-interacting protein kinase 1 (RIPK)-PANoptosis pathway in allergic asthma. STUDY DESIGN AND METHODS In vitro studies were conducted on human bronchial epithelial cells (BEAS-2B) treated with EB and human-recombinant DEK. Mass spectrometry analysis, RNA sequencing, molecular docking, and functional assays were used to assess the interactions and effects of EB, DEK, and ring finger protein 149 and 170 (RNF149 and RNF170). In vivo experiments involved a house dust mite-induced asthma model in mice and evaluation of airway inflammation, DEK expression, and PANoptosis markers. RESULTS In vitro, EB could bind to DEK. RNF149 and RNF170 were identified as regulatory factors of DEK, polyubiquitinating the K349 site in the DEK coding DNA sequence region 270-350 through K48 linkages and leading to its degradation. RNA sequencing showed that DEK overexpression upregulated the expression of genes such as RIPK1, FADD, and Caspase 8. Treatment with DEK siRNA or EB reduced the activation of the RIPK1-PANoptosis pathway in BEAS-2B-DEK cells. In vivo, EB significantly reduced the levels of DEK in house dust mite-induced mice and alleviated pulmonary inflammatory cell infiltration, goblet cell hyperplasia, collagen fiber deposition, and eosinophil proportion in BALF. Knocking out the DEK gene reduced RIPK1-induced PANoptosis, and inhibited airway inflammation and cell apoptosis. CONCLUSION EB promotes the degradation of DEK by RNF149 and RNF170, inhibits the RIPK1-PANoptosis pathway, and may effectively suppress asthma. EB may become a potential drug for treating airway inflammation in asthma.
Collapse
Affiliation(s)
- Qiaoyun Bai
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, PR China; Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji 133002, PR China
| | - Chongyang Wang
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, PR China; Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji 133002, PR China
| | - Ningpo Ding
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, PR China; Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji 133002, PR China
| | - Zhiguang Wang
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, PR China; Department of Respiratory Medicine, Affiliated Hospital of Yanbian University, Yanji 133000, PR China
| | - Ruobai Liu
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, PR China; Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji 133002, PR China
| | - Liangchang Li
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, PR China; Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji 133002, PR China
| | - Hongmei Piao
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, PR China; Department of Respiratory Medicine, Affiliated Hospital of Yanbian University, Yanji 133000, PR China
| | - Yilan Song
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, PR China; Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji 133002, PR China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, PR China.
| | - Guanghai Yan
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, PR China; Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji 133002, PR China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, PR China.
| |
Collapse
|
2
|
Wang TT, Zhou MY, Gong XN, Huang Y, Li FL, Gu SL, Zhang MY, Li LL, Xu ZS, Li R, Cai L. Eupalinolide B alleviates corticosterone-induced PC12 cell injury and improves depression-like behaviors in CUMS rats by regulating the GSK-3β/β-catenin pathway. Biochem Pharmacol 2025; 235:116831. [PMID: 40021022 DOI: 10.1016/j.bcp.2025.116831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/14/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
Eupalinolide B (EB), a primary bioactive compound isolated from Eupatorium lindleyanum DC., has exhibited various pharmacological properties, such as antitumor, anti-inflammatory, and notably, neuroprotective effects in neurodegenerative diseases. However, the in-depth studies on the antidepressant potential of EB and its underlying mechanisms are still lacking. Herein, we investigated the therapeutic effects of EB on corticosterone (CORT)-induced neurotoxicity in PC12 cells and its antidepressant-like effects in rats subjected to chronic unpredictable mild stress (CUMS). In particular, we focused on the molecular mechanisms related to modulating the GSK-3β/β-catenin pathway. Our findings revealed that EB promoted cell proliferation while decreasing apoptosis and oxidative stress in CORT-induced PC12 cells. In vivo, EB alleviated the depressive-like behaviors in CUMS rats, as assayed by the sucrose preference test, open field test, and forced swim test. Additionally, EB attenuated the hippocampal pathological damage and increased Ki67- and doublecortin-positive cell numbers in hippocampal dentate gyrus, thus restoring hippocampal neurogenesis in CUMS rats. The binding of EB to GSK-3β was confirmed using molecular docking and cellular thermal shift assays. Overexpression of GSK-3β diminished the therapeutic effects of EB on CORT-induced PC12 cells, further indicating that GSK-3β is the target of EB. Mechanistically, EB hindered GSK-3β activity and thus activated β-catenin signaling in both CORT-induced PC12 cells and CUMS rat hippocampus, as demonstrated by increased p-GSK-3β (Ser9), reduced p-β-catenin, and elevated β-catenin expression. Collectively, this study offers new insights into the antidepressant mechanisms of EB, highlighting its potential as a candidate for depression treatment.
Collapse
Affiliation(s)
- Tian-Tian Wang
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022 Anhui Province, PR China; Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei 230032 Anhui Province, PR China
| | - Meng-Yuan Zhou
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032 Anhui Province, PR China
| | - Xue-Na Gong
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei 230032 Anhui Province, PR China
| | - Yan Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032 Anhui Province, PR China
| | - Fei-Long Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032 Anhui Province, PR China
| | - Sheng-Long Gu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032 Anhui Province, PR China
| | - Man-Yu Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032 Anhui Province, PR China
| | - Ling-Ling Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032 Anhui Province, PR China
| | - Ze-Shan Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032 Anhui Province, PR China
| | - Rong Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032 Anhui Province, PR China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei 230026 Anhui Province, PR China.
| | - Li Cai
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022 Anhui Province, PR China; Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei 230032 Anhui Province, PR China.
| |
Collapse
|
3
|
Ju Q, Sheng W, Zhang M, Chen J, Wu L, Liu X, Fang W, Shi H, Sun C. TAK1-mediated phosphorylation of PLCE1 represses PIP2 hydrolysis to impede esophageal squamous cancer metastasis. eLife 2025; 13:RP97373. [PMID: 40266671 PMCID: PMC12017773 DOI: 10.7554/elife.97373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025] Open
Abstract
TAK1 is a serine/threonine protein kinase that is a key regulator in a wide variety of cellular processes. However, the functions and mechanisms involved in cancer metastasis are still not well understood. Here, we found that TAK1 knockdown promoted esophageal squamous cancer carcinoma (ESCC) migration and invasion, whereas TAK1 overexpression resulted in the opposite outcome. These in vitro findings were recapitulated in vivo in a xenograft metastatic mouse model. Mechanistically, co-immunoprecipitation and mass spectrometry demonstrated that TAK1 interacted with phospholipase C epsilon 1 (PLCE1) and phosphorylated PLCE1 at serine 1060 (S1060). Functional studies revealed that phosphorylation at S1060 in PLCE1 resulted in decreased enzyme activity, leading to the repression of phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis. As a result, the degradation products of PIP2 including diacylglycerol (DAG) and inositol IP3 were reduced, which thereby suppressed signal transduction in the axis of PKC/GSK-3β/β-Catenin. Consequently, expression of cancer metastasis-related genes was impeded by TAK1. Overall, our data indicate that TAK1 plays a negative role in ESCC metastasis, which depends on the TAK1-induced phosphorylation of PLCE1 at S1060.
Collapse
Affiliation(s)
- Qianqian Ju
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products; School of Medicine, Nantong UniversityNantongChina
| | - Wenjing Sheng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products; School of Medicine, Nantong UniversityNantongChina
| | - Meichen Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products; School of Medicine, Nantong UniversityNantongChina
| | - Jing Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products; School of Medicine, Nantong UniversityNantongChina
| | - Liucheng Wu
- Laboratory Animal Center, Nantong UniversityNantongChina
| | - Xiaoyu Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products; School of Medicine, Nantong UniversityNantongChina
| | - Wentao Fang
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Hui Shi
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Cheng Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products; School of Medicine, Nantong UniversityNantongChina
| |
Collapse
|
4
|
Gu SL, Liu XS, Xu ZS, Li LL, Wu XJ, Li FL, Huang Y, Ran X, Li R. Eupalinolide B alleviates rheumatoid arthritis through the promotion of apoptosis and autophagy via regulating the AMPK/mTOR/ULK-1 signaling axis. Int Immunopharmacol 2025; 148:114179. [PMID: 39874849 DOI: 10.1016/j.intimp.2025.114179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/15/2025] [Accepted: 01/24/2025] [Indexed: 01/30/2025]
Abstract
The excessive proliferation of fibroblast-like synoviocytes (FLS) leads to synovial hyperplasia, a key pathological hallmark of rheumatoid arthritis (RA). Eupalinolide B (EB), a sesquiterpene lactone of Eupatorium lindleyanum DC., has anti-inflammatory effects and anti-proliferative activity in tumor cells. However, its potential use in RA treatment is unclear. This study explored EB's anti-rheumatoid activities by promoting apoptosis and autophagy in RA-FLS and the synovium of adjuvant-induced arthritis (AIA) rats, focusing on its regulation of the AMPK/mTOR/ULK-1 axis. Our findings revealed that EB inhibited proliferation, induced apoptosis, and promoted autophagy in RA-FLS. Autophagy inhibition using 3-methyladenine (3-MA) diminished EB's anti-proliferative effects, suggesting that EB promotes RA-FLS autophagy as a death mechanism. Z-VAD-FMK, a pan-caspase inhibitor, decreased EB-induced autophagy, while 3-MA co-treatment reduced caspase-3 activity, demonstrating that EB-induced apoptosis and autophagy promoted each other to support its anti-proliferative effects. In vivo, EB exhibited clear anti-arthritic effects in AIA rats, as shown by reduced paw swelling, arthritis index, serum levels of TNF-α, IL-1β, and MCP-1, and joint damage, along with decreased Ki67 expression, increased apoptosis, and enhanced autophagy in AIA rat synovium. Mechanistically, EB regulated the AMPK/mTOR/ULK-1 axis in RA-FLS and AIA rat synovium, as evidenced by higher expression of p-AMPK and p-ULK-1 and lower levels of p-mTOR. Notably, co-treatment of the AMPK inhibitor compound C negated EB's beneficial effects in RA-FLS and AIA rats. Collectively, EB demonstrated exact anti-RA effects by inducing apoptosis and autophagy via the regulation of the AMPK/mTOR/ULK-1 axis, highlighting its potential for RA therapy.
Collapse
Affiliation(s)
- Sheng-Long Gu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Xue-Song Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Ze-Shan Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Ling-Ling Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Xin-Jie Wu
- The First Clinical Medical College, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Fei-Long Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Yan Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Xiang Ran
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, China.
| | - Rong Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, Anhui Province, China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei 230026, Anhui Province, China.
| |
Collapse
|
5
|
Markov AV, Moralev AD, Odarenko KV. Sesquiterpene Lactones as Promising Anti-Glioblastoma Drug Candidates Exerting Complex Effects on Glioblastoma Cell Viability and Proneural-Mesenchymal Transition. Biomedicines 2025; 13:133. [PMID: 39857717 PMCID: PMC11761231 DOI: 10.3390/biomedicines13010133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/26/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Glioblastoma is one of the most aggressive brain cancers, characterized by active infiltrative growth and high resistance to radiotherapy and chemotherapy. Sesquiterpene triterpenoids (STLs) and their semi-synthetic analogs are considered as a promising source of novel anti-tumor agents due to their low systemic toxicity and multi-target pharmacological effects on key processes associated with tumor progression. The current review aims to systematize the knowledge on the anti-glioblastoma potential of STLs accumulated over the last decade and to identify key processes in glioblastoma cells that are most susceptible to the action of STLs. An analysis of published data clearly demonstrated that STLs, which can successfully cross the blood-brain barrier, exert a complex inhibitory effect on glioblastoma cells through the induction of the "mitochondrial dysfunction-oxidative stress-apoptosis" axis, the inhibition of glucose metabolism and cell cycle phase transition, and the suppression of glioblastoma cell motility and invasion through the blockade of proneural-mesenchymal transition. Taken together, this review highlights the promising anti-glioblastoma potential of STLs, which are not only able to induce glioblastoma cell death, but also effectively affect their diffusive spread, and suggests the possible directions for further investigation of STLs in the context of glioblastoma to better understand their mechanism of action.
Collapse
Affiliation(s)
- Andrey V. Markov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrent’ev Avenue 8, 630090 Novosibirsk, Russia; (A.D.M.); (K.V.O.)
| | | | | |
Collapse
|
6
|
Kuang W, Zhuge R, Song P, Yi L, Zhang S, Zhang Y, Wong YK, Chen R, Zhang J, Wang Y, Liu D, Gong Z, Wang P, Ouyang X, Wang J. Eupalinolide B inhibits periodontitis development by targeting ubiquitin conjugating enzyme UBE2D3. MedComm (Beijing) 2025; 6:e70034. [PMID: 39811801 PMCID: PMC11731104 DOI: 10.1002/mco2.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 09/17/2024] [Accepted: 09/30/2024] [Indexed: 01/16/2025] Open
Abstract
Periodontitis is a chronic periodontal inflammatory disease caused by periodontal pathogens commonly seen in adults. Eupalinolide B (EB) is a sesquiterpenoid natural product extracted from Eupatorium lindleyanum and has been reported as a potential drug for cancers and immune disorders. Here, we explored the ameliorative effects and underlying molecular mechanism of EB on periodontitis for the first time. We demonstrated that EB ameliorates periodontal inflammation and alveolar bone resorption with a ligated periodontitis mouse model. In addition, the impact of EB on macrophages inflammation was examined in the Raw264.7 cell line. We identified ubiquitin-conjugating enzyme, UBE2D3, as the direct covalent binding protein targets of EB by using a chemoproteomic method based on activity-based protein profiling, biolayer interferometry method, and cellular thermal shift assay. Furthermore, the direct binding site of EB to UBE2D3 was identified using high-resolution mass spectrometry and confirmed by experiments. Taken together, EB ameliorates periodontitis by targeting UBE2D3 to suppress the ubiquitination degradation of IκBα, leading to inactivation of nuclear transcription factor-κB signaling pathway. And this was confirmed by siRNA-mediated gene knockdown in inflammatory macrophages. Our results suggested that EB may be a new kind of UBE2D3 inhibitor and may become a promising therapeutic agent for anti-periodontitis.
Collapse
Affiliation(s)
- Wenhua Kuang
- Department of Urology, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Centre for GeriatricsShenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and TechnologyShenzhenChina
| | - Ruishen Zhuge
- Department of Urology, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Centre for GeriatricsShenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and TechnologyShenzhenChina
- Department of Periodontology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital StomatologyPeking University School and Hospital of StomatologyBeijingChina
| | - Ping Song
- Department of Urology, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Centre for GeriatricsShenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and TechnologyShenzhenChina
- National Clinical Research Center for Chinese Medicine CardiologyXiyuan Hospital, China Academy of Chinese Medical SciencesBeijingChina
| | - Letai Yi
- Department of Urology, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Centre for GeriatricsShenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and TechnologyShenzhenChina
- Inner Mongolia Medical UniversityHohhotChina
| | - Shujie Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, Artemisinin Research Center, Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Ying Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, Artemisinin Research Center, Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Yin Kwan Wong
- Department of Urology, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Centre for GeriatricsShenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and TechnologyShenzhenChina
| | - Ruixing Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of PharmaceuticsGuizhou Medical UniversityGuiyangChina
| | - Junzhe Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, Artemisinin Research Center, Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Yuanbo Wang
- Department of Periodontology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital StomatologyPeking University School and Hospital of StomatologyBeijingChina
| | - Dandan Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, Artemisinin Research Center, Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Zipeng Gong
- Department of Urology, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Centre for GeriatricsShenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and TechnologyShenzhenChina
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of PharmaceuticsGuizhou Medical UniversityGuiyangChina
| | - Peili Wang
- Department of Urology, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Centre for GeriatricsShenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and TechnologyShenzhenChina
- National Clinical Research Center for Chinese Medicine CardiologyXiyuan Hospital, China Academy of Chinese Medical SciencesBeijingChina
| | - Xiangying Ouyang
- Department of Urology, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Centre for GeriatricsShenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and TechnologyShenzhenChina
- Department of Periodontology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital StomatologyPeking University School and Hospital of StomatologyBeijingChina
| | - Jigang Wang
- Department of Urology, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Centre for GeriatricsShenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and TechnologyShenzhenChina
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, Artemisinin Research Center, Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
- State Key Laboratory of Antiviral Drugs, School of PharmacyHenan UniversityKaifengChina
| |
Collapse
|
7
|
Huang Q, Yang J, Zhang J, Yao L, Jiang B, Du S, Li F, Peng Q, Qin L, Wang Y, Qi L. Eupalinolide B suppresses pancreatic cancer by ROS generation and potential cuproptosis. iScience 2024; 27:110496. [PMID: 39100694 PMCID: PMC11295471 DOI: 10.1016/j.isci.2024.110496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/15/2024] [Accepted: 07/10/2024] [Indexed: 08/06/2024] Open
Abstract
Pancreatic cancer is highly lethal with limited effective treatments. This study explores the therapeutic effects of eupalinolide B (EB) from Eupatorium lindleyanum DC on pancreatic cancer cells. Through cellular functional assays, we observed that EB effectively inhibits cell viability, proliferation, migration, and invasion. In a xenograft mouse model, EB treatment resulted in reduced pancreatic cancer tumor growth and decreased expression of Ki-67. Mechanistically, EB induces apoptosis, elevates reactive oxygen species (ROS) levels, and disrupts copper homeostasis. RNA sequencing (RNA-seq) and gene set enrichment analysis (GSEA) identified copper ion binding pathways and potential involvement in cuproptosis. Furthermore, EB enhances the cytotoxic effects of elesclomol (ES), increasing ROS levels in a copper-dependent manner and exhibiting synergistic cytotoxicity. These findings suggest that EB, either alone or in combination with ES, represents a promising strategy for targeting metal ion dysregulation and inducing potential cuproptosis in pancreatic cancer, offering a potential improvement in therapeutic outcomes.
Collapse
Affiliation(s)
- Qingtian Huang
- Institute of Digestive Diseases, the Affiliated Qingyuan Hospital (Qingyuan Peoples's Hospital), Guangzhou Medical University, Qingyuan 511518, Guang Dong, China
- Department of Pathology, the Affiliated Qingyuan Hospital (Qingyuan Peoples's Hospital), Guangzhou Medical University, Qingyuan 511518, Guang Dong, China
| | - Jie Yang
- Institute of Digestive Diseases, the Affiliated Qingyuan Hospital (Qingyuan Peoples's Hospital), Guangzhou Medical University, Qingyuan 511518, Guang Dong, China
| | - Jiaxing Zhang
- Institute of Digestive Diseases, the Affiliated Qingyuan Hospital (Qingyuan Peoples's Hospital), Guangzhou Medical University, Qingyuan 511518, Guang Dong, China
| | - Leyi Yao
- Institute of Digestive Diseases, the Affiliated Qingyuan Hospital (Qingyuan Peoples's Hospital), Guangzhou Medical University, Qingyuan 511518, Guang Dong, China
| | - Baoyi Jiang
- Institute of Digestive Diseases, the Affiliated Qingyuan Hospital (Qingyuan Peoples's Hospital), Guangzhou Medical University, Qingyuan 511518, Guang Dong, China
| | - Siyuan Du
- Institute of Digestive Diseases, the Affiliated Qingyuan Hospital (Qingyuan Peoples's Hospital), Guangzhou Medical University, Qingyuan 511518, Guang Dong, China
| | - Fengjin Li
- Institute of Digestive Diseases, the Affiliated Qingyuan Hospital (Qingyuan Peoples's Hospital), Guangzhou Medical University, Qingyuan 511518, Guang Dong, China
| | - Qian Peng
- Biological Sample Resource Centre, the Affiliated Qingyuan Hospital (Qingyuan Peoples's Hospital), Guangzhou Medical University, Qingyuan 511518, Guang Dong, China
| | - Lingsha Qin
- Biological Sample Resource Centre, the Affiliated Qingyuan Hospital (Qingyuan Peoples's Hospital), Guangzhou Medical University, Qingyuan 511518, Guang Dong, China
| | - Yanfen Wang
- Department of Pathology, the Affiliated Qingyuan Hospital (Qingyuan Peoples's Hospital), Guangzhou Medical University, Qingyuan 511518, Guang Dong, China
| | - Ling Qi
- Institute of Digestive Diseases, the Affiliated Qingyuan Hospital (Qingyuan Peoples's Hospital), Guangzhou Medical University, Qingyuan 511518, Guang Dong, China
- Biological Sample Resource Centre, the Affiliated Qingyuan Hospital (Qingyuan Peoples's Hospital), Guangzhou Medical University, Qingyuan 511518, Guang Dong, China
- Division of Gastroenterology, Institute of Digestive Disease, the Affiliated Qingyuan Hospital (Qingyuan Peoples's Hospital), Guangzhou Medical University, Qingyuan 511518, Guang Dong, China
| |
Collapse
|
8
|
Li B, Hu Y, Chen Y, Liu K, Rong K, Hua Q, Fu S, Yang X, Zhou T, Cheng X, Zhang K, Zhao J. Homoplantaginin alleviates intervertebral disc degeneration by blocking the NF-κB/MAPK pathways via binding to TAK1. Biochem Pharmacol 2024; 226:116389. [PMID: 38914318 DOI: 10.1016/j.bcp.2024.116389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Intervertebral disc degeneration (IVDD) is a common degenerative disease which is closely related to low back pain (LBP) and brings huge economic and social burdens. In this study, we explored the therapeutic effects of Homoplantaginin (Hom) for IVDD due to its convincing anti-inflammatory and antioxidant functions. TNF-α was used to simulate the inflammatory environment for nucleus pulposus (NP) cells in vitro. We verified that Hom could alleviate the TNF-α-induced inflammation and disturbance of ECM homeostasis through blocking the NF-κB/MAPK signaling pathways. Subsequently, we screened the binding targets of Hom and confirmed that Hom could directly bind to TAK1 and inhibit its phosphorylation to down-regulate the inflammation-related pathways. The therapeutic effects of Hom on IVDD were further validated through a needle puncture rat model in vivo. Overall, Hom was a promising small molecule for IVDD early intervention, possessing huge clinical translational value.
Collapse
Affiliation(s)
- Baixing Li
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, PR China
| | - Yibin Hu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, PR China
| | - Yan Chen
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, PR China
| | - Kexin Liu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, PR China
| | - Kewei Rong
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, PR China
| | - Qi Hua
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, PR China
| | - Shaotian Fu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, PR China
| | - Xiao Yang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, PR China
| | - Tangjun Zhou
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, PR China
| | - Xiaofei Cheng
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, PR China
| | - Kai Zhang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, PR China.
| | - Jie Zhao
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, PR China.
| |
Collapse
|
9
|
Luo L, Wang H, Xiong J, Chen X, Shen X, Zhang H. Echinatin attenuates acute lung injury and inflammatory responses via TAK1-MAPK/NF-κB and Keap1-Nrf2-HO-1 signaling pathways in macrophages. PLoS One 2024; 19:e0303556. [PMID: 38753858 PMCID: PMC11098428 DOI: 10.1371/journal.pone.0303556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/27/2024] [Indexed: 05/18/2024] Open
Abstract
Echinatin is an active ingredient in licorice, a traditional Chinese medicine used in the treatment of inflammatory disorders. However, the protective effect and underlying mechanism of echinatin against acute lung injury (ALI) is still unclear. Herein, we aimed to explore echinatin-mediated anti-inflammatory effects on lipopolysaccharide (LPS)-stimulated ALI and its molecular mechanisms in macrophages. In vitro, echinatin markedly decreased the levels of nitric oxide (NO) and prostaglandin E2 (PGE2) in LPS-stimulated murine MH-S alveolar macrophages and RAW264.7 macrophages by suppressing inducible nitric oxide synthase and cyclooxygenase-2 (COX-2) expression. Furthermore, echinatin reduced LPS-induced mRNA expression and release of interleukin-1β (IL-1β) and IL-6 in RAW264.7 cells. Western blotting and CETSA showed that echinatin repressed LPS-induced activation of mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB) pathways through targeting transforming growth factor-beta-activated kinase 1 (TAK1). Furthermore, echinatin directly interacted with Kelch-like ECH-associated protein 1 (Keap1) and activated the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway to enhance heme oxygenase-1 (HO-1) expression. In vivo, echinatin ameliorated LPS-induced lung inflammatory injury, and reduced production of IL-1β and IL-6. These findings demonstrated that echinatin exerted anti-inflammatory effects in vitro and in vivo, via blocking the TAK1-MAPK/NF-κB pathway and activating the Keap1-Nrf2-HO-1 pathway.
Collapse
Affiliation(s)
- Liuling Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huan Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinrui Xiong
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaorui Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofei Shen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hai Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
10
|
Wei H, Wang G, Tian Q, Liu C, Han W, Wang J, He P, Li M. Low shear stress induces macrophage infiltration and aggravates aneurysm wall inflammation via CCL7/CCR1/TAK1/ NF-κB axis. Cell Signal 2024; 117:111122. [PMID: 38417634 DOI: 10.1016/j.cellsig.2024.111122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/18/2024] [Accepted: 02/25/2024] [Indexed: 03/01/2024]
Abstract
BACKGROUND This study aimed to elucidate the mechanism by which wall shear stress (WSS) influences vascular walls, accounting for the susceptibility of intracranial aneurysms (IAs) to rupture. METHOD We collected blood samples from the sacs of 24 ruptured and 28 unruptured IAs and analyzed the expression of chemokine CCL7 using enzyme-linked immunosorbent assay (ELISA). Univariate and multivariate logistic regression analyses were employed to assess clinical data, aneurysm morphology, and hemodynamics in both groups. Pearson correlation analysis investigated the relationship between CCL7 expression in aneurysm sac blood and WSS. Additionally, we established a bionic cell parallel plate co-culture shear stress model and a mouse low shear stress (LSS) model. The model was modulated using CCL7 recombinant protein, CCR1 inhibitor, and TAK1 inhibitor. We further evaluated CCL7 expression in endothelial cells and the levels of TAK1, NF-κB, IL-1β, and TNF-α in macrophages. Subsequently, the intergroup differences in expression were calculated. RESULTS CCL7 expression was significantly higher in the ruptured group compared to the unruptured group. Hemodynamic analysis indicated that WSS was an independent predictor of the risk of aneurysm rupture. A negative linear correlation was observed between CCL7 expression and WSS. Upon addition of CCL7 recombinant protein, upregulation of CCR1 expression and increased levels of p-TAK1 and p-p65 were observed. Treatment with CCR1 and TAK1 inhibitors reduced inflammatory cytokine expression in macrophages under LSS conditions. Overexpression of TAK1 significantly alleviated the inhibitory effects of CCR1 inhibitors on p-p65 and inflammatory cytokines. CONCLUSION LSS prompts endothelial cells to secrete CCL7, which, upon binding to the macrophage surface receptor CCR1, stimulates the release of macrophage inflammatory factors via the TAK1/NF-κB signaling pathway. This process exacerbates aneurysm wall inflammation and increases the risk of aneurysm rupture.
Collapse
Affiliation(s)
- Heng Wei
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Guijun Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Qi Tian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Chengli Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Wenrui Han
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Jianfeng Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Peibang He
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Mingchang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China.
| |
Collapse
|
11
|
Nguyen TU, Hurh S, In S, Nguyen LP, Cho M, Mykhailova K, Kim HR, Ham BJ, Choi Y, Kim WK, Hwang JI. SP-8356 inhibits acute lung injury by suppressing inflammatory cytokine production and immune cell infiltration. Int Immunopharmacol 2024; 131:111847. [PMID: 38518593 DOI: 10.1016/j.intimp.2024.111847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/08/2024] [Accepted: 03/09/2024] [Indexed: 03/24/2024]
Abstract
This study investigated the anti-inflammatory and protective properties of SP-8356, a synthetic derivative of (1S)-(-)-verbenone, in a mouse model of LPS-induced acute lung injury (ALI). By targeting intracellular signaling pathways and inflammatory responses, SP-8356 demonstrated a potent ability to attenuate deleterious effects of proinflammatory stimuli. Specifically, SP-8356 effectively inhibited the activation of crucial signaling molecules such as NF-κB and Akt, and subsequently dampened the expression of inflammatory cytokines in various lung cellular components. Intervention with SP-8356 treatment also preserved the structural integrity of the epithelial and endothelial barriers. By reducing immune cell infiltration into inflamed lung tissue, SP-8356 exerted a broad protective effect against ALI. These findings position SP-8356 as a promising therapeutic candidate for pulmonary inflammatory diseases that cause ALI.
Collapse
Affiliation(s)
- Thai-Uy Nguyen
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Sunghoon Hurh
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Soyeon In
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Lan Phuong Nguyen
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Minyeong Cho
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Kateryna Mykhailova
- Department of Biotechnology, College of Life Sciences Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hong-Rae Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Byung-Joo Ham
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic of Korea; Department of Psychiatry, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Yongseok Choi
- Department of Biotechnology, College of Life Sciences Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Won-Ki Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic of Korea; Institute for Inflammation Control, Korea University, Seoul 02841, Republic of Korea.
| | - Jong-Ik Hwang
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
12
|
Liu QH, Zhang K, Feng SS, Zhang LJ, Li SY, Wang HY, Wang JH. Rosavin Alleviates LPS-Induced Acute Lung Injure by Modulating the TLR-4/NF-κB/MAPK Singnaling Pathways. Int J Mol Sci 2024; 25:1875. [PMID: 38339153 PMCID: PMC10856478 DOI: 10.3390/ijms25031875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/20/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Acute lung injury (ALI) is a serious inflammatory disease with high morbidity and mortality. Rosavin is an anti-inflammatory and antioxidant phenylpropanoid and glucoside, which is isolated from Rhodiola rosea L. However, its potential molecular mechanisms and whether it has protective effects against lipopolysaccharide (LPS)-induced ALI remain to be elucidated. To assess the in vitro anti-inflammatory effects and anti-lung injury activity of rosavin, RAW264.7 and A549 cells were stimulated using 1 μg/mL LPS. Rosavin attenuated LPS-induced activation of the TLR-4/NF-κB signaling pathway in RAW264.7 cells and inhibited LPS-induced release of inflammatory factors in A549 cells. A mouse model of acute lung injury was constructed by intraperitoneal injection of 5 mg/kg LPS to observe the therapeutic effect of rosavin. Transcriptomics analysis and Western blot assays were utilized to verify the molecular mechanism, rosavin (20, 40, and 80 mg/kg) dose-dependently ameliorated histopathological alterations, reduced the levels of inflammatory factors, and inhibited the TLR-4/NF-κB/MAPK signaling pathway and apoptosis activation. Rosavin is a promising therapeutic candidate for acute lung injury by inhibiting the TLR-4/NF-κB/MAPK pathway.
Collapse
Affiliation(s)
- Qiao-Hui Liu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China (J.-H.W.)
| | - Ke Zhang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China (J.-H.W.)
| | - Shu-Shu Feng
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China (J.-H.W.)
| | - Li-Juan Zhang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China (J.-H.W.)
| | - Shun-Ying Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China (J.-H.W.)
| | - Hang-Yu Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China (J.-H.W.)
| | - Jin-Hui Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832002, China (J.-H.W.)
- State-Province Key Laboratory of Biomedicine-Pharmaceutics of China, Department of Medicinal Chemistry and Natural Medicine Chemistry, Harbin Medical University, Harbin 150081, China
| |
Collapse
|
13
|
Chen H, Hu Q, Wen T, Luo L, Liu L, Wang L, Shen X. Arteannuin B, a sesquiterpene lactone from Artemisia annua, attenuates inflammatory response by inhibiting the ubiquitin-conjugating enzyme UBE2D3-mediated NF-κB activation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 124:155263. [PMID: 38181532 DOI: 10.1016/j.phymed.2023.155263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 10/15/2023] [Accepted: 12/04/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Anomalous activation of NF-κB signaling is associated with many inflammatory disorders, such as ulcerative colitis (UC) and acute lung injury (ALI). NF-κB activation requires the ubiquitination of receptor-interacting protein 1 (RIP1) and NF-κB essential modulator (NEMO). Therefore, inhibition of ubiquitation of RIP1 and NEMO may serve as a potential approach for inhibiting NF-κB activation and alleviating inflammatory disorders. PURPOSE Here, we identified arteannuin B (ATB), a sesquiterpene lactone found in the traditional Chinese medicine Artemisia annua that is used to treat malaria and inflammatory diseases, as a potent anti-inflammatory compound, and then characterized the putative mechanisms of its anti-inflammatory action. METHODS Detections of inflammatory mediators and cytokines in LPS- or TNF-α-stimulated murine macrophages using RT-qPCR, ELISA, and western blotting, respectively. Western blotting, CETSA, DARTS, MST, gene knockdown, LC-MS/MS, and molecular docking were used to determine the potential target and molecular mechanism of ATB. The pharmacological effects of ATB were further evaluated in DSS-induced colitis and LPS-induced ALI in vivo. RESULTS ATB effectively diminished the generation of NO and PGE2 by down-regulating iNOS and COX2 expression, and decreased the mRNA expression and release of IL-1β, IL-6, and TNF-α in LPS-exposed RAW264.7 macrophages. The anti-inflammatory effect of ATB was further demonstrated in LPS-treated BMDMs and TNF-α-activated RAW264.7 cells. We further found that ATB obviously inhibited NF-κB activation induced by LPS or TNF-α in vitro. Moreover, compared with ATB, dihydroarteannuin B (DATB) which lost the unsaturated double bond, completely failed to repress LPS-induced NO release and NF-κB activation in vitro. Furthermore, UBE2D3, a ubiquitin-conjugating enzyme, was identified as the functional target of ATB, but not DATB. UBE2D3 knockdown significantly abolished ATB-mediated inhibition on LPS-induced NO production. Mechanistically, ATB could covalently bind to the catalytic cysteine 85 of UBE2D3, thereby inhibiting the function of UBE2D3 and preventing ubiquitination of RIP1 and NEMO. In vivo, ATB treatment exhibited robust protective effects against DSS-induced UC and LPS-induced ALI. CONCLUSION Our findings first demonstrated that ATB exerted anti-inflammatory functions by repression of NF-κB pathway via covalently binding to UBE2D3, and raised the possibility that ATB could be effective in the treatment of inflammatory diseases and other diseases associated with abnormal NF-κB activation.
Collapse
Affiliation(s)
- Hongqing Chen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiongying Hu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tian Wen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liuling Luo
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Liu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lun Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Xiaofei Shen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
14
|
Song J, Yang Q, Xiong H, Gu X, Chen M, Zhou C, Cai Y. TIPE3 protects mice from lipopolysaccharide-induced acute lung injury. Transpl Immunol 2023; 77:101799. [PMID: 36842565 DOI: 10.1016/j.trim.2023.101799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 02/28/2023]
Abstract
BACKGROUND Acute lung injury (ALI) is a severe inflammatory disease with high morbidity and mortality in patients and lung transplant recipients. Tumor necrosis factor-α-induced protein 8-like 3 (TIPE3) is one of the members of the TIPE family. While TIPE2 has been demonstrated to be protective against lipopolysaccharide (LPS)-induced ALI, the role of TIPE3 in ALI is currently unidentified. METHODS To examine the role of TIPE3 in ALI, we pretreated C57BL/6 mice with control or TIPE3-lentivirus in LPS-induced ALI models. The C57BL/6 mice were randomly divided into four groups: control group; ALI-induced group; ALI-induced group with control lentivirus; and ALI-induced group with TIPE3-lentivirus. Additionally, RAW 264.7 cells were used to validate the role and molecular mechanism of TIPE3 signaling in vitro. RESULTS An increased expression of TIPE3 reduced lung histopathological damage in ALI-affected mice. ALI-affected mice treated with TIPE3-lentivirus exhibited reduced lung microvascular permeability, myeloperoxidase (MPO) activity, neutrophil buildup, and inflammation response. Additionally, over-expression of TIPE3 significantly inhibited NF-κB activation and promoted the activation of Liver X receptors alpha (LXRα). In LPS-treated RAW264.7 cells, enforced TIPE3 expression produced anti-inflammatory effects, whereas the LXR inhibitor geranylgeranyl pyrophosphate (GGPP) reversed these effects. CONCLUSIONS TIPE3 protected against LPS-induced ALI by regulating the LXRα/NF-κB signaling pathway. These results suggest that TIPE3 might provide a novel insight into the prevention of ALI.
Collapse
Affiliation(s)
- Jie Song
- Department of Pediatrics, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Qiuping Yang
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Hui Xiong
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Xia Gu
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Mo Chen
- Department of Pediatrics, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
| | - Chuanxin Zhou
- Department of Pediatrics, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China.
| | - Yao Cai
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China.
| |
Collapse
|
15
|
Li Y, Liu X, Li L, Zhang T, Gao Y, Zeng K, Wang Q. Characterization of the metabolism of eupalinolide A and B by carboxylesterase and cytochrome P450 in human liver microsomes. Front Pharmacol 2023; 14:1093696. [PMID: 36762117 PMCID: PMC9905117 DOI: 10.3389/fphar.2023.1093696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
Eupalinolide A (EA; Z-configuration) and eupalinolide B (EB; E-configuration) are bioactive cis-trans isomers isolated from Eupatorii Lindleyani Herba that exert anti-inflammatory and antitumor effects. Although one pharmacokinetic study found that the metabolic parameters of the isomers were different in rats, metabolic processes relevant to EA and EB remain largely unknown. Our preliminary findings revealed that EA and EB are rapidly hydrolyzed by carboxylesterase. Here, we investigated the metabolic stability and enzyme kinetics of carboxylesterase-mediated hydrolysis and cytochrome P450 (CYP)-mediated oxidation of EA and EB in human liver microsomes (HLMs). We also explored differences in the hydrolytic stability of EA and EB in human liver microsomes and rat liver microsomes (RLMs). Moreover, cytochrome P450 reaction phenotyping of the isomers was performed via in silico methods (i.e., using a quantitative structure-activity relationship model and molecular docking) and confirmed using human recombinant enzymes. The total normalized rate approach was considered to assess the relative contributions of five major cytochrome P450s to EA and EB metabolism. We found that EA and EB were eliminated rapidly, mainly by carboxylesterase-mediated hydrolysis, as compared with cytochrome P450-mediated oxidation. An inter-species difference was observed as well, with faster rates of EA and EB hydrolysis in rat liver microsomes. Furthermore, our findings confirmed EA and EB were metabolized by multiple cytochrome P450s, among which CYP3A4 played a particularly important role.
Collapse
Affiliation(s)
- Yingzi Li
- Department of Toxicology, School of Public Health, Peking University, Beijing, China
| | - Xiaoyan Liu
- Department of Toxicology, School of Public Health, Peking University, Beijing, China
| | - Ludi Li
- Department of Toxicology, School of Public Health, Peking University, Beijing, China
| | - Tao Zhang
- Department of Toxicology, School of Public Health, Peking University, Beijing, China
| | - Yadong Gao
- Department of Toxicology, School of Public Health, Peking University, Beijing, China
| | - Kewu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China,*Correspondence: Kewu Zeng, ; Qi Wang,
| | - Qi Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing, China,Key Laboratory of State Administration of Traditional Chinese Medicine for Compatibility Toxicology, Beijing, China,Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, China,*Correspondence: Kewu Zeng, ; Qi Wang,
| |
Collapse
|